LECTURE NOTES ON
ADVANCED COMPUTER AIDED DESIGN

M.Tech: CAD/CAM - | sem

by
Dr. K RAGHU RAM MOHAN REDDY
Professor

Department of Mechanical Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal — 500 043, Hyderabad

UNIT- I

What is computer Graphics?

Computer graphics is an art of drawing pictures, lines, charts, etc. using computers
with the help of programming. Computer graphics image is made up of number of pixels.
Pixel is the smallest addressable graphical unit represented on the computer screen.

Introduction

Computer is information processing machine. User needs to communicate with
computer and the computer graphics is one of the most effective and commonly used
ways of communication with the user.

[

O

Itdisplays the information inthe form of graphical objects such as pictures, charts, diagram and
graphs.

Graphical objects convey more information in less time and easily understandable
formats for example statically graph shown in stock exchange.

In computer graphics picture or graphics objects are presented as a collection of discrete
pixels.

We can control intensity and color of pixel which decide how picture look like.

The special procedure determines which pixel will provide the best approximation to the
desired picture or graphics object this process is known as Rasterization.

The process of representing continuous picture or graphics object as a collection of
discrete pixelsis called Scan Conversion.

Advantages of computer graphics

[

Computer graphics is one of the most effective and commonly used ways of
communication with computer.

It provides tools for producing picture of “real-world” as well as synthetic objects such as
mathematical

surfaces in 4D and of data that have no inherent geometry such as survey result.

It has ability to show moving pictures thus possible to produce animations with computer
graphics.

With the use of computer graphics we can control the animation by adjusting the

speed, portion of picture in view the amount of detail shown and so on.

It provides tools called motion dynamics. In which user can move objects as well as
observes as per requirement for example walk throw made by builder to show flat

interior and surrounding.

It provides facility called update dynamics. With this we can change the shape color and

other properties of object.

"1 Now in recent development of digital signal processing and audio synthesis chip the
interactive graphics can now provide audio feedback along with the graphical feed
backs.

Application of computer graphics

1 User interface: - Visual object which we observe on screen which communicates with
userisoneofthe most useful applications of the computer graphics.

1 Plotting of graphics and chart in industry, business, government and educational
organizations drawing like bars, pie-charts, histogram’s are very useful for quick and
good decision making.

1 Officeautomationand desktop publishing: - Itisused for creation and dissemination of
information. It is used in in-house creation and printing of documents which contains
text, tables, graphs and other forms of drawn or scanned images or picture.

"1 Computer aided drafting and design: - It uses graphics to design components and
system such as automobile bodies structures of building etc.

71 Simulationandanimation: - Use of graphicsin simulation makes mathematic models
and mechanical systems more realistic and easy to study.

1 Artandcommerce: - Therearemanytoolsprovidedbygraphicswhichallowsusedto
maketheirpicture animated and attracted which are used in advertising.

71 Processcontrol: - Now aday’s automation is used which is graphically displayed on the
screen.

71 Cartography: - Computer graphics is also used to represent geographic maps,
weather maps, oceanographic charts etc.

71 Education and training: - Computer graphics can be used to generate models of
physical, financial and economic systems. These models can be used as educational
aids.

71 Image processing: - Itis used to process image by changing property of the image.
O

Difference between random scan and raster scan

Base of Difference | Raster Scan System Random Scan System

Electron Beam The electron beam is swept across the | The electron beam is directed only to the
screen, one row at a time, from top to | parts of screen where a picture is to be
bottom. drawn.

Resolution

Its resolution is poor because raster
system in contrast produces zigzag
lines that are plotted as discrete point
sets.

Its resolution is good because this system
produces smooth lines drawings because
CRT beam directly follows the line path.

Picture Definition

Picture definition is stored as a set of
intensity values for all screen points,
called pixelsinarefresh bufferarea.

Picture definition is stored as a set of line
drawing instructions in a display file.

Realistic Display

The capability of this system to store
intensity values for pixel makes it
well suited for the realistic display of
scenes contain shadow and color
pattern.

These systems are designed for line-
drawing and can’t display realistic shaded
scenes.

Draw an Image

Screenpoints/pixels are used to draw
an image.

Mathematical functions are used to draw
an image.

Graphics software and standard

"1 There are mainly two types of graphics software:
1. General programming package
2. Special-purpose application package

General programming package

1 Ageneral programming package provides an extensive set of graphics function that can
be used in high level programming language such as C or FORTRAN.

71 Itincludes basic drawing element shape like line, curves, polygon, color of element
transformation etc.

"1 Example: - GL (Graphics Library).

Special-purpose application package

1 Special-purpose application package are customize for particular application which
implement required facility and provides interface so that user need not to vory about
how it will work (programming). User can simply use it by interfacing with

application.

"1 Example: - CAD, medical and business systems.

Coordinate representations

1 Exceptfewall other general packagesare designedto be used with Cartesian coordinate

specifications.

1 Ifcoordinatevaluesforapicturearespecified issomeotherreference framethey must
beconvertedto Cartesian coordinate before giving input to graphics package.

1 Special-purpose package may allow use of other coordinates which suits application.

1 Ingeneral several different Cartesian reference frames are used to construct and display scene.

1 We can construct shape of object with separate coordinate system called modeling
coordinates or sometimes local coordinates or master coordinates.

1 Once individual object shapes have been specified we can place the objects into
appropriate positions called world coordinates.

1 Finally the World-coordinates description of the scene is transferred to one or more
output device reference frame for display. These display coordinates system are referred
toas“Device Coordinates” or “Screen Coordinates”.

"1 Generally a graphic system first converts the world-coordinates position to
normalized device coordinates. Inthe range from 0 to 1 before final conversion to
specific device coordinates.

71 Aninitial modeling coordinates position (Xmc,Ymc) in this illustration is
transferred to a device coordinates position(Xdc, Ydc) with the sequence (Xmc,Ymc)
(Xwe,Ywce)] (Xnc,Ync) [(Xdc,Ydc).

Graphic Function
71 Ageneral purpose graphics package provides user with Varity of function for creating
and manipulating pictures.
71 The basic building blocks for pictures are referred to as output primitives. They
includes character, string, and geometry entities such as point, straight lines, curved
lines, filledareasand shapes defined with arrays of color points.

71 Inputfunctions are used for control & process the various input device such as mouse, tablet,
etc.

71 Control operationsare used to controlling and housekeeping tasks such as clearing display
screenetc.

71 All such inbuilt function which we can use for our purpose are known as graphics function

Points and Lines

1 Pointplotting is done by converting asingle coordinate position furnished by an
application program into appropriate operations for the output device in use.

) Linedrawing is done by calculating intermediate positions along the line path
between two specified endpoint positions.

1 Theoutputdeviceisthendirectedto fill in those positions between the end points with some
color.

] Forsome devicesuchasapen plotter or random scan display, astraight line can be
drawn smoothly from one end point to other.

Digital devices display a straight line segment by plotting discrete points between the two
endpoints.
Discrete coordinate positions along the line path are calculated from the equation of the line.

For a raster video display, the line intensity is loaded in frame buffer at the
corresponding pixel positions.

Reading from the frame buffer, the video controller then plots the screen pixels.
Screenlocationsarereferenced with integervalues, so plotted positionsmayonly
approximateactual line positions between two specified endpoints.

For example line position of (12.36,23.87) would be converted to pixel position (12,24).

Bresenham'’s Line Algorithm

An accurate and efficient raster line-generating algorithm, developed by Bresenham which scan converts
line using only incremental integer calculations that can be modified to display circles and other curves.

Figure shows section of display screen where straight line segments are to be drawn.

Spedified
13 line path \// 50
Specified
12 49
/ line path
1 @ 48 <
10 47
10 11 12 13 14 15 50 51 52 53 54 55
Fig. 2.4: - Section of a display screen where a Fig. 2.5: - Section of a display screen where a
straight line segment is to be plotted, starting negative slope line segment is to be plotted,
from the pixel at column 10 on scan line 11. starting from the pixel at column 50 on scan

line 50.

The vertical axes show scan-line positions and the horizontal axes identify pixel column.

Sampling at unit x intervals in these examples, we need to decide which of two possible pixel position is
closer to the line path at each sample step.

To illustrate bresenham’s approach, we first consider the scan-conversion process for lines with positive
slope less than 1.

Pixel positions along a line path are then determined by sampling at unit x intervals.

Starting from left endpoint (xg, yg) of a given line, we step to each successive column and plot the pixel
whose scan-line y values is closest to the line path.

Assuming we have determined that the pixel at (xg, i) is to be displayed, we next need to decide which
pixel to plot in column x; + 1.

Our choices are the pixels at positions (x; + 1, v;) and (x; + 1, v, + 1).

Let’s see mathematical calculation used to decide which pixel position is light up.

We know that equation of line is:

y=mx +b

Now for position x; + 1.

v =m(x,+1) + b

Now calculate distance bet actual line's y value and lower pixel as d; and distance bet actual line’s y
value and upper pixel as d,.

dy =y —
dy = +1)—y
dy=(vpg +1)—mx, +1)—b . w(2)
Now calculate d; — d, from equation (1) and (2).
di—dy = V-y)- (e +1)-y)
dy —dy ={mlx + 1)+ b —yi} —{(yx + 1) —m(xx + 1) — b}
di—dy={mxz +m+b—yr}—{yp +1—mxy; —m— b}
dy —dy =2m(x 1) = 2V, F 2D — T et e e een e een e anenn e | D))
Now substitute m = Ay/Ax in equation (3)
A .
dy—dy = 2(22) Qe+ 1) = 20+ 2D = 1o (8)
Now we have decision parameter p;, for kt" step in the line algorithm is given by:
Px = Ax(dy —d3)
Pr = Ax(2Av/Ax(x; +1)- 2y, + 2b- 1)
Pr = 2Ayx;, + 2Ay — 2Axy, + 2Axb — Ax
Pr = 2Ayx, — 2Axy, + 2Ay + 2Axb — Ax . SRRSO -3
Pr = 2Ayx, — 2Axy, + C (Where Constant C = Zﬂy + 2Axb — ﬂx) eereemeneennaneeneaneeesaneeeena | B)

The sign of py. is the same as the sign of dy — d5, since Ax > 0 for our example.

Parameter c¢ is constant which is independent of pixel position and will eliminate in the recursive
calculation for py,.

Now if py is negative then we plot the lower pixel otherwise we plot the upper pixel.

So successive decision parameters using incremental integer calculation as:

Pr+1 = 2AyXg4q — 2AxYe4, +C

Now Subtract pk from py4q

Pr+1 — Px = 28y (X1 — %) -2AX (Vi1 — Vi)

Pr+1— Px = 28YXg4q — 20XYg4y + C — 2Ayx; + 28xy; — C

But x4 = x + 1, s0that (xp3 —x3) =1

Pr+1 = Px + 28y — 2AX(Vg+1 — Vi)

Where the terms yy 41 — Vi is either 0 or 1, depends on the sign of parameter py,.

This recursive calculation of decision parameters is performed at each integer x position starting at the
left coordinate endpoint of the line.

The first decision parameter py is calculated using equation (5) as first time we need to take constant
part into account so:

Pr = 2Ayx, — 2Axy, + 2Ay + 2Axb — Ax

Po = 2Avxy — 2Axy, + 2Ay + 2Axb — Ax

Now Substitutem = Ay/Ax
Po = 2Ayxg — 2Axyy + 28y + 2Ax(yy — (Ay/Ax)xy) — Ax
Po = 2Ayxy — 2Axyy + 2Ay + 2Axy, — 2Ayx, — Ax
po = 2Ay — Ax
e Llet's see Bresenham'’s line drawing algorithm for jm| < 1
1. Input the two line endpoints and store the left endpoint in (xg, ¥g)-
2. Load (xg,yq) into the frame buffer; that is, plot the first point.
3. Calculate constants Ax, Ay, 2Ay, and 2Ay — 2Ax, and obtain the starting value for the decision
parameter as

4. Ateach x;, along the line, starting at k = 0, perform the following test:
If p;. << 0, the next point to plotis (x; +1,y;) and
Px+1 = Px + 24y
Otherwise, the next point to plotis (x;; + 1,y + 1) and
Pr+1 = Px + 24y — 2Ax
5. Repeat step-4 Ax times.
* Bresenham’s algorithm is generalized to lines with arbitrary slope by considering symmetry between the
various octants and quadrants of the xy plane.
s For lines with positive slope greater than 1 we interchange the roles of the x and y directions.
+ Also we can revise algorithm to draw line from right endpoint to left endpoint, both x and y decrease as
we step from right to left.
* When d; — d; = 0 we choose either lower or upper pixel but once we choose lower than for all such
case for that line choose lower and if we choose upper the for all such case choose upper.
s For the negative slope the procedure are similar except that now one coordinate decreases as the other
increases.
¢ The special case handle separately. Horizontal line (Ay = 0), vertical line (Ax = 0) and diagonal line
with |Ax| = |Ay| each can be loaded directly into the frame buffer without processing them through
the line plotting algorithm.

Point Plotting Techniques

The coordinate systems of the monitor: Point plotting
techniques are based on the use of Cartesian coordinate system. Each point is
addressed by two points (X,y) which indicate the distance of the point with
respect to the origin. p (x,y) is pixel at a horizontal distance x and vertical
distance y from the origin
S o} X

Now any picture to be displayed is to be represented as a
combination of points

Examples of point plotted pictures:

.I.I.Ol.l..*— -
aee
c,.t". .'. saReeBOREREEN . :
- . - ., .
L] - L] & - -
- . - L] .
- - - a '. :
L] - L] . - -
.

: : ;-.."...'... : .. :
- - . - -
- - - L] -

. - . . -
}‘.l.q..‘l. ™ . .o :
- - a L[]

- Ld . .t:
- - . L™
- - a -

.
: '....'.-..... .

Though no continuous lines are drawn but only a sense of points
are being made bright, because of the properties of the human eye, we see
continuous lines, when the points that are being lighted are fairly close to each
other.

In fact, the closer the points to one another, we see better
pictures (see the example below)

o
.. *
. @ .
. . .« *
-
. -
. - . .
. . L
L4
swema ,,.* spsevanya
) . . .
- -
. .
. s a .
: . . .
. .
- L] ‘. L]
L] L . L]
- L] L]
* .
L] - .
. -
* -
L]

In the above figure both pictures indicate A, but in the
second picture, the points are closer and hence it appears more like A than the
first. How many points are there per unit area of the screen indicate what is
known as the "resolution” of the monitor. Higher the resolution, we get more
number of points and hence better quality pictures can be displayed (As a
corollary, such high resolution monitors are costlier)

Incremental methods

The concept of incremental methods, as the name suggests, is to
draw the picture in stages - incrementally. L.e. from the first point of the
picture, we have a method of drawing the second point, from there to the third
point etc. They are also sometimes called "iterative methods" because they
draw picture in stages - in iterations.

Qualities of good line drawing algorithms: Before we start
looking at a few basic line drawing algorithms, we see what are the conditions
that they should satisfy. While the same picture can be drawn using several
algorithms, some are more desirable than others, because they provide as
features that enable us to draw better "quality” pictures. A few of the
commonly expected qualities are as follows:

i. Lines should appear straight: Often straight lines drawn by the
point plotting algorithms do not appear all that straight.

Incremental methods

The concept of incremental methods, as the name suggests, is to
draw the picture in stages - incrementally. L.e. from the first point of the
picture, we have a method of drawing the second point, from there to the third
point etc. They are also sometimes called "iterative methods" because they
draw picture in stages - in iterations.

Qualities of good line drawing algorithms: Before we start
looking at a few basic line drawing algorithms, we see what are the conditions
that they should satisfy. While the same picture can be drawn using several
algorithms, some are more desirable than others, because they provide as
features that enable us to draw better "quality” pictures. A few of the
commonly expected qualities are as follows:

i. Lines should appear straight: Often straight lines drawn by the
point plotting algorithms do not appear all that straight.

Generation of Circles

The above algorithms can always be extended to other curves -
the only required condition is that we should know the equations of the curve
concerned in a differential form. We see a few cases.

i) A circle generating DDA:
The differential equation of a circle is dv = -x/y
dx
Hence by using the above principle, we can implement the circle
plotting DDA by using the following set of equations X p+1 = Xn +&yn and
Vn+1 = ¥Vn ~€Xn

Where the subscript n refers to the present value and n+1 to
the next value to be computed. [y and Cx are the increments along the x
and y values.

Unfortunately, this method ends up drawing a spiral instead
of a circle, because the two ends of a circle do not meet. This is because, at
each stage, we move slightly in a direction perpendicular to the radius,
instead of strictly along the radius i.e. we keep moving slightly away from
the center. So, in the end, we get the closing point a little higher up than
where it is required and hence the circle does not close up

Ideal Circle Drawn by a DDA

/* Program to demonstrate circle using DDA algorithm */
include <graphics.h>
include<conio.h>
include<dos.h>
#include<alloc.h=
#include<math.h>

void main()

{

int gm,gd=DETECT,L,;

int x,y,x1,v1,j;

initgraph(&gd,&gm,”);

x=40; [*The cO-ordinate values for calculating radius */
y=40;

for(i=0;i<=360;i+=10)

setcolor(i+1);
x1=x*cos(1*3.142/180)+y*sin(1*3.142/180);
y1=x*sin(1*3.142/180)-y*cos([*3.142/180);
circle(xl+getmaxx()/2,v1+getmaxy()/2,5); /* center of the circle is center
of the screen®/
delay(10);
}
getch();

}

The following program draws the circle using Bresenham’s
algorithm.

/* program to implement Bresenham’s Circle Drawing Algorithm */

include<stdio.h>
include<conio.h>
include <graphics.h>
include<math.h>
#include<dos.h>

/* Function for plotting the co-ordinates at four different angles that are placed
at egual distences */

void plotpoints(int xcentre, int ycentre,int x,int v)
{

int color=5;

putpixel(xcentre+x,ycevtre+y,color);
putpixel(xcentre+x,ycevtre-y,color);
putpixel(xcentre-x,ycevtre+y,color);
putpixel(xcentre-x,ycevtre-y,color);

putpixel(xcentre+y,ycevtre+x,color);
putpixel(xcentre+y,ycevtre-x,color);
putpixel(xcentre-x,ycevtre+x,color);
putpixel(xcentre-y,ycevtre-x,color);

}

/* Function for calculating the new points for(x,y)co-ordinates. */

void cir(int Xcentre, ycentre, int radius)
{

int X,y,p;

x=0; y=radius;
plotpoints(xcentre,ycentre,X,y);
p=1-radius;

while(x<v)

{

if(p<0)

pEp+2*x+1:

else

{

v
pP=p+2*(x-y)+1;
3

X++;
plotpoints Xcentre, ycentre,X,y);
delay(100);

3

ki

/* The main function that takes (x,y) and T’ the radius from keyboard and
activates other functions for drawing the circle */
void main()

{
intgd=DETECT,gm,xcentre=200,ycentre=150,redius=5;
printf(“\n enter the center points and radius :\n”);
scanf(“%d%d%d”, &xcentre, &ycentre, &radius);
clrscr();

initgraph(&gd,&gm,””);

putpixel(xcentre,ycentre,5);

cir(xcentre,ycentre,redius);

getch();

closegraph();

}

Bresenham specified the algorithm for drawing the ellipse using
mid point method. This is illustrated in the following program.

/* BBRESENHAM’s MIDPOINT ELLIPSE ALGOTITHM. */

include<stdio.h>
include<conio.h>
include<math.h>

include <graphics.h>

int Xcentre, ycentre, rx, ry;

int p,px,pPy,X,y,IX2,ry2 tworx2, twory2;
void drawelipse();

void main()

{

int gd=3,gm=1;

clscr();

initgraph(&gd,&gm,””);

printf(“n Enter X center value: “);

scanf(“%d”,&xcentre);

printf(“n Enter Y center value: “);

scanf(“%d”,&ycentre);

printf(“n Enter X redius value:);
scanf(“%d”,&rx);

printf(“n Enter Y redius value: “);
scanf(“%d”,&ry);

cleardevice();

Ty2=1y*Iy;

TX2=rX*rx;

twory2=2*ry2;

tworx2=2*rx2;

/* REGION first */
x=0;

Y=Y,

drawelipse();

P=(ry2-rx2*rv+(0.25%rx2));
px=0;

pPy=tworx2*y;
while (px<py)
d

X++;
pX=px+twory2;
if(p>=0)

d

y=y-1;
pPy=py-tworx2;

if(p<0)
P=p+ry2+px;
else

P=p+Iy2+px-py;

drawelipse();

}
}

/*REGION second*/

P=(ry2*(x+0.5)*(x+0.5)+rx2*(y-1)*(y-1)-rx2*1y2);
while(y>0)
{

y=y-1:

Py=py-tworx2;

if(p<=0)

{

X++:

E

PX =pX + twory2;

}
if(p >0)
P=pP+Ix2-py;
else
{
PTPHIX2-py+px;
drawelipse();
}

}
getchy();

closegraph();

}

void drawelipse()
{
Putpixel
putpixel
putpixel
putpixel

}

xXcenter +X, ycenter +y, BROWN]);
xcenter +X, ycenter +y, BROWN
xXcenter +x, ycenter +v, BROWN
xcenter +X, ycenter +y, BROWN

].
);
].
)

»

P —

¥

TWO DIMENSIONAL TRANSFORMATIONS

1 Introduction

2 What is transformation?

3 Matrix representation of points
4 Basic transformation

5 Translation

6 Rotation

7 Scaling

Introduction

In this unit, you are introduced to the basics of pictures
transformations. Graphics is as much about the concept of creating pictures as
also about making modifications in them. Most often, it is not changing the
pictures altogether, but about making "transformation” in them. Like shifting
the same picture to some other place on the screen, or increasing or decreasing
it's size (this can be in one or two directions) or rotating the picture at various
angles - The rotation also can be either w.r.t. the original x, y coordinates or
with any other axis. All these are essentially mathematical operations. We view
points (and hence pictures, which are nothing but the collections of points) as
matrices and try to transform them by doing mathematical operations on them.
These operations yield the new pixel values, which, when displayed on the CRT
give the transformed picture.

What is transformation?

In the previous unit, we have seen the concept of producing
pictures, given their equations. Though we talked of generating only straight
lines and circles, needless to say similar procedures can be adopted for the
other more complex figures - in many cases a complex picture can always be
treated as a combination of straight line, circles, ellipse etc., and if we are able
to generate these basic figures, we can also generate combinations of them.
Once we have drawn these pictures, the need arises to transform these
pictures. We are not essentially modifying the pictures, but a picture in the
center of the screen needs to be shifted to the top left hand corner, say, or a

picture needs to be increased to twice it's size or a picture is to be turned
through 90°. In all these cases, it is possible to view the new picture as really a
new one and use algorithms to draw them, but a better method is, given their
present form, try to get their new counter parts by operating on the existing
data. This concept is called transformation.

Matrix representation of points

Before we start discussing about the actual transformations, we
would go through the concept of representation of points. Once we know how to
unambiguously represent a pant, we will be able to represent all other possible
pictures.

Normally, we represent a point by two values in a rectangular
coordinate systems as (X,y). X represents the distance of the point from the
origin in the horizontal direction and y in the vertical directions. Negative
values are intended to represent movement in the reverse direction (on a CRT
screen, however, negative valued pixels can not be represented).

However, in the context of graphics we tend to represent a point as
a 3 valued entity [X y 1] where x and y are the coordinates and 1 is just added
to the representation. But use of this additional value becomes significant
shortly.

The basic Transformation

Now we are ready to probe into the basics of transformations. As
indicated earlier, we talk about transforming points, throughout the
discussions, but any complex picture can be transferred using similar
techniques in succession.

The three basic transformations are (i) Translation (ii) rotation and
(ii1) scaling. Translation refers to the shifting of a point to some other place,
whose distance with regard to the present point is known. Rotation as the
name suggests 1s to rotate a point about an axis. The axis can be any of the
coordinates or simply any other specified line also. Scaling is the concept of
increasing (or decreasing) the size of a picture. (in one or in either directions.
When it is done in both directions, the increase or decrease in both directions
need not be same) To change the size of the picture, we increase or decrease
the distance between the end points of the picture and also change the
intermediate points are per requirements;

Translation

y Ty
(%)
k—\/_/
X Tx
' —_ »
X

Consider a point P(x1, y1) to be translated to another point Q(xz2, y2).
If we know the point value (%2, y2) we can directly shift to Q by displaying the
pixel (x2, y2). On the other hand, suppose we only know that we want to shift by
a distance of Tx along x axis and Ty along Y axis. Then obviously the
coordinates can be derived by x2 =x; +Tx and Y2 = y1 + Ty.

Rotation

Suppose we want to rotate a point (x1 yi1) clockwise through an
angle’ about the origin of the coordinate system. Then mathematically we can
show that

X2 = xicosf + yi1sin6 and

y2 = X18inf - yicos@

These equations become applicable only if the rotation is about the
origin.

In the matrix for [x2 v2 1] = [%1 y1 1] *|cosB -smnB O
sinB cos® O
0 0 1

Scaling

Suppose we want the point (X: yi1) to be scaled by a factor sx and
by a factor sy along y direction.
Then the new coordinates become: X2 = X1 * syand y2 = y; * sy

(Note that scaling a point physically means shifting a point away. It
does not magnify the point. But when a picture is scaled, each of the points is
scaled differently and hence the dimension of the picture changes.)

30+

25] B
20-

15

10 B C
-/

For example consider a Triangle formed by the points A (5.5),
B(10,10) and C (10,5). Suppose we scale it by a factor of 3 along x-axis and 2
along y-axis.

Then the new points will A(3*3,57%2)
B(10*3, 10*2) and
C(10*3,5%2)

In the matrix form we get
X2 v1 1]=[x1y1 1] * sx 0 0

THREE DIMENSIONAL TRANSFORMATIONS

Introduction

Three Dimensional transformation
Translations

Scaling

Rotation

Introduction

In this unit, we look into the basics of 3-D graphics, beginning with
transformations. In fact the ability to transform a 3-dimensional point, i.e. a
point represented by 3 Co-ordinates (X,y,z) is of immense importance not only
for the various operations on the picture, but also for the ability to display the
3-D picture in a 2-D screen. We briefly see the various transformation
operations — they are nearly similar to the 2-D operations. We also see the
concepts of clipping and windowing in 3-D.

Three Dimensional Transformation

Just as in the case of 2D, we represent the transformation
operations as a series of matrix operations. With this, we obtain the flexibility
of sequencing a series of operations one after the other to get the desired
results on one hand and also the ability to undo the operations, by resorting to
the reverse sequence. Since in the 2-dimensional case we were representing a
point (x,y) as a tuple [x y 1], in the 3-dimensional case, we represent a point
(x,v,2Z) as a [x y z 1]. The dimensions of the matrices grow from 3 x 3 to 4 x 4.

Translations

Without repeating the earlier methods, we simply write

[x1 ¥v1 21 1]=[x v z 1] 1 0 0 0
0 1 0 0
0O 0 1 0
Tx Ty Tz 1

Where the point [x y z 1 | gets transformed to [x1 yv1 z1 1] after
translating by Tx, Ty and Tz along the x,y,z directions respectively.

Scaling

A given point [Xx v z 1] gets transformed to [x1 y1 z1 1] after getting
scaled by factors Sx, Sy and Sz in the three dimensions to

[XL Vi Z1]_] = [x vV z]_] Ssx0 0 0
0 Syo 0
0 0 Sz 0
0 0 0 1

Rotation

Rotation in 3-dimensions i1s a more complex affair. (In fact, even in
2 dimensions, rotation was more involved than scaling or translation because
the concept of point of rotation). This is because; the rotation takes place
about an axis. The same point, given the same amount of rotation, gets
transformed to different points depending on which axis it was rotated.

The simplest of the cases is to rotate the point about an axis that
passes through the origin, and coincides with one of the axes x, v or z. The next
complication arises when the axis passes through the origin, but does not
coincide with any of the axes. The most general case would be, of course, when
an arbitrary axis that does not pass through the origin becomes the axis of
rotation.

Let us begin with simplest cases: The understanding is that a
clockwise rotation, when viewed at the origin, standing on the axis is taken as
positive and the other direction is negative. If this description looks too
complicated, look at the following figures. In each case, we write down the

transformation for the rotation through a positive angle of +6.
Z

3

Y

/K O ’ X

4+—— Rotation Direction of view of origin

[vi zy 1] =[xy z 1]| cosB -Sin6 0 1

s cosB 0 0
0 0 1 0
0 0 0 1

Transformation Matrix

/ Direction of view of
Origin
Y
/\ 6
O X
[xi vi z; 1] =[xyzl] [cosB O -Smb 0
0 1 0 0
=8 0 cosB 0
0 0 0 1

Transformation Matrix

yA
A
Direction of view of origin
Y
-t
0
O X
[, vi z; 1] =[x v z 1] 1 0 0 0
0 cosB -SinB 0
0 smB cosB O
0 0 0 1

Transformation Matrix

HIDDEN SURFACE REMOVAL

Introduction
Need for hidden surface removal

The Depth - Buffer Algorithm
Warnock’s Algorithm

Introduction

In this unit, you will be introduced to one of the most interesting
and involved concept of computer graphics — the concept of hidden surface
elimination. When two or more object are represented one behind the other — it
is quite clear that some of them either partially or fully obscure the other object
in such cases the hidden parts of the objects are to be removed.

Several algorithms for the same are introduced. Almost all of them
work on the simple concept of sorting the polygons in the order of their
distance, the nearest ones being represented in full, the farther ones in part
since, in raster graphics, a given pixel can represent more than one object
(each with same x,y) it will represent that object that is nearest to the screen
amongst these objects. Though this concept is straight forward and accurate, it
suffers from the difficulty that it is computationally intensive. Hence, several
efficient algorithms, which perform the same job with more efficiency, are
introduced. Most of them make use of some sort of coherence concept — i.e.
pixels in the neighborhood of a pixel share the properties of a pixel. 1.e. If a
pixel forms a part of an object, the neighboring pixel also, most probably, form
the part of the same object. You will also be introduced to certain specific
instances, wherein these concepts may not vield satisfactory results.

Need for hidden surface removal

This has been considered as one of the most challenging jobs of
computer graphics. Once we start talking of solid objects in 3 dimensional
spaces, it is implied that some of the objects that are nearer to the viewer tend
to partly or wholly cover other objects. In fact, even if there is only one object,
some of its faces are unseen (the back faces) and some are partially seen (the

side faces). The ability to identify the faces and surfaces that are to be covered
and the extent of coverage in the case of partially covered surfaces in real time
is not only computationally intensive, but also analytically daunting. When
only wire frame types of drawings are being displayed, the task gets somewhat
simplified to that of “hidden line removal” — identifying those lines that should
not be shown. However, when solid objects are being considered, the task
becomes more complex because entire surfaces need to be identified for
removal.

A large number of algorithms are available for the job —though no
single algorithm can be though to be all encompassing capable of being efficient
in all possible conditions. However almost all of them share some common
feature. The first one is that at some point in the algorithm, they tend to sort
the objects in the order of their Z-distance from the viewer and try to eliminate
the farthest ones. But the sorting tends to be a difficult task at least in some
cases, since often an object may not be identified with a unique distance — Z.
when several part of the object have different Z coordinates, simple, direct
sorting methods may become inadequate.

The other common feature with these algorithms in the use of
coherence. As we have seen in other contexts, the coherence (or similarity with
respect to a property) between neighboring pixels is used to reduce the number
of computations effectively.

The behavior of the algorithm also depends on which type of
images one is talking of. In the case of line drawing algorithms, the problem is
solved using the various properties of lines, whereas in the case of raster
images, the algorithms tend to look like extensions of 2-dimensional scan
conversion algorithms.

The algorithms can also work either with respect to the object
space or the image space. One should clearly be able to draw the distinguishing
line between them. The object space in the space occupied by the pictures
created by the algorithms. However, before these pictures can be displayed,
they undergo various operations — like clipping, windowing, perspective
transformations etc. This final set of pictures — ready for display on the screen
1s called the image space. The object space algorithms tend to calculate the
values with as a precision as feasible since often these calculations form the
basis for the next set of calculations, whereas the image space algorithms
calculate with precision that is in line with the precision available with the
display devices. This is because any higher precision, achieved with great
efforts, will become useless since the display devices cannot anyway handle
such precisions. Further, the computational efforts in the case of objects —

since every object tend to rapidly increase with the no. of objects — since every
object will have to be tested with other objects, where as in the image apace
computations, the increase is much slower, since one tends to look at the
number of pixels, irrespective of the no. of objects in the scene. The number of
pixels in a given resolution of display device is a constant.

Having noted some of the expected features of the algorithms, we
now look into the working of some of the algorithms.

The Depth - Buffer algorithm

The concept of this algorithm is extremely simple and
straightforward. Given a given resolution of the screen, every pixel on the
screen can represent a point on one (and only one) object (or it may be set to
the back ground if it does not form a part of any object). L.e. irrespective of the
number of objects in line with the pixel, it should represent the object nearest
to the viewer. The algorithm aims at deciding for every pixel the object whose
features it should represent. The depth-buffer algorithm used two arrays, depth
and intensity value. The size of the arrays equals the number of pixels. As can
be expected, the corresponding elements of the array store the depth and
intensity represented by each of the pixels.

a. For every pixel, set it’s depth and intensity pixels to the back
ground value ie. At the end of the algorithm, if the pixel does not become a
part of any of the objects it represents the background value.

b. For each polygon on the scene, find out the pixels that lie
within this polygon (which is nothing but the set of pixels that are chosen if
this polygon is to be displayed completely).

For each of the pixels

1) Calculate the depth Z of the polygon at that point (note
that a polygon, which is inclined to the plane of the screen will have
different depths at different points)

i) If this Z is less than the previously stored value of
depth in this pixel, it means the new polygon is closer than the earlier
polygon which the pixel was representing and hence the new value of
Z should be stored in it. (i.e from now on it represents the new
polygon). The corresponding intensity is stored in intensity vector.

If the new Z is greater than the previously stored vale, the
new polygon is at a farther distance than the earlier one and no
changes need be made. The polygon continues to represents the
previous polygon.

One may note that at the end of the processing of all the polygons,
every pixel, will have the intensity value of the object which it should display in
its intensity location and this can be displayed.

This simple algorithm, as can be expected, works on the image
space. The scene should have properly projected and clipped before the
algorithm is used.

The basic limitation of the algorithm is it’'s computational
intensiveness. On a 1024 X 1024 screen it will have to evaluate the status of
each of these pixels in a limiting case. In it’s present form, it does not use any

of the coherence or other geometric properties to reduce the computational
efforts.

To reduce the storage, some times the screen is divided into
smaller regions like say 50 X 50 or 100 X 100 pixels, computations made for
each of this religions, displayed on the screen and then the next region is
undertaken. However this can be both advantageous and disadvantageous. It is
obvious that such a division of screen would need each of the polygons to be
processed for each of the regions - thereby increasing the computational
efforts. This is disadvantage. But when smaller regions are being considered, it
is possible to make use of various coherence tests, thereby reducing the
number of pixels to be handled explicitly.

Warnock’s Algorithm

This is one of the class of “area” algorithms. It tries to solve the
hidden surface problem recursively. The algorithm proceeds on the following
lines.

1. Try to solve the problem by taking the entire screen as
one window. If no polygons overlap either in x or y or even if they do,
overlap so that they do not obscure, then return the screen.

1. If the problem is not easily solvable in step (i) the
algorithm divides the screen into 4 equal parts and tries to apply step (i)
each of them. If it is not solvable, again divides into smaller windows and
so on.

ii. The recursive process continues till each window is
trivially solvable or one endsup with single pixels.

We have still not described how the actual “solution” is done. To do
this, in any window, the algorithm classifies the polygons into three groups

1) Disjoint Polygons: Polygons that do not overlap in the
window and hence can be trivially passed.
1) A bigger and a smaller polygon overlapping so that the

smaller one will be completely blocked by the bigger one (if the Z of the
larger polygon is smaller than Z of the smaller one).

1) Intersected polygons: Polygons that partly obscure
each other.

Polygons that fall into category (i) and (ii) are removed at each level.
If the remaining polygons can be easily solved, the recursive process stops at
that level, else the process continues (with the polygons of category (i) and (i)
removed).

Since at each recursive level a few polyvgons are removed, as the
windows become smaller and smaller with the advance of recursion, the list of
polygons falling into them also reduces and hopefully the problem of hidden
surfaces gets solved trivially.

One main draw back of algorithm is that the windows get divided
into smaller and smaller rectangles. In many cases it would be efficient if one
can divide the window roughly in the shape of the polygons themselves. Such
an algorithm, developed by Wieler and Atherton, was found more efficient,
though more complex in terms of larger complexities of recursive divisions and

clippings.

UNIT-II

Definition of CAD Tools, Types of system

CAD or Computer Aided Design software was introduced in the late 1960's to expedite
engineering drawing process.

While CAD is used mainly in engineering drawing and construction architecture, it can also used
for other purposes.

There are various flavours of CAD available today and there are different methods of classifying
them.

Types of CAD Software

2 Dimensional CAD (2D CAD)

2D CAD is the pioneer of CAD software, and was developed in the early 70s. At that time, major
automobile, aerospace and other engineering companies developed in-house tools to automate
repetitive drafting requirements. 2D CAD relies on basic geometric shapes like lines, rectangles,
circles, etc. to produce flat drawings.

These types of softwares have been first developed way back in 1970’s. AutoDesk is one of the
pioneering companies that has played a significant role in developing CAD software.

3 Dimensional CAD (3D CAD)

3D CAD is a step up from the 2D CAD software of yesteryears. As the processing power of
computers increased and the graphic display capabilities improved, 3D CAD has become an
increasingly popular design tool. 3D CAD allows creation of 3D images that are realistic. These
images are called 3D models as they can be viewed and rotated in any direction — X, Y or Z. You
can also display views from a 3D model, such as isometrics or perspectives, from any angle
using 3D CAD. 3D CAD tools were introduced in 1980°s by a partnership between IBM-
Dassults. 3D CAD quickly became popular because of enhanced visual capability.

The rapid advancement of 3D software today has helped quick turnaround in product design,
giving birth to the concept for product lifecycle management (PLM). A few of today’s leading
3D CAD software includes SolidEdge and SolidWorks. Of course, with the vast array of tools,
professional training is needed to master these tools.

There is yet another way of classifying CAD software - in terms of their operating parameters.
Once youunderstand these parameters, you can optimize the CAD software properly. A little
training should help you go a long way!

Single-file-mode systems - This type of CAD software allows only a single user to work on a
single file at a time.

Referenced-file-mode systems - In this type of CAD software, users can work on their own files
with the files of other users attached as a background. This enables users to levergae other users'
work as background data.

Collaborative-mode systems - These CAD systems take the referenced-mode system to the next
level. They allow a team of users to collaboratively work with each other's data and see the
changes other users make to the data as they go. And of course, the giants in this field (for
example AutoCAD) can be used in different modes of a operation.

3D CAD can be further classified as:

Wire-frame models — they create skeleton like models with lines and arcs. Since they appear to
be made of wires, and everything in the background is visible, they are called wire-frame
models. They are not very popular anymore.

Surface models — unlike wire frames, these models are created by joining 3D surfaces. Since
nothing in the background is visible, the surface models are quite realistic.

Solid models — they are considered to be the most useful CAD models. Although they appear to
be the same as surface models, they also have additional properties like weight, volume and
density, just like actual physical objects. These models are commonly used as prototypes to study
engineering designs.

CAD/CAM system evaluation criteria

1. CAPABLE, EFFICIENT 3D DESIGN

The centerpiece of 3D CAD is a 3D master model that’s used for all aspects of manufacturing:
product design and simulation, drafting, tool design, numerically controlled tool programming,
and inspection. The 3D model must accurately represent every part in your company’s products
and the relationships among them. To maximize efficiency, designers should be able to design in
3D with as few steps as possible without compromising design quality.

When evaluating CAD software, find out how efficient each package is at creating the types of
products your company makes. For example, if your company makes sheet metal parts, pay
attention to the special aids for modeling them and automatically generating flat patterns. If your
firm designs stylish products, look at the tools for creating freeform surfaces and blends with
continuous curvature. Designers of machinery should examine how easily they can assemble
large numbers of parts and insert purchased parts, such as fasteners and electrical components,
from a library. Because changes are inevitable, assess how hard it is to modify parts and
assemblies.

A CAD system that can make your company’s designs with even 20 percent fewer steps will
offer important cost advantages compared with systems that are less efficient. A 3D CAD system
that offers the best value will combine exceptional technical capabilities with reasonable cost-of-
ownership.

2. INFORMATION FLOW THROUGH EXTENDED ENTERPRISES

In today’s world, few manufacturers are vertically integrated. Most rely on global communities
of suppliers for parts, tools, subsystems, production equipment, and design. Whether your
company is a supplier, a customer, or both, it can benefit from sharing 3D CAD models with
others. When possible, choose a CAD system that’s popular in your industry and supplier
community. This choice helps eliminate the need to translate files from one system to another.
Translation takes time and can introduce errors.

Also look at each system’s ability to import files from other systems. Make sure your CAD
system supports international standards such as STEP, IGES, VDA, and IDF. Evaluate the tools
for fixing damage to imported shapes. How easy are they to use? How well do they work? If
your firm must translate many files from several brands of CAD systems, check out the direct
translators available with each CAD system and also those from third parties that specialize in
translation software. Don’t limit your evaluation of data sharing to file exchanges. Systems based
on shared internet hosts enable designers to collaborate in real time with customers to explore
options and identify good solutions quickly. Sharing CAD data with customers or suppliers can
save thousands of hours and weeks of schedule time compared with the cost of remastering them
interactively. The ability to collaborate in 3D on products and processes can reduce costs while
helping to deliver better products.

3. DRAFTING TOOLS THAT MEET YOUR STANDARDS TODAY AND INTHE
FUTURE

Even though you’ll be designing in 3D, your suppliers and factory workers may need drawings.
A clear drawing shows information that isn’t obvious in a 3D model: critical dimensions and
tolerances, material and surface-finish specifications, and notes about processing, such as curing
or heat treatment. Be sure any 3D CAD system you buy can make drawings to your current
standards for dimensions, tolerances, lettering, and parts lists. And be sure your drawings can be
exported in popular formats, such as PDF, DXF, and DWG. But 3D CAD is changing drawings
as we know them. Leading manufacturers are employing annotated 3D models that convey the

information found on drawings without a separate document.

This so-called “model-based definition” saves drafting time, simplifies product-data
management, and enables automated manufacturing and inspection systems to read dimensions

and tolerances directly from 3D models, helping to eliminate errors.

4. TOOLS TO TAKE YOUR DESIGNS FROM CONCEPT THROUGH
MANUFACTURING

Designs don’t make money until physical products are delivered. Look for 3D CAD software
with a rich variety of applications that can reduce not only design time, but testing, machining,
cost estimating, and inspection. Companies that design systems to order can benefit from
software that generates parts and assemblies automatically in response to customer
specifications. Such tools may be general purpose, such as configuration software, or special

tools optimized for designing products such as mold assemblies or stamping dies.

Because physical testing is costly and slow, you should look to reduce the number of physical
tests by simulating physical behavior, such as kinematics, dynamics, stress, deflection, vibration,
temperatures, or fluid flow. Look for a system that has integrated analytical tools or efficient
interfaces to your preferred simulation software. Software for designing electrical wiring can
help reduce errors and ensure machinery is wired correctly. Cost-estimating software enables
designers to hit cost targets by revising designs sooner instead of waiting for estimators to say
they are over budget. Inspection software can slash the time needed to prepare documents for

inspecting parts on delivery.

Picking the right add-in applications for your company’s business can slash the time needed to
bring products to market. To make sure you have the best tools, choose a CAD platform that
gives a broad choice of solutions. It should have an extensive and well-documented application
programming interface (API). Good APIs make it less costly for third parties to integrate
specialty applications with your CAD system. And they let your own programmers write
software tailored to your ways of using CAD models.

5. HELP MANAGING DATA

Organizations with more than just a few designers can benefit from product data management

(PDM) software integrated with their CAD tools. Because relationships among files in 3D

systems are so complex, an automated system to store and organize them is essential. Without
PDM, designers can unknowingly overwrite each other’s work, reinvent parts that have already
been designed, and send the wrong revision levels to manufacturers. Together, these sorts of
errors can waste hundreds of hours of work each year and thousands of dollars in defective parts.

PDM systems do much more than store and organize files. They also help designers find existing
parts to re-use instead of reinventing them, generate materials lists for cost estimating, and feed
data to manufacturing resource planning (MRP) systems. More advanced PDM software can
automate change-control processes to ensure that out-of-date or unreleased information isn’t sent
to factories or suppliers.

6. INNOVATIVE R&D TO PROTECT YOUR INVESTMENT

Computing technology is constantly changing. If your CAD vendor doesn’t take advantage of
this evolution, in a few years you’ll find that your organization has an obsolete and costly-to-
maintain CAD system. Buy from suppliers that have a proven record of being manufacturing
industry leaders with large and sophisticated R&D teams.

7. PLEASANT BUSINESS RELATIONSHIPS

Believe it or not, some of the greatest sources of friction between buyers of CAD software and
their customers are the nontechnical business aspects of the relationship. Just as some airlines
annoy customers with extra fees for checked baggage, flight changes, drinks, and blankets, some
CAD suppliers levy hidden charges for software and services that most customers need.

To avoid aggravation and lower your costs, look for suppliers who offer straightforward software
packages that have what you need. Look at the terms for floating licenses that enable designers
who don’t need CAD full-time to share licenses. And be sure your best designers can use the
software both at work and at home without hassles.

8. SHORT LEARNING CURVE

Adopting 3D methods requires training and experience. So choose a system that’s easy to learn
as well as capable. Look for a system that has a consistent user interface throughout. Be sure
design and manufacturing procedures flow logically from start to finish. Some systems have
hidden dungeons and dragons that stop designers halfway through a task and make them start

over.

Developing your own training materials is costly. Choose a system with built-in tutorials, a rich
array of computer-based training aids, and a vibrant online community that lets workers ask
questions and get answers. You’ll also want a system that’s taught in local schools and
universities so you can hire students who are ready to work.

9. WHO CAN HELP YOU

A successful relationship with your CAD software dealer only begins with the sale. Buy from a
dealer with the skills and experience to help you successfully integrate 3D design with
manufacturing. Find out how many 3D customers potential dealers have trained and supported.
Look at the availability of quality training classes. Does the dealer support a viable user group?
Does the reseller offer ongoing training classes to help you improve your design and
manufacturing processes?

Ask for the resumes of the technical staff and interview them before you buy. Ask reference
customers if the dealer’s technical staff is capable of solving tough problems. Good local support
can make the difference between a costly adoption of new CAD software and one that advances

your business objectives now and in the future.

CAD/CAM Systems Evaluation Criteria
The wvarious types of CAD/CAM systems are Mainframe-Based Systems,
Minicomputer-Based Systems, Microcomputer-Based Systems and Workstation-
Based Systems.

The implementation of these types by various vendors, software developers and
hardware manufacturers result in a wide variety of systems, thus making the
selection process of one rather difficult. CAD/CAM selection committees find
themselves developing long lists of guidelines to screen available choices.

These lists typically begin with cost criteria and end with sample models or
benchmarks chosen to test system performance and capabilities. In between comes
other factors such as compatibility requirements with in-house existing computers,
prospective departments that plan to use the systems and credibility of CAD/CAM
systems' suppliers.

In contrast to many selection guidelines that may vary sharply from one organization
to another, the technical evaluation criteria are largely the same. They are usually
based on and are limited by the existing CAD/CAM theory and technology. These
criteria can be listed as follows.

System Considerations

(i) Hardware

Each workstation is connected to a central computer, called the server, which has
enough large disk and memory to store users' files and applications programs as well
as executing these programs.

(ii) Software
Three major contributing factors are the type of operating system the software runs
under, the type of user interface (syntax) and the quality of documentation.

(iii) Maintenance

Repair of hardware components and software updates comprise the majority of
typical maintenance contracts. The annual cost of these contracts is substantial
(about 5 to 10 percent of the initial system cost) and should be considered in
deciding on the cost of a system in addition to the initial capital investment.

(iv) Vendor Support and Service
Vendor support typically includes training, field services and technical support. Most
vendors provide training courses, sometimes on-site if necessary.

Geometric Modeling Capabilities

(i) Representation Techniques

The geometric modeling module of a CAD/CAM system is its heart. The applications
module of the system is directly related to and limited by the various
representations it supports. Wireframes, surfaces and solids are the three types of
modeling available.

(ii) Coordinate Systems and Inputs

In order to provide the designer with the proper flexibility to generate geometric
models, various types of coordinate systems and coordinate inputs ought to be
provided. Coordinate inputs can take the form of cartesian (x, y, z), cylindrical (r, 8, z)
and spherical (6, d, 7).

(iii) Modeling Entities

The fact that a system supports a representation scheme is not enough. It is
important to know the specific entities provided by the scheme. The ease to
generate, verify and edit these entities should be considered during evaluation.

(iv) Geometric Editing and Manipulation
* |t is essential to ensure that these geometric functions exist for the three types of
representations. Editing functions include intersection, trimming and projection and

manipulations include translation, rotation, copy, mirror, offset, scaling and changing
attributes.

(v) Graphics Standards Support
* If geometric models' databases are to be transferred from one system to another,
both systems must support exchange standards.

CAD Softwares

* Softwares can be defined as an interpreter or translator which allows the user to
perform specific type of application or job related to CAD.

* The user may utilize the software for drafting or designing of machine parts or
components subjected to stresses or analysis of any type of system.

* The CAD application software can be prepared in variety of languages such as BASIC
(Beginner's All-purpose Symbolic Instruction Code), FORTRAN, Java, PASCAL & C-
Language.

* (- Language has been preferred for CAD software development because of no. of
advantages as compared to other languages.

* The Java language has the capacity to operate with high level graphics and
animation.

Database Management System (DBMS)

A DBMS is defined as the software that allows access to use and/or modify data
stored in a database. The DBMS forms a layer of software between the physical
database itself (i.e., stored data) and the users of this database as shown in Fig.
1.31(a).

DBMS shields users from having to deal with hardware-level details by interpreting
their input commands and requests from the database. For example, a command
such as retrieve a line could involve few lower-level steps to execute.

Application

programs
(users)

A
Y

DBMS

i
Y

Database

(a) Simplified DBMS

In general, a DBMS is responsible for all database-related activities such as creating
files, checking for illegal users of the database and synchronizing user access to the
database.

DBMSs designed for commercial business systems are too slow for CAD/ CAM. The
handling of graphics data is an area where the conventional DBMSs tend to break
down under the shear volume of data and the demand for quick display.

By contrast, data handled in the commercial realm is mostly alphanumeric and the
objects described are usually not very complex. A DBMS is directly related to the
database model it is supposed to manage. For example, relational DBMSs require
relatively large amounts of CPU time for searching and sorting data stored in the
relations or tables.

Therefore, the concept of database machines exists where a DBMS is implemented
into hardware that can lie between the CPU of a computer and its database disks,

Graphics Exchange standards
With the proliferation of computers and software in the market, it became necessary
to standardize certain elements at each stage, so that investment made by
companies in certain hardware or software was not totally lost and could be used
without much modification on the newer and different systems.
Standardization in engineering hardware is well known. Further, it is possible to
obtain hardware and software from a number of vendors and then be integrated
into a single system.
This means that there should be compatibility between various software elements as
also between the hardware and software. This is achieved by maintaining proper
interface standards at various levels.

Both CAD/CAM vendors as well as users identified some needs to have some graphics

standards. The needs are as follows:

iv.

Software portability: This avoids hardware dependence of the software. If the
program is written originally for random scan display, when the display device is
changed to raster scan display the program should work with minimum effort.

Image data portability: Information and storage of images should be independent of
different graphics devices.

Text data portability: The text associated with graphics should be independent of
different input/output devices.

Model database portability: Transporting of design and manufacturing data from
one application software to another should simple and economical.

The search for standards began in 1974 to fulfill the above needs both at the USA and
International levels. As a result of worldwide efforts, various standards at different levels of

the graphics systems were developed. The standards are as follows:

Both CAD/CAM vendors as well as users identified some needs to have some graphics

standards. The needs are as follows:

iv.

Software portability: This avoids hardware dependence of the software. If the
program is written originally for random scan display, when the display device is
changed to raster scan display the program should work with minimum effort.

Image data portability: Information and storage of images should be independent of
different graphics devices.

Text data portability: The text associated with graphics should be independent of
different input/output devices.

Model database portability: Transporting of design and manufacturing data from
one application software to another should simple and economical.

The search for standards began in 1974 to fulfill the above needs both at the USA and
International levels. As a result of worldwide efforts, various standards at different levels of

the graphics systems were developed. The standards are as follows:

GKS (Graphics kernel system): It is an ANSI (American National Standards Institute
and ISO (International Standards Organization) standard. It interfaces the application
program with graphics support package.

IGES (Initial graphics exchange specification): It is an ANSI standard. It enables an
exchange of model database among CAD/CAM software.

PHIGS (Programmer's hierarchical interactive graphics system): It supports
workstations and their related CAD/CAM applications. It supports 3-dimensional
modeling of geometry segmentation and dynamic display.

CGM (Computer graphics metafile): It defines functions needed to describe an
image. Such description can be stored or transported from one graphics device to
another.

CGIl (Computer graphics interface): It is designed to interface plotters to GKS or
PHIGS. It is the lowest device independent interface in a graphics system.

Drawing Exchange Format (DXF): The DXF format has been developed and
supported by Autodesk for use with the AutoCAD drawing files. It is not an industry
standard developed by any standards organisation, but in view of the widespread
use of AutoCAD made it a default standard for use of a variety of CAD/CAM vendors.
A Drawing Interchange File is simply an ASCII text file with a file extension of .DXF
and specially formatted text.

Standard for the Exchange of Product Model Data (STEP), officially the ISO standard
10303, Product Data Representation and Exchange, is a series of International
Standards with the goal of defining data across the full engineering and
manufacturing life cycle. The ability to share data across applications, across vendor
platforms and between contractors, suppliers and customers, is the main goal of this
standard.

8. Parasolid: It is a portable "kernel” that can be used in multiple systems - both high-
end and mid-range. By adopting Parasolid, start-up software companies have
eliminated a major barrier to application development - a high initial investment.
This enabled them to effectively market softwares with strong solid modeling
functionality at lower-cost.

9. PDES (Product Data Exchange Specification) is an exchange for product data in
support of industrial automation. "Product data" encompasses data relevant to the
entire life cycle of a product such as design, manufacturing, quality assurance,
testing and support. In order to support industrial automation, PDES files are fully
interpretable by computer. For example, tolerance information would be carried in a
form directly interpretable by a computer rather than a computerized text form
which requires human intervention to interpret.

Curve Representation
Curve is defined as the locus of point moving with one degree freedom.
A curve can be represented by following two methods either by storing its analytical
equation or by storing an array of co-ordinates of various points

Curves can be described mathematically by following methods:
(i) Non-parametric form
a) Explicit form
b) Implicit form
(ii) Parametric form

Non-parametric form:

e In this, the object is described by its co-ordinates with respect to current
reference frame in use.
Explicit form: (Clearly expressed)
In this, the co-ordinates of y and z of a point on curve are expressed as
two separate functions of x as independent variable.
P=x 'y 1]
=[x flx) gx)]

Implicit form: (Not clearly expressed)

In this, the co-ordinates of x, y and z of a point on curve are related
together by two functions.

F(x,y,z)=0

G(xvyz)=0

Limitation of nonparametric representation of curves are:

1. If the slope of a curve at a point is vertical or near vertical, its value becomes infinity
or very large, a difficult condition to deal with both computationally and
programming-wise. Other ill-defined mathematical conditions may result.

2. Shapes of most engineering objects are intrinsically independent of any coordinate
system. What determines the shape of an object is the relationship between its data
points themselves and not between these points and some arbitrary coordinate
system.

3. If the curve is to be displayed as a series of points or straight line segments, the
computations involved could be extensive.

Parametric form:
In this, a parameter is introduced and the co-ordinates of x, y and z are
expressed as functions of this parameters. This parameter acts as a local
co-ordinate for points on curve.
P (u) =[x y z]
=[x(u) y(u) z(u)]

Example 2.1: For the paosition vectors Pi[1 2] and P,[4 3], determine the parametric
representation of line segment between them. Also determine the slope and tangent vector
of line segment.
A parametric representation of line is
P=F,+u(P,~R)
=[1 2] +u([4 3]1-[1 2])
=M1 2]+u[3 1]
Parametric representation of x and y components are
x(u) =xg + u (x2 —xy)
=1+3u
y(u) =y1+u(y2—yi)
=2+u
The tangent vector is obtained by differentiating P(u)
P'(u) = DX (u) y'(u)]

=[3 1]
The slope of line segment is
dy dy/du
dx dx/du

w | = ><_|‘~=:

Example 2.2 : The end points of line are P1(1,3,7) and P2(—4,5, —3). Determine
i. Tangent vector of the line
i. Length of line
iii. Unit vector in the direction of line
Parametric representation of x, y and z components are
x(u) = %3 +u (X2 —x1)

=1-5u
y(u) =y1+u(y2—vi)
=3+2u
z(u)=z1+u (22 —171)
=7-10u

Tangent vector, P'(u) = [x'(u) y'(u) z’(u)]
[5 2 —10]
= _5i + 2j—10k

Length of line, L=|p, A

=’J(X2 _X1}2 +{5’1_71)2 +(22 _21)1

=\(-4-1) +(5-3) +(-3-7)

=11.358
Unit vector in the direction of line, n = Litnli = h-h
P, -P, L
= [-5 2 -10]
11.358

=[-0.44 0.176 —-0.88]
=—-0.44i + 0.176] —0.88k

Example 2.3: A line is represented by the end point P4(2, 4, 6) and P5(-3, 6, 9). If the value of
parameter u at Py and Py is 0 and 1 respectively, determine the tangent vector for the line. Also
determine the coordinate of a point represented by; u equal to 0, 0.25, -0.25, 1 and 1.5. Also find the
length and unit vector of line hetween two points Py and P,.
Parametric representation of x, y and z components are
x(u) = xq + u (X2 — x41)

=2-5u

y(u) =y1+uly2—vi)
=4+ 2u

z(u) =23+ u (22— 74)
=6-3u

Tangent vector, P’(u) = [x’(u) y’'(u) z'(u)]

=[-5 2 -3]
= 5i + 2j—3k
u 0 0.25 | -0.25 1 1.5
x (u) 2 0.75 3.25 -3 5.5
y (u) 4 4.5 3.5 7
z (u) 6 5.25 6.75 3 1.5

Length of line, L=|p, A,
:J(XZ _Xl)2 +(y2 _yl)l +(22 —21)2
=\/(—3—2)2 +(6-4) +(9-6)°

=6.16
Unit vector in the direction of line, n= AR =P2_PL
| z_P1| L
1
=——[-5 2 -3]
6.16

=[-0.81 0.324 -0.487]
=—0.81i +0.324]-0.487k

Example 2.4: The two endpoints of diameter of a circle are Py(13,15,7) and P,(35,40,7).
Determine the centre and radius of circle.

. 1
The centre of a circle, P, ZE(Pl +P,)

[Xc v, ZE]:[Xi"'Xz VitV ZL+22}

2 2 2
13+35 15+40 7+7
e ve 2= = 2 2

[x. v. z.]=[24 275 7]

The radius of circle

A=2 (o O + (a2

R=2(3513 +(a0-15] +(7-7))

R=16.65

Parametric representation of synthetic curve
Analytic curves, are usually not sufficient to meet geometric design requirements of
mechanical parts. Products such as car bodies, ship hulls, airplane fuselage and
wings, propeller blades, shoe insoles and bottles are a few examples that require
free-form, or synthetic, curves and surfaces.
The need for synthetic curves in design arises on two occasions: when a curve is
represented by a collection of measured data points and when an existing curve must
change to meet new design requirements.
In the latter occasion, the designer would need a curve representation that is directly
related to the data points and is flexible enough to bend, twist, or change the curve
shape by changing one or more data points.
Data points are usually called control points and the curve itself is called an
interpolant if it passes through all the data points.

Tangents

Center of curvature Center of curvature

+ Control point

(a) Zero-order continuity (C° curve)

Tangent

Centers of
curvawre

B
|

Center of curvature

(k) First-order continuity (C' curve) (¢) Second-order continuity (C” curve)
Fig. 2.11 Various Orders of Continuity of Curves

Mathematically, synthetic curves represent a curve-fitting problem to construct a
smooth curve that passes through given data points. Therefore, polynomials are the
typical form of these curves.

Various continuity requirements can be specified at the data points to impose various
degrees of smoothness of the resulting curve. The order of continuity becomes
important when a complex curve is modeled by several curve segments pieced
together end to end.

Zero-order continuity (C°) yields a position continuous curve. First (C')- and second
{C:Z}—Drder continuities imply slope and curvature continuous curves respectively.

A C* curve is the minimum acceptable curve for engineering design. Fig. 2.11 shows a
geometrical interpretation of these orders of continuity.

A cubic polynomial is the minimum order polynomial that can guarantee the
generation of c®, ¢*, or C* curves. In addition, the cubic polynomial is the lowest-
degree polynomial that permits inflection within a curve segment and that allows
representation of nonplanar (twisted) three dimensional curves in space.
Higher-order polynomials are not commonly used in CAD/CAM because they tend to
oscillate about control points, are computationally inconvenient and are
uneconomical of storing curve and surface representations in the computer.

The type of input data and its influence on the control of the resulting synthetic
curve determine the use and effectiveness of the curve in design.

For example, curve segments that require positions of control points and/or tangent
vectors at these points are easier to deal with and gather data for than those that
might require curvature information.

Also, the designer may prefer to control the shape of the curve locally instead of
globally by changing the control point(s). If changing a control point results in
changing the curve locally in the vicinity of that point, local control of the curve is
achieved; otherwise global control results.

spline, Bezier and B-spline curves. The cubic spline curve passes through the data

points and therefore is an interpolant.

Bezier and B-spline curves in general approximate the data points, that is, they do

not pass through them. Under certain conditions, the B-spline curve can be an

interpolant. Both the cubic spline and Bezier curves have a first-order continuity and

the B-spline curve has a second-order continuity.

Hermite Cubic Spline Curve:

They are used to interpolate the given data but not to design free-form curves.
Splines derive their name from “French curves or splines”

It connects two data (end) points and utilizes a cubic equation.

Four conditions are required to determine the coefficients of the equation — two end
points and the two tangent vectors at these two points.

It passes through the control points and therefore it is an Interpolant. It has only up
to C; continuity.

The curve cannot be modified locally, i.e., when a data point is moved, the entire
curve is affected, resulting in a global control.

The order of the curve is always constant (cubic), regardless of the number of data
points. Increase in the number of data points increases shape flexibility, however, this
requires more data points, creating more splines that are joined together (only two
data points and slopes are utilized for each spline).

Py(u=0)

Fig. 2.12 Hermite Cubic Spline Curve

A cubic spline curve utilizes a cubic equation of the following form:
P(u)=Cu’ +Cu’ +C,u+C, (2.10)
where, 0<u<l1

The cubic spline is defined by the two endpoints Py, P; and the tangent vectors at

these points. The tangent vector can be found by differentiating equ.(2.10).
P'(u)=3C,u* +2C,u+C, (2.11)

To determine the coefficients of the curve, consider the two endpoints Pg, P1 and the

tangent vectors as shown in Fig. 2.12.

Applying conditions at u = 0, in equations (2.10) and (2.11)

P =C, (2.12)
P',=C, (2.13)
Applying conditions at u =1, in equations (2.10) and (2.11)
P =C,+C,+C,+C, (2.14)
P', =3C, +2C, +C, (2.15)
Substituting (2.12) and (2.13) in (2.14) and (2.15), we get:
P =C,+C,+P',+P, (2.16)
P',=3C,+2C, +P', (2.17)

By solving simultaneous equations (2.16) and (2.17), we get
3P, —P',=C, +2P',+3P,
~.C,=3P —P',—2P',—3P, (2.18)
Similarly again by solving simultaneous equations (2.16) and (2.17), we get
P',—2P =C,—P',—2P,
~C,=P',—2P, +P',+2P, (2.19)
Substituting (2.12), (2.13), (2.18) and (2.19) in (2.10), we get:

P(u)=(P',—2P,+P',+ 2P, Ju’ +(3P, —P',—2P"\— 3R,)u’ +P' u+F,
S P(u)=P' U7 —2PU° +P' U+ 2P + 3P —P' Ut 2P ut —3Pu” +P' u+F,
o P(u)=2Pu* —3Pu" +P, —2Pu’ +3Pu’ +P' U’ —2P' u* +P' ju+P' v’ —P' U

.'.P{U}=P&[2u3—3u1+1)+ﬁ(—2u3+3u2)+P'ﬂ(u3—2u2+u)+P'1(u3—u2) (2.20)
The expression can be written in matrix form as under:
2u® —3u +1
R R T T
P(U)Z[E} Fi'l PD Pl] UE—ZUZ—I—U
I.afg—[.ll'2
2 -3 0 1]
-2 3 0 0|
~P(u)=[p, P P, P
(U) [D 1 1] 1] 1 _2 1 0 u
1 -10 01

On similar lines, the tangent vector equation can be determined by differentiating
equation (2.20)
P'(u)=P, (60" —6u)+P, (—6u” +6u)+P',(3u” —4u+1)+P", (3u” —2u)
[6u'—6u
—6u” +6u
3w —4u+1
30’ —2u

~P'(u)=[R, P P, P]

0
~P'(u)=[R, P P, P 0

|

=)

=)
o = O O

u’
¥
u
1

Changing the values of endpoints or tangent vectors would modify the shape of the

curve.

Example 2.5: A cubic spline curve has start point Pg(16,0) and end point P1(3,1). The tangent
vector for end point Py is given by line joining Py and point P,(14,8). Tangent vector for end
P, is given by line joining P, and point P,.

1. Determine the parametric equation of hermite cubic curve.

2. Plot the hermite cubic curve.

Po=[16 0]

P.=[3 1]

P'o=P;—Po=[14 8] -[16 0]
=[-2 8]

Py =P,—P,=[3 1]-[14 8]
=[-11 7]

Parametric equation
For any point on curve

2 3 0 10[]
-2 3 0 0}
P(u)=[P, P, P', P
() [D 1 0 1] 1 _2 1 0 u
1 -1 00 1]
X coordinate of a point on curve
2 3 0 1)
2 3 0 0|
P(u)=[p, P, P, P
x() [Dx 1x Ox lx] 1 _2 1 0 u
1 -1 00 |1
2 30 1|
-2 3 0 0|
P(u)=[16 3 -2 -11]
1 -2 1 0| u
1 1 0 0|1

UE

2

P(u)=[13 -24 -2 1(5.]t:J

X

1
P, (u)=13u* —24u° —2u+16
Y coordinate of a point on curve
2 3 0 1|
| Ca=2 3 0 0
F;" {u}zl:PDI‘ F;-B" P Oy P 15"] 1 -2 1 0 u
1 -1 0 01
(2 3 0 1]
-2 3 0 0
Plu)=l0 1 8 -7
()=] 1 -2 1 0ffu
1 -1 0 01
;
uz
P(u)=[-1 -6 8 0]
u
1

P, (u)=—u"—u’*+8u

Thus, parametric equation of parametric curve is
P, (u)=13u* —24u* —2u+16

X

L (2.21)
P (u)=—u"—u +8u

Example 2.6: The end point of a cubic spline curve are Py(1,2) and P4(7,1). The tangent vector
for end Py is given by line joining Py and point P,(-2,1). The tangent vector for end Py is given
by line joining P3(9,-2) and point P,.
1. Determine the parametric equation of hermite cubic curve.
2. Determine the parametric equation for tangent vector.
3. Plot the hermite cubic curve.
Po=1[1 2]
P1=1[7 1]
Pg=P—Py=[-2 1]-[1 2]=[-3 1]
P'y=P1—P3=1[7 1]-[9 -2]=[-2 3]

Parametric equation of curve
For any point on curve

2 3 0 1||lu
-2 3 0 0|
P(u)=[p, B P, P
() [E 1 1] 1] 1 _2 1 0 u
1 -1 0 0 1]
X coordinate of a point on curve
2 3 0 1
2 3 0 0|
P (u)=[p, P, P, P
x() [ﬂx 1x Ox lx] 1 -2 1 0 u
1 -1 0 0}1
2 3 0 1]
-2 3 0 0o
P(u)=[1 7 -3 -2]
1 -2 1 0||lu
1 -1 0 01

[.1'3
uz
P(u)=[-17 26 -3 1]

u
1

P (u)=—1?u3 +26u" —3u+1

X

Y coordinate of a point on curve

2 30 1l|lu
| a2 3 0 ofd
R'{U)ZI:PDF F:Ly PDy Ply] 1 -2 1 0 u
1 -1 0 01
2 3 0 1[4
-2 3 0 0l
Pluj=[2 1 -1 3
r(u) [] 1 _2 1 D u
1 -1 0 0j1]

ui

2

Ru)-[-4 -1 2"
1

P (u)=4u" —4u" —u+2

¥

Thus, parametric equation of parametric curve is
P, (u)=—17u° +26u° —3u+1

X

o (2.22)
P (u)=4u"—4u" —u+2

Parametric equation of tangent vector

0 6 -6 0]
0 6 6 0|u
P'(u)=|P, P P', P
W=l% A P ‘]0 3 4 1|u
0 3 -2 01
X coordinate of tangent vector
0 6 —6 0|
0 6 6 0Of¢
P' (u)={1 7 -3 -2
()=][] 3 4 1|lwu
0 3 -2 0f1
u3
u!
P' (u)=[0 51 52 -3]
u
1
Y coordinate of tangent vector
6 -6 0]
0 6 6 0
P' (u)=|2 1 -1 3
-2 0] 1
u3

2

P' (u)=[0 12 -8 -1] Y
u
1
P' (u)=12u" —8u—1

Thus, parametric equation of tangent vector is
P' (u)=51u" +52u—3
P',(u)=12u* -8u-1

Bezier Curves:

Cubic splines are based on interpolation techniques. Curves resulting from these
techniques pass through the given points.

Another alternative to create curves is to use approximation techniques which
produce curves that do not pass through the given data points. Instead, these
points are used to control the shape of the resulting curves.

Most often, approximation techniques are preferred over interpolation techniques
in curve design due to the added flexibility and the additional intuitive feel
provided by the former. Bezier and B-spline curves are examples based on
approximation techniques.

As its mathematics show shortly, the major differences between the Bezier curve
and the cubic spline curve are:

The shape of Bezier curve is controlled by its defining points only. First derivatives
are not used in the curve development as in the case of the cubic spline. This
allows the designer a much better feel for the relationship between input (points)
and output (curve).

The order or the degree of Bezier curve is variable and is related to the number of
points defining it; n + 1 points define an nth degree curve which permits higher-
order continuity. This is not the case for cubic splines where the degree is always
cubic for a spline segment.

The Bezier curve is smoother than the cubic spline because it has higher order

derivatives.
Control Pypeeeee Control
Point / TV ? Point
e Characteristic
Polygon

Start :
Point

P, End

P3 Point

Fig. 2.15 Beizer Curve

The Bezier curve is defined in terms of (n+1) points. This points are called as
control points, where n is the degree of the curve.

If n=3 control points are 4, as shown in the Fig 2.15.

These control points form the vertices of the control polygon or Bezier

characteristic polygon.

The control or Bezier characteristic polygon uniquely defines the curve.
Properties of Beizer Curve:
The degree of polynomial defining the curve segment is one less than the no. of
defining polygon points (n-1).
The curve follows the shape of the defining polygon.
Only the first and last control points or vertices of polygon actually lie on curve.
The other vertices define order & shape of the curve. (see Fig. 3.8)

(a) (b)
Fig. 2.16 Same data points but different orders for Beizer Curve

The curve is also always tangent to first and last segments of polygon.

The same Beizer curve would be generated, if the sequence of the points is
changed from Po— P, — P, —P3to P3— P, — P, — Py

The flexibility of the shape would increase with increase in number of vertices
of the polygon.

It is having global control on the shape of the curve.

(a) (b) (c)

(d) (e)
Fig. 2.17 Same Typical Examples of Beizer Curve

Mathematically, for n + 1 control points, the Bezier curve is defined by the
following polynomial of degree n:

Pu)=>'PB, (u), 0=u=1 (2.23)
=0
where P(u) is any point on the curve and P; is a control point. B, are the Bernstein

polynomials. Thus, the Bezier curve has a Bernstein basis. The Bernstein polynomial
serves as the blending or basis function for the Bezier curve and is given by

B, (u)=Cln,iu'(1—u)™ (2.24)

where C(n,i) is the binomial coefficient

Cln,i)=—"" (2.25)

if(n—i)!

Utilizing Egs. (2.24) and (2.25) and observing that C(n, 0) =C(n, n) =1,
Eq. (2.23) can be expanded to give
P(u)=P,(1—u)" +P,C(n,1)u(l—u)" +P,C(n,2u*(1—u)"*

+ertP _Cln,n—1u"(1—-u)+Pu", 0<u<1l

Bezier curve with 3 control points

P(u)=P,(1—u)* +P,C(2,)u(l—u)’™ +P,C(2,2)u* (1 —u)*™?

P(u)=(1—u)*P, +2u(l—u)P, + u’P,

Bezier curve with 4 vertices

P(u)=P,(1—u)’ +P,C(3, Yu(l—u)’" +P,C(3,2u’*(1—u) +P,C(3,3) (1 —u)*”
P(u)=(1—u)’P, + 3u(1—u)’P, + 3u*(1—u)P, + u°P,

Bezier curve with 5 vertices
P(u)=P,(1—u)’ +P,C(4,Nu(1—u)"" +P,C(4,2)u* (1-u)* " +P,C(4,3)* (1—-u)" +P,C(4, 4 (1—u)*™*
P(u)=(1—u)*P, +4u(l—u)’P, + 6u*(1—u)*P, + 4u’*(L—u)P, + u'P,

Example 2.7: A Bezier curve is to be constructed using control points Pg(35,30), P1(25,0),
P,(15,25) and Ps(5,10). The Bezier curve is anchored at Py and P3. Find the equation of the
Bezier curve and plot the curve foru=20,0.2, 0.4, 0.6, 0.8 and 1.

Po=[35 30]
P1=[25 0]
P.=[15 25]
P2=[5 10]
n=3

The parametric equation for Bezier curve
P(u)=(1—u)’P, +3u(l —u)’P, +3u’(1—u)P, + u°P,

X-coordinate of a point on curve
P (u)=(1-u)’P,, +3u(l—u)’P, +3u*(1—u)P,, +u’P,,
P (u)=35(1—u)’ +75u(l—u)* +45u* (1 —u) + 5u°
P (u)=35(1-3u+3u* —u’)+ 75u(l—2u + u*) + 450 — 450° + 5u°
P (u) =35—105u +105uf —35u° +75u—150u’ +75u° +45u® —45u° + 5u°
P (u)=35-30u
Y-coordinate of a point on curve
P,(u)=(1—u)P,, +3u(l—u)’P,, +3u*(1—u)P,, +u’P,,
P,(u)=30(1—u)’ +75u*(1—u)+10u
P,(u)=30(1—-3u+3u’ —u’)+75u* - 75u° + 100’
P, (u) =30—90u +165u” —95u’

The parametric equation of Bezier curve
P (u)=35-30u

2.26
P,(u)=30—90u + 165u° —95u° (2.26)

The points on curve obtained by varying the value of u=0, 0.2, 0.4, 0.6, 0.8 and 1 in equ.
(2.26) are shown in below table

Point No. 0 2 4 6 8 10
u 0 0.2 0.4 0.6 0.8 1
Py (u) 350 | 290 | 230 | 170 | 11.0 | 5.00
Py (u) 30.0 | 17.84 | 1432 | 14.88 | 14.96 | 10.00

Example 2.8: Plot a Bezier curve using the following control points.
(2,0), (4,3), (5,2), (4,-2), (5,-3) and (6,-2).

Py =1[2 0] Pi=14 3]
P,=[5 2] P;=[4 -2]
P2=[5-3] Ps=[6 -2]
n=>5

The parametric equation for Bezier curve with 6 control points
P(u) =(1—u)’P, +5u(1—u)'P, +10u*(1—u)’P, +10u* (1 —u)’P, + 5u* (1 - u)P, + u’P,
P(u)=(1—5u+10u’ —10u® +5u" —u°)P, +5u(1—4u +6u’ —4u® +u*)P,
+10u* (1-3u+3u’ —u’)P, +10u* (1—2u+u’)P, +5u" (1 - u)P, +u°P,
P(u)=(1—5u+10u* —10u” +5u" —u°)P, +(5u—20u* +30u” —20u" +5u°)P,
+(10u* —30u® +30u* —10u°)P, +(10u® —20u* +10u°)P, + (5u* — 5u°)P, +u°P,
P(u) =P, +(~5P, + 5P,)Ju +(10P, —20P, + 10P,)u’ +(—10P, + 30P, —30P, + 10P,)u’
+(5P, —20P, +30P, —20P, + 5P,)u" +(—P, + 5P, —10P, + 10P, —5P, +P,)u’

X-coordinate of a point on a curve
P (u)=P,, +(-5P, +5P,_)u+(10P, —20P, +10P,, Ju’+(—10P, +30P, —30P, +10P,)u’
+(5P,, —20P, +30P, —20P, +5P, Ju®+(-P, +5P —10P, +10P, —5P, +P. Ju’

P, (u) =2 +(-5(2) + 5(4))u +(10(2) —20(4) + 10(5))u” +(—10(2) +30(4) —30(5) + 10(4))u’
+(5(2) —20(4) + 30(5) — 20(4) + 5(5))u”* +(—(2) + 5(4) —10(5) + 10(4) — 5(5) + (6))u®
P (u)=2+10u—10u° —10u® +25u" —110°
Y-coordinate of a point on a curve
P (u)=P,, +(-5P,, +5P, Ju+(10P, —20P, +10P, Ju*+(~10P, +30P, —30P, +10P,)u’
+(5P,, —20P, +30P, —20P, +5P, Ju' +(-P, +5P, —10P, +10P, —5P, +P, Ju°
P, (u)=0+(—5(0) + 5(3))u +(10(0) —20(3) + 10(2))u* +(—10(0) +30(3) —30(2) + 10(-2))u’
+(5(0)—20(3) +30(2) —20(-2) + 5(-3))u* +(—{0) +5(3) —10(2) + 10(2) — 5(-3) + (-2))u*
P,(u)=15u—40u* +10u° +25u" —12u°
The parametric equation of Bezier curve
P (u)=2+10u—10u’ —10u® +25u" —11u°
- (2.27)
P (u)=15u—40u* +10u +25u* —12u°

The points on curve obtained by varying the value of u from 0 to 1 in steps of 0.1 in

equ.(2.27) are shown in below table

Point No. 0 1 2 3 4 5 6 7 8 9 10
u 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Px (u) 2 289 | 356 | 4.01 | 429 | 447 | 462 | 482 | 512 | 552 | 6.00
Py (u) 0 111 | 152 | 1.34 | 0.76 | -0.06 | -0.93 | -1.68 | -2.17 | -2.29 | -2.00

B-Spline Curve:

B-Spline curves are proper and powerful generalization of Bezier curve.

They are very similar to Bezier curve and are also defined with the help of
characteristic polygon.

The major advantage of B-Spline curve is due to its ability to control the curve
shape locally, as opposed to global control (see Fig. 2.20).

Control et
Point to Vi Changed
be changed ‘ Control
Point
(a) Original curve (b) Change due to modified

control point

N Changed h'

(c) Both curves superimposed
Fig. 2.20 Local Control of a B-Spline Curve

Rational curves

A rational curve is defined by the algebraic ratio of two polynomials while a
nonrational curve is defined by one polynomial.

The formulation of rational curves requires the introduction of homogeneous
space and the homogeneous coordinates. The homogeneous space is four-
dimensional space. A point in three dimensional with coordinates (x, y, z) is
represented in the homogeneous space by the coordinates (x*, y*, z*, h),where h
is a scalar factor. The relationship between the two types of coordinates is

X * y* 2%

X =— R —_-

h / h h
A rational B-spline curve defined by n + 1 control points P;is given by

P(u)=> PR, (u), O<u<u,, (2.29)
=0
Rik(u) are the rational B-spline functions and are given by

Rul =)

f

ZhiNi,k ':u}

The above equation shows that R;(u) are a generalization of the nonrational basis
functions N;(u). If we substitute h; = 1 in the equation, R;(u) = N; x(u). The rational
basis functions R;x(u) have nearly all the analytic and geometric characteristics of
their nonrational B-spline counterparts.

The main difference between rational and nonrational B-spline curves is the ability
to use h; at each control point to control the behavior of the rational B-splines (or
rational curves in general).

UNIT-I

Surface Modeling

The surface model is an extension of wire frame model which involves providing a
surface representation making the object look solid to the viewer.

Surface systems were in fact the first CAD systems to raise the possibility of
integrating the whole industrial process of design and analysis through to the next
stages of production and quality control, using the computer as an intermediary.
Shape design and representation of complex objects such as car, ship, aircraft and
castings cannot be achieved by a wire frame model. In such cases, surface models
are preferred for representing the objects with precision and accuracy.

These models also find widespread applications in companies manufacturing
forgings, castings and molded products. Such articles are characterized by
smoothly curved shapes with blended edges which are not easily represented by
conventional engineering drawings.

Another difficulty for designers with wire frame modelers is to obtain good
visualization of their ideas. The surface modeler is ideal for such products as the
entire surface is represented; allowing the computer to generate very realistic
shaded surface pictures.

Most surface modelers come equipped with rendering features. In this, the model
once created is then provided with surface properties. For example, the surface
may be given a property which may make the object appear corroded or made of
brass or any such effects.

A huge material library is generally made available to select the desired surface
effect. One can also define different kinds of lights, such as spot lights, ambient
lights, etc. in a 3D space and generate a photorealistic image of the object. This
feature is highly used in automobile and styling industries for determining the
aesthetic appeal of the object being designed.

Advanced surface modelers go beyond representation and to some extent can be
used for property calculations as well. The surface model can be used for
generating NC tool paths for continuous path machining, making it an ideal mode
for integrating CAD / CAM. A surface modeler can be considered as an extension of
a wire frame.

A wire frame model can be easily extracted from a surface model. It should be
remembered that surface models only store the geometry of their corresponding
objects and not the topology of these objects. To generate a surface model, a user
typically starts with a wire frame model and then connects them with the desired
surfaces.

Once the product has been surface modeled, its geometry may be used directly in
the design of the mould or die which is to be made. Essential calculations can usually
be performed automatically by the computer such as for example the determination
of the volume enclosed by a mould. This gives an immediate idea of the volume of
raw material needed to make the product.

Kinds of Surfaces

Fig. 2.21 Effect of Mesh Size on Object Visualization

To create a surface, data related to the desired shape is required. The choice of the
surface is dependent on the application. In order to visualize surfaces, a mesh of
m x n in size is displayed. The mesh size is controllable and is in the form of criss-
cross on the surface. The mesh size plays an important role in proper visualization as
can be seen in the objects shown in Fig. 2.21. However, it should be noted that finer
the mesh size of surface entities, longer is the time required by the software to
construct and modify the entities.

A system may need two boundaries to create a ruled surface or might require one
entity to create a surface of revolution. Surfaces provided by CAD / CAM software
are either analytical or synthetic.

The following are descriptions of major surface entities provided by CAD/CAM systems:

1. Plane Surface: This is the simplest surface. It requires three noncoincident points to

4.

define an infinite plane. The plane surface can be used to generate cross-sectional
views by intersecting a surface model with it, generate cross sections for mass
property calculations, or other similar applications where a plane is needed. Fig. 2.22
shows a plane surface.

M & .

\ ll... !'\I' H
\ \ = .I~== .:.i.
\ \ o "‘ii |i-il

\ [..‘. !I"l -

'\ ‘
\ \

\\
(@) One planc o (b) Multiple planes

Fig. 2.22 Plane Surface

Ruled (lofted) Surface: This is a linear surface. It interpolates linearly between two
boundary curves that define the surface (rails). Rails can be any wireframe entity.
This entity is ideal to represent surfaces that do not have any twists or kinks. Fig.
2.23 gives some examples.

Surface of Revolution: This is an axisymmetric surface that can model axisymmetric
objects. It is generated by rotating a planar wireframe entity in space about the axis
of symmetry a certain angle (Fig. 2.24).

Tabulated Cylinder: This is a surface generated by translating a planar curve a
certain distance along a specified direction (axis of the cylinder) as shown in Fig.
2.25. The plane of the curve is perpendicular to the axis of the cylinder. It is used to
generate surfaces that have identical curved cross sections. The word “tabulated” is
borrowed from the APT language terminology.

Rail (boundary curve)

Rail (boundary curve)
Fig. 2.23 Ruled Surface

Planar curves

i

|

e "]
S, i,

Axis of rotation (symmetryi
Fig. 2.24 Surface of Revolution

Directrix
4

—_—

Curve

/"\"*/@

-

Fig. 2.25 Tabulated Cylinder

5. Bezier surface: This is a surface that approximates given input data. It is different
from the previous surfaces in that it is a synthetic surface. Similarly to the Bezier
curve, it does not pass through all given data points. It is a general surface that
permits twists and kinks (Fig. 2.26). The Bezier surface allows only global control of

the surface.

6. B-spline surface: This is a surface that can approximate or interpolate given input
data (Fig. 2.27). It is a synthetic surface. It is a general surface like the Bezier surface
but with the advantage of permitting local control of the surface.

Fig. 2.26 Bezier Surface

+ +
- s +
E A"
+
+ i
L .
++F
(a) Data points (h) B-spline surface

Fig. 2.27 B-spline Surface

7. Coons Patch: The above surfaces are used with either open boundaries or given data
points. The Coons patch is used to create a surface using curves that form closed
boundaries (Fig. 2.28).

— Closed boundary
Fig. 2.28 Coons Patch

The two original surfaces may or may not be trimmed.

8. Fillet surface: This is a B-spline surface that blends two surfaces together (Fig. 2.29).

AR (I W
Lyt e EENEEEEE
FEEEEERE L T R
BEEREEEE T T T

REITEEERE
ERRRRERN IR
HEREEEER T AYAW I Y
=SS SrS

Fig. 2.29 Fillet Surface

. Offset surface: Existing surfaces can be offset to create new ones identical in shape
but may have different dimensions. It is a useful surface to use to speed up surface
construction. For example, to create a hollow cylinder, the outer or inner cylinder
can be created using a cylinder command and the other one can be created by an
offset command. Offset surface command becomes very efficient to use if the
original surface is a composite one. Figure 2.30 shows an offset surface.

Fig. 2.30 Offset Surface

Unit IV
Surfaces

* Many objects we want to model are not flat:

— Cars, animals, plants, buildings.

Surface Representations

» Parametric: (x,y,z)=(f(u,v), g(u,v), h(u,v))

— e.g. plane, sphere, cylinder, torus, bi-cubic surface, swept
surface

— parametric functions let you iterate over the surface by
incrementing u and v

— great for making polygon meshes, etc
— complex for intersections: ray/surface, point-inside-boundary, etc

* Implicit: F(x,y,z)=0

— e.g. plane, sphere, cylinder, quadric, torus, blobby models
— terrible for iterating over the surface
— great for intersections, morphing

Examples z)
Paremetric: Ellipsoid 5
X =7 cos¢cosd Zaay i e
Yy =r,cosgsind y !
z=r.sing)
v

Implicit functions:
Quadrics and other

Swept Surfaces

Obtained by sweeping generator enities along director entities.

Directrix

\L Generatrix

Direcmx @
\L Generatrix

Result

Rotational Surfaces

Generated by rotating a curve about an axis.

Every point of the generating curve describes a circle whose supporting plane lies
orthogonally to the Axis.

Meshes
We can approximate a surface with a polygonal mesh.

Curved Surfaces

+ Remember the overview of curves:

— Described by a series of control points.
— A function Of1).
— Segments joined together to form a longer curve.

« Same for surfaces, but now two dimensions

— Described by a mesh of control points.
— A function Stu,v).
— Patches joined together to form a bigger surface.

Parametric Surface Patch
* S{u,v) describes a point in space for any given (u,v) pair:

— u,v each range from 0 to 1.

T, $(1,0.25)

.___.'-‘llll %
* Parametric curves: v [

— For fixed u,, have a v curve S(u,v). 0
— For fixed v;, have a u curve S(u,1,).

— For any point on the surface, there are a pair
of parametric curves that go through point.

Polynomial Surface Patches

* Sts,t) is typically polynomial in both s and 7

— Bilinear:

S(s.t)=ast+hs+cr+d
S(s.t)=(ar+hb)s+(cr+d) — hold r constant = linearin s

S.t)=(as+c)t+(hs+d) - holds constant = linear in ¢
— Bicubic:
S(s.t)=as't +bs’t? + e’ +ds’ + es?F + £57F + g5’ + hs”

+ist’ +jst' +kst+1s+mt +nt” +of+p

S(s.y=(ar +bt’ +ct+d)s’ +(er’ +f +gr+h)s’ - hold # constant = cubic in s
+ 4+ 4 ki +Ds 4+ (m# + s’ +of +p)

Ssf)=(as +es +is+m)t’ +(bs’ +f5° + js+n)r - hold s constant = cubic in ¢
+(es® + g5’ + ks + o)t +(ds’ + hs® +1s + p)

Properties of the bilinear patch

— Interpolates the control points.

— The boundaries are straight line segments connecting
the control points.

— If the all 4 points of the control mesh are co-planar,
the patch is flat.

— If the points are not coplanar, get a curved surface.

— The parametric curves are all straight line segments:

* |Is a (doubly) ruled surface: has (two) straight lines through
every point.

Ruled Surfaces

* Linear interpolation between 2 curves
— All point lie in one line

f(s,0)=01A-1)f(s)+1 f,(s)
-
\

Coons patches

* Interpolation between 4 curves
» Build a ruled surface between pairs of curves

Particular case
S (5) Cylinder:

f(s,0)=fi(s)+td
f,(s)=(coss.sin s.0)

Cone:

f (s,7) :(l_f)fi +rf2(s)
f>(s) =(coss,sin s,0)

f(s,0)=(1=0)f(s,0)+7 f(s.])
Sfo(s,0) =(1=5)f(0,1) +s f(L.7)

f(3']')
/ 35

Coons patches step2
LD =A=-0f(s.0)+1f(s.)) f,(s.0)=A=5)f(0.0)+5 f(L7)

Coons patches step 3

+ “Correct” surface to make boundaries match

— Create a linear interpolation surface between the 4 extremes:

L(s.0)=(1—=s) f(0.1)+s(1—1)f(L0)+sr f(LL)) (bilinear patch).

— Combine surface as f,+f,-f;

SO+ f(s.6)—((1=5)1—1)f(0.0)+(1—s)t f(0.D)+s(1—1) f(LO)+s7 f(LL))

f(s.1)
[
(0.1
5

Bezier Control Mesh

* A bicubic patch has a grid of 4x4 control points:

+ Defines four Bézier curves along » and four Bézier curves along v.

« Evaluate using same approach as bilinear.

Bezier Patch Properties

« Convex hull: any point on the surface will fall within the convex hull
of the control points.

* Interpolates 4 corner points.
+ Approximates other 12 points, which act as “handles”.

+ The boundaries of the patch are the Bézier curves defined by the
points on the mesh edges.

* The parametric curves are all Bezier curves.

Cubic Bezier Surfaces: Algebraic Formulation

Cubic Bezier curves can be extended to surfaces on unit squares:

S(u,v) = f f B’ (’H)B? (V) F,

i=0 j=o

B0)=[|-
l

Building a surface from Bezier patches
Building complex surfaces by putting together Bezier patches.

» Lay out grid of adjacent meshes.

» For COcontinuity, must share points on the edge

— Each edge of a Bézier patch is a Bézier curve based only on the edge
mesh points.

— So if adjacent meshes share edge points, the patches will line up
exactly.

C' continuity across Bézier edges

+ We want the parametric curves that cross each edge to have C'
continuity:

— So the handles must be equal-and-opposite across the edge.

B-spline patches

For the same reason as using B-spline curves:
— More uniform behavior.
— Better mathematical properties.

— Doesn't interpolate any control points.

B-Spline Surfaces

A B-spline surface S(u,v), is defined by:

S =33 B, (0B, ;B

i=0 j=0
where:

* The P, are the (n+17) x (n'+1) control points.
« d and d’ are the orders in the u and v directions.

* We have two non-decreasing knot sequences of parameters Uy, ...,Un.q

* B4 are the uniform B-Spline basis or blending functions of degree d-1.

NURBS Surfaces
i i “";-,;Bf,d (H)Bj_d.(v)ﬁj

S(u,v)= }-:0::0

Z i 1L?f.J'Bi_d (“)Bj?ﬂr*(v)

i=0 j=0

— Can take on more shapes:

* conic sections.
— Can blend, merge,

— Still has rectangular topology.

Blending of surfaces
Basic idea of blending surfaces

A space curve or a space curve segment (resp. surface) is called regular if a nonzero
tangent vector (resp. normal vector) at every point on the curve (resp. surface) exists and
is unique.

Let S1, S be two surfaces, C' = 51()S2 a regular space curve. If for each point P € C,
the tangent plane of 57 at P is the same as the tangent plane of Sy at P, then S; and S
are said to meet with G!-continuity along C.

Now consider the following problem.

Problem 2.1 Let Sy and Sy be two surfaces in real 3-Eudidean space RS, C1C 5,05 C
Sy regular space curves called boundary curves. To construct a surface S which connects
Si, S5 along Cy, Cs respectively with G'-continuity.

Theorem 2.2 Let 51, S be two surfaces, C' = S [S2 a regular space curve. If for each
P € U, there exists a regular space curve Cy7 C Sq, such that P € €7 and

N.T; =0Ty #a*T,a € R,

then S; meets Sy with G'-continuity along C. Here T denotes the tangent vector of C' at P,
N denotes the normal vector of Sy at P, and T} denotes the tangent vector of C at P.

Proof. Since Ty = a * T, a normal vector of Sy at point P is T' x Ty. Since N - T = 0,
T} is perpendicular to N. Since €' is in S; and N is the normal vector of S5 at point P, N
is perpendicular to T. This means N and T x T} are proportional. As a result, the tangent
planes of S and S at point P is the same. So the theorem holds.

Theorem 2.2 tells us how to construct blending surfaces when the normal vectors on the
boundary curves are known or can be gotten, as in the case of implicit surfaces.

Theorem 2.3 Let Si, S5 be two surfaces, C' = S1() Sz a regular space curve. For each
P £ C, suppose that there exist regular space curves Cy C S1,C C Sy such that P € 1,
P € Cy. Furthermore, suppose that O connects Cy at point P with G'-continuity, and the
tangent vector of Co (or Cy) at point P is not parallel to the tangent vector of C' at P. Then
S; and Ss meet with G! continuity along C.

Proof. Let Ty,Ts be the tangent vectors of Cy and Cs at point P, T the tangent vector
of C at point P. Since Cy and Cy meet at P with Gl-continuity, T} = aT,a € R. Note
that 77 (75) is not parallel to T. Then the normal vectors of S; and Ss at point P is
Ny =Ty xT =aTy xT and Ny =Ty x T respectively. Since N; = aNs, the tangent planes
of 51 and S5 at point P are the same. So the theorem holds.

Theorem 2.3 will be used to construct blending surfaces between parametric surfaces.

Remark 2.4 If the boundary curves are not regular, the blending surface itself will not
be G'-continuity or self-intersects.

Constructing parametric blending surface

In this section, we will show how to blend two surfaces with a parametric surface.

Bézier curves
Let
n!

Bz'._n(r) = ri(l — f)n_i, 0<t<1

(n — i)l
denote the Bernstein polynomials. A Bézier curve of degree n with control points V; can be
defined as .
Bn(t) = Z -V%Bf._ﬂ(t)
i=0
with some properties listed below.

Terminal points:
Vo = B"(0),V, = B"(1).

Tangents on terminal points: Let Tp, T be the unit tangent vectors of the Bézier curve
at points Vp, V,, respectively. Then the following equations hold:
Vi—-W T Vi = Vo
A1 = .
Vi =W IV = Vol

T =

To construct a space curve which passes two points and the tangent vectors of the curve at
the two points are appointed, we can use Bézier curve. Choose the two points as terminal

control points, and select two points on the given tangent lines as the other two control
points. The Bézier curve defined by the four points is what we want.

Method of constructing blending surface

To solve Problem 2.1, we further assume Ci(s) C Sy, Ca(s) C Sz.s € [0,1] have para-
metric forms and have been parameterized to have the same variable s. For s = s5 € [0, 1],
we will construct a space curve f(sg,?) which satisfies the following equations:

f(SD, 0) = (1 (50)1

f(SDJ 1) = CQ(SU):' (1)
%ﬁhﬂ - Ni(s0) =0,

91teod) |, - Na(sg) =0,

where Nj(sp)(i = 1,2) denote the normal vectors of S1,Ss at Cy(sp), Ca(so) respectively.
They may be unknown but only need to ensure that the tangent vector of f(sp,t) at t =0
(resp. t = 1) is in the tangent plane of S; (resp. S3) at point Cy(sg) (resp. Ca(sg)). When
s changes in [0,1], f(s,t) forms a parametric surface. The last two equations are used to
guarantee that the tangent vectors of f(s,t) are parallel to tangent planes of S; and Ss at
C1(s) and C5(s) respectively.

Unit vV
CAD/CAM and solid modelling concepts

A key to the understanding of Product Data Exchange is some knowledge of the way geometry
is represented in the involved CAD-systems, CAD-systems using a similar internal geometry
representation can exchange geometry without much difficulty provided that some neutral file
interface exists [3]. On the other hand if the target application of the transfer uses a different
representation from the sending system one must try to compromise on the design metodology
and export information in a way which can be understood by the target system.

Wireframe representation

A wireframe model is represented by defining edges and points. An edge may be a line or a
curve. This representation is natural for a designer who is familiar with mechanical drawings.
since it is the lines and curves in a drawing which define 3D shape. A wireframe model is simple
to deal with in a computer with small storage space and quick access time.

/

Pure wireframe representation is has a number of drawbacks as a basis for modelling 3D solids.
notably the possibility of creating ambiguous models and the lack of graphic or visual coherence.

Surface representation

A surface model is represented by edges and points. as is a wireframe model. but with additional

faces which fills the space between the edges and points. Each face 1s described by a surface,

which can be elements of quadrics like cone. cylinder. sphere. or a set of splines. One of the most
common is the B-Spline representation [1]. B-Spline (Basis-Spline) is one category of surfaces

employing parametric polynomials using parameters.

In CAD systems for design using free-form surfaces sculptured surfaces. surface models are
commonly used for the internal representation. However. a surface model does not contain
topological information. and can therefore be ambiguous when determining the volume of an
object. Surface models play an important role in industry. because they give an accurate
description of the surface of an object which can be used e.g. to gnide NC-milling machines or
other manufacturing-oriented applications. Another area where free-form surfaces are in
extensive use is for styling of e.g. car-bodies and other consumer products where the shape and
design plays and important role.

Constructive Solid Geometry (CSG)

With CSG. solids are described as combinations of simple primitives or other solids in a series
of Boolean operations. i.e. a CSG model is constructed using a so called building block
approach. A user operates on parameterised instances of solid primitives with Boolean operators.

= - [

Boundary representation (B-rep)

B-Rep models represent a solid indirectly by a representation of its bounding surface. A B-Rep
solid is represented as a volume contained in a set of faces together with topological information
which defines the relationships between the faces. Because B-Rep include such topological
information, a solid is represented as a closed space in 3D space. The boundary of a solid
separates points inside from points outside of the solid. B-rep models can represent a wide class
of objects but the data structure is complex. and it requires a large memory space. A very simple
B-rep model constructed using 6 faces is shown in Figure -

Boundary representation can be divided in three classes: facetted. elementary. and advanced
B-Rep. In facetted B-Rep. a solid is bounded by planar surfaces. Only points. planes and planar
polygons are required and are implicitly represented by their vertex points. The surfaces included
in elementary B-Rep are planar. quadric, and toroidal surfaces. The bounding curves of the faces
are lines, conics. or 4th order curves. In advanced B-Rep. the surfaces includes also spline
surfaces (B-Spline. Bézier. NURBS. etc.) in addition to elementary B-Rep. The bounding curves
are spline curves.

Hybrid representation

Modern CAD-systems almost always use some hybrid form of representation which is a
combination of the basic variations described in the previous text. This is because different
representations have their advantages and drawbacks for different application areas. Typically
CAD-systems use either CSG- or B-rep and an internal primary representation. while
approximated facetted B-rep is used as a secondary representation for display purposes.

Two major approaches exist. In the first approach. the modeller has CSG as the primary
representation. From CSG. B-Rep models are created using boundary evaluation. The user has

no direct access to the secondary representation. (Examples of this type of modellers are
EUCLID! and Bravo32.) In the second approach. the modeller has B-Rep as the primary
representation. Such modellers often use CSG as a way to let the user describe basic shapes and
do operations on them via the user interface. However. such systems typically allow additional
modification methods which directly modify boundary data structures and thus the CSG
representation can not be updated. (Examples are ACIS3. Parasolid* and Pro/ENGINEER?.)

One should note that conversions trom CSG fo B-rep. is possible by evaluating the CSG tree.
while conversion of a B-rep. model to CSG is not possible by conventional methods and is still
subject for research.

Product data exchange standards

CAD-vendors traditionally tend to protect th

& methods

eir share of the marked by sticking to proprietary

formats and not put serious efforts into the implementation of neutral interfaces. Typically the
vendors try to push their customer to buy their particular analysis module or say, NC-machining
preparation software. Market pressure and use of various computer platforms for CAD-packages
has broken this trend. although a number of vendors stick to their old habits. Nevertheless quite
some exchange can be done via existing formats if a good methodology is used.

Current exchange formats and de-facto standards

CAD-exchange formats (Table 1) should be used for exchange of CAD models when there 1s a
need to access the exact geometry. When a model is needed for visualisation and verification
purposes. a Graphics format (Table 2) may be more useful and easier to handle. This is especially

the case for 2D Drawings. which often are ex

changed only to be visually checked. A format like

HPGL is then more appropriate than a CAD-exchange format like IGES or DXF.

Table 1: CAD-exchange formats currently in use

Format: Full name, explanation Used to exchange:

IGES Initial Graphics Exchange Specification Wireframe, Surfaces, and drawings

DXF Drawing Exchange Format from Antodesk Drawings and Wireframe

SET Standart d’Exchange et Transfert Wireframe, Surfaces, drawings, solids

ACIS SAT ACIS Solid Exchange Format ACTS models (Autocad, Microstation ete.)

VDA-FS VDA, Flachen Schnittstelle Swface geometry

STEP AP203 IS0 10303-203 Configuration Centrolled Design 3D CAD models and product data
Table 2: Graphics exchange formats

Format Comment

VRML(Virtual Reality Modeling Language)

Standard for viewing 3D objects via the Web rapidly gaming popularity.

Wavefront, Inventor, 3DS_ Flight

3D graphics de-facte standard formats for Facetted B-rep models

SLA Stereolithography format

Triangular facets used for Rapid Prototyping applications

HPGL. Postscript

Image files used for plotters. Good for visualising drawings.

I EUCLID and EUCLID3 are trademark

ba

s of Matra Datavision

Bravo and Braveo3 are trademarks of Schlumberger Technologies

3 ACIS is a trademark of Spatial Technology Inc.
4 Parasolid 1s a trademark of Electronic Data Systems Corp. Copyright ©1996 EDS

Lh

Pro/ENGINEER. is a trademark of Parametric Technology Corporation

STEP

STEP. Standard for the Exchange of Product Model Data. provides a representation of product
information along with the necessary mechanisms and definitions to enable product data to be
exchanged between different applications and processes.

The overall objective of STEP is to provide a mechanism that is capable of describing product
data throughout the life cycle of a product, independent from any particular system. The nature
of this description makes it suitable not only for neutral file exchange. but also as a basis for
implementing and sharing product data bases and archiving. The ultimate goal is an integrated
product information database that is accessible and useful to all the processes necessary to
support a product over its lifecycle.

STEP addresses ditferent computer applications associated with the complete product lifecycle
including design. manufacture. utilization. maintenance. and disposal. STEP is thus not only
targeting CAD/CAM applications. but includes processes related to the organisation of the
product data such as definition of materials, formal contracts and specifications which are valid
across organisations.

Conformance to STEP is therefore very important when one implements an Engineering Data
Management System. (EDMS or PDM-system) which describes Engineering processes and the
organisation of Product Data. STEP provides standard templates and mechanisms for how to
describe organisational data related to engineering products without company-specific flavours.

STEP Architecture

STEP is organized as a series of parts, grouped into different series: description methods,
integrated resources. application protocols, abstract test suites. implementation methods. and
conformance testing.

STEP uses a formal specification language. EXPRESS (Part 11). to specify the product
information to be represented. The use of a computerised Data Definition language enables
precision and consistency of representation and facilitates development of implementations.

The Integrated Resources is a library of general purpose information models for things like
geometry. topology. product identification. dates. times etc. (The 40-series parts.)

Among the Implementation Methods are a Physical File format (Part 21) and a group of standard
application programming interfaces (Part 22-26)

By means of the EXPRESS language and common definitions from the STEP integrated
resources, so called Application Protocols (APs) are used to specify the representation of product
information for one or more industry-specific application area.

Examples of STEP APs are:
« AP203 : Configuration controlled 3D designs of mechanical parts and assemblies
« AP212 : Electrotechnical Plants
» AP214: Core Data for Automotive Design Processes.
* AP221 : Process Plant Functional Data and Schematic Representation.

« AP 223 :Exchange of Design & Manufacturing Product Information for Cast Parts

IGES

IGES (Initial Graphics Exchange Specification) was the first specification for CAD data
exchange published in 1980 as a NBS (National Bureau of Standards) report in USA.
IGES version 1.0 was accepted and released in 1981 as an ANSI standard. All major
CAD vendors support IGES and it is currently by far the most widespread standard for
CAD data exchange.

IGES was originally developed for the exchange of drafting data like 2D/3D wireframe
models. text, dimensioning data, and a limited class of surfaces. Due to criticism and bad
experience with the data transfer using IGES. the standard has been gradually extended
and developed concerning supported entities. syntax. clarity, and consistency. The current
version. IGES 5.2. provides the following capabilities:

Geometry: 2D/3D wireframes. 2D/3D curves and surfaces. CSG (since version
4.0 1n 1988), B-Rep (since version 5.1 in 1991);

Presentation: Drafting entities for technical drawings:

Application dependent elements: Piping and electronic schematics, AEC
elements;

Finite Element Modeling: Elements for FEM systems.

IGES specification defines the format of the file. language format. and the product
definition data in these formats. The product definition includes geometric. topological.
and norrgeometric data. The geometry part defines the geometric entities to be used to
define the geometry. The topology part defines the entities to describe the relationships
between the geometric entities. The geometric shape of a product is described using these
two parts (1.e. geometry and topology). The non-geometric part can be divided into
annotation. definition. and organization. The annotation category consists of dimensions.
drafting notations, text, etc. The definition category allows users to define specific
properties of individual or collections of entities. The organization category defines
groupings of geometric. annotation. or property elements.

An IGES file consists of six sections: Flag. Start. Global. Directory Entry. Parameter
Data. and Terminate. Each entity instance consists of a directory entry and parameter data
entry. The directory entry provides an index and includes attributes to describe the data.
The parameter data defines the specific entity. Parameter data are defined by fixed length
records. according to the corresponding entity. Each entity instance has brdirectional
pointers between the directory entry and the parameter data section.

The size of IGES files and consequently the processing time are practical problems. IGES
files are composed of fixed format records and each entity has to have records in both the
directory entry section and the parameter data section with brdirectional pointers. This
causes also errors in pre- and post-processor implementations.

IGES 1s under control of the NCGA (National Computer Graphics Association) and 1s
part of the U.S. Product Data Association (USPRO) and the IGES/PDES Organization
(IGO). The NCGA administers the National IGES User Group (NIUG). which provides
access to information on IGES.

DXF

DXF (Data eXchange Format) was originally developed by Autodesk. Inc.. the vendor of
AutoCAD. It has become a "de-facto" standard among most CAD vendors and is in wide
use to exchange 2D/3D wireframe data. All implementations of AutoCAD accept this
format and are able to convert it to and from their internal representation. A DXF file is a
complete representation of the AutoCAD drawing database thus some features or
concepts can't be used by other CAD systems. The DXF version R13 supports wireframe,
surface, and solid representations.

A DXF file consists of four sections: Header. Table. Block. and Entity section. The
header section contains general information about the drawing. Each parameter has a
variable name and an associated value. The table section contains definitions of line
types. layers, text styles. views. etc. The block section contains entities for block
definitions. These entities define the blocks used in the drawing. The format of the
entities in the block section is identical to entities in the entity section. The entity section
contains the drawing entities. including any block references. Items in the entity section

exist also in the block section and the appearance of entities in the two sections is
1dentical.

Variables. table entries. and entities are described by a group that introduces the item.
giving its type and/or name, followed by multiple groups that supply the values
associated with the item. In addition, special groups are used for separators such as
markers for the beginning and end of sections. tables. and the file itself. Group codes are
used to describe the type of the value. and the general use of the group.

A collaborative design taxonomy

This taxonomy organizes issues into a framework to offer direction in identifying areas that may
need investigation. Research into multiple subjects. including engineering design. collaboration.
and teamwork. has shown that collaborative design can be described by several attributes. These
attributes, which compose the top level of the taxonomy. are: team composition,
communication, distribution, design approach. information. and nature of the problem. A
description of the effects of the primary collaborative design attributes follows. The sub-levels
of the taxonomy for each factor are displayed with each explanation.

1 Team Composition

Extensive research has been conducted in the fields of psychology and sociology to analyze the
impact of team composition on effective and timely team performance [10, 11. 12, 13]. Team
composition can be divided into characteristics of the group. characteristics of individuals, team
member relations. and leadership styles as shown in Table 1.

Table 1. Team composition issues in collaborative design

A. Group: Size, Culture

B. Individual: Personality, Expertise

C. Team Member Relations: Positive, Neutral, Negative

D. Leadership Styles: dutocratic, Consultative, Collective, Participative,
Leaderless

1. Team
Composition

Research suggests that the size of the team should match the complexity of the task [10. 11].
Willaert suggests that teams that are too large may become unmanageable and require additional
organizational structure. while creativity may be inhibited if teams are too small. The
quantitative effect of a range of group culture variables on innovative productivity was studied
by Hurley [12]. He found that group cultures that emphasize participative decision-making.
characterized by openness and involvement in decision-making. are associated with higher levels
of inmovation. The organizational hierarchy. as well as the leadership styles within the design
team may influence this area of the group culture.

Diverse theories have been developed relating team members’ personalities and the performance
of design teams. The five-factor personality model (FFM). which includes conscientiousness.
extraversion. stability, agreeableness. and openness to experience. brings some order to the field
of personality research [13]. Reilly. et al. [14] proposed relationships between a team’s average
level of each personality factor and the overall team performance to suggest preferred team
composition for particular design types.

The amount of knowledge or experience perceived to be required before making a contribution
to the team may affect productivity of younger engineers [15]. Varving levels of experience on a
team. however. may facilitate success in innovation by combining the wisdom of age with the
energy and idealism of youth [10. 15]. Additionally, the type of design problem may dictate
which areas of expertise should be included in the team composition. Including several
disciplines in a team seems to both enrich and complicate many areas of the design process [3].

Although engineering design is mainly a technical activity. it truly functions as a social activity.
Lloyd proposes that design i1s a process of building on individual. social. and organizational
experiences [16]. If a collaborative design team is distributed, its ability to collectively utilize
these experiences may be hindered. Research has found that group cohesiveness is positively
related to team success. and team member relations have a major positive relationship with team
performance and team satisfaction [17. 18].

In addition to team cohesiveness. leadership styles may also influence collaborative design. The
Vroom-Yetton model. which includes autocratic., consultative, collective, participative. and
leaderless styles. may be used to classify leadership styles [19]. Austin. et al.’s empirical studies
of interdisciplinary teams found that a team needs to be led through the design activity [20].
Further, the team needs to agree on who should lead and what leadership style should be used in
order for the group to work effectively. Other research has found positive relationships between
leadership style and team performance. work climate. and team learning [18. 21].

2 Communication

By definition, collaborative design teams share expertise. ideas. resources. or responsibilities,
which necessitates a strong communication system. The issues outlined in Table 2 impact this
sharing process.

Table 2. Communication issues in collaborative design

A. Mode: Verbal, Written, Graphic, Gestures
B. Quantity: Frequency, Duration
C. Syntax: Common Language, Translators

2 Communication | D. Proficiency of Team: Techniques, Technology

E. Dependability of Resources: Reliability, Availability

F. Intent: Inform, Commit, Guide, Request, Express, Decide, Propose,
Respond, Record

The form of communication that is chosen at various collaborative design interfaces may
facilitate or hinder the process. It follows that some communication forms (verbal. written,
graphic, or gestures) may be better suited for use in particular tasks or phases of the design
process. Team members’ selection of particular communication forms may be influenced or even
governed by the perceived importance of the information to be communicated. dispersion of the
team over time and space. the task in the design process. the effort required to use each method.
team composition. and other factors [22. 23]. Collaboration technologies are necessary to
overcome the inherent resistance to the flow of information encountered by distributed design
teams [24].

The proficiency of the team in using various communication tools might influence form
selection, frequency. and success [23]. Effective communication may be inhibited if team
members use various languages in their communication. This includes spoken and written
langnages. as well as information and query languages. The needs of agents receiving
mformation may determine the required syntax or view of the information [25]. If
communication systems are not reliable, low user satisfaction will likely negate enhanced
functional capabilities the systems are intended to provide [26].

A list of ten communicative actions (inform. commit, guide, request, express, decide, propose.
respond. and record) has been developed to represent the intent of comununication [27]. Some
modes of communication and information forms may have more than one purpose.

3 Distribution
In collaborative design. the teams members and information may be collocated. but are more
likely to be distributed across some variety of boundaries. (geographic. organizational. temporal)
as shown in Table 3.

Dispersion of team members may have a significant impact on the team’s choice of
communication techniques. frequency of communication. and language [20]. Research to
compare the graphic communication of distributed teams to those of collocated teams showed
that remote designers spent 51% more time making graphic acts than their collocated
counterparts [28]. However. the production of sketches. which are considered important because
they impose order while stimulating reinterpretation, decreased significantly when teams were
distributed. Some research has found that collocation had neither direct nor indirect effects on
project outcomes [29].

Table 3. Distribution issues in collaborative design

A. Personnel: Collocated, Geographically Distributed, Distributed Across
Oreanizations, Distributed Across Time Boundaries

B. Information: Collocated, Geographically Distributed, Distributed Across
Oreanizations, Distributed Across Time Boundaries

3. Distribution

The availability of communication resources may also be inhibited. primarily by geographic and
organizational boundaries. Cohesion and efficient operation in distributed design teams requires
exceptional computational design support versus the needs of non-distributed teams [24. 30].
Information or tasks may also be distributed in the same manner as team members. When
information or tasks are distributed across geographic or organizational boundaries,
supplementary resources are typically required to facilitate commmumnication. Distribution of
people, information. and tasks in collaborative design often introduces challenges to efficient
coordination of the design process.

4 Design Approach

Several factors of the team’s design approach. shown in Table 4, may affect the collaborative
design process. These factors include the design tools, how progress is evaluated. the structure
of the design approach. and the process type.

Table 4. Design approach issues in collaborative design

A. Design Tools Applied in Each Phase: Recognition of the Need, Problem
Definition, Synthesis, Analvsis and Optimization, Evaluation, Presentation

B. Evaluation of Progress: Self-dssessment, Assessed by Ouiside Parties

C. Degree of Structure: Company Policy, Chosen by Team, Not Well-Structured
D. Process Approach: Generative, Variant

E. Stage: Clarification of Task, Conceptual Design, Embodiment Design, Detail
Design

4. Design
Approach

The selection of design tools (e.g.. idea generation methods. decision-making techniques. risk
analyses) to apply in various phases and tasks of the collaborative design process may impact the
efficiency and productivity of the team. Some tools or approaches may be appropriate in team
environments or particular types of problems [3]. In her analysis of the design approach at a
product development firm. Parks found that the absence of a product design specification hinders
task clarification activities and objective evolution of the design [31].

Studies into the effects of regular self-assessment on the performance of design teams found
positive relationships between the two items [32]. This was marked by higher self-rated and
group-related effectiveness when teams completed a self-assessment halfway through the design
process. Group satisfaction increased when teams participated in a self-assessment.

Similarly, the degree of structure in methodology and team organization may impact the team’s
performance. More structure may be required for distributed teams to be productive because of
the physical barriers they face [18]. In studies by Austin. et al.. designers believe they have
performed better as a team when they agree on and follow a design process [20]. However, no
evidence was found to prove that an increase in actual productivity or success of the design team
could be related to the team following a systemic design procedure. Other research. though.
found that methodical design process assists in the solution development for problems in which
engineers have no previous experience [31].

The primary approaches to design have been classified as generative and variant [33]. Using the
variant process, the goals of the new design are achieved by adapting existing design
specifications of a similar subject. Conversely. the generative process is an original design
effort.

The stage of the design process also characterizes work in collaborative design. While a number
of authors [2. 3. 4] have proposed definitions for the stages of the design process. the stages
defined by Pahl and Beitz [4] are among the most popular and are referenced in this taxonomy.

These stages include clarification of the task. conceptual design. embodiment design. and detail
design.

S Information

Information flow throughout the design process is a crucial measure of collaborative design
effectiveness. Information related issues identified in the taxonomy are shown in Table 5.

Table 5. Information issues in collaborative design

A Form: Desien Artifact, Process Knowledee

B. Management: Ownership, Permission to Change Parameters, Security,
5. Information | Change Propagation

C. Perceived Level of Criticality: High, Medium, Low

D. Dependability of Information: Reliabilitv, Completeness

Design information can be characterized as design artifact or process knowledge [34]. Design
artifact knowledge is the actual design data and structures, such as technical charts/graphs, object
attributes, and design reports, in which design data is represented. Process knowledge. or the
expertise or resources that enable manipulation of design data, can be separated into reasoning
(rule-based. history-based. first-principle) and tasks (search. analysis. modification).

Effective management of design information is crucial in collaborative design. The most
important areas of information management in this context are ownership. permissions. security.
and change management. The rights and responsibilities of various agents change throughout
the design process [35]. The primary goals of managing information change are to maintain a
design history. to enable backtracking. and to ensure that all agents use the most current
information.

The perceived level of criticality of information is related with the selected communication
method. TIf the information is considered highly critical. agents will likely select modes of
communication in which they have the highest aptitude and confidence in reliability [23]. The

quantity of communication related to a particular information exchange may also be influenced
by the perceived importance of the information. The dependability of information may affect
collaborative design both in terms of completeness and reliability [24]. Design information is
likely to be incomplete in early stages of the design process and this level of completeness may
mfluence the design approach. Some information may be exchanged in the design process even
though the information is not vet fixed or validated. Agents in the design process should
consider this reliability in decision-making and other design activities. Some options for
addressing the reliability issue are probabilistic design and sensitivity analysis [4. 20].

6 Nature of Problem

Various aspects of the design problem may impact collaborative design. Primary factors in this
area are shown in Table 6.

Table 6. Collaborative design issues based on the nature of the problem

A. Type of Design: Novel, Routine

B. Coupling of Sub-Tasks: Highlv Coupled, Loosely
Coupled

C. Level of Abstraction: Concrete, Abstract, Intermediate
D. Scope: Single Domain, Multi-Discipline

E. Complexity: High, Medium, Low

6. Nature of Problem

The type of design. classified as novel or routine. relates to the knowledge that is required to
address a specific problem. If the design team understands what is required. then the design type
may be considered routine [3]. However. if the team does not know what knowledge will be
required in satisfying the design problem. the problem is classified as novel [4].

The degree of coupling of sub-tasks has a large influence on the communication requirements of
the team [24]. When tasks are highly coupled. collaboration technologies with high
communication impedance are acceptable. Design problems with loosely coupled tasks. though.
require that obstructions to communication be at a minimum. Because the degree of coupling of
tasks varies throughout the design process. resources should be available to meet the needs of
highly and loosely coupled tasks. Coupling of tasks may also impact the information
management requirements of the team. notably in the area of change propagation.

Design teams must typically deal with abstraction of the design problem at some level where
design is a continuous process of refiming the design problem to a less abstract state [3]. Some
design tools and techniques are better suited for certain levels of abstraction than others. Design
teams may be better equipped than individual designers to handle this ambignity because of the
range of experiences and expertise present within the group [10].

If the design problem spans a wide range of disciplines, collaborative design teams may be better
equipped to handle the problem than a traditional design team [10]. As noted earlier. the ability
to utilize resources from various organizations and locations may enable a team to be constructed
with a desired composition of expertise. A multi-disciplinary team. however, may encounter
communication and organizational challenges.

