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Intr ion

Signal

A signal is any physical quantity that carries information, and that varies with time, space, or any other
independent variable or variables. Mathematically, a signal is defined as a function of one or more independent
variables.

1 — Dimensional signals mostly have time as the independent variable. For example,
Eg., S1(t) = 20t?

2 — Dimensional signals have two independent variables. For example, image is a 2 — D signal whose
independent variables are the two spatial coordinates (x,y)

Eg., Sz (t) = 3x + 2xy + 10y?

Video is a 3 — dimensional signal whose independent variables are the two spatial coordinates, (x,y) and time
(t).

Similarly, a 3 — D picture is also a 3 — D signal whose independent variables are the three spatial coordinates
(x,y,2).

Signals Sz (t) and Sz (t) belong to a class that are precisely defined by specifying the functional dependence on
the independent variables.

Natural signals like speech signal, ECG, EEG, images, videos, etc. belong to the class which cannot be
described functionally by mathematical expressions.

System

A system is a physical device that performs an operation on a signal. For example, natural signals are generated
by a system that responds to a stimulus or force.

For eg., speech signals are generated by forcing air through the vocal cords. Here, the vocal cord and the vocal
tract constitute the system (also called the vocal cavity). The air is the stimulus.

The stimulus along with the system is called a signal source.

An electronic filter is also a system. Here, the system performs an operation on the signal, which has the effect
of reducing the noise and interference from the desired information — bearing signal.

When the signal is passed through a system, the signal is said to have been processed.

Processing
The operation performed on the signal by the system is called Signal Processing. The system is characterized

by the type of operation that it performs on the signal. For example, if the operation is linear, the system is
called linear system, and so on.
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Digital Signal Processing

Digital Signal Processing of signals may consist of a number of mathematical operations as specified by a
software program, in which case, the program represents an implementation of the system in software.
Alternatively, digital processing of signals may also be performed by digital hardware (logic circuits). So, a
digital system can be implemented as a combination of digital hardware and software, each of which performs
its own set of specified operations.

Basic elements of a Digital Signal Processing System

Most of the signals encountered in real world are analog in nature .i.e., the signal value and the independent
variable take on values in a continuous range. Such signals may be processed directly by appropriate analog
systems, in which case, the processing is called analog signal processing. Here, both the input and output
signals are in analog form.

These analog signals can also be processed digitally, in which case, there is a need for an interface between the
analog signal and the Digital Signal Processor. This interface is called the Analog — to — Digital Converter
(ADC), whose output is a digital signal that is appropriate as an input to the digital processor.

In applications such as speech communications, that require the digital output of the digital signal processor to
be given to the user in analog form, another interface from digital domain to analog domain is required. This
interface is called the Digital — to — Analog Converter (DAC).

In applications like radar signal processing, the information extracted from the radar signal, such as the position
of the aircraft and its speed are required in digital format. So, there is no need for a DAC in this case.

Block Diagram Representation of Digital Signal Processing
( R (~ D 4 )
Analog - to - Digital Digital - to -
analog input . Digital Signal Analog » Analog output
signal Converter Processor Converter signal
(ADC) (DSP) (DAC)
J

1. Adigital programmable system allows flexibility in reconfiguring the digital signal processing
operations simply by changing the program.
Reconfiguration of an analog system usually implies a redesign of the hardware followed by testing and
verification.

2. Tolerances in analog circuit components and power supply make it extremely difficult to control the
accuracy of analog signal processor.
A digital signal processor provides better control of accuracy requirements in terms of word length,
floating — point versus fixed — point arithmetic, and similar factors.

3. Digital signals are easily stored on magnetic tapes and disks without deterioration or loss of signal

fidelity beyond that introduced in A/D conversion. So the signals become transportable and can be

processed offline.

Digital signal processing is cheaper than its analog counterpart.

Digital circuits are amenable for full integration. This is not possible for analog circuits because

inductances of respectable value (LH or mH) require large space to generate flux.

6. The same digital signal processor can be used to perform two operations by time multiplexing, since
digital signals are defined only at finite number of time instants.

o~
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7. Different parts of digital signal processor can work at different sampling rates.

8. Itis very difficult to perform precise mathematical operations on signals in analog form but these
operations can be routinely implemented on a digital computer using software.

9. Several filters need several boards in analog signal processing, whereas in digital signal processing,
same DSP processor is used for many filters.

Disadvan f Digital Signal Pr ing over Anal ignal Pr in
1. Digital signal processors have increased complexity.
2. Signals having extremely wide bandwidths require fast — sampling — rate ADCs. Hence the frequency
range of operation of DSPs is limited by the speed of ADC.
3. Inanalog signal processor, passive elements are used, which dissipate very less power.
In digital signal processor, active elements like transistors are used, which dissipate more power.

The above are some of the advantages and disadvantages of digital signal processing over analog signal
processing.

Discrete — time signals

A discrete time signal is a function of an independent variable that is an integer, and is represented by x[n],
where n represents the sample number (and not the time at which the sample occurs).

A discrete time signal is not defined at instants between two successive samples, or in other words, for non —
integer values of n. (But, it is not zero, if n is not an integer).

Discrete time signal representation
The different representations of a discrete time signal are

1. Graphical Representation

Graphical Representation
4 T T

3 <

> -

DT signal X[n]
o] R
I
—0
9
—
1

c c c c c c ‘
-4 -3 -2 -1 (o] 1 2 3 a4
sample number n

2. Eunctional representation
1, forn=1,23

x[n]={ 4, forn=2
0,elsewhere
3. Tabular representation

N - - 2 1 0 I 2 3 4 5 ----- -

x[n] - - 0 0 11 4 1 0 0 ----- -
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4. Sequence representation
X[n]:{',',‘-‘,‘,0,0,1,4,1,0,0,',',','}
?
the above is a representation of a two — sided infinite duration sequence, and the symbol 4 indicates the time
origin (n = 0).
If the sequence is zero for n < 0, it can be represented as
X[n]:{1a4a1a21_1_1-$_}

Here the leftmost point in the sequence is assumed to be the time origin, and so the symbol 4 is optional inthis
case.

A finite duration sequence can be represented as
Xx[n]1={3 -1,-2,5,0,4,-1}
f

This is referred to as a 7 — point sequence.
Elemen iscr im n

These are the basic sequences that appear often, and play an important role. Any arbitrary sequence can be
represented in terms of these elementary sequences.

1. Unit — Sample sequence It is denoted by 6 [ n ]. It is defined as

_ 1, forn=0
8lnl = {O,forn * 0

It is also referred as discrete time impulse.

It is mathematically much less complicated than the continuous impulse 8 (t), which is zero everywhere
exceptatt=0. Att =0, it is defined in terms of its area (unit area), but not by its absolute value.

It is graphically represented as

o|n|

1
n

It is denoted by u [ n] and defined as
1, forn= 0

uln] = 0, forn<O0
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It is graphically represented as

3. Unit ramp sequence

It is denoted by Ur[ n], and is defined as
_ mn,forn =0
ur[n] = {O,forn< 0

It is graphically represented as

4. Exponential sequence

It is defined as
x[n] =a foralln

a. Ifaisreal, x[n] is a real exponential.
a>1

,HHTTT'HHH

a<l

s .
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-1<ax<0

HHH"NIT*M* e,

a<-1

L HT*TLTL“LIJH[ --:n

b. _Ifais complex valued, then a can be expressed as a = re’’, so that x[n] can be represented as

x[n] = rne/n?
=1r"[cos nf + j sin nb]

So, x [ n] is represented graphically by plotting the real part and imaginary parts separately as functions of n,
which are

xgr[n] =rm" cos nb

xi[n] = r" sin nd
If r <1, the above two functions are damped cosine and sine functions, whose amplitude is a decaying
exponential.

L 1N

-
-
-
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If r = 1, then both the functions have fixed amplitude of unity.

-] lhIIHI_IHII,lHIl_th

If r > 1, then they are cosine and sine functions respectively, with exponentially growing amplitudes.

= -

Alternatively, x [ n] can be represented by the amplitude and phase functions:
Amplitude function, A[n] = |x[n]| =

Phase function, @[n] = 2x[n] = né

For example, for r < 1, the amplitude function would be

x[n]

A

i

And the phase function would be
5

_g”_,ﬁ 11—l
| _
(I

Although the phase function @[n] = n#@ is a linear function of n, it is defined only over an interval of 2z (since
it is an angle).i.e., over an interval —t<6<m or 0<0<2x.

—5
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So we subtract multiples of 2x from @[n] before plotting .i.e., we plot @[n] modulo 2x instead of @[n]. This
results in a piecewise linear graph for the phase function, instead of a linear graph.

Classification of Discrete — Time Sequences:
nd Power

The energy of a signal x[n] is defined as

0

E =73} |x[n]]?

n=—oo

If this energy is finite, i.e., 0 < E <oo, then x[n] is called an Energy Signal.

For signals having infinite energy, the average power can be calculated, which is defined as
N

P =lim_ L 3 |x[n]?
av Nﬁw2A7+'1

1 n=—N
or, Pay = lim
N-wx2N + 1

En, where

En = signal energy of x[n] over the finite interval -N <n<N, .i.e,,

E=1lim En

N—-o0

e For signals with finite energy .i.e., for Energy Signals, E is finite, thus resulting in zero average power.
So, for energy signals, Pay =0.

e Signals with infinite energy may have finite or infinite average power. If the average power is finite and
nonzero, such signals are called Power Signals.

e Signals with finite power have infinite energy.

o If both energy, E as well as average power, Py 0Of a signal are infinite, then the signal is neither an
energy signal nor a power signal.

e Periodic signals have infinite energy. Their average power is equal to its average power over one period.

e A signal cannot both be an energy signal and a power signal.

e All practical signals are energy signals.

A signal x[n] is periodic with period N if and only if
x[n+ N]=x[n]Vn
The smallest N for which the above relation holds is called the fundamental period.
If no finite value of N satisfies the above relation, the signal is said to be aperiodic or non — periodic.
The sum of M periodic Discrete — time sequences with periods N1, Na, ..., Nw, is always periodic with
period N where
N =LCM(N1, N2, ..., Nu)

3. Even and Odd Signals
A real — valued discrete — time signal is called an Even Signal if it is identical with its reflection about

the origin .i.e., it must be symmetrical about the vertical axis.
x[n] = x[-n] vn
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A real — valued discrete — time signal is called an Odd Signal if it is antisymmetrical about the vertical
axis.
x[n] =—x[-n] Vn

From the above relation, it can be inferred that an odd signal must be zero at time origin, n = 0.

Every signal x[n] can be expressed as the sum of its even and odd components.
x[n] = xe[n] + xo[n]

Where
x[n] + x[—n]
Xe[n] = —
xol] = x[n] —Zx[—n]

e Product of even and odd sequences results in an odd sequence.
e Product of two odd sequences results in an even sequence.
e Product of two even sequences results in an even sequence.

4. nj mmetric an nj Antisymmetri n
A complex discrete — time signal is conjugate — symmetric if
x[n] =x*[-n] Vn
And conjugate — antisymmetric if
x[n] = —x*[-n] Vvn

Any complex signal can be expressed as the sum of conjugate — symmetric and conjugate —
antisymmetric parts
x[n] = xes[n] + xca[n]

Where
x[n] + x*[—n]
Xes[n] = 2
And
v = Xl =l

2

A discrete — time sequence x[n] is said to be bounded if each of its samples is of finite magnitude .i.e.,
|x[n]| < Mx <o Vn
For example,

The unit step sequence u[n] is a bounded sequence,
but the sequence nu[n] is an unbounded sequence.

6. Absolutely summable and square summable sequences
A discrete — time sequence x[n] is said to be absolutely summable if,

2 |x[n]| <o

n=—owo
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And it is said to be square summable if

> |x[n]l?< o (Energy Signal)

n=—oo

Discrete — Time Systems
A system accepts an input such as voltage, displacement, etc. and produces an output in response to this input.
A system can be viewed as a process that results in transforming input signals into output signals.

Discrete - Time Input Signal, Discrete - Time Discrete - Time Output signal,
x[n] System y[n]

A discrete — time system can be represented as

x[n] - yln]
or,  y[n]=T {x[n]}

Discrete — Time System Properties
1. Linearity
A system is said to be linear if it satisfies superposition principle, which in turn is a combination of
additivity and homogeneity.
Additivity implies that
If the response of the DT system to x1[n] is y1[n], and the response to x2[n] is y2[n], then
the response of the system to {x1[n]+xz[n]} must be {y:[n]+y2[n]}.
Homogeneity implies that
if the response of a DT system to x[n] is y[n], then the response of the system to ax[n] must be ay[n],
where a is a constant.
Thus, for a DT system,
If
x[n] - y[n]
xi[n] - yi[n]
and, x2[n] - y2[n]
Then according to additivity principle
x1[n] +x2[n] = yi[n] + y2[n]
And according to homogeneity principle
ax[n] - ay[n] (a = constant)

e Ifa=0, then the above relation implies that a zero input must result in a zero output.
Combining the above two principle to get superposition principle, we obtain
A system is Linear if it satisfies the following relation

axi[n] + bxz[n] - ayi[n] + by2[n] (a, b = constants)
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Time — Variant and Time — Invarian m
A system is time — invariant if its characteristics and behavior are fixed over time .i.e., a time — shift in
input signal causes an identical time — shift in output signal.
if x[n] - y[n]
then, x[n —no] = y[n—no] Vno

If the above the relation is not satisfied, then the system is time — variant.

land Non — I m
A system is causal or non — anticipatory or physically realizable, if the output at any time no depends
only on present and past inputs (n < no), but not on future inputs.
In other words, if the inputs are equal upto some time no, the corresponding outputs must also be equal
upto that time no, for a causal system.

le and un l m
A stable system is one in which, a bounded input results in a response that does not diverge. Then the
system is said to be BIBO stable.
For a system, if the input is bounded .i.e,
if |x[n]]<Mx <o Vn
And if the corresponding output is also bounded .i.e.,
ly[n]l <My <o Vn
Then the system is said to be BIBO stable.

Mem nd memoryl m

A system is said to possess memory, or is called a dynamic system, if its output depends on past or
future values of the input.

If the output of the system depends only on the present input, the system is said to be memoryless.

A system is said to be invertible if by observing the output, we can determine its input. i.e., we can
construct an inverse system that when cascaded with the given system, yields an output equal to the
original input.

A system can have inverse if distinct inputs lead to distinct outputs.

A system is said to be passive if the output y[n] has at most the same energy as the input.

0 [c9)

2 |x[n]l2 = 32 |y[n]|? <o

n=—oo n=—owo

If the energy of the output is equal to the energy of the input, then the system is said to be lossless.

ies of Uit Impul

Multiplication property

When a sequence x[n] is multiplied by a unit impulse located at k i.e., d[n-K], picks out a single value/sample of
X[n] at the location of the impulse i.e., x[K].

x[n]é[n — k] = x[k]6[n — k]
= impulse with strength x[k]located at n = k
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Sifting property
The impulse function d[n-k] “sifts” through tile function x[n] and pulls out the value x[k]
2. x[n]é[n — k] = x[k]
ignal decomposition o
Any arbitrary sequence X[n] can be expressed as a weighted sum of shifted impulses.
x[n] =3 x[k] 6[n — k]
k=—o

Impulse respon

Impulse response of a discrete — time system is defined as the output/response of the system to unit impulse
input and is represented by h[n].

Discrete - Time unit impulse, Discrete - Time _
o[n] - System - impulse response, h[n]

If for a system,

x[n] - y[n]
Then,
8[n] - h[n]
If the DT system satisfies the property of time — invariance, then,
6[n—k] = h|n — k]
In addition to being time — invariant, if the system also satisfies linearity (homogeneity and additivity), then,

Homogeneity:
x[k]6[n — k] - x[k]h[n — k]
Additivity:

o8] 0

> 6[n—k]l— > hin—k]

k=—w k=—x

Combining the above two properties, a Linear Time — Invariant (LTI) System can be described by the input —
output relation by

> x[k]S[n — k] = 3 x[k]h[n — k]

k=—o k=—o0

The Left hand side is the input x[n] expressed as a weighted sum of shifted impulses (from signal
decomposition property of impulse function). So, the right hand side must be the output y[n] of the DT system
in response to input x[n].
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Thus the output of a Linear Time — Invariant (LTI) system can be expressed as

yInl= 3 x[klh[n — k]
k=—o

or, y[n] = x[n] * h[n]

The above relation is called Convolution Sum.

. LTI System, tput,
input, x[n] - h[ﬁ o - y[n] :Ol:([Fr)]l]J * h[n]

So, the impulse response h[n] of an LTI DT system completely characterizes the system .i.e., a knowledge of
h[n] is sufficient to obtain the response of an LTI system to any arbitrary input x[n].

Properti f Convolution Sum

1. Commutative Property

x[n] * h[n] =h[n] * x[n]

x[n] —> "] —>x[n] *h(n] = h[n]—s{ xn) | hin] *x[n]

2. Associative Property
x[n] * {ha[n] * hz[n]} = {x[n] * ha[n]} * hz[n]

X[N] —>{ hy[n] »| hyn] L Y[n]= X[n] —— hu[n]*ha[n] ay[n]

From this property it can be inferred that, a cascade combination of LTI systems can be replaced by a
single system whose impulse response is the convolution of the individual impulse responses.

3. Distributi

x[n] * {ha[n] + hz[n]} = {x[n] * ha[n]} + {x[n] * hz[n]}

hi[n]

x[n] — éa—» yinj. = X[n] —s) Maln] + o]y yn]
ha[n]

A 4

From this property, it can be inferred that, a parallel combination of LTI systems can be replaced by a
single system whose impulse response is the sum of individual responses.
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Relation between LTI m pr ies and impulse respon
Memory
For an LTI system to be memoryless, the impulse response must be zero for nonzero sample positions.
hin] =0 forn = 0
h[n] =k 6 [n] where k = constant
Causality
For an LTI system to be causal, its impulse response must be zero for negative time instants.
hin] =0 forn< 0
So, for a causal LTI system the output (from the convolution sum equation) can be expressed as

yInl = 32 hlklx[n — k]
k=0

or,y[n] = > x[k]h[n — k]

k=—w
bili
An LTI system is BIBO stable if its impulse response is absolutely summable.
20 |hlk]| < oo
k=—w

il

An LTI system with impulse response h[n] is invertible if we can design another LTI system with
impulse response hi[n] such that

hin] * hi[n] = & [n]
LTI | ized by L i : _ Coefficient Diff £ : L CCDE

In general, any LTI system with input x[n] and output y[n] can be described by an LCCDE as follows

N M
Daryln—k] =2 bix[n—k] , ar=1
k=0 k=0
N M
or,y[n]= =3 ary[ln — k] + > bix[n — 1]
k=1 =0
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Where N is called the order of the difference equation/ system.

This equation expresses the output of an LTI system at time n in terms of present and past inputs and
past outputs.

lution of LCCDE (Dir lution — Solution in tim main

Given an LCCDE, the goal is to determine the output y[n], n> 0 given a specific input x[n], n >0, and a
set of initial conditions.

The total solution of the LCCDE is assumed to be the sum of two parts:
Homogeneous/complementary solution, ys[n] and
Particular solution, yp[n]

Homogen lution

The homogeneous difference equation is obtained by substituting input x[n]=0 in the LCCDE.

Substituting Eq. 2 in Eq. 1, we obtain

N
Dadlvk=0,a0=1
k=0
Expanding this equation
AVN(AN + @gAN=1 + @pAN=2 + «eveee +an-1A+an) =0

The polynomial in the parenthesis is called the characteristic polynomial of the system.
The characteristic equation is given by

AV + a1 AN=1 + aaAN=2 + ... .o +an-1A+av=0
Its solution has N roots denoted by A1, A2, ..., An, Which can be real or complex.
Complex valued roots occur as complex conjugate pairs.

If some roots are identical, then we have multiple order roots.
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If all roots are distinct, then the general solution is given by
yH[Tl] = CiA" + CoAgn + +ov oon + CnAN
Cy, Co, ..., Cnare weighting coefficients.
For multiple order roots, if A1 repeats m times, then the solution is given by

y[nl=CA "+Cnd "+Cn?A m- - +C ym-13 "+C A"+C A"+ CA
H 11 2 1 31

n
m 1 m+12 m+23 NN

Particular solution

The particular solution must satisfy the LCCDE for the specific input signal x[n], n >0 .

We assume a form for yp[n] that depends on the form of the input x[n] as follows

In x[n Particular solution. vp[n]
Constant, A Constant, K
AM" KM"
AnM KonM + KinM24 | +Kw
AnM AY(KonM+KinM1+ | +K)
A cos mon

) K1 cos mon + Kz sin mon
A sin mon

If the particular solution, yp [n] has the same form as the homogeneous solution yH [n], we multiply
ye[n] with n or n? or n® so that it is different from yw[n].

Total solution y[n] = yn[n]+yr[n]

The total solution will contain {Ci}s from the homogeneous solution. They are determined by
substituting the given initial conditions in the total solution.

omai io of discrete time signal

The concept of frequency is closely related to a specific type of periodic motion called harmonic oscillation,
which is described by sinusoidal functions. The CT and DT sinusoidal signals are characterized by the
following properties:

1. A continuous time sinusoid x(t) = cos (2=nfat) is periodic for any value of f..
But for DT sinusoid x[n]=cos(2nfgn) to be periodic with period N (an integer), we require
cos(2nfan) = cos[2nfa(n + N)| = cos(2nfan + 2mfaN)
This is possible only if

2nfaN = 2nk (kisaninteger)
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Or

I.e., the discrete frequency fg must be a rational number (ratio of two integers).

Similarly, a discrete time exponential /" is periodic only if «_ — fa = rational number.
21

The period is the denominator after fzv_is simplified such that in w2_= “ Jzé and N are relatively prime.
s Y

2. A CT sinusoidal signal x(t) = cos(Qt) has a unique waveform for every value of Q, 0 < Q <o,
Increasing Q results in a sinusoidal signal of ever — increasing frequency.
But, for a DT sinusoidal signal cos (®n), considering two frequencies separated by an integer multiple of
2n, (o and ® + 2tm, m is an integer), we have

cos[(w *+ 2mm)n] = cos(wn + 2mmn)
Since m and n are both integers
cos(wn + 2mmn) = cos(wn)

So, a DT sinusoidal sequence has unique waveform only for the values of ® over a range of 2x. The
range —m < w < 1 defines the fundamental range of frequencies or principal range.

3. The highest rate of oscillation in a DT sinusoidal sequence is attained when w=n or o= - 7 . the rate of
oscillation increases continually as ® increases from 0 to m, then decreases as ® increases from =« to 2.
So low — frequency DT sine waves have o near 0 or any even multiple of , while the high — frequency
sine waves have o near + 7 or other odd multiples of .

omai ion of discrete t

The frequency response function completely characterizes a linear time invariant system in the frequency
domain. Since, most signals can be expressed in Fourier domain as a weighted sum of harmonically related
exponentials, the response of an LTI system to this class of signals can be easily determined.

The response of any relaxed LTI system to an arbitrary input signal x[n] is given by the convolution sum

o]

ylnl= > hlk]x[n — k]

k=—x

Here, the system is characterized in the time domain by its impulse response h[n]. to develop a frequency
domain characterization of the system, we excite the system with the complex exponential

x[n] = Aejon, —o <n <o

Where A is the amplitude and o is any arbitrary frequency confined to the frequency interval [ - &, © ]. By
substituting this in the above convolution sum, we obtain the response as
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o0

ylnl = 3 h[k][Ae/*(—0]

k=—o0

[ee]

= A[ X h(l)e o] efon

k=—ow

Here, the term inside the brackets is a function of frequency . It is the Fourier Transform of the impulse
response h[n], and is denoted by

H(w) = 3 h(k)e ok

k=—w
And y[n] = AH(w) ejon

Since the output differs from the input only by a constant multiplicative factor, the exponential input signal is
called the eigen function of the system, and the multiplicative factor is called the eigenvalue of the system.

H(w) is a complex valued function of the frequency variable .
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UNIT-3

PREREQISTING DI ION ABOUT Z TRANSFORM
For analysis of continuous time LTI system Laplace transform is used. And for analysis of
discrete time LTI system z transform is used. Z transform is mathematical tool used for conversion of
time domain into frequency domain (z domain) and is a function of the complex valued variable Z. The
z transform of a discrete time signal x(n) denoted by X(z) and given as
00

X@Z)=Xx(Mn)z™" z-Transform....... 0))
n=-00

Z transform is an infinite power series because summation index varies from -co to co. But it is useful
for values of z for which sum is finite. The values of z for which f (z) is finite and lie within the region
called as -region of convergence (ROC).

ADVANTAGES OF Z TRANSFORM

1. The DFT can be determined by evaluating z transform.

2. Z transform is widely used for analysis and synthesis of digital filter.

3. Z transform is used for linear filtering. z transform is also used for finding Linear convolution,
cross-correlation and auto-correlations of sequences.

4. In z transform user can characterize LTI system (stable/unstable, causal/anti- causal) and its
response to various signals by placements of pole and zero plot.

1. ROC is going to decide whether system is stable or unstable.

2. ROC decides the type of sequences causal or anti-causal.

3. ROC also decides finite or infinite duration sequences.
ZTRANSFORM PLOT

Imaginary Part of z
Im (2)
A

Z-Plane
|z|>a

Z|l<a

»

A
\J Re (z) Real part of z
A

y

A

Fig show the plot of z transforms. The z transform has real and imaginary parts. Thus a plot of
imaginary part versus real part is called complex z-plane. The radius of circle is 1 called as unit circle.
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This complex z plane is used to show ROC, poles and zeros. Complex variable z is also expressed in
polar form as Z= re!® where r is radius of circle is given by |z| and w is the frequency of the sequence in

radians and given by L_z.

S.No Time Domain Property z Transform ROC
Sequence
1 d(n) (Unit sample) 1 complete z plane
2 | d(n-k) Time shifting z* except z=0
3 | O(n+k) Time shifting z except z=00
4 | u(n) (Unit step) 1/1- zt = z/z-1 lz| > 1
5 u(-n) Time reversal 1/1-z lz| <1
6 -u(-n-1) Time reversal z/z- 1 lz| <1
7 | nu(n) (Unit ramp) Differentiation 7t (1- Y2 z] > 1
8 |a"u(n) Scaling 1/1- (azh) |z| > o]
9 |-a" u(-n-1)(Left side 1/1- (azh) Iz| < |a|
exponential sequence)
10 | na"u(n) Differentiation azl/(1-az1)? 2| > [a]
11 | -na"u(-n-1) Differentiation azl/(1-az1)? | < |a
12 |a"for0<n<N-1 1- (azhHN 1- az1 laz’l| < 00
except z=0
13 | 1 for O<n<N-1 or Linearity 1- 7N 1- 71 lz| > 1
u(n) —u(n-N) Shifting
14 | cos(won) u(n) 1- z"'coswo lz| > 1
1- 2z’ coswo+z
15 | sin(won) u(n) z1sinwo lz| > 1
1- 2z coswo+z
16 | a" cos(won) u(n) Time scaling 1- (z/a)*coswo | > ||
1- 2(z/a)*coswo+(z/a)
17 | a"sin(won) u(n) Time scaling (z/a)tsinwo |z| > |a|

1- 2(z/a)*coswo+(z/a)

Tutorial problems:

Q) Determine z transform of following signals. Also draw ROC.

i) x(n) ={1,2,3,4,5}
i) x(n)={1,2,3,4,5,0,7}

Q) Determine z transform and ROC for x(n) = (-1/3)" u(n) —(1/2)" u(-n-1).
Q) Determine z transform and ROC for x(n) = [ 3.(4")-4(2"] u(n).

Q) Determine z transform and ROC for x(n) = (1/2)" u(-n).

Q) Determine z transform and ROC for x(n) = (1/2)" {u(n) — u(n-10)}.

Q) Find linear convolution using z transform. X(n)={1,2,3} & h(n)={1,2}
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PROPERTIES OF Z TRANSFORM (ZT

1) Linearity
The linearity property states that if
X1(N) <« i > X1(z) And
X2(N) < i > X2(z) Then
Then z

al x1(n) + a2 x2(n) <«—— al X1(z)+a2 X2(z)
z Transform of linear combination of two or more signals is equal to the same linear combination of z
transform of individual signals.

2) Time shifting
The Time shifting property states that if
z
x(n) < > X(Z) And

Then x(n-K) < » X(2) ¥

Thus shifting the sequence circularly by _k* samples is equivalent to multiplying its z transform by z «

3) Scaling in z domain
This property states that if

z
X(nN) <«—— 3 X(z) And

z
Then a" x(n) < » X(z/a)

Thus scaling in z transform is equivalent to multiplying by a" in time domain.

4) Time reversal Property
The Time reversal property states that if

z
X(nN) <«—— »X(z) And
z
Then x(-n) < »X(z1)

It means that if the sequence is folded it is equivalent to replacing z by z* in z domain.

5) Differentiation in z domain
The Differentiation property states that if

z

x(n)

Then n x(n)

A
v

X(z) And

-z d/dz (X(2))

A
v
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6) Convolution Theorem
The Circular property states that if

z
Xl(n) < > Xl(Z) And
z
X2(N) < > X2(z) Then
z
Then x1(n) * x2(n) < » X1(z) X2

Convolution of two sequences in time domain corresponds to multiplication of its Z transform sequence
in frequency domain.

7) Correlation Property
The Correlation of two sequences states that if

y4

Xl(n) < > Xl(Z) And

z
X2(N) < > X2(z) Then
oo z
then > x1 (I) x2(-1) < > X1(z) x2(z'1)
n=-co

8) Initial value Theorem
Initial value theorem states that if

X(n) < X(z) And
then

x(0) = lim X(2)

>0
9) Final value Theorem
Final value theorem states that if
y4

X(N) ¢——— % X(z) And
then

lim x(n) = lim(z-1) X(2)

Z—>00 221

RELATIONSHIP BETWEEN FOURIER TRANSFORM AND Z TRANSFORIM,
There is a close relationship between Z transform and Fourier transform. If we replace the complex

variable z by e 7, then z transform is reduced to Fourier transform.
Z transform of sequence x(n) is given by
(00]

X@)=2x(n)z™" (Definition of z-Transform)

n=-00
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Fourier transform of sequence x(n) is given by
(0]

X(w) =Z x (n) e Jon (Definition of Fourier Transform)
n=-0o
Complex variable z is expressed in polar form as Z= re!® where r=|z] and w is L_z. Thus we can be

written as
(00)

X(@) = Z [x(n) r1]eir
-0
=
X(@) | 1= = 5 x (n) e3r

n=-00

X(2) | ;28" = x(w) at |z| = unit circle.

Thus, X(z) can be interpreted as Fourier Transform of signal sequence (x(n) r™"). Here r" grows with n if
r<1 and decays with n if r>1. X(z) converges for |r|= 1. hence Fourier transform may be viewed as Z
transform of the sequence evaluated on unit circle. Thus The relationship between DFT and Z transform
is given by

X(2) =" = x(K)

The frequency w=0 is along the positive Re(z) axis and the frequency T1/2 is along the positive Im(z)
axis. Frequency TT is along the negative Re(z) axis and 3TT/2 is along the negative Im(z) axis.

Im(z}
w=T1/2
2(0,%))
z=rel®
« W=TI w=0 >
z(-1,0) 2(1,0) Re(2)

Y w=3T1/2

2(0,-))

Frequency scale on unit circle X(z)= X(®) on unit circle
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INVERSE Z TRANSFORM (1ZT)

The signal can be converted from time domain into z domain with the help of z transform (ZT). Similar
way the signal can be converted from z domain to time domain with the help of inverse z
transform(IZT). The inverse z transform can be obtained by using two different methods.

1)

Partial fraction expansion Method (PFE) / Application of residue theorem

2) Power series expansion Method (PSE)

1. PARTIAL FRACTION EXPANSION METHOD
In this method X(z) is first expanded into sum of simple partial fraction.

a0 z™+ a1 2™+ .

X(2) =

bo z" + by zn"+ ..

First find the roots of the denominator polynomial

a0 z™+ a1 ™+ ..

X(z) =

(z- p1) (z- p2)......

(z- pn)

form=<n

The above equation can be written in partial fraction expansion form and find the coefficient Ak and

take 1ZT.
SOLVE USING PARTIAL FRACTION EXPANSION METHOD (PFE)
S.No Function (ZT) Time domain sequence Comment
1 a"u(n) for |z| > a causal sequence
1 -a"u(-n-1) for |z| <a anti-causal sequence
1-az?
1 (-1)" u(n) for |z| > 1 causal sequence
2 -(-1)" u(-n-1) for |z| < a anti-causal sequence
1+z*
-2(3)" u(-n-1) + (0.5)" u(n) stable system
for 0.5<|z|<3
2(3)" u(n) + (0.5)" u(n) causal system
3 4 for |z|>3
3-4z -2(3)" u(-n-1) - (0.5)" u(-n-1) for |z|<0.5 | anti-causal system
1- 3.5 z7+1.572
-2(1) "u(-n-1) + (0.5)" u(n) stable system
for 0.5<|z|<1
4 1 2(1)" u(n) + (0.5)" u(n) causal system
= > for |z[>1
1-1.577+0.5z -2(1)" u(-n-1) - (0.5)" u(-n-1) for |z|<0.5 | anti-causal system
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5 1+2 774+ 272 20(n)+8(1)" u(n)- 9(0.5)" u(n) causal system
for |z]>1
1- 3/2 z*+0.5z
1+ 7% (1/2-j3/2) (1/2+j1/2)" u(n)+ causal system
6 (1/2+j3/2) (L/2+j1/2)" u(n)
1-z1 + 0.5z
1-0.5) z* 4(-1/2)" u(n) — 3 (-1/4)" u(n) for |z|>1/2 | causal system
! 1-3/4 71+1/8 272
1-1/2 7 (-1/2)" u(n) for |z|>1/2 causal system
8 1- 1/4 272
z+1 O(n)+ u(n) — 2(1/3)" u(n) causal system
9 for |z|>1
322-4z+1
5z 5(2"-1) causal system
10 for |z|>2
(z-1) (z-2)
z° 4-(n+3)(1/2)" causal system
11 for |z|>1

(z-1) (z-1/2)?

2.

RESIDUE THEOREM METHOD

In this method, first find G(z)= z"* X(Z) and find the residue of G(z) at various poles of X(z).

SOLVE USING —RESIDUE THEOREM— METHOD

S. No Function (ZT) Time domain Sequence
1 z For causal sequence (a)" u(n)
z-a
2 z (2"-1) u(n)
(z-1)(z-2)
3 72 +7 (2n+1) u(n)
(z-1)
4 z° 4 — (n+3)(0.5)" u(n)

(z-1) (z-0.5)?
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P

1.

LE —ZERO PLOT

X(2) is a rational function, that is a ratio of two polynomials in z* or z.

The roots of the denominator or the value of z for which X(z) becomes infinite, defines locations
of the poles. The roots of the numerator or the value of z for which X(z) becomes zero, defines
locations of the zeros.

ROC dos not contain any poles of X(z). This is because x(z) becomes infinite at
the locations of the poles. Only poles affect the causality and stability of the system.

CASUALTY CRITERIA FOR LSI SYSTEM

LSI system is causal if and only if the ROC the system function is exterior to

the circle. i. e |z| > r. This is the condition for causality of the LSI system in terms of z transform.
(The condition for LSI system to be causal is h(n) =0 ..... n<0)

STABILITY CRITERIA FOR LSI SYSTEM
Bounded input x(n) produces bounded output y(n) in the LSI system only if
co

2 |h(n)| < o
n=-00

With this condition satisfied, the system will be stable. The above equation states that the LSI
system is stable if its unit sample response is absolutely summable. This is necessary and
sufficient condition for the stability of LSI system.

o'e
Hz=>2hn)z™" Z-Transform....... (1)

n=-0o
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Taking magnitude of both the sides
(0]

|H(Z)| ] z h(n) Z N o (2)
n=-00

Magnitudes of overall sum is less than the sum of magnitudes of individual sums.

o0
H@)| = 2 h(n) "
n=-c0
o0
H@)| = 2 [h(n)[ ] z"| E)
n=-c0

If H(z) is evaluated on the unit circle | z"|=|z|=1.
Hence LSI system is stable if and only if the ROC the system function includes the unit circle. i.e
r < 1. This is the condition for stability of the LSI system in terms of z transform. Thus

For stable system |z| < 1

For unstable system |z| > 1

Marginally stable system |z| = 1

i Im(z)
z-Plane

A

T
N A

v

Fig: Stable system

Poles inside unit circle gives stable system. Poles outside unit circle gives unstable system.
Poles on unit circle give marginally stable system.

A causal and stable system must have a system function that converges for

lz| >r< 1.
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STANDARD INVERSE Z TRANSFORMS

S. No Function (ZT) Causal Sequence Anti-causal sequence
|z| > |a] |z| <|a]
1 z (@)" u(n) -(a)" u(-n-1)
zZ-a
2 z u(n) u(-n-1)
z-1
3 z’ (n+1)a" -(n+1)a"
(z—ay
4 z¢ 1/(k-1)! (n+1) (n+2)...... a" -1/(k-D)! (nt+1) (n+2)......... a"
(z-a)
5 1 o(n) o(n)
6 VA d(n+k) 3(n+k)
7 Zx d(n-k) O(n-k)
ONE SIDED Z TRANSFORM
S.No z Transform (Bilateral) One sided z Transform (Unilateral)
1 | z transform is an infinite power series One sided z transform summation index varies from 0 to

because summation index varies from co

to -0o. Thus Z transform are given by
(00]

X@Z)=2xMn)z™"
n=-00

co. Thus One sided z transform are given by
(0]

X@Z)=2xMn)yz™

n=0

2 | z transform is applicable for relaxed One sided z transform is applicable for those systems
systems (having zero initial condition). which are described by differential equations with non zero
initial conditions.
3 | z transform is also applicable for non- One sided z transform is applicable for causal systems
causal systems. only.
4 | ROC of x(2) is exterior or interior to ROC of x(z) is always exterior to circle hence need not to

circle hence need to specify with z
transform of signals.

be specified.
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Properties of one sided z transform are same as that of two sided z transform except shifting property.
1) Time delay

Z+
X(n) < » X*(z) and
zZ+ k
Then x(n-K) < » 2 K[ X*(2) + = x(-n) 2] k>0
n=1
2) Time advance
Z+
X(N) < » X'(z) and
z+ k-1
Then X(n+k) < » ZX[ X*(2) - = x(n) 2 k>0
n=0
Examples:
Q) Determine one sided z transform for following signals
1) x(n)={1,2,3,4,5} 2) x(n)={1,2,3,4,5}

LUTION OF DIFFERENTIAL EQUATION

One sided Z transform is very efficient tool for the solution of difference equations with nonzero
initial condition. System function of LSI system can be obtained from its difference equation.

(00)

Z{x(n-1)} 2 x(n-1) 2" (One sided Z transform)

n=

o 1l

X(-1) +x(0) 2+ x(1) 22+ x(2) 23+
=X(-1) + 1 [x(0) z1 + X(1) 22+ X(2Q) 23 +.cvereerern, ]

Z{ x(n-1) } =z X(2) + x(-1)
Z{x(n-2) } =72 X(2) + 71 x(-1) + x(-2)

Similarly Z{ x(n+1) } =z X(2) - z x(0)
Z{ x(n+2) } = 22 X(2) - * x(0) + x(1)

1 Difference equations are used to find out the relation between input and output ~ sequences. It
is also used to relate system function H(z) and Z transform.

2. The transfer function H(w) can be obtained from system function H(z) by putting z=e/®.
Magnitude and phase response plot can be obtained by putting various values of w.

Tutorial problems:
Q) A difference equation of the system is given below
Y (n)= 0.5 y(n-1) + x(n)
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Determine  a) System function
b) Pole zero plot
C) Unit sample response
Q) A difference equation of the system is given below
Y(n)= 0.7 y(n-1) — 0.12 y(n-2) + x(n-1) + x(n-2)

a) System Function

b) Pole zero plot

C) Response of system to the input x(n) = nu(n)
d) Is the system stable? Comment on the result.

Q) A difference equation of the system is given below
Y(n)= 0.5 x(n) + 0.5 x(n-1)
Determine  a) System function
b)  Pole zero plot
C) Unit sample response
d)  Transfer function
e)  Magnitude and phase plot
Q) A difference equation of the system is given below
a. Y(n)= 0.5 y(n-1) + x(n) + x(n-1)
b. Y (n)= x(n) + 3x(n-1) + 3x(n-2) + x(n-3)

a) System Function
b) Pole zero plot
C) Unit sample response

d) Find values of y(n) for n=0,1,2,3,4,5 for x(n)= &(n) for no initial condition.
Q) Solve second order difference equation
2x(n-2) — 3x(n-1) + x(n) = 3" with x(-2)=-4/9 and x(-1)=-1/3.
Q) Solve second order difference equation
x(n+2) + 3x(n+1) + 2x(n) with x(0)=0 and x(1)=1.
Q) Find the response of the system by using Z transform
x(n+2) - 5x(n+1) + 6x(n)= u(n) with x(0)=0 and x(1)=1.
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DIGITAL SIGNAL PROCESSING

INTRODUCTION TO DFT:
Frequency analysis of discrete time signals is usually performed on digital signal processor,

which may be general purpose digital computer or specially designed digital hardware. To
perform frequency analysis on discrete time signal, we convert the time domain sequence to
an equivalent frequency domain representation. We know that such representation is given
by The Fourier transform X(el") of the sequence x(n). However, X(el") is a continuous function
of frequency and therefore, It is not a computationally convenient representation of the
sequence.DFT is a powerful computational tool for performing frequency analysis of discrete
time signals. The N-point DFT of discrete time sequence x(n) is denoted by X(k) and is defined

as
N-1 ‘
DFT[x(n)]=X (k) =D x(mWw," ;k=0,12.......... (N-1)
_{szh n=0
Where Wy=e

IDFT of X(k) is given by

1
IDFT[X (K)]=x(n) = ™ W, ™ ;n=0,12...... (N-1)

(2
Where Vnv=¢€
*  Find the 4-point DFT of the sequence x(n) = cos '14—"

Solution Given N = 4,

x(n) = [cos (0), cos (n/4), cos (n/2), cos (3n/4)]
= {1, 0.707, 0, - 0.707)
The N-point DFT of the sequence x(n) is defined as

N-1 ;
X(k)= Y x(n)e/2*"MN p=0,1, . .N-1.
n=0
The DFT is
3
X(k)=Y x(n)e""* k=0,12,3

n=(
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DIGITAL SIGNAL PROCESSING

3

= x(n)e/*"¥3,£=0,1,2,3
n=0
Fork =0
3
XO0)= > x(n)=1
n=0
Fork=1

3 ’
X1 = 3 x) e~ rI=(Dn/z

n=0

=1+0707e7™ 4+ 0 + (—0.707)e7 3%2
=1 + (0.707) (—j) + 0 — (0.707) ()
=1—j 1.414

Fork =2

X@= Y xm)e 2= Y yn) eimn
n=~oo n==—oo
=1+ (0.707) e7™ + 0 + (- 0.707) 73"
=1+(0.707) (<1) + 0 + (=0.707) (-1) = 1
Fork=3

3
X@) = Y x(n)e/=®n

n=0
=1+ (0.707) e73%2 4 0 + (- 0.707) e ™2

=1+ 070D (N +0+(=0.707) (=) =1+, 1414
Xk)=1{1,1-51.414,1,1 +j 1.414}

Find the N-Point DFT for x(n) = a" for 0 < a < 1.

Solution The N-point DFT is defined as

N -1
Xk)= Y x(n)e /2*"¥N g=0,1,.,N-1.

n=0

N -1 ’
=~ z a® e-J2:nklN
n=0

- El (ae-jzkuN )n

n=0
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1-(a e~ J2XRIN )N

1—qe J2RKIN
S T i
X(k) = 1 ao- 725k ,k=0,1,...,.N-1
Derive the DFT of the sample data sequence x(n) =

{1, 1, 2, 2, 3, 3} and compute the corresponding amplitude and phase
spectrum.
Solution The N-point DFT of a finite duration sequence x(n) is
defined as
N-1 )
X(k)= ¥ x(n)e /2*"¥N p=0,1,..,N-1.

n=0
Fork =0

5 5
X0 =) x(n)e /206 = Y x(n)=1+1+2+2+3+3=12

n=0 n=0

Fork=1

X)) = ﬁ: x(n) e~ /2% (Dn/6
n=0

5
= > x(n)e /™3

n=0
=14+e ™3 1 2203 L 2oTR L Zed4V3 L 3 IEN3

=1+05-0.866 +2(-0.5-,0.866) + 2(— 1)
+ 3(~0.5 +j 0.866) + 3(0.5 +j 0.866)

- 1.5 +j 2.598
Fork =2

5 .
X(2) = Z x(n)e—12x(2)n/6

n=0

3 xn) e-2sens3

n=0

14+e72%3 4 2o 4B | 9o , 3o/883 | gg-/10%/3

1+(—0.5)—-,0.866 + 2(—0.5 + j 0.866) + 2(1)
+3(-0.5-,0.866) + 3(—-0.5 +;0.866)

=—1.5+,0.866
Fork=3

5
X@3) = T x(n)e I2x@n/6

n=0

5
= Z x(n) e /"

n=0
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=1+e7"+2e7%* 4 2/3% 4 e V/4* 4 30
=1=-1+2(1)+2(-1)+3(1)+3(-1)=0

Fork=4

5
X(4) = z x(n)e-jQR(C)nIG
n=0

5
= z x(n)e—j4xnla

n=0
=14+e748 4 2783 | 9o J4R | 3T16RA | 3, 20x3
=1+(-0.5+,0.866) + 2(-0.5 —j0.866) + 2(1)
+3(-0.5+,0.866) + 3(-0.5 - 0.866)

=-1.5 -7 0.866
For k=5

X(5) = ﬁ', x(n) e~ /2%(BIn/6

n=0

5
> x(n) g~ 18xnis
ne=0
1 +e15a13 + zeajxom + 2e-16: + 3e-120u13 + 3e—125I/3

=1+(—0.5+,0.866) + 2(—-0.5 +j 0.866) + 2(— 1)
+ 3(— 0.5 —j 0.866) + 3 (0.5 —j 0.866)

=-1.5—-,2.598

X(k)=1{12,-1.5 +;2.598, -1.5 +;0.866, 0, —1.5 —j 0.866,
—1.56 —j 2.598}

The corresponding amplitude spectrum is given by
1 Xk)| = {J12 =12, J(—1.5)2 + (—2.598)2, J(- 1.5)2 + (0.866)2,0
J-1.5)? +(-0.866)?, J(~15)% + (-2.598)% }

= {12, 2.999, 1.732, 0, 1.732, 2.999}
and the corresponding phase spectrum is given by

4X(k)={tan-‘(0), tan-‘(2598 -1(0 ),tan 1 (0)

tan.,to.sss) —— (-—2.598)}
-1.5 J —-15

={0.-3.-%5.0.%. 3}
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' Find the inverse DFT of X(k) = (1, 2, 3, 4).

Solution The inverse DFT is defined as

-1 )
x(n) = % ’S‘_ X (k) e/2%"¥N 5 =0,1,2,8,.... N- 1

k=0
s »
Given N=4, x(m)= 3 3, X(b)e/>***N n-0,1,2,3
k=0

When n =0

3
20 =1 3 X(k)e /@2
4 k=0

=%(1+2+3+4)=g
Whenn =1
x(1)=_1_ i X(k)ejl(l)k/2
4 2o
=71‘(1+2ef"/2+3e""+4e"3"2)
=%(1+2(j)+3(—1)+4(-—j))
1 E 1 .1
==(-2—-j2)=—=—j=
4( J2) 2 .12
When n = 2
x(2) =1 i X (k) e’**
4&-0
- %(1»« 2e 7% + 3eI2% 4 4¢43%)
=%(1+2(-1)+3(1)+4(-1))
1
= —~(=2)=~-
4( ) 1/2
When n =3
x(3) =1 i X (k) e/3%4/2
4‘-0
4 .
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=%(1+2(—j)+3(—1)+4j)

1 ’ e

=2 (-2+2)=—=+j=

4( +27) +,12
g WY WS MG SRR <
x(n) = 2’ 3 2’ 2’ 2+J2

Properties of the DFT
The properties of the DFT are useful in the practical techniques for
processing signals. The various properties are given below.

Periodicity
If X(k) is an N-point DFT of x(n), then
x(n + N) = x(n) for all n
X(k + N) = X(k) for all &

Linearity

If X (k) and X ,(k) are the N-point DFTs of x,(n) and x,(n) respectively,
and a and b are arbitrary constants either real or complex-valued, then

ax\(n) + bxy(n) «L2EL— aX (k) + bX k)

Time Reversal of a Sequence

If x(n) —2EL_, ¥ (%), then

N

x(—n,(mod N)) = x(N—n) % X (—k,(mod N)) = X(N — k)
Hence, when the N-point sequence in time is reversed, it is equivalent
to reversing the DFT values.

Circular Time Shift

If x(n) <—D;—T-—> X(k), then

x(n — 1, (mod N) <2 X (ke 24!
Shifting of the sequence by / units in the time-domain is equivalent to

multiplication of e /?™/¥ jn the frequency-domain.

Circular Frequency Shift

If ) 4—9—1{—;7'—9 X(k), then

x(n)e F2=n/N e%"'—» X(k -1, (mod N))

Hence, when the uence x(n) is multiplied by the complex
exponential sequence e 7?*"¥ it is equivalent to circular shift of the
DFT by ! units in the frequency domain.
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Complex Conjugate Property

If x(n) ‘—-’%T—» X(k), then
DFT

x"(n) e X(~k, (mod N)) =X"(N - k)

Circular Convolution

If x4(n) (__D%v'__, Xy (k) and x,(n) e—%"'—axz(k), then

x 1 (n)@Dx 5(n) e—DI“;'T—ax,(k) X, (k)

where x,(n)@x »(n) denotes the circular convolution of the sequence
x,(n) and x,(n) defined as

N-1

x4(n) = Z—xl (m) x,(n — m, (modNN))
m=0
N-1

= 3 x(m)x,(n —m, (modN))
m=0

Multiplication of Two Sequences

If x4(n) <—’fr—"'—->x,(k) and x5(n) %xz(k), then
x,(n) x5(n) %%x,m@xz (%)

Parseval’s Theorem

For complex-valued sequences x(n2) and y(n),

if x(n) DI‘:;T X(k) and y(n) % Y(k), then

N -1 . 1 N -1 .
2 xmy () = 5 T XE®Y R
n=0 k=0

If y (n) = x(n), then the above equation reduces to
N-1 1 N -1
Yixn)? = = Y I XR)?

N =

n=0

This expression relates the energy in the finite duration sequence
x(n) to the power in the frequency components X(k&).

Methods of Circular Convolution:

Generally, there are two methods, which are adopted to perform circular convolution and
they are -

(1) Concentric circle method (2) Matrix multiplication method.
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Concentric Circle Method:

Let x1(n) and x2(n) be two given sequences. The steps followed for circular convolution
of x1(n) and xz2(n) are
o Take two concentric circles. Plot N samples of x1(n) on the circumference of the outer
circle (maintaining equal distance successive points) in anti-clockwise direction.
e For plotting x2(n) ,plot N samples of xz(n) in clockwise direction on the inner circle,
starting sample placed at the same point as 0" sample of x1(n)

e Multiply corresponding samples on the two circles and add them to get output.
o Rotate the inner circle anti-clockwise with one sample at a time.

Matrix Multiplication Method:

Matrix method represents the two given sequence xi(n) and xz(n) in matrix form.
e One of the given sequences is repeated via circular shift of one sample at a time to

form a N X N matrix.

o The other sequence is represented as column matrix.

The multiplication of two matrices gives the result of circular convolution

SECTIONED CONVOLUTION:
Suppose, the input sequence x(n) of long duration is to be processed with a system having
finite duration impulse response by convolving the two sequences. Since, the linear filtering
performed via DFT involves operation on a fixed size data block, the input sequence is divided
into different fixed size data block before processing. The successive blocks are then
processed one at a time and the results are combined to produce the net result. As the
convolution is performed by dividing the long input sequence into different fixed size
sections, it is called sectioned convolution. A long input sequence is segmented to fixed size
blocks, prior to FIR filter processing. Two methods are used to evaluate the discrete
convolution.

(1) Overlap-save method (2) Overlap-add method

Overlap Save Method:

Overlap-save is the traditional name for an efficient way to evaluate the discrete convolution
between a very long signal x(n) and a finite impulse response FIR filter h(n).

1. Insert M - 1 zeros at the beginning of the input sequence x(n).

2. Break the padded input signal into overlapping blocks xm(n) of length N =L + M - 1 where

the overlap
length is M -1.
3. Zero pad h(n) to be of lengthN=L+ M - 1.
4. Take N-DFT of h(n) to give H(k), k=0, 1,2, .............. N-1.
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5. For each block m:

Take N-DFT of xm(n) to give Xm(k), k=0, 1,2,............... N-1.
5.2 Multiply: Ym(k) = Xm(k) . H(k), k=0, 1,2,......ccceen... N-1.
Take N-IDFT of Ym(k) to give ym(n) ,n=0, 1,2,................. N-1.

Discard the first M - 1 points of each output block ym(n)
6. Form y(n) by appending the remaining (i.e., last) L samples of each block
Input signal blocks:

L L L
M -1
ZErOS
| | z1(n)
I
:‘III- — I . ; "'I
point | xz(n)
overlap
M-1 ——
point | Tain)
Output signal blocks: overlap
el w) |
Discard T
M—1 ,l/ | yzin) |
points Discard —
Mo /I/| yaln)
points Discard
M =1
points

Overlap Add Method:
Given below are the steps to find out the discrete convolution using Overlap method:
1. Break the input signal x(n) into non-overlapping blocks xm(n) of length L.
2. Zero pad h(n) to be of lengthN=L+ M - 1.
3. Take N-DFT of h(n) to give H(k), k=0, 1,2, .............. N-1.
4. For each block m:
Zero pad Xm(n) to be of lengthN=L+ M- 1.

Take N-DFT of xm(n)to give Xm(k), k=0, 1,2,................. N-1.43
Multiply: Ym(k) = Xm(k).H(k), k=0, 1,2,................. N-1.
4.4 Take N-IDFT of Ym(k) to give ym(n), n=0, 1,2,................. N-1.

5. Form y(n) by overlapping the last M - 1 samples of ym(n) with the first M -1 samples of
ym+1(n) and adding the result.
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Input signal:
L L - L
z1(n) N M1
 Z8ros
z2(n) N M -1
~Zeros |
_ ra(n) "
Qutput signal: ( = gérosl
y1(n)
Add 7
M-I y2(n) .
points Add
M1 ys(n)

polnts

FAST FOURIER TRANSFORM (FFT)

The fast Fourier transform (FFT) is an algorithm that efficiently
computes the discrete Fourier transform (DFT). The DFT of a sequence
{x(n)} of length N is given by a complex-valued sequence {X(k))

_l .
X(k) = & x(n) e /2%n4N o< p< N -1.

n=0
Let Wy, be the complex-valued phase factor, which is an NN th root of
unity expressed by
WN = e-j2x/N
Hence X (%) becomes
N -1
X(k) = Z x(n)W3*, 0O<k<N-1

n=0

Similarly, IDFT becomes

=1
x(n) = ihﬁ‘, X(R)W5*, 0Sn<N -1

k=0
From the above equations, it is evident that for each value of %, the
direct computation of X(&) involves N complex multiplications (4N real
multiplications) and N — 1 complex additions (4N — 2 real additions).
Hence, to compute all N values of DFT, N? complex multiplications and
N(N - 1) complex additions are required. The DFT and IDFT involve the

same type of computations.

10
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Decimation-in-Time (DIT) Algorithm

In this case, let us assume that x(n) represents a sequence of N values,
where N is an integer power of 2, that is, N = 2. The given sequence is

decimated (broken) into two _1_2\[_ point sequences consisting of the even

numbered values of x(n) and the odd numbered values of x(n).
The N-point DFT of sequence x(n) is given by

N -1
Xk)= 3 x(n)Wg*, 0sksN-1
n=0
Breaking x (n) into its even and odd numbered values, we obtain
N-1 N -1
Xy= Y xWi*+ ¥ x(n) Wit
n=0,n even n =0,n odd
Substituting n = 27 for n even and n = 2r + 1 for n odd , we have
(N/2-D (N/2-1)
Xk)= Y x@rWZ™*+ Y x2r+DWFTDA
r=0 r=0
(N/2-1 (N/2)-1
= 3 x@rW)*+wWS 3 x@r+DWE)™*
r=0 r=0
Here, Wl\zv' - [e-jzx/N)]2 s e—j(2x/(NI2)) s “;&”2
Therefore, Eq. can be written as
(N/2-1) (N/2-D
X(Ry= I x@rOWLL,+Wy I x@2r+DWS),
r=0 r=0
=GR+ W& -H(k), R=0,1,... %’-— 1

where G (k) and H(k) are the N/2-point DFTs of the even and odd
numbered sequences respectively. Here, each of the sums is computed

forO<sk< —I;—’— — 1 since G (k) and H (k) are considered periodic with period

N/2.
Therefore,
G (k) + Wk H (R, osks%-1

X&) = G(k_’_%)*_w&kuwz)”(k +%), %’.sksN— 1

Using the symmetry property of Wi * V2 = —wW§,

G(k) + WE H(k), o<r<®N _3
X(k) = 2
N
Gk +N/2)-W§ Hk+ N/2), —2—sksN— 1

11
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Figure

shows the flow graph of the decimation-in-time

decomposition of an 8-point (N = 8) DFT computation into two 4-point
DFT computations. Here the branches entering a node are added to
produce the node variable. If no coefficient is indicated, it means that
the branch transmittance is equal to one. For other branches, the
transmittance is an integer power of Wj,.

Then X(0) is obtained by multiplying H(0) by WY and adding the
product to G (0). X (1) is obtained by multiplying H (1) by W, and adding
that result to G (1). For X (4), H (4) is multiplied by W} and the result is

added to G (4). But, since G (k) and H (k) are both periodic in %2 with
period 4, H(4) = H(0) and G(4) = G(0). Therefore, X(4) is obtained by
multiplying H(0) by W' and adding the result to G(0).

G(0)
x(0) > > /'; X(0)
w
2(2) o—---> N > Qb > Nx(1)
2 o C;(\?\v ﬂ':
M@)ol T OFT % > J X(2)
G(3)

x(6) o—

N
x(1) o————— - X(4)
~X(5)
x(3)e—1
N Point ?v
8y o—— 2opr - X(6)
; N
x(7) o—— > e X(7)
S H(3) e
Fig. Flow Graph of the First Stage Decimation-in-Time
FFT Algorithm for N = 8
A(0) G(0)
x(0) > f e il X(0)
“~ Point \1\ W}/\ w}/
x(4) DFT > i) > G(1) X(1)
2 1
e N\
x(2) > X(2)
g Point
x(6) — DFT X(3)
x(1) X(4)
2 Point N
x(5) DFT X(5)
Wi
x(3) N X(6)
~4~ Point w:
x(7) DFT > > > X(7)

Fig.
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D(1)

Flow Graph of the Second Stage Decimation-in-time
FFT Algorithm for N = 8

12
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x(0) - > > e  X{0)
5l
3 1 1)
x(4) o= obis 2. . X(1)
(2) B‘W\\/ / -
x > P
W. w“ .
B(1) G(3)
x(86) L > X(3)
5 "l S X B
c(0 H(O
i X(4)

x(1) > > >
w 4
) ) S,
x| > > » 2%
PO A S
w, ws
e = > > X6)
: o ‘4 / N\
- o o T > X(7)
W2  D(1) W" W:
Fig. The Flow-Graph of the Decimation-in-time FFT Algorithm for N = 8
Stege S 2
x(0) O-——Q-q -—---;——— —— Q- ___.__w » Stage 3 X(0)
D= i = » N ‘_'“0\ — / PO x1)
w3
>

x{2) O »> i) -——0 O O Xx(2)
A > R '
// .
B e A S R« S SRR I -o - ~© xqa)

-1 =

x(1) O —’ O © X4)

g—— dy—wp - —»——- I
I(S)O-—b—ﬂ)/\o e -v—>7;>—+— Of s O 0 X8)
-1
a < ¢ //\
. > - X(6)

x(3) = » . d
A v =1 1
W: /')<‘-~_ W: // \\ W,
() — > » o » - — > o X7
of -1 -1
Fig. Reduced Flow-Graph for an 8-Point DIT FFT
Given x(n) = {1, 2, 8, 4, 4, 3, 2, 1), find X(k) using DIT

FFT algorithm.
- i)
Solution We know that W = e . Given N = 8.

_if2= 0
Hence, Wo=e %)

13
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Wal = —J(?Ex')

Wg o _J( )
-1(2)3
Wi=e '®*"" =cos3n/4 —jsin 3n/4 = — 0.707 —j 0.707

Using DIT FFT algorithm, we can find X (k) from the given
sequence x(n) as shown in Fig.
Therefore, X (k)= {20, —5.828 — j 2.414, 0, 0.172 — j 0.414, O,
—0.172 + j0.414, 0, — 5.828 + j 2.414)

= cos n/4 — j sin n/4 = 0.707 —j 0.707

= cos /2 — j sin /2 = —j

5 10

x(0) =1 © - . > > o b/‘_ O Q\\ ‘/"/ o X(0)=20
e N -3 \ /
x(4) =4 O—P—5" e e P e e ‘Ki ~\\—- *7"— PO X{(1)=~5828 2414
Wiy S o, NNLS
%(2) =3 0o——a————O——— e »Q 9—0 X(2)=0
K/ﬁ w. =1 \‘
_ / X
x(6)=2 o » = ;'\-5 Y i P o0 X(3)=0.172 - J0.414
w. =1 w: -~/
x(W=20 m-,--\—f/—(g— e - o X4)=0
,//‘(‘»‘_ 1 j3
%(0)= Y G PN P Qi > X(5)»~0.172 +j0.414
W:-l «¥ N / ~ s
- A0 07 :
x(3) =40 o ——— > — —o X{(6)=0
- - 2 o -1 4
<5 Wy=1
L 1o DO L O Rt S . R . AN .. Y — g D X(7) =~ 5828 +j2.414
Woa -1 - -1 3 <3
s Wy=-j Wyn
~0.707 - 0.707
Fig.
| Example |§ Given x(n) = {0, 1, 2, 3}, find X(k) using DIT FFT
algorithm.

Solution Given N =4
o 2x k
W:,= e J(W)
Wo=1 and W}=e?*2=_j

Using DIT FFT algorithm, we can find X(k) from the given
sequence x(n) as shown in Fig.

Therefore, X(k) = {6, -2 +j2 -2, -2—-j2}

o ><: >_\// A0)=8
X2y =2 oO—p b—CF X1)e-24+j2

wian

xn=1 O > > X2)m-2
wWiet
-2
x(3)=3 - Xi3j=-2~j2
wi=1 =% Wi=—j

14
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Decimation-in-Frequency (DIF) Algorithms

The decimation-in-time FFT algorithm decomposes the DFT by
sequentially splitting input samples x(n) in the time domain into sets of
smaller and smaller subsequences and then forms a weighted
combination of the DFTs of these subsequences. Another algorithm
called decimation-in-frequency FFT decomposes the DFT by recursively
splitting the sequence elements X (&) in the frequency domain into sets
of smaller and smaller subsequences. To derive the decimation-in-
frequency FFT algorithm for N, a power of 2, the input sequence x(n) is

divided into the first half and the last half of the points

> e X0
— e X2)
-2 Pont
e e exy
F———e X16)
R S — 1]
L s ~ b—% e X3
-1
/ 3 ~2 Point
/ r2) Wy
x5 & - OFT | ey
/ R “ﬁ »
- —— » — — —— o
0 » xn
Fig. Flow Groph of the First Stage of Decimation-in-Frequency FFT for N = 8
g{0) -
x(0) T_ﬁﬁ Q — A, N e ——0 X10)
-;-Polnl or |
o) Al) 2 Poit DFT
(1) — G T e T
wO
@ o 22) ( A s Wh ” i 0
SRS
%) Wi
*0) A — SUIU LA EL .
x(4) D T e O X1
‘“—-Pon ot\
- e s Lt St P
wO
*8) o A. L S E——
-1 j“-Pon or |
2
w,
() O Y% | 2PonDFT xn

Fig.
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Flow Graph of the Second Stage of Decimation-In-Frequency FFT for N = 8
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Stage 1 O) Stage 2 A(O) Stagoa X0
- . = X{

o L
%(2) c B(°’ We .

Vogmw
o ‘}%Im T

1
%(7) o—oX bl - D( )>w§ = We . x7)

-1 . -1

x(0) o

° X(6)

Fig. Reduced Flow Graph of Final Stage DIF FFT for N = 8
Compute the DFTs of the sequence x(n) = cos n?u’

where N = 4, using DIF FFT algorithm.
Solution Given N =4 and x(n) = {1, 0, -1, 0}

_,2:‘
WNb=e J(W')
W2=1and W} =e7*2=—j

Using DIF FFT algorithm, we can find X(k) from the given
sequence x(n) as shown in Fig.
Therefore, X (k) = {0, 2, 0, 2)

X(0)=1 Q

x(0)=0

X(1)=0

x(2)=0

X(2)=-1

x(1)=2

X(3)=0 O'/ =1 x(3)=2
Fig.
Givenx(n) =(1, 2, 3, 4, 4, 3, 2, 1}, find X(k) using DIF
FFT algorithm.

Solution Given N = 8.

-i(F)*
We know that Wi =e .

Hence, Wg =1, W3 =0.707 - j 0.707
W@ =-j, W2 =-0.707 - j 0.707
16
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Using DIF FFT algorithm, we can find X(%&) from the given
sequence x (n) as shown in Fig.
Hence, X(k) = {20, -5.828 —~j 2.414, 0, -0.172 - 0.414, 0,
—-0.172 + j 0.414, 0, —5.828 + j 2.414}

‘m“ Q o X(O)-!O
x(1)=2 !\‘X‘ , e ey X[4) @ 0
*
x2)=3 Q- 0 X2)=0
x(3 =4 |B< O Xi6)«0
xi4)=4 )8(_ O X(1)=~5828-]2414
/ .
x(5)=3 pa O X(5)»~0.172+ j0.414
xi6)=2 CZ/ —— -0 X3=-0.172- 0414
/ 4
xM=1 AR . . - - . O X(7)=-58284j2414
-1 -2121 2421 -1 2828 /1414 -1
Fig.
INVERSE FFT:

An FFT algorithm can be used to compute the IDFT if the output is
divided by N and the “twiddle factors are negative powers of Wy, i.e.
powers of W 5! is used instead of powers of Wj,. Therefore, an IFFT flow
graph can be obtained from an FFT flow graph by replacing all the x(n)
by X(k), dividing the input data by N, or dividing each stage by 2 when
N is a power of 2, and changing the exponents of W), to negative values.

X(0) > —»o x(0)
1/8

Fig. Flow Graph of an IDFT Computation

17
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Use the 4-point inverse FFT and verify the DFT
results {6, -2 + j2, -2, —2 — j2} obtained in Example 6.18 for the given
input sequence {0, 1, 2, 3}.

(2%
Solution We know that W} = ¢ "(W)‘. Hence,
WP=1and Wj}=e™=j
Using IFFT algorithm, we can find the input sequence x (n) from the
given DFT sequence X (k) as shown in Fig.

4 0
X(0)=6 2 x(0)=0
X(1) =-2+j20 x(2)=2
X(2)=-2 x(1)=1
X(3)=-2~j2 . x(3)=3
=1 = -1 12 1/4
Fig.

Hence, x(n)={0,1, 2,3}

18
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SELECTION OF THE FILTER TYPE

The selection of the digital filter type i.e., whether an IIR and FIR digital filter to be
employed ; depends on the nature of the problem and on the specification of the desired fre-
quency response. For example, FIR filters are used in filtering problems yhere there is a
requirement for a linear phase characteristic within the passband of the . When linear
phase is not a requirement, either an IIR or FIR filter can be used. However, ih most cases, the
order (N.) of an FIR filter is considerably higher than the order (N;;;) of ap equivalent IR
filter meeting the same magnitude specifications. It has been shown that f§r most practical
filter specifications, the ratio Np /N, .. is typically of order of ten or more as a result, IIR
filter is usually computationally more efficient,

In this chapter we shall discuss techniques for designing IIR filters from the analog
filters, with the restriction that the filters be realizable and, of course, stabl¢. There are four
different methods which are available under IIR filter design, these are,

1. Impulse invariance method

2. Bilinear transformation method

3. Matched z-transform technique

4. Approximation of derivatives.

We shall concentrate only the first two methods.

IIR Filter Design by Impulse Invariance
A technique for digitizing an analog filter is called impulse invariance tion.
The objective of this method is to develop an IIR filter transfer function whose ifnpulse response

is the sampled version of the impulse response of the analog filter. The main idea behind this
technique is to preserve the frequency response characteristics of the analog filter. In the
consequence of the result, the frequency response of the digital filter is an aliased version of
the frequency response of the corresponding analog filter.

To develop the necessary design formula for impulse invariance method, consider a
causal and stable “analog” transfer function H (s). Its impulse response A _(¢) is given by in-
verse Laplace transform of H (s), i.e.,

k(&) =L {H (s)} +«f 1)

In this method, we require that unit sample response i(n) of the desired causal digital
transfer function H(z) be given by the sampled version of k_(¢) sampled at uniform interval of
T seconds.

e, hin)=h (anT) n=0,1,2 w0 2)
where T is the sampling period

To investigate the mapping of points between z-plane and s-plane implied by the sam-
pling process, the z-transform is related to the Laplace transform of A (¢) as

H(2) |, v = Z{h(n)) = Z(h (nT)) .. 8)
1 % 2k
= i‘-h.z_.ﬂu (8#}-T—) L 4)
where, He) = Y hin)z™ ol 5)
n=0
and He)|, o = 3, hn)e™™ | . 6)

n=0
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where s=0+JQ
Let us examine the transform z =¢5T of eqn. ( 4) which can be written alternatively as,
z=eT
For s=0+jQ
2 =0 = T = ¢oT = g7,
This then implies Q=T
®=QT
where 2 is analog frequency and
® is frequency in digital domain.

9.2.1.1 Development of the transformation

To explore the effect of the impulse invariance design method on the characteristics of
resultant filter, let us consider the system function of the analog filter in the partial fraction
form. Assume that the poles of the analog filter are distinct i.e.,

N

Ay
H (s)= G |
b .Z,"Pﬁ

where {A,) are the co-efficients in the partial fraction expansion and

p, are the poles of the analog filter. The impulse response k (¢) corresponding to
egn. ( 7) has the form

N
h(O)= Y Awe™u,(® . 8)
kel
where u,(t) is the continuous time step function.
If we sample A _(¢) periodically at ¢ = nT, we have

N
hn) = h (nT) = 3, Aye™ " u, (nT) . 9)
kel
Now, the system function H(z) of the digital filter is the z-transform ofithis sequence and
is defined by
H(z) = z{h(n)).
H@) = ) h(n)z™" ol 10)
n=0
Using eqn. (  10) the system function becomes
- N
Hz)= Y Y A e™T o L11)
n=0 k-1
- f: Y, (T 2y (0 12)
k=l kw0
N 1
H(l)- .ZHA..W .--( 13)

provided that |¢»T | < 1, which is always satisfied if p, < 0, indicating that H_(s) is a stable
transfer function. From the eqn. ( 13) we observe that the digital filter haspoles at

g‘-¢'°'r BuL D cviiivins N
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Comparing the expression ( 13)and( 7), we see that the impulse invariance transfor-
mation is accomplished by the mapping.

1 1
> - LA 14
=Py 1-eM'z7! ¢ )
1 : 1
S+ Py D 1-e AT

Problem 1. For the analog transfer function H.(s) = (st)g(st) ditermine the H()
using impulse invariance method.
2 2 2
o RO = D GrD “s+l 343
Using the impulse invariance transformation of eqn. (' 14), the digifal filter transfer
function

H() __S_)_ 2 2 -T(l ‘~T)zol
PEX@  1-e Tz 1-ePz  (l-etz ) (1-e Tz )
Problem 2. Convert the analog filter with system function
s+2
B =06+
into the digital IIR filter by means of the impulse invariance method.

Sol. The partial-fraction expansion of H (s) is given as
1 1

T | (SR, BN I
) (s+1Xs+3) a+1+s+3

Using eqn. (  14) the corresponding digital filter is then

1 1 1
HiEz) = — —T—T+T
e} 2[1-—e' 27 1-eTz ]
1_2-z7"(™ T)

2 (a- e"z"')(l -7 3

_12-2 e it B +g’7)l

2 (1-e Tz Y)(1-e3T 27
1-z"%*T cosh T
H(z) = = =

k) (1-eTz)1-e %21
It should be noted that zero of H(z) atz =e~?T cosh T is not obtained by transforming the
zeroats = -z intoa zeroatz =e %",

Problem Apply the impulse invariant method to obtain the digital filter from the
second order analog filter

s+a

H (s) = ———r-.
A (s+a)® +b*
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Sol. The analog filter transfer function is

H( ) s+a
A= v a+ jb)(s+a - jb)

Inverse Laplace transforming,

e ™ cos (bt), t=0.

Sampling this function produces
_ Je™™™ cos (bnT,), n=0.
h(nT,) { 0, otl ise.
The z-transform of k(nT)), is equal to

Hiz) = 2 e T cos (b, T,)z™"

n=0

HGe) = Y, [e™™ cos (bT,) 71"

n=0

1-e*7 cos (bT,) 2™}
1-e @+ P -1y (g @, -1y

H(z) =
(

Problem Using impulse invariance method with T = 1 sec deterrhine

1
H(z) if H(s) = m.

1

H(s) =
) s? +J2s+1
1
h(t) = L' (H(s)) = L! [m]

Sol. Given that

= L’l

1
=L1|J2. 7,5 5
.+7‘5) +[71§)
1
=J2L? :’:2‘ 5
(%) (&)
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Yk t=nT
R(nT) = V2 &2 5in nTIZ |
If T = 1 sec.
hin) = J2 ™2 gin ni2.
e V25 gin W3
H(z) = z[h(n)] = V2 .
[I-Ze'”'hz”! cos W2 -o-e""'iz'2

0.453z7!
= -
1-0.7497z"" + 02432272

IIR FILTER DESIGN BY THE BILINEAR
TRANSFORMATION

The IIR filter design using (i) approximation of derivatives method and
(ii) the impulse invariant method are appropriate for the design of low-
pass filters and bandpass filters whose resonant frequencies are low.
These techniques are not suitable for high-pass or band-reject filters.
This limitation is overcome in the mapping technique called the
bilinear transformation. This transformation is a one-to-one
mapping from the s-domain to the z-domain. That is, the bilinear
transformation is a conformal mapping that transforms thej Q-axis into
the unit circle in the 2z-plane only once, thus avoiding aliasing of
frequency components. Also, the transformation of a stable analog filter-

results in a stable digital filter as all the poles in the left half of the
s-plane are mapped onto points inside the unit circle of the z-domain.
The bilinear transformation is obtained by using the trapezoidal
formula for numerical integration. Let the system function of the analog
filter be

b
s+a

The differential equation describing the analog filter can be obtained
from Eq. 2 as shown below.

Y(s)_ b
X(s) s+a
sY(s) + aY(s) = bX(s)
Taking inverse Laplace transform,
dy(®
dt

H(s) = ( 2

H (s) =

+ayt)=bx(t) ( 3)
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Eq. 3 is integrated between the limits (nT - T) and aT

nT dy(?) aT nT
| 2Ll dr a | ywde=b [x()at 4
dt
aT-T nT~T AT-T
The trapezoidal rule for numeric integration is given by
nT
Ia(t)dt:lla(nT)+a(nT—T)] 5
2
nT-T

Applying Eq. > inEq.?  weget
Y T) - YT =)+ 5L ynT)+ £y 1) =2+ )+ 2 2(nT - T)
Taking z-transform, the system function of the digital filter is,

Y (2) b
H(z) = = 6
X (2) _2_'(1—2")+a
T\1+2z}
Comparing Eqs. 2 and ¢ we get,
2(1-—7.") 2(2-"1) "
§ = — ol e S
Ti1+7712 T\z+1

The general characteristic of the mapping z = ¢*” can be obtained by
substituting s = ¢ + j Q and expressing the complex variable z in the
polar form as z = re’? in Eq.7

s__g_fz—l)____g_(re"“’-l
T\z+1) T\re/® +1
___2_f e | i3 2rsin ® ]
T\1+r>+2rcos® ~1+r?+2rcosm
Therefore,
2 r*<
= — 8
T(1+r2+2rcosm)
Q=—2~( 2rsin ® ) 9
T\1+r%+2rcosw
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From Eq. 8 , it can be noted that if r < 1,then 6 <0, and if r > 1,
then o > 0. Thus, the left-half of the s-plane maps onto the points inside
the unit circle in the z-plane and the transformation results in a stable
digital system. Consider Eq. ¢  for unity magnitude (r = 1), ¢ is zero.

In this case,
oo ( sin ® )
1+ cos®

2

¢

2( 2sin ©/2 cos ©/2 _J
T \ cos? w/2 +sin? ®/2 + cos® /2 - sin? ®/2

2 ®
Q= —tan — 10
T 2
or equivalently,
o= 2tan-! 8T 11
Equation - gives the relationship between the frequencies in the
two domains and this is shown in Fig. It can be noted that the entire
range in Q is mapped only once into the range — n < o < n . However, as
seen in Fig. |, the mapping is non-linear and the lower frequencies in

analog domain are expanded in the digital domain, whereas the higher
frequencies are compressed. This is due to the non-linearity of the arc
tangent function and usually called as frequency warping.

The warping effect can be eliminated by prewarping the analog filter. The effect
of non-linear compression at high frequencies can be compensated by
prewarping. When the desired magnitude response is piece-wise constant over
frequency, this compression can be compensated by introducing a suitable
prescaling or prewarping the critical frequencies by using the formula,
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© (o)
A
x ] PTG A O R SR S TN T Y A Pt s
Frequency —] 4. _Qr
Compressed @  @pfeeeemeemeness : o =2 tan T
k3 e | :
i ]| = P
F ; ' ] '
Ow ' : ' '
l : ; L i L ; L 1 A e el .. :
|H(w) | & 5, 0 2 o Q

Y

b
o
<}

Fig. Relationship Between ® and 2 as Given in Eq. 11

Problem Convert the analog filter with system function.

s+0.1 . .. - y
r01F +16 into a digital IIR filter by means of bilinear trarisformation. Reso-

nant frequency of a digital filter is given as w, = %
Sol. (i) We first note that the analog filter H (s) has a resonant frequiency.
Q, =16 =4.

2 w

(ii) Let us find T Q= — ‘2“

H (s) =

n
tan -

4= 2

T=

1-z1 1-z7
(i1z) Now map S= T 1321 =4 1320
By substituting values of s into H(s), we have,
H(z) = H,(s) I..‘(l-z"]

1427

B N IR

1-271
4 [ ]+001
14z
H(z) =

4 —-f""' +001] +16
1+27
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0.128 +0.006z! - 0.1222'  0.128 + 0.006z™" - 0.122z""
= 1400006z +0975z2 1+0975272
(z+1)(z-0.95)
= (2 - 098772 (z - 0.987¢/?)
This filter has a pole P, , = 0.98 z¢*/*? and zeros at z, , = - 1, 0.95.
Problem A first order Butterworth low pass transfer function with a 3dB cut off

frequency at Q_is given by
Q
SN
H® s+0Q,°
Design a single pole low pass with 3dB bandwidth of 0.2 & using the bilinear transfor-
mation.
2 we
Sol. Qe"-f"““;-
Given that @ =02x
q-—unf’%’f-;uno.lu-f—.‘,:-é.
The analog filter has a system function,
- Q, 065T
H_(s) 40, .+2§
T
065T
N =
ow H(z)=H, (s)l,_?(‘“ ] 2[1-2" 085
T{1+2z7 T

) = 065(1+27") _0245(1+27")
2-2:74+065 (1-0509zY)
The frequency response of the digital filter is
0.245(1+¢™7®)
H(w) = —1-05093'1"
Thusatw=0, HO)=landatw=02x,
| H(0.2 @) | = 0.707, which is a desired response.

.3

(s+(*+s+1)

Problem Obtain H(z) from H (s) when T = 1 sec and H (s) =

Sol. Given that, H (s) = D rae D’

-1
122 in H, (s) to get Hez).

2(1-2z"
T 1+27
-‘ 2
+

Pu 21~
. *"T1+s
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8(1-z71)°
[2(1-27)+ T+ 2| [a1- 2 + 2T (1- 2 X144 TL4 27
But T = 1 sec.
8(1-2z"1*
He) = G 76 +3:9)
-1 _ 18
Hz) = 267z 1

T2 4233z -3)
Problem Design a digital Butterworth filter satisfying the constrainis
0.707s | H@™®) | s1 for0s s =

2
K3
| He™) | 0.2 for —4-5051.
with T = 1 sec using The bilinear transformation
Sol. Bilinear transformation
1 1 R 3x
Given that = 0.707 ; =02,0 =— ;0 = —
Jln’ Jlﬂ.’ P27 4
The analog frequency ratio is
2 3n
Leane tan %
.gf--;' 2 .8 _o41
r ~£ tan—
T 4
The order of the fiiter,
N2 6
fons B
locn'
From the given dataA =4.898, e=1,
log 4.698
Rounding N to nearest higher value we get N = 2,
Q
We know Q‘SW =Q, (- e=1)
=%m%=2hn%-2mdisec.
The transfer function of second order normalised Butterworth nlter is,
H(s) = :
2 +¥2s+1
H,_(s) for Q_= 2 rad/sec can be obtained by substituting
s — 8/2 in H(s)
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1 4
(s2)* + J2(s/2) +1 s* +2828s5+4°
By using bilinear transformation H(z) can be obtained as

ie., H (s)=

H(z)=H(s)|, %( %_-_;)
4
e M) = 7 2828e 14 wfizs)
1+2
. 414271
4(1-271)? +2828(1-2z%)+4(1+ 27"
_ 02920(1+27")
1401716272
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