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Chapter 1

Measure Spaces

1.1 Algebras and oc—algebras of sets

1.1.1 Notation and preliminaries

We shall denote by X a nonempty set, by P(X) the set of all parts (i.e.,
subsets) of X, and by & the empty set.
For any subset A of X we shall denote by A€ its complement, i.e.,

A={zeX| a¢A}.

For any A, B € P(X) weset A\ B=AnN B°.
Let (A,) be a sequence in P(X). The following De Morgan identity holds

(G An> - ﬁ AC
n=1 n=1

We define (V)
limsupAn:ﬁ GAm, limiann:[j ﬁAm.
n—0e0 n=1 m=n el n=1 m=n

If L :=limsup,,_,. A, = liminf, . A,, then we set L = lim,, ., A,, and we
say that (A,) converges to L (in this case we shall write write A,, — L).

(D Observe the relationship with inf and sup limits for a sequence (ay) of real numbers.
We have limsup,,_,, an = infpensup,,>, am and liminf,, o an = sup, ey infm>n am.

1



2 Measure Spaces

Remark 1.1 (a) As easily checked, limsup,,_, ., A, (resp. liminf, .. A,)
consists of those elements of X that belong to infinite elements of (A,)
(resp. that belong to all elements of (A,,) except perhaps a finite num-
ber). Therefore,

liminf A,, C limsup A,

n—oo n—oo

(b) It easy also to check that, if (A,,) is increasing (A, C A,41, n € N),
then

lim A, = D A,,

n—00
n=1

whereas, if (A,) is decreasing (A, D An41, n € N), then

lim A, = ﬁ A,.

n—00
n=1

In the first case we shall write A,, T L, and in the second A,, | L.

1.1.2 Algebras and oc—algebras
Let A be a nonempty subset of P(X).

Definition 1.2 A is said to be an algebra if
(a) 9, X e A
(b)y ABeA = AUBecA
(c) Ac A = A°cA

Remark 1.3 It is easy to see that, if A is an algebra and A, B € A, then
AN B and A\ B belong to A. Therefore, the symmetric difference

AAB = (A\ B)U (B 4)

also belongs to A. Moreover, A is stable under finite union and intersection,

that is
AiU---UA, e A

A17~.-7An€A — {AlﬂﬂAnEA
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Definition 1.4 An algebra £ in P(X) is said to be a o—algebra if, for any
sequence (Ay) of elements of £, we have | J;~, A, € E.

We note that, if £ is a o—algebra and (A,,) C &, then ()2, A, € £ owing to
the De Morgan identity. Moreover,

liminf A, € £, limsupA, € €.

n—0o n—oo

Example 1.5 The following examples explain the difference between alge-
bras and a o-algebras.

1. Obviously, P(X) and £ = {@, X} are o-algebras in X. Moreover,
P(X) is the largest o—algebra in X, and £ the smallest.

2. In X =10,1), the class Ay consisting of &, and of all finite unions
A=Ua;,b;) with0<a; <b; <a;41 <1, (1.1)
is an algebra. Indeed, for A asin (1.1), we have
A =10,a1) U [by,a2) U---Ulb,, 1) € Ao

Moreover, in order to show that Ay is stable under finite union, it suf-
fices to observe that the union of two (not necessarily disjoint) intervals
[a,b) and [c, d) in [0,1) belongs to Aj.

3. In an infinite set X consider the class
E={AeP(X)| Ais finite, or A is finite }.

Then, £ is an algebra. Indeed, the only point that needs to be checked
is that &£ is stable under finite union. Let A, B € £. If A and B are
both finite, then so is AU B. In all other cases, (AU B)¢ is finite.

4. In an uncountable set X consider the class
E={Ae€P(X)| Ais countable, or A° is countable }

(here, ‘countable’ stands for ‘finite or countable’). Then, & is a o—
algebra. Indeed, £ is stable under countable union: if (4,,) is a sequence
in £ and all A, are countable, then so is U, A,; otherwise, (U,A,)¢ is
countable.
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Exercise 1.6 1. Show that algebra Ay in Example 1.5.2 fails to be a
o—algebra.

2. Show that algebra £ in Example 1.5.3 fails to be a o-algebra.
3. Show that o-algebra £ in Example 1.5.4 is strictly smaller than P(X).

4. Let K be a subset of P(X). Show that the intersection of all c—algebras
including K, is a o—algebra (the minimal o—algebra including K).

Let K be a subset of P(X).

Definition 1.7 The intersection of all o—algebras including IC is called the
o—algebra generated by K, and will be denoted by o(KC).

Exercise 1.8 In the following, let I, X' C P(X).
1. Show that, if £ is a o—algebra, then o(€) = €£.

2. Find o(K) for K = {@} and £ = {X}.
3. Show that, if £ C K' C ¢(K), then o(K') = o(K).

Example 1.9 1. Let E be a metric space. The o—algebra generated by
all open subsets of F is called the Borel o—algebra of F, and is denoted
by B(E). Obviously, B(E) coincides with the o—algebra generated by
all closed subsets of F.

2. Let X = R, and Z be the class of all semi—closed intervals [a, b) with
a < b. Then, 0(Z) coincides with B(R). For let [a,b) C R. Then,

[a,b) € B(R) since N
la,b) = ﬂ (a— %,b) :

n=ng

So, 0(Z) C B(R). Conversely, let A be an open set in R. Then, as is
well-known, A is the countable union of some family of open intervals ?).
Since any open interval (a,b) can be represented as

o

(a.b) = | [a+%,b>,

n=ng

(?)Indeed, each point = € A has an open interval (p,,q,) C A with p,,q, € Q. Hence,
A is contained in the union of the family {(p,q) | p,q € Q, (p,q) C A}, and this family is
countable.
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where nl—o < b—a, we conclude that A € o(Z). Thus, B(R) C o(Z).

Exercise 1.10 Let £ be a o-algebra in X, and X, C X.
1. Show that & = {AN X, | A € £} is a o-algebra in X.
2. Show that, if £ = ¢(K), then & = o(Ky), where
Ko={ANX,| A€ K}.

HINT: & D o(Ky) follows from point 1. To prove the converse, show

that
F={AePX)|ANX; € a(Ky)}

is a o—algebra in X including K.

1.2 Measures

1.2.1 Additive and o—additive functions
Let A C P(X) be an algebra.
Definition 1.11 Let p: A — [0,400] be such that u(@) = 0.

o We say that u is additive if, for any family Ay, ..., A, € A of mutually
disjoint sets, we have

I <U Ak:) = u(Ap).

o We say that pu is o—additive if, for any sequence (A,) C A of mutually
disjoint sets such that \J;—, Ay € A, we have

Y (U Ak) = iN(Ak)-

Remark 1.12 Let A C P(X) be an algebra.

1. Any o—additive function on A is also additive.
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2. If p is additive, A, B € A, and A D B, then u(A) = u(B) + u(A\ B).
Therefore, pu(A) > u(B).

3. Let p be additive on A, and let (A,) C A be mutually disjoint sets
such that | J;—, Ax € A. Then,

=
N
bl
T3
~__—
bl
I 3

U Ac | =D u(Ay), forallneN.

Therefore,

4. Any o-additive function g on A is also countably subadditive, that is,
for any sequence (A,) C A such that [ J,-, Ay € A,

u (U Ak) <> Ay

5. In view of points 3 and 4 an additive function is o-additive if and only
if it is countably subadditive.

Definition 1.13 A o-additive function p on an algebra A C P(X) is said
to be:

e finite if u(X) < oo;

o o-finite if there exists a sequence (A,) C A, such that |J)- | A, = X
and p(A,) < oo for alln € N.

Example 1.14 In X = N, consider the algebra
E={A e P(X) | Ais finite, or A°is finite }
of Example 1.5. The function p: € — [0, 00| defined as

| #(A) if Ais finite
u(A) = { 00 if A€ is finite
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(where #(A) stands for the number of elements of A) is o—additive (Exer-
cise). On the other hand, the function v : & — [0, co| defined as

1
Z > if A is finite
neA
00 if A€ is finite

v(A) =

is additive but not o-additive (Exercise).

For an additive function, the o—additivity of u is equivalent to continuity in
the sense of the following proposition.

Proposition 1.15 Let p be additive on A. Then (i) < (ii), where:
(i) p is o—additive;
(i) (Ap) andAC A, A, TA = u(A,) 1 u(A).

Proof. | (i)=(ii) | Let (A,),A C A, A, T A. Then,

A:AIU U(An+1\An)7

n=1

the above being disjoint unions. Since p is o—additive, we deduce that

(A) = 1(A) + D (1 Anar) — p(Ay)) = lim pu(A,),

n—oo

and (ii) follows.

(ii)=-(i) | Let (A,) C A be a sequence of mutually disjoint sets such that
A=;2, Ay € A. Define

5 ) i
k

=1
Then, B, T A. So, in view of (ii), pu(By) = > 5, 11(Ag) T u(A). This implies
(i). O

Proposition 1.16 Let o be o-additive on A. If p(A;) < oo and A, | A
with A € A, then u(A,) | pu(A).
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Proof. We have
U (Ax\ Apr) UA

the above being disjoint unions. Consequently,

p(Ar) = Z (A1) + p(A) = p(Ar) — lim - p(An) + p(A).

o)
n—-400
=1

k

Since u(A;) < 400, the conclusion follows. [

Example 1.17 The conclusion of Proposition 1.16 above may be false with-
out assuming p(A;) < oo. This is easily checked taking £ and p as in Ex-
ample 1.14, and A, = {m € N | m > n}.

Corollary 1.18 Let o be a finite o-additive function on a o-algebra £.
Then, for any sequence (A,) of subsets of £, we have

i (lim inf An> < liminf u(A,) <limsup pu(4,) < u (lim sup An) . (1.2)

n—0oo n—oo n—00 n—00

In particular, A, — A= u(A,) — p(A).

Proof. Set L = limsup,,_,., A,. Then we can write L = (\._, B,,, where
B, =U;._, An | L. Now, by Proposition 1.16 it follows that

u(L) = lim pu(B,) = inf u(B,) > inf sup p(A,,) = limsup pu(A4,).

n—00 neN neNm>n n—o00

Thus, we have proved that

limsup p(A4,) < u (Iim sup An) :

n—oo n—oo

The remaining part of (1.2) can be proved similarly. [J
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1.2.2 Borel-Cantelli Lemma

The following result is very useful as we shall see later.

Lemma 1.19 Let i be a finite o—additive function on a o—algebra €. Then,
for any sequence (A,) of subsets of € satisfying Y - | u(A,) < +oo, we have

n—oo

1 (lim sup An) =0.

Proof. Set L = limsup,,_,,, A,. Then, L = (2, By, where B, = J _, An
decreases to L. Consequently;,

p(L) < p(Bo) <) p(An)

m=n

for all n € N. As n — oo, we obtain p(L) =0. O

1.2.3 Measure spaces

Definition 1.20 Let £ be a o—algebra of subsets of X.

o We say that the pair (X,E) is a measurable space.

A o—additive function p: € — [0,400] is called a measure on (X, E).

The triple (X, &, 1), where p is a measure on a measurable space (X, &),
is called a measure space.

o A measure p is called a probability measure if u(X) = 1.
e A measure p 1s said to be complete if
Aeé, BCA, u(A)=0 = Beé&
(and so u(B) =0).

A measure p is said to be concentrated on a set A € £ if u(A°) = 0.
In this case we say that A is a support of p.
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Example 1.21 Let X be a nonempty set and x € X. Define, for every
AeP(X),
1 ifreA

5“6(’4):{ 0 ifx¢A

Then, ¢, is a measure in X, called the Dirac measure in x. Such a measure
is concentrated on the singleton {z}.

Example 1.22 In a set X let us define, for every A € P(X),

#(A) if Ais finite
00 if A is infinite

n(A) = {

(see Example 1.14). Then, u is a measure in X, called the counting measure
on X. It is easy to see that pu is finite if and only if X is finite, and that
is o—finite if and only if X is countable.

Let (X, &, ) be a measure space and let A € &.

Definition 1.23 The restriction of pu to A (or p restricted to A), written
uL A, is the set function

(ucA)(B) = (AN B) VBe&. (1.3)

Exercise 1.24 Show that purA is a measure on (X, E).

1.3 The basic extension theorem

A natural question arising both in theory and applications is the following.

Problem 1.25 Let A be an algebra in X, and p be an additive function in
A. Does there exist a o—algebra € including A, and a measure i on (X, &)

that extends i, i.e.,
(A) = u(A) VA e A? (1.4)

Should the above problem have a solution, one could assume £ = o(.A) since
o(A) would be included in £ anyways. Moreover, for any sequence (4,) C A
of mutually disjoint sets such that (J;-, Ax € A, we would have

M(IQ Ak) :ﬁ<g Ak) = g}ﬁ(Ak) =

NE

p(Ar) -

e
I

1
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Thus, for Problem 1.25 to have a positive answer, u must be o—additive.
The following remarkable result shows that such a property is also sufficient
for the existence of an extension, and more. We shall see an important
application of this result to the construction of the Lebesgue measure later
on in this chapter.

Theorem 1.26 Let A be an algebra, and p: A — [0, +0o0] be o—additive.
Then, 1 can be extended to a measure on o(A). Moreover, such an extension
1s unique if p is o—finite.

To prove the above theorem we need to develop suitable tools, namely Hal-
mos’ Monotone Class Theorem for uniqueness, and the concepts of outer
measure and additive set for existence. This is what we shall do in the next
sessions.

1.3.1 Monotone classes

Definition 1.27 A nonempty class M C P(X) is called a monotone class
in X if, for any sequence (A,) C M,

e A, TA = AeM
° A lA = AeM

Remark 1.28 Clearly, any o—-algebra in X is a monotone class. Conversely,
if a monotone class M in X is also an algebra, then M is a o-algebra
(Exercise).

Let us prove now the following result.

Theorem 1.29 (Halmos) Let A be an algebra, and M be a monotone class
in X including A. Then, o(A) C M.

Proof. Let M, be the minimal monotone class including A ). We are going
to show that M, is an algebra, and this will prove the theorem in view of
Remark 1.28. To begin with, we note that @ and X belong to M.

Now, define, for any A € My,

Ma={BeM|AUB, A\B, B\ A€ Mo},

(3)Exercise: show that the intersection of all monotone classes including A is also a
monotone class in X.



12 Measure Spaces

We claim that M4 is a monotone class. For let (B,,) C M4 be an increasing
sequence such that B,, T B. Then,

AUuB,TAUB, A\B,|A\B, B,\A1B\A.
Since My is a monotone class, we conclude that
B, AUB, A\B, B\ A€ M,.
Therefore, B € M 4. By a similar reasoning, one can check that
(B,) C M4, B,|B = BeMjy.

So, M 4 is a monotone class as claimed.
Next, let A € A. Then, A C M4 since any B € A belongs to M, and
satisfies
AUB, A\B, B\ A€ M,. (1.5)

But M is the minimal monotone class including A, so My C M 4. There-

fore, My = M4 or, equivalently, (1.5) holds true for any A € A and B € M,.
Finally, let A € M. Since (1.5) is satisfied by any B € A, we deduce

that A C M 4. Then, M4 = M. This implies that M, is an algebra. [J

Proof of Theorem 1.26: uniqueness. Let & = o(A), and let uq, s be
two measures extending p to £. We shall assume, first, that p is finite, and
set

M = {A €& ) p1(A) :NQ(A)}-

We claim that M is a monotone class including A. Indeed, for any sequence
(A,) C M, using Propositions 1.15 and 1.16 we have that

A TA = u(A) =limp(A,) = pa(A) (0 =1,2)
Ap LA, (X)), po(X) <00 = mn(A) = limp(A,) = pa(4)  (0=1,2)

Therefore, in view of Halmos” Theorem, M = £, and this implies that p; =
H2-

In the general case of a o—finite function y, we have that X = (J;—, X}
for some (X}) C A such that pu(Xj) < oo for all £ € N. It is not restrictive to
assume that the sequence (X}) is increasing. Now, define py(A) = u(ANXy)
for all A € A, and

p1k(A) = p (AN Xy)
m;m) :“Q(AHX’;) } VAeE.
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Then, as easily checked, j, is a finite o—additive function on A, and ji1 , pok
are measures extending ;. to £. So, by the conclusion of first part of this
proof, p11x(A) = pok(A) for all A € € and any & € N. Therefore, since
AN X, T A, using again Proposition 1.15 we obtain

pi(A) = li}gn p1k(A) = lillgn pox(A) = ua(A) VAe€&.

The proof is thus complete. [

1.3.2 Owuter measures

Definition 1.30 A function p* : P(X) — [0,00] is called an outer measure
in X if p*(@) =0, and if u* is monotone and countably subadditive, i.e.,

ACB —  (4) < p'(B)
w(UEB) <D w(E)  V(E)CPX)
i=1 i=1
The following proposition studies an example of outer measure that will be
essential for the proof of Theorem 1.26.

Proposition 1.31 Let pu be a o—additive function on an algebra A. Define,
for any E € P(X),

Mwm:m{iymgp@amEch&. (1.6)

Then,
1. p* is finite whenever u is finite;
2. u* is an extension of u, that is,

W(A) = u(A), YA A (1.7)

3. u* is an outer measure.
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Proof. The first assertion being obvious, let us proceed to check (5.11).
Observe that the iniequality p*(A) < p(A) for any A € A is trivial. To prove
the converse inequality, let A; € A be a countable covering of a set A € A.
Then, A;NA € Ais also a countable covering of A satisfying U;(A;NA) € A.
Since p is countably subadditive (see point 4 in Remark 1.12),

n(A) < ZM(Ai NA) < ZM(AZ)

Thus, taking the infimum as in (1.6), we conclude that p*(A) > u(A).

Finally, we show that p* is countably subadditive. Let (E;) C P(X), and
set £ = J;o, E;. Assume, without loss of generality, that all u(E;)’s are
finite (otherwise the assertion is trivial). Then, for any i € N and any € > 0
there exists (A4;;) C A such that

, EiC[]AZ‘,j.

J=1

oo i} 5
D lAig) < i (B + o
j=1

Consequently,

o0

D n(Ay) < ZM*(Ei) +e.

4,j=1

Since £ C U;;-; Aij we have that p*(E) < >7°, u*(E;) + ¢ for any € > 0.

The conclusion follows. [

Exercise 1.32 1. Let u* be an outer measure in X, and A € P(X).
Show that
V' (B)=u(ANB) VBePX)

is an outer measure in X.

2. Let p;, be outer measures in X for all n € N. Show that
(A =S pi(A) and i (A) =suppt(4) VA€ P(X)

are outer measures in X.

Given an outer measure p* in X, we now proceed to define additive sets.
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Definition 1.33 A subset A € P(X) is called additive (or p*-measurable)
if

p(E)=p (ENA)+u (ENAY) VE € P(X). (1.8)
We denote by G the family of all additive sets.

Notice that, since p* is countable subadditive, (1.8) is equivalent to
pr(E) > (ENA)+p (ENA°) VE € P(X). (1.9)

Also, observe that A¢ € G for all A € G. Other important properties of G
are listed in the next proposition.

Theorem 1.34 (Caratheodory) Let p* be an outer measure in X. Then,
G is a o—algebra, and p* is o—additive on G.

Before proving Caratheodory’s Theorem, let us use it to complete the proof
of Theorem 1.26.

Proof of Theorem 1.26: existence. Given a o—additive function p on an
algebra A, define the outer measure p* as in Example 1.31. Then, as noted
above, u*(A) = u(A) for any A € A. Moreover, in light of Theorem 1.34,
1* is a measure on the o—algebra G of additive sets. So, the proof will be
complete if we show that A C G. Indeed, in this case, o(.A) turns out to be
included in G, and it suffices to take the restriction of u* to o(A) to obtain
the required extension.

Now, let A € A and E € P(X). Assume p*(E) < oo (otherwise (1.9)
trivially holds), and fix ¢ > 0. Then, there exists (4;) C A such that
E Cc U;A;, and

wE) +e > ) p(A)

= ZM(Ai nA)+ ZM(Az‘ N A°)
=1 =1
> p(ENA)+u (EnA°.
Since ¢ is arbitrary, p*(E) > p*(ENA) + p*(E N A°). Thus A€ G. O

We now proceed with the proof of Caratheodory’s Theorem.

Proof of Theorem 1.34. We will split the reasoning into four steps.
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1 ]g is an algebra| We note that @ and X belong to G. We already know

that A € G implies A° € G. Let us now prove that, if A, B € G, then
AUB € G. For any E € P(X), we have

pH(E) = (B 0 A) + p* (B N A°)
= (ENA)+p(ENA°NB)+ p*(EN AN B°) (1.10)

= [ (ENA)+up (ENA°NB)|+ p*(EN (AU B)°).

Since
(ENA)UENA°NB)=EN(AUDB),
the subadditivity of p* implies that
p(ENA)+up (ENA°NB) > u (EN(AUB)).
So, by (1.10),
u*(E) = w*(E 0 (AU B)) + (B N (AU BY),

and AU B € G as required.

1* is additive on Q‘ Let us prove that, if A,B € Gand ANB = &,

then

p(EN(AUB))=u"(ENA)+ u*(ENB). (1.11)
Indeed, replacing £ with £ N (AU B) in (1.8), yields
p(EN(AUB))=u"(EN(AUB)NA)+p (EN(AUB)N A9,

which is equivalent to (1.11) since AN B = &. In particular, taking
E = X, it follows that u* is additive on G.

: ’Q is a afalgebra‘ Let (A,) C G. We will show that S :=[J°, A; € G.

Since G is an algebra, it is not restrictive to assume that all the sets in
(A,) are mutually disjoint. Set S, := |J;_; A;, n € N. For any n € N
we have, by the subadditivity of u*,

p(ENS)+ (BN S Z (ENA4;)+ p (BN S
= lim [Zu*(EﬁAi)+u*(EﬁSC)]
=1

= lim [u*(E NS,) +u (EnN SC)}

n—oo
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in view of (1.11). Since S¢ C S¢, it follows that
w(ENS)+p (ENS® <limsup | (ENS,) +p (ENSS)| = u'(E).

So, S € G, and G is a o—algebra.

4. ‘ ©* is o—additive on G ‘ Since p* is countably sub—additive, and additive
by Step 2, then point 5 in Remark 1.12 gives the conclusion.

The proof is now complete. [

Remark 1.35 The o—algebra G of additive sets is complete, that is, it con-
tains all the sets with outer measure 0. Indeed, for any M C X with
p* (M) =0, and any E € P(X), we have

pw(ENM)+p (ENM®) = p*(ENM) < p(E).
Thus, M € G.

Remark 1.36 In our proof of Theorem 1.26 we have constructed the o—
algebra G of additive sets such that

o(A) C G CPX). (1.12)

We shall see later on that the above inclusions are both strict, in general.

1.4 Borel measures in RY

Let (X,d) be a metric space. We recall that B(X) denotes the Borel o—
algebra in X.

Definition 1.37 A measure 1 on the measurable space (X, B(X)) is called
a Borel measure. A Borel measure i is called a Radon measure if u(K) < oo
for every compact set K C X.

In this section we will study specific properties of Borel measures on (RY, B(R")).
We begin by introducing Lebesgue measure on the unit interval.
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1.4.1 Lebesgue measure in [0,1)

Let Z be the class of all semi-closed intervals [a,b) C [0,1) , and Ay be
the algebra of all finite disjoint unions of elements of Z (see Example 1.5.2).
Then, o(Z) = o(Ay) = B([0,1)).

On Z, consider the additive set function

Ma,0)=b—a, 0<a<b<1. (1.13)
If a = b then [a, b) reduces to the empty set, and we have A([a, b)) = 0.

Exercise 1.38 Let [a,b) € Z be contained in [ay,b) U --- U [an, b,), with
[a;,b;) € Z. Prove that
i=1

Proposition 1.39 The set function \ defined in (1.13) is o—additive on Z.

Proof. Let (I;) be a disjoint sequence of sets in Z, with I; = [a;,b;), and
suppose I = [ag,by) = U;I; € Z. Then, for any n € N, we have

Z/\ Zb—ai)gbn—algbo—aoz)\(l).
i=1

Therefore,
> AT <
i=1

To prove the converse inequality, suppose ag < by . For any ¢ < by — ap and
§ > 0, we have

CL0,0—€ CU —52 \/O,bi).
Then, the Heine-Borel Theorem implies that, for some iy € N,

[(lo,bo—é-:) ao,bo—é‘: CU —(52 \/O,bz) .

(DIf a,b € R we set min{a,b} = a A b and max{a,b} = a \V b.
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Consequently, in view of Exercise 1.38,
AI)—e=(by—ap) —e< 120 (bi —a; +627") < i)\(li%%é.
i=1 i=1
Since € and ¢ are arbitrary, we obtain
M) < i)\(h). O
i=1

We now proceed to extend A to Ag. For any set A € Ag such that A = U;[;,
where I4,..., I, are disjoint sets in Z, let us define

A(A) == ZA(L-).

It is easy to see that the above definition is independent of the representation
of A as a finite disjoint union of elements of Z.

Exercise 1.40 Show that, if Ji,...,J; is another family of disjoint sets in
7 such that A = U;J;, then

oA =30 A) 0

j=1
Theorem 1.41 ) is o—additive on A,.

Proof. Let (A,) C Ay be a sequence of disjoint sets in A such that

A=|J A €A
n=1
Then
k kn,
A= A=JL, (meN)
i=1 j=1
for some disjoint families Iy,...,I, and I,,1,..., 1%, in Z. Now, observe

that, for any ¢ € N,

oo  kn

L=nna={Jwnay=UmnL,
n=1

n=1j=1
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(with I; N 1, ; € ), and apply Proposition 1.39 to obtain

oo kn 0o
ML) =YD MLNLy) =Y AIiNA,).
n=1 j=1 n=1

Hence,

k koo 00 k

AMA) =D ML) =D Y MANL) =D Y MNANL) =Y M4, O

=1 i=1 n=1 n=1 i=1

Summing up, thanks to Theorem 1.26, we conclude that A can be uniquely
extended to a measure on the o—algebra B([0,1)). Such an extension is called
Lebesgue measure.

1.4.2 Lebesgue measure in R

We now turn to the construction of Lebesgue measure on (R, B(R)) . Usually,
this is done by an intrinsic procedure, applying an extension result for o—
additive set functions on semirings. In these notes, we will follow a shortcut,
based on the following simple observations.

Proceeding as in the above section, one can define Lebesgue measure on
B([a,b)) for any interval [a,b) C R. Such a measure will be denoted by A
Let us begin by characterizing the associated Borel sets as follows.

Proposition 1.42 A set A belongs to B(|a,b)) if and only if A= BN la,b)
for some B € B(R).

Proof. Consider the class € := {A € P([a,b)) | 3IB € B(R) : A= BNa,b)}.
Let us check that &£ is a o—algebra in [a, b).

1. By the definition of £ we have that @, [a,b) € E.

2. Let A € € and B € B(R) be such that A = BNJa,b). Then, [a,b)\ B €
B(R). So, [a,b) \ A= [a,b) N ([a,b) \ B) € £.

3. Let (A,) C € and (B,,) C B(R) be such that A, = B, N[a,b). Then,
UnB, € B(R). So, U,A,, = (U,B,) Na,b) € &.
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Since € contains all open subsets of [a,b), we conclude that B([a,b)) C £.
This proves the ‘only if” part of the conclusion.

Next, to prove the ‘if’ part, let F := {B € P(R) | BN [a,b) € B([a,b))}.
Then, arguing as in the first part of the proof, we have that F is a o-algebra
in R.

1. g,R € F by definition.

2. Let B € F. Since BN [a,b) € B([a,b)), we have that BN [a,b) =
[a,b) \ (BN ]a,b)) € B([a,b)). So, B¢ € F.

3. Let (B,) C F. Then, (U,B,) N[a,b) = U,(B, N[a,b)) € B([a,b)). So,
U,B, € F.

Since F contains all open subsets of R, we conclude that B(R) C F. The
proof is thus complete. [J

Thus, for any pair of nested intervals [a,b) C [¢,d) C R, we have that
B([a,b)) C B([c,d)). Moreover, a unique extension argument yields

Aat)(E) = Aeay(E)  VE € B([a, b)) . (1.14)

Now, since R = (J;—,[—k, k), it is natural to define Lebesgue measure on

(R, B(R)) as

NE) = lim A (EN[=k, k) VE € BR). (1.15)

Our next exercise is intended to show that the definition of A would be the
same taking any other sequence of intervals invading R.

Exercise 1.43 Let (a,) and (b,) be real sequences satisfying

ak<bk, akl—oo, kaOO
Show that
A(E) = Jim Moo (E O [ar b)) VE € B(R). 0

In order to show that A is a measure on (R, B(R)), we still have to check
o—additivity.
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Proposition 1.44 The set function defined in (1.15) is o -additive in B(R).
Proof. Let (E,) C B(R) be a sequence of disjoint Borel sets satisfying
E :=U,E, € B(R). Then, by the o-additivity of A\_y ),

A(E) = lim Ay (BN [=k, k) = klijiloz}\[_hk)(En N[—k, k)).
n=1

Now, observe that, owing to (1.14),

ANete)(En N [=k, k) = Nopo1p41) (B N [k, K))
< ANek—1ht)(Bn N[k =1,k 4+ 1))

So, for any n € N, k — A\_y »)(£,N[—Fk, k)) is nondecreasing. The conclusion
follows applying Lemma 1.45 below. [

Lemma 1.45 Let (ang)nken be a sequence in [0, 00] such that, for anyn € N,

h <k - A < Apk - (116)
Set, for any n € N,
klim Apg, =: y € [0, 00]. (1.17)

Then,

k—o0

oo o0
lim Ol = g o,
n=1 n=1

Proof. Suppose, first, > o, < 0o, and fix ¢ > 0. Then, there exists n. € N

such that .
Z a, < €.

n=ns+1

Recalling (1.17), for k sufficiently large, say k > k., we have a,, — n% < Qpk
for n =1,...,n.. Therefore,

[e'e) Ne [e'e)
E ankZE Ozn—€>g o, — 2
n=1 n=1 n=1

for any k > k.. Since ) anr < >, an, the conclusion follows.
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The analysis of the case ) «a, = oo is similar. Fix M > 0, and let

ny € N be such that
N
Z oy > 2M .
n=1

For k sufficiently large, say k > ky;, o, — % < app form = 1,... nyy.
Therefore, for all £ > k),

0 nm nm
ZankEZank>Zan—M>M. O
n=1 n=1 n=1

Example 1.46 The monotonicity assumption of the above lemma is essen-
tial. Indeed, (1.16) fails for the sequence

Qnl = Onge = { (1) ii Z ; Z [Kroneker delta]
since . .
31703 o .

Since A is bounded on bounded sets, Lebesgue measure is a Radon measure.
Another interesting property of Lebesgue measure is translation invariance.

Proposition 1.47 Let A € B(R). Then, for every x € R,

A+z: = {a+z|aec A} € BR) (1.18)
AMA+z) = MNA). (1.19)

Proof. Define, for any = € R,
E,={AePR)| A+zeBR)}.
Let us check that &, is a o-algebra in R.
1. 9, R € &, by direct inspection.
2. Let A € &,. Since A°+z = (A+2)° € B(R), we conclude that A € &,.

3. Let (4,) C &. Then, (U,A,)+z = U,(A,+2) € B(R). So, U, A4, €&,.
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Since &, contains all open subsets of R, B(R) C &, for any z € R. This
proves (1.18).
Let us prove (1.19). Fix € R, and define

A(A) = ANA+ ) VA € B(R).
It is straightforward to check that A, and A agree on the class
Tg == {(—00,a) | —oo<a§oo}U{[a,b) | —o<a<b< oo},

So, A, and A also agree on the algebra Ag of all finite disjoint unions of
elements of Zg. By the uniqueness result of Theorem 1.26, we conclude that

Ao(A) = A(A) for all A € B[R). O

1.4.3 Examples

In this section we shall construct three examples of sets that are hard to
visualize but possess very interesting properties.

Example 1.48 (Two unusual Borel sets) Let {r,} be an enumeration of
Qn0,1], and fix € > 0. Set

> € 9
A:U(rn——n,rn—i——n)
et 2 2

Then, ANJ0, 1] is an open (with respect to the relative topology) dense Borel
set. By subadditivity, 0 < AM(AN[0,1]) < 2e. Moreover, the compact set
B :=10,1] \ A has no interior and measure nearly 1. [

Example 1.49 (Cantor triadic set) To begin with, let us note that any
x € [0,1] has a triadic expansion of the form

o0

a;=0,1,2. (1.20)

i=1
Such a representation is not unique due to the presence of periodic expan-
sions. We can, however, choose a unique representation of the form (1.20)

picking the expansion with less digits equal to 1. Now, observe that the set

C, = {xE[O,l]‘x:i%Withal#l}

i=1
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2
3

~—

. It is, therefore, the
. More generally, for

wl=

is obtained from [0, 1] removing the ‘middle third’ (
union of 2 closed intervals, each of which has measu
any n € N,

)
(§

=
W=

Cn::{ e0,1 ‘ — S ithoay, . ay 1}

x[]x;?)zmal a, #

is the union of 2" closed intervals, each of which has measure (%)n So,
C,lC:= {xe[(),l] ‘ x:Z%withai;«HWeN},

i=1

where C' is the so-called Cantor set. 1t is a closed set by construction, with
measure 0 since

AN
< < (= .
MC) < MCy) < (3) ¥n € N
Nevertheless, C' is uncountable. Indeed, the function

f(f: g—) = i a; 270 (1.21)
: =1

1=1

maps C onto [0,1]. O
Exercise 1.50 Show that f in (1.21) is onto.

Remark 1.51 Observe that B(R) has the cardinality of P(Q). On the other
hand, the o—algebra G of Lebesgue measurable sets is complete. So, P(C) C
G, where C' is Cantor set. Since C' is uncountable, G must have a higher

cardinality than the o—algebra of Borel sets. In other terms, B(R) is strictly
included in G.

Example 1.52 (A nonmeasurable set) We shall now show that G is also
strictly included in P([0,1)). For x,y € [0,1) define

oty it z+y<l1
x@y—{x+y—1 if z+y>1

Observe that, if £ C [0,1) is a measurable set, then £ & x C [0,1) is also
measurable, and A\(E @ z) = A(E) for any x € [0,1). Indeed,

E®x= ((E+x)ﬂ[0,1)>U((E+:1;)\[0,1)—1>.
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In [0,1), define x and y to be equivalent if x —y € Q. By the Axiom of
Choice, there exists a set P C [0,1) such that P consists of exactly one
representative point from each equivalence class. We claim that P provides
the required example of a nonmeasurable set. Indeed, consider the countable
family (P,)  P([0,1)), where P, = P & r, and (r,) is an enumeration of
QN [0,1). Observe the following.

1. (P,) is a disjoint family for if there exist p,q € P such that p & r, =
q® ry with n £ m, then p — ¢ € Q. So, p = ¢ and the fact that
p@r, = pdry,, with r,, r,, € [0, 1) implies that r,, = r,,, a contradiction.

2. UpP, = 1[0,1). Indeed, let z € [0,1). Since z is equivalent to some
element of P, x — p = r for some p € P and some r € Q satisfying
|r| < 1. Now, if r > 0, then r = r,, for some n € N whence z € P,.
On the other hand, for » < 0, we have 1 4+ r = r, for some n € N. So,
x € P, once again.

Should P be measurable, it would follow that A([0,1)) = > A(P,). But this
is impossible: the right-hand side is either 0 or +o0.

1.4.4 Regularity of Radon measures

In this section, we shall prove regularity properties of a Radon measure in
RY. We begin by studying finite measures.

Proposition 1.53 Let u be a finite measure on (RN, B(RY)). Then, for any
B € B(RY),

u(B) =sup{u(C): C C B, closed} = inf{u(A): A D B, open}. (1.22)
Proof. Let us set
K ={B ¢ B(R") | (1.22) holds}.

It is enough to show that K is a o-algebra of parts of R" including all open
sets. Obviously, K contains RY and @. Moreover, if B € K then its comple-
ment B¢ belongs to K. Let us now prove that (B,) C K = |J.—, B, € K. We
are going to show that, for any ¢ > 0, there is a closed set C' and an open
set A such that

Cc G By CA, uA\C)<e. (1.23)

n=1
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Since B,, € K for any n € N, there is an open set A, and a closed set C,

such that
€

2n+1 :
Now, take A =J 7, A, and S = J -, C,, to obtain S C |J,~, B, C A and

C,C B, CA,, w(ANC,) <

PA\S) <> p(Ay = 8) <Y p(An — Cy) <

N ™

However, A is open but S is not necessarily closed. To overcome this diffi-
culty, let us approximate S by the sequence S,, = |J;_, Ck. For any n € N,
Sy, is obviously closed, S,, T S, and so u(S,) T p(S). Therefore, there exists
n. € N such that x(S\S,.) < 5. Now, C := 5, satisfies C C |J,, B, C A
and p(A\C) = u(A\S) + u(S\C) < e. Therefore, |J;~, B, € K. We have
thus proved that IC is a o—algebra.

It remains to show that C contains the open subsets of RV. For this, let
A be open, and set

C, = {x e RV ‘ dae(z) > 1},

n

where d4e(z) is the distance of x from A°. Since d4e is continuous, C,, is
a closed subsets of A. Moreover, C,, T A. So, recalling that p is finite, we
conclude that u(A\C,) | 0. O

The following result is a straightforward consequence of Proposition 1.53.

Corollary 1.54 Let i and v be finite measures on (RN, B(RY)) such that
w(C) = v(C) for any closed subset C of RN. Then, = v.

Finally, we will extend Proposition 1.53 to Radon measures.

Theorem 1.55 Let yu be a Radon measure on (RN, B(RY)), and let B be a
Borel set. Then,

w(B) =inf{u(A) | AD B, Aopen} (1.24)
pu(B) =sup{u(K) | K C B, K compact} (1.25)

Proof. Since (1.24) is trivial if u(B) = oo, we shall assume that u(B) < oco.
For any n € N, denote by Q, the cube (—n,n)", and consider the finite
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measure uL@, ®). Fix ¢ > 0 and apply Proposition 1.53 to conclude that,

for any n € N, there exists an open set A, D B such that
€
(ue@n) (A, \ B) < on -

Now, consider the open set A := U, (A, NQ,) D B. We have

WANB) < 3 p((A.NQ.)\ B)

= 3 (Qu)(A N\ B) < 2

n=1

which in turn implies (1.24).
Next, let us prove (1.25) for u(B) < co. Fix € > 0, and apply Proposi-
tion 1.53 to L@, to construct, for any n € N, a closed set C,, C B satisfying

(1eQn)(B\ Cy) <&

Consider the sequence of compact sets K,, = C,, N Q,,. Since

w(BNQ,) T uB),

for some n. € N we have that 4(BN @, ) > pu(B) — e. Therefore,

B\ K,.) = p(B)— p(K,,)
< w(BNQ,)—mCr.NQ,,) +e
= (@, )(B\Cy)+e<2e

If 4(B) = 400, then, setting B,, = BNQ,,, we have B, T B, and so u(B,) —
+00. Since p(B,) < 400, for every n there exists a compact set K, such
that K, C B, and u(K,) > u(B,) — 1, by which K,, C B and u(K,) —
+oo = pu(B). O

Exercise 1.56 A Radon measure p on (RY, B(R")) is obviously ofinite.
Conversely, is a o—finite Borel measure on R" necessarily Radon?

(G)that is, p restricted to Q, (see Definition 1.23).
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HINT: consider p = ) 01/, on B(R), where 6y, is the Dirac measure at
1/n. To prove o—additivity observe that, if (By) are disjoint Borel sets, then

#( D Bk> = i 51/n< @ Bk> = i iél/n(Bk)

n=1 k=1
= Tim Y du(B) = lim >N 51i(By)
i=1 k=1 k=1 i=1
= Z Z5l/i(Bk) = ZM(B’C)
k=1 i=1 i=1

where we have used Lemma 1.45. O

In the subsections 1.4.1-1.4.2 we constructed the Lebesgue measure on R,
starting from an additive function defined on the algebra of the finite disjoint
union of semi-closed intervals [a, b). This construction can be carried out in
RY provided that we substitute the semi-closed intervals by the semiclosed
rectangles of the type

N
H[a,,bz), algbz Z:]_,,N

i=1
whose measure is given by

N N

)\(H[ai, bi)) = [ — a).

=1 =1

In what follows A will denote the Lebesgue measure on (RY, B(RY)). Then
A is clearly a Radon measure and, by the analogue of Proposition 1.47, \ is
translation invariant. Next proposition characterizes all the Radon measures
having the property of translation invariance.

Proposition 1.57 Let yu be a Radon measure on (RN, B(RY)) such that p
1s translation invariant, that is

wE+x)=pE) VE € BRY), VzcE.

Then there exists ¢ > 0 such that p(E) = cA\(E) for every E € B(RY).
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Proof. For every n € N define the set

N
ap ap+1
Qn:{H[Q_na on ),(lkGZ},

k=1

that is €2,, is the set of the semi-closed cubes with edge of length 2%1 and with
vertexes having coordinates multiple of % The sets €2, have the following
properties:

a) for every n RY = Ugeq, @ with disjoint union;
b) if Q € Q, and P € Q, with r <n, then Q C P or PNQ = 0;
c) If Q € Q,, then \(Q) = 27"V,

Observe that [0,1)" is the union of 2"V disjoint cubes of ,, and these
cubes are identical up to a translation. Setting ¢ = p([0,1)") and using the
translation invariance of p and A, for every @) € €2, we have

2"V u(Q) = u([0,1)") = eA([0, )Y) = 2"V eA([0, 1))

Then p and ¢ coincide on the cubes of the sets §2,,. If A is an open nonempty
set of R, then by property a) we have A = U,, Ugeq, 0ca @ = U, Z,, where
Zn = Ugeq,,0ca@. By property b) we deduce that if ) € €, and Q C A,
then Q C Z,_1 or QN Z,_1 = 0. Then A can be rewritten as

=U U q

n QEN,,QCA\Zy_1

and the above union is disjoint. Then the o-additivity of g and A\ gives
p(A) = cA(A); finally, by (1.24), u(B) = cA\(B) for every B € B(RY). O

Next theorem shows how the Lebesgue measure changes under the linear
non-singular transformations.

Theorem 1.58 Let T : RY — RY be a linear non-singular transformation.
Then

i) T(E) € BRY) for every E € B(RY);
ii) MT(E)) = |det T| \(E) for every E € B(RY).
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Proof. Consider the family
E={E e BRY)|T(E) e BRY)}.

Since T is non-singular, then T'(0)) = 0, T(RY) = RN, T(E°) = (T(E))",
T(U,E,) = U,T(E,) for all E, E, C RY. Hence £ is an o-algebra. Further-
more 7" maps open sets into open sets; so & = B(RY) and i) follows.
Next define
uw(B) = \T(B)) VE € B(RY).

Since T" maps compact sets into compact sets, we deduce that p is a Radon
measure. Furthermore if B € B(RY) and x € R", since \ is translation
invariant, we have

p(B+1x) = MT(B+2)) = NT(B) + T(x)) = MT(B)) = u(B),

and so p is translation invariant too. Proposition 1.57 implies that there
exists A(T") > 0 such that

w(B) = A(T)XN(B) VB e B(RY). (1.26)

It remains to show that A(T) = |detT|. To prove this, let {e,...,en}
denote the standard basis in RV, i.e. e; has the j-th coordinate equal to 1
if 7 = 4 and equal to 0 if 5 # i. We begin with the case of the following
elementary transformations:

a) there exists ¢ # j such that T'(e;) = e;, T'(e;) = e; and T'(ey,) = ey, for
kg,
In this case T'([0,1)") =[0,1)" and detT = 1. By taking B = [0,1)"
in (1.26), we deduce A(T) =1 = |det T|.

b) there exist a # 0 and ¢ such that T'(e;) = ce; and T'(ey,) = ey for k # 1.

Assume ¢ = 1. Then T([0,1)") = [0,a) x [0,1)Y ' if @« > 0 and
T([0,1)N) = («, 0] x [0, 1)¥ 1 if < 0. Therefore by taking B = [0, 1)V
in (1.26), we obtain A(T) = AN(T'([0,1)Y)) = |a| = | det T).

c) there exist i # j and « # 0 such that T'(e;) = e; + ae;, T'(e;) = ¢, for
k #i.
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Assume i = 1 and j = 2 and set Q, = {O{.Tgeg—i—zi#z zie; |0 < x; < 1}.
Then we have

T(Qa) = {.Cljlel + CY(.Tl + 1’2)62 + ...+ [L’NeN) ‘ 0< T < 1}

:{afgeg—i—z&ei 51 §§2<§1+1,0§§Z<1f0r27€2}
i#2

=F UE),
with disjoint union, where
Ey = {045292 + Zfiei
i#2

Ey = {045292 + Zfiei

i£2

§1§§2<1,O§§i<1fori7é2},

1§§2<§1+1,0§§i<1f0ri7é2}.

Observe that £y C Q, and Ey — ey = @, \ Fy; then
MT(Qa)) = ME1) + A(Ea) = AE1) + A(Ey — €3) = A(Qa)-

By taking B = @, in (1.26) we deduce A(T) =1 = |det T'|.

T ="1T-...- T with T; elementary transformations of type a)-b)-c), since
(1.26) implies A(T) = A(Ty) - ... - A(T}), then we have
A(T) = |detTy| -...-|detTy| = |detT|.

Therefore the thesis will follow if we prove the following claim: any linear
non-singular transformation 7" is the product of elementary transformations
of type a)-b)-c). We proceed by induction on the dimension N. The claim
is trivially true for N = 1; assume that the claim holds for N — 1. Set
T = (ai,j>i,j:1 7777 N, that is

N
T(ei):ZaUe]— 2:1,,N
j=1

For k = 1,...,N, consider T}, = (a;;)j=1
Z]kvzl (—1)*Nayn det Ty, possibly changing two variables by a transformation

N—1,i=1,...,N, i#k- Since detT =

,,,,,
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of type a), we may assume det Ty # 0. Then by induction the following
transformation S; : RY — RV

N-1

Sl(ei) = TN(eZ-) = Z A;5€; 1= 1, .. .,N - 1, Sl(eN) =en

J=1

is the product of elementary transformations. By applying transformations
of type ¢) we add a;xS;(ey) to Si(e;) for i =1,..., N — 1 and we arrive at
Sy : RY — RY defined by

N
Saler) =D aye; i=1,...,N—1, Sy(ey)=ex.
j=1
Next we compose Sy with a transformation of type b) to obtain
N
SS(ei):Zaijej 1=1,...,N —1, 53(9N) = bey
j=1

where b will be chosen later. Now set Tjgl = (Mki)ki=1,.n—1. By applying
again transformations of type c), for every i = 1,..., N — 1 we multiply
Ss3(e;) by Ziv:_ll anpmy; and add the results to S3(ey); then we obtain:

N N-1 N
5’4(61‘) :Zaijej 1= 1,...,N—1, S4(€N) :beN—l— Z aNkmkiZaijej.
Jj=1 i,k=1 Jj=1

. N-1 N-1 N-1 .
Since ZLk:l ANEM i ijl a;€ = Y .._, aNk€k, by choosing b = ayn —

ng;ll anprMEia;ny we have that T = S;. 0

Remark 1.59 As a corollary of Theorem 1.58 we obtain that the Lebesgue
measure is rotation invariant.
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Integration

2.1 Measurable functions

2.1.1 Inverse image of a function

Let X,Y be non empty sets. For any map ¢: X — Y and any A € P(Y) we
set

pH(A) ={z € X | p(z) € A} = {p € A}.

0 1(A) is called the inverse image of A.
Let us recall some elementary properties of ¢ ~t. The easy proofs are left
to the reader as an exercise.

(i) o1 (A9 = (¢ 1(A))¢ forall A e P(Y).

(ii) If A, B € P(Y), then o' (AN B) = ¢~ *(A) N ¢~ '(B). In particular, if
ANB =g, then o' (A) Ny Y(B)=92.

(iii) If {Ax} C P(Y) we have
o (U Ak) = Je .
k=1 k=1

Consequently, if (Y, F) is a measurable space, then the family of parts of X
e (F)={p(A): Ae T}
is a o—algebra in X.

35
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Exercise 2.1 Let p: X — Y and let A € P(X). Set

p(A) = {p(x) | x € A}.

Show that properties like (i), (ii) fail, in general, for ¢(A).

2.1.2 Measurable maps and Borel functions

Let (X, &) and (Y, F) be measurable spaces.

Definition 2.2 We say that a map ¢: X — Y is measurable if o~} (F) C £.
When Y is a metric space and F = B(Y'), we also call ¢ a Borel map. If, in
addition, Y = R, then we say that ¢ is a Borel function.

Proposition 2.3 Let A C F be such that o(A) = F. Then p: X — Y is
measurable if and only if p~'(A) C £.

Proof. Clearly, if ¢ is measurable, then ¢~ !'(A) C &£. Conversely, suppose
0 1(A) C &, and consider the family

G:={BeF|p'(B)e&}.

Using properties (i), (ii), and (iii) of ! from the previous section, one can
easily show that G is a o—algebra in Y including A. So, G coincides with F
and the proof is complete. [J

Exercise 2.4 Show that a function ¢: X — R is Borel if any of the following
conditions holds:

(i '((—o0,t]) C € for all t € R.
((—o0,t)) C € forall t € R.

) o
) o (

(iii) ¢~ *([a,b]) C € for all a,b € R.
) ¢ Y[a,b)) C € for all a,b € R.
) ¢ (

(v Y((a,b)) C & for all a,b € R.

Exercise 2.5 Let ¢(X) be countable. Show that ¢ is measurable if, for any
yeY, ol (y) €E.
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Proposition 2.6 Let XY be metric spaces, € = B(X), and F = B(Y).
Then, any continuous map ¢: X — Y s measurable.

Proof. Let A be the family of all open subsets of Y. Then, (A) = B(Y)
and ¢ 1(A) C B(X). So, the conclusion follows from Proposition 2.3. [J

Proposition 2.7 Let p: X — Y be measurable, let (Z,G) be a measurable
space, and let ¢ 'Y — Z be another measurable map. Then 1) o ¢ is mea-
surable.

Example 2.8 Let (X, &) be a measurable space, and let ¢ : X — RY. We
regard RY as a measurable space with the Borel o—algebra B(R"). Denoting
by ; the components of ¢, that is, ¢ = (p1,...,pnN), let us show that

¢ is Borel <= ¢; isBorel Vie{l,...,N}. (2.1)

Indeed, for any y € RY let
N
Ay = H(_Oo7yl] = {Z S RN ’ Zi S Yi VZ},
i=1

and define A = {4, | y € RV}. Observe that B(RY) = o(A) to deduce,
from Proposition 2.3, that ¢ is measurable if and only if p~!(A) C €. Now,
for any y € RV,

P (4y) = ﬂ{x € X | pi(z) <wi} = ﬂw?l((—oqyz'])-

This shows the < part of (2.1). To complete the reasoning, assume that ¢
is Borel and let i € {1,..., N} be fixed. Then, for any ¢t € R

o ((—oo,t]) =7 ({2 € RY | 2 < t})
which implies ;' ((—00,t]) € £, and so ¢; is Borel. O

Exercise 2.9 Let p,1¢: X — R be Borel. Then ¢+, o), o A, and oV
are Borel.

HINT: define f(z) = (¢(x),¥(z)) and g(y1,y2) = y1 + y2. Then, f is a Borel
map owing to Example 2.8, and ¢ is a Borel function since it is continuous.
Thus, ¢ +19 = go f is also Borel. The remaining assertions can be proved
similarly. [
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Exercise 2.10 Let ¢: X — R be Borel. Prove that the function

s i ex) #0
P(r) =
0 if ¢(z)=0

is also Borel.
HINT: show, by a direct argument, that f : R — R defined by

% ifx#0
f<x):{0 if =0

is a Borel function. [

Proposition 2.11 Let (¢,) be a sequence of Borel functions in (X, E) such
that |@n(z)] < M for all x € X, alln € N, and some M > 0. Then, the
functions

sup @n (), inlgson(x), limsup ¢, (), liminf,(z),
ne n—oo

neN n—o00

are Borel.

Proof. Let us prove that ¢(z): = sup,cy ¢n(z) is Borel. Let F be the set
of all intervals of the form (—oo, a] with a € R. Since o(F) = B(R), we have
that ¢ is Borel. In fact

¢~ ((—o0,a]) = ﬂ o ((—o00,a]) € E.

In a similar way one can prove the other assertions. [l

It is convenient to consider functions with values on the extended space
R = RU {0, —oo_}. These are called extended functions. We say that a
mapping ¢: X — R is Borel if

p i (—00), 9 (0) €

and p~1(I) € € for all I € B(R).
All previous results can be generalized, with obvious modifications, to
extended Borel functions. In particular, the following result holds.
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Proposition 2.12 Let (¢,) be a sequence of Borel functions on (X,E).
Then the following functions:

supgn(x), inf p,(z), limsupg,(z), liminfe,(z),
TLEN HEN

n—oo n—oo
are Borel.

Exercise 2.13 Let ¢,1: X — R be Borel functions on (X,&). Prove that
{o=1tet

Exercise 2.14 Let (p,) be a sequence of Borel functions in (X, €&). Show
that {z € X | 3lim, ¢,(z)} € £.

Exercise 2.15 Let ¢: X — R be a Borel function on (X, &), and let A € £.

Prove that @) if p
] oelx) e
wM@—{ 0 ifegA

is Borel.

Exercise 2.16 1. Let X be a metric space and &€ = B(X). Then, any
lower semicontinuous map ¢ : X — R is Borel.

2. Any monotone function ¢ : R — R is Borel.

Exercise 2.17 Let £ be a o—algebra in R. Show that £ D B(R) if and only
if any continuous function ¢ : R — R is £-measurable, that is, ¢~ '(B) € £
for any B € B(R).

Exercise 2.18 Show that Borel functions on R are the smallest class of func-
tions which includes all continuous functions and is stable under pointwise
limits.

Definition 2.19 A Borel function ¢: X — R is said to be simple, if its
range (X)) is a finite set. The class of all simple functions ¢: X — R is
denoted by S(X).

It is immediate that the class S(X) is closed under sum, product, A, V,
and so on.
We recall that x4 : X — R stands for the characteristic function of a set
ACX,ie.,
1 if x € A,
XA(I):{O if v ¢ A.

Then x4 € S(X) if and only if A € £.
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Remark 2.20 1. We note that ¢: X — R is simple if an only if there

exist disjoint sets Ay, ..., A, € £ and real numbers aq, . .., a, such that
X = UAi and o(zr) = ZaiXAi(x) Ve e X. (2.2)
i=1 i=1

Indeed, any function given by (2.2) is simple. Conversely, if ¢ is simple,
then

o(X)=A{ar,...,a,} with a; #a; for i#j.

So, taking A; := ¢ '(a;), i € {1,...,n}, we obtain a representation
of ¢ of type (2.2).

Obviously, the choice of sets Ay, ..., A, € £ and real numbers ay, ..., a,
is far from being unique.

2. Given two simple functions ¢ and v, they can always be represented as
linear combinations of the characteristic functions of the same family
of sets. To see this, let ¢ be given by (2.2), and let

= UBh and () :thxgh(x), Vo e X.
h=1 =
Since A; = [;—,(A; N By) , we have that

XA; :ZXAmBh($) ie{l,...,n}.
h=1

So,

3

0
Ms

aixang, (), ze€X.

,_.
>
I

1

.

Similarly,

3

0
M3

bhX A,nB, (T re X.

T

1 =1

Now, we show that any positive Borel function can be approximated by
simple functions.
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Proposition 2.21 Let ¢ be a positive extended Borel function on a measur-
able space (X,E). Define for anyn € N

Soif S <pr) <&, i=1,2,...,n2",

on(z) = (2.3)
n if @(r)>n.

Then, (¢n)n C S(X), (@n)n is increasing, and pn(x) — @(x) for every
x € X. If, in addition, ¢ is bounded, then the convergence is uniform.

Proof. For every n € Nand i =1,...,n2" set

Br=o (| gs) )o Fam v (ko))

Since ¢ is Borel, we have E,;, F,, € B(R") and

i1
Pn =) o XE T XE,-

Then, by Remark 2.20, ¢,, € S(X). Let z € X be such that 5+ < ¢(z) <
2%. Then, giﬁ < p(x) < 23@ and we have

20— 2 21 —1
Pni1(z) = on+t OF Pni1(T) = Tontl

In any case, p,(z) < pp1(x). If (x) > n, then we have p(x) > n+1 or

n < p(x) < n+ 1. In the first case pp1(x) =n+1>n = p,(z). In the

second case let i = 1,...,(n + 1)2"™ be such that =% < ¢(z) < 4.

Since ¢(z) > n, we deduce z7x > n, by which ¢ = (n + 1)2""*. Then

Oni1(x) =n+1— 557 > n = ¢, (x). This proves that (¢,), is increasing.
Next, fix z € X and let n > ¢(z). Then,

0 < pla) ~ pula) < 5 (2.4

So, pn(z) — @(x) as n — oco. Finally, if 0 < p(z) < M for all z € X and
some M > 0, then (2.4) holds for any x € X provided that n > M. Thus
v, — ¢ uniformly. [J
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Definition 2.22 Let (X, &, 1) be a measure space and @,,p : X — R. We
say that (vn)n, converges to a function ¢

e almost everywhere (a.e.) if there exists a set F' € £, of measure 0, such
that

lim @, (z) = ¢(x) Ve e X\ F;
e almost uniformly (a.u.) if, for any e > 0, there exists F. € £ such that
u(Ey) < e and v, — ¢ uniformly on X \ F..

Exercise 2.23 Let (¢,), be a sequence of Borel functions on a measure
space (X, &, ).

1. Show that the pointwise limit of ,, when it exists, is also a Borel
function.

2. Show that, if ,, = ¢, then , =% .

3. Show that, if ¢, == ¢ and ¢, == 1, then ¢ = 1) except on a set of
measure 0.

4. We say that ¢, — ¢ uniformly almost everywhere if there exists F' €
& of measure 0 such that ¢, — ¢ uniformly in X \ F. Show that
almost uniform convergence does not imply uniform convergence almost
everywhere.

HINT: consider ¢, (x) = 2" for x € [0, 1].

Example 2.24 Observe that the a.e. limit of Borel functions may not be
Borel. Indeed, in the trivial sequence ¢, = 0 defined on (R, B(R), \) (de-
noting A the Lebesgue measure) converges a.e. to x¢, where C' is Cantor
set (see Example 1.49), and also to x4 where A is any subset of C' which
is not a Borel set. This is a consequence of the fact that Lebesgue measure
on (R, B(R)) is not complete. On the other hand, if the domain (X, &, ) of
(¢n)n i a complete measure space, then the a.e. limit of (p,), is always a
Borel function.

The following result establishes a suprising consequence of a.e. convergence
on sets of finite measure.
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Theorem 2.25 (Severini-Egorov) Let (¢,), be a sequence of Borel func-
tions on a measure space (X, E, p). If n(X) < oo and p,, converges a.e. to a
Borel function @, then @, — .

Proof. For any k,n € N define
p_ 1
A= {ze x| lo@ - wil) > -}

Observe that (AF), € € because ¢,, and ¢ are Borel functions. Also,

1
AF | lim sup {x eX ‘ lo(x) — pn(x)] > —

n—oo k:

}::Ak (n — 00).

So, AF € £. Moreover, for every z € AF, |p(z) — ¢, (x)| > 1 for infinitely
many indeces n. Thus, pu(A¥) = 0 by our hypothesis. Recalling that u is
finite, we conclude that, for every k € N, u(A*) | 0 as n — oco. Therefore,
for any fixed € > 0, the exists an increasing sequence of integers (ny)x such
that ju(A) ) < & for all k € N. Let us set

F. = D Aﬁk )
k=1

Then, pu(F.) < 3, u(Ak ) < e. Moreover, for any k € N, we have that
1
P>ny = |g0(x)—g0i(a:)|§E Vee X\ Fr.

This shows that ¢,, — ¢ uniformly on X \ F.. O

Example 2.26 The above result is false when p(X) = co. For instance, let
©n = X[noo) defined on (R, B(R),\). Then, ¢, — 0 pointwise, but A({z €
R |gn| = 1}) = +oo.

2.1.3 Approximation by continuous functions

The object of this section is to prove that a Borel function can be approxi-
mated in a measure theoretical sense by a continuous function, as shown by
the following result known as Lusin’s theorem.
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Theorem 2.27 (Lusin) Let i be a Radon measure on RY and ¢ : RN — R
be a Borel function. Assume A C RY is a Borel set such that

pu(A) < oo & p(x) =0 Vz¢&A

Then, for every € > 0, there exists a continuous function f.: RV — R with
compact support™V) such that

p({z e R [p(z) # f(2)}) < e (2.5)
sup |fe(2)] < sup ()| 2.6)

Proof. We split the reasoning into several steps.

1. Assume A is compact and 0 < ¢ < 1, and let V' be a bounded open
set such that A C V. Consider the sequence (7,,) of measurable sets
defined by

T, = {xeA'%Sgo(x)<1}

1 1
9 < 277,71

T, = {xeA

} Vn > 2

Arguing by induction, it is soon realized that, for any = € A and any
i € N, xr,(x) = a;, where q; is the i-th digit in the binary expansion of
o(x), i.e., p(z) =0.a1ay...q;.... Therefore,

1 1
Oggo(x)—Z—.XTi(x)<— vz e RN, ¥n € N.

s Dt AL
=1
Hence,
=1
=) — Ve e RY 2.7
oa) =Y gomla) Ve R, .7

where the series converges uniformly in RV.

(WFor any continuous function f : RN — R, the support of f is the closure of the set
{x € RN | f(x) # 0}. Such a set will be denoted by supp(f).
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2. Fix ¢ > 0. Owing to Theorem 1.55, for every n there exist a compact
set K, and an open set V,, such that

K,CT,CVi, & puVo\K,) < %
Possibly replacing V,, by V,, NV, we may assume V,, C V. Define
dye
fulw) = — 250 Ve € R

dg, (x) + dye(z)

It is immediate to check that f, is continuous for all n € N and

1on K,
0< fu(z) <1 VzeRY & f,= on
Oon Ve
So, in some sense, f,, approximates xr,.
3. Now, let us set
= Z 2—nfn(;1c) Ve e R (2.8)
n=1

Since Y 7, 2% fn is totally convergent, f. is continuous. Moreover,
{eeRY|f(x) #0} C | J{z eRY [ fule) #0} c [V C V,
n=1 n=1

and so supp(f.) C V. Consequently, supp(f.) is compact. Further-
more, by (2.7) and (2.8),

{z €RY | f.(z) # p(x)} C U{xeRlen ) # x1,(7) }

[e.9]

c JW\ K
n=1
which implies, in turn,

w({o €RY L) £ pla)}) € 305 —e

n=1

Thus, conclusion (2.5) holds when A is compact and 0 < ¢ < 1.



46

Integration

4. Obviously, (2.5) also holds when A is compact and 0 < ¢ < M for some

M > 0 (it suffices to replace ¢ by ¢/M). Moreover, if A is compact
and ¢ is bounded, then |¢| < M for some M > 0. So, in order to
derive (2.5) in this case it suffices to decompose ¢ = ¢+ — ¢~ @ and
observe that 0 < o™, ¢~ < M.

. We will now remove the compactness assumption for A. By Theo-

rem 1.55, there exists a compact set K C A such that u(A\ K) < e.
Let us set

Y = XK¥
Since ¢ vanishes outside K, we can approximate @, in the above sense,
by a continuous function with compact support, say f.. Then,

{2 eRV|f(2) £ 0(@)} C {2 € RV | f(a) # 5(x)} U(A\ K),

since, for any © € K U A¢, f.(x) # ¢(x) implies that f.(z) # @(x).
Hence,

p({z € RY| L(2) £ 9(2)}) < 22

. In order to remove the boundedness hypothesis for f, define measurable

sets (B,) by
B,={x € A| |p(x)| >n} neN

Clearly,
Bn+1 C Bn & ﬂ Bn =

Since pu(A) < oo, Proposition 1.16 yields u(B,) — 0. Therefore, for
some nn € N, we have u(Bj) < . Proceeding as above, we define

» = (1 - XBFL)@

Since @ is bounded (by 7), we can approximate @, in the above sense,
by a continuous function with compact support, that we again label f..
Then,

{z eRV|£.(t) # o)} C {2 € RV | f.(a) # 3(2)} U B,

@D+ = max{p,0}, ¢~ = max{—y,0}
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So,
u({r € RY| (o) £ 9(2)}) < 22

The proof of (2.5) is thus complete.

7. Finally, in order to prove (2.6), suppose R := supgn |¢| < co. Define

t if |t| < R,
Or :R — R Or(t) = t
ReE w(t) Ryr =R
and f. = fgo f. to obtain |f.| < R. Since 0 is continuous, so is f..
Furthermore, supp(f.) = supp(f.) and

{z eRY| f(2) = p(2)} € {o € RY | [o(2) = o(2)}.

This completes the proof. [

2.2 Integral of Borel functions

Let (X,&, ) be a given measure space. In this section we will construct
the integral of a Borel function ¢: X — R with respect to p. We will first
consider the special case of positive functions, and then the case of functions
with variable sign. We begin with what can rightfully be considered the
central notion of Lebesgue integration.

2.2.1 Repartition function

Let ¢: X — [0, 00] be a Borel function. The repartition function F of ¢ is
defined by

F@t): =p{e>1}) =ple>1), t=0.

By definition, F : [0,00) — [0, 00] is a decreasing ) function; then F' pos-
sesses limit at oo. Moreover, since

{p =00} = ({e>n},

()A function f: R — R is decreasing if t; < to == f(t1) > f(t2), positive if f(t) >0
for all t € R.
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we have

lim F(t) = lim F(n) = lim u(p >n) = pu(p = 00)

t—o00 n—oo n—oo

whenever y is finite. Other important properties of F' are provided by the
following result.

Proposition 2.28 Let p: X — [0,00]| be a Borel function and let F' be its
repartition function. Then, the following properties hold:

(i) For any ty > 0,
lim F(t) = F(to),

tlto
(that is, F' is right continuous).
ii) If u(X) < oo, then, for any ty > 0,
i

lim F'(t) = p(p = to)
tTto

(that is, F possesses left limits™ ).

Proof. First observe that, since F' is a monotonic function, then F' possesses
left limit at any ¢ > 0 and right limit at any ¢ > 0. Let us prove (i). We have

1 1
lim F(£) = lim F(to + —) — lim ,u(go >t + —) — ulp > to) = F(ty),
n n—oo n

tlto n—o00

since .
{¢>to+ﬁ}T{9@>to}~

Now, to prove (ii), we note that

{¢>t0—%}l{¢2to}-

Thus, recalling that p is finite, we have

lim F(t) = lim F(to — %) = lim ,u<<,0 >ty — %) = plp = o) ,

tTto n—00 n—o00

and (ii) follows. O

From Proposition 2.28 it follows that, when g is finite, F' is continuous at ¢,
iff p(e =ty) =0.

(M1In the literature, a function that is right-continuous and has left limits is called a
cadlag function.
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2.2.2 Integral of positive simple functions

We now proceed to define the integral in the class S, (X) of positive simple
functions. Let ¢ € S, (X). Then, according to Remark 2.20.1,

p(x) =Y apxa(z) wEX,
k=1

where aq,...,a, > 0, and Aq,..., A, are mutually disjoint sets of £ such
that Ay U---U A, = X. Using the convention 0 - co = 0, we define the
integral of  over X with respect to u by

n

[ ctmtan = [ o= a0 (29)

k=1

It is easy to see that the above definition is independent of the representation
of . Indeed, given disjoint sets By, ..., B,, € £ with ByU---UB,, = X and
real numbers by, ...,b,, > 0 such that

o(r) = Z bixs, () r e X,
i=1

we have that

Av=JAxnB)  Bi=|]J(AnB)
i=1 k=1
and
AcNB#0 = ap=20;.
Therefore,

Z%#(Ak) = ZZGkM(AkﬂBi)

k=1 =1

= SN buAnB) = Z bip(B;) -

i=1 k=1

Proposition 2.29 Let ¢, ¢ € S, (X) and let o, 3 > 0. Then,

/X(OésoJrﬁw)du:Oé/Xsodquﬁ/deu
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Proof. Owing to Remark 2.20.2, ¢ and 1 can be represented using the same
family of mutually disjoint sets Ay,..., A, of £ as

p= axa, U= bixa.
h=1 h=1

Then,

n

[ (e suan = 3w+ Gh(A)

k=1

= Oézak/ﬁ(Ak)‘i‘ﬁZbkM(Ak)
k=1 k=1
- oz/Xsodquﬁ/thdu

Example 2.30 Let us choose a representation of a positive simple function
@ of the form

as required. [

m):ZGkXAk r € X,

with 0 < a; < ay < --- < a,. Then, the repartition function F' of ¢ is given

F(t) = p(Ag) + p(Aggr) + -+ p(An) = Flag—1) ifap_y <t <ay,
w(An) = F(an_1) if a,1 <t < ay,,
| 0= F(ay) ift > a,.

Thus, setting ag = 0, we have u(Ax) = F(ax—1) — F(ar) and F(t) =
Y oreq Flak—1)X(ax_1,a0) (). Then F is a simple function itself on (R, B(R))
and

e = S an(an Zak (as1) — Fla))

= 3 Flaxr)(ax - a ) = /0 T R,
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where fooo F(t)dt denotes the integral of the simple function F' with respect
to the Lebesgue measure.

2.2.3 The archimedean integral

The identity we have obtained in Example 2.30 for simple functions, that is,

/X oyt = /O "l > Bt (2.10)

makes perfectly sense because the repartition function of a simple function is
a simple function itself (and even a step function). In order to be able to take
such an identity as the definition of the integral of ¢ when ¢ is a positive
Borel function, we first have to give its right-hand side a meaning. For
this, we need to define, first, the integral of any positive decreasing function
f:[0,00) — [0, 0]

Let X be the family of all finite sets of points o = {ty,...,tx} of [0, c0],
where N € Nand 0 =ty < t; < --- <ty < oo. For any decreasing function
f:10,00) — [0,00] and any o = {to,t1,....,tx} € 3, we set

Iy(o) = J(tigr) (tps1 — t).
The archimedean integral of f is defined by
/ f(t)dt :=sup{ls(o): o€ X}.
0

Exercise 2.31 Let f: [0,00) — [0,00] be a decreasing function.
1. Show that, if 0,¢ € ¥ and o C (, then I¢(0) < I£(().

2. Show that, for any pair of decreasing functions f,g: [0,00) — [0, 0]
such that f(z) < g(x), we have [ f(t)dt < [;° g(t)dt.

3. Show that, if f(t) =0 for all ¢ > 0, then [;* f(t)dt = 0.
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Proposition 2.32 Let f,,: [0,00) — [0, 00] be a sequence of decreasing func-
tions such that

fu®) T f)  (n—o0)  VE>0.

/Ooofn(t)dt T /Ooof(t)dt

Proof. According to Exercise 2. 31 2, since f, < foy1 < f, we obtain
I fa@dt <[5 faga(t) dt < I f dt for every n. Then the inequality
lim,, fo fn t)dt < fo t)dt is clear To prove the opposite inequality, let
L < [)° f(t)dt. Then there exists 0 = {to,...,tx} € 2 such that

Then,

=

J(tkg1) (tes1 — te) > L.
0

£
I

Therefore, for n sufficiently large, say n > np,

/oo fu(t)dt > Z_ folterr)(tger —tg) > L.
0 k=0

Thus, lim,_. fo fa(t)dt > L. Since L is any number less than fo (t)dt,
we conclude that

lim fn dt>/ f(t) 0

n—oo

The definition of archimedean integral can be easily adapted to the case
of a bounded interval [0, a]. Given a decreasing function f: [0, a] — [0, c0] it

suffices to set . -
| = [ po
0 0

pio-{ 10 i el

where

o 0 if t>a.

(2.11)



Chapter 2 53

Exercise 2.33 1. Given a decreasing function f: [0,a] — [0, 00|, show
that

/Oaf(t)dt > af(a).

2. Given a decreasing function f: [0,00) — [0, 00|, show that
/ f(t)dt > / f(tydt Va > 0.
0 0

2.2.4 Integral of positive Borel functions

Given a measure space (X, &, p) and an extended positive Borel function ¢,
we can now define the integral of ¢ over X with respect to u according to
(2.10), that is,

[ win= [ elomtan: = [~ ute> o, (2.12)

where the integral in the right-hand side is the archimedean integral of the
decreasing positive function ¢ — u(@ > t). If the integral of ¢ is finite we
say that ¢ is p—summable.

Proposition 2.34 (Markov) Let ¢ : X — [0,00] be a Borel function.
Then, for any a € (0, 00),

(e >a) < % /Xsadu. (2.13)

Proof. Recalling Exercise 2.33, we have that, for any a € (0, 00),

—+00 a
/ pdp = / ple > t)dt > / (e > t)dt > apfp > a).
X 0 0

The conclusion follows. O

Markov’s inequality has important consequences. Generalizing the notion of
a.e. convergence (see Definition 2.22), we say that a property concerning
the points of X holds almost everywere (a.e.), if it holds for all points of X
except for a set E € € with u(E) = 0.

Proposition 2.35 Let ¢ : X — [0, 00] be a Borel function.
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(i) If ¢ is p—summable, then the set {p = oo} has measure 0, that is, ¢ is
a.e. finite.

(ii) The integral of ¢ vanishes if and only if ¢ is equal to 0 a.e.

Proof.
(i) From (2.13) it follows that (e > a) < oo for all @ > 0 and

lim p(p > a) = 0.

a—00

Since
{v>n} | {p=o0},
we have that
plp = 00) = lim p(p >n) = 0.

i) If ¢ ¥ 0, we have u(¢ > t) = 0 for all ¢ > 0. Then [, pdu =
' X

0+°° (e > t)dt = 0 (see Exercise 2.31.3). Conversely, let [, @du = 0.

Then, Markov’s inequality yields u(p > a) = 0 for all @ > 0. Since
{o> 31 1{p>0} 50

1
plp > 0) = lim (> =) = 0.
The proof is complete. [J

The following is a first result studying the passage to the limit under the
integral sign. It is referred to as the Monotone Convergence Theorem.

Proposition 2.36 (Beppo Levi) Let ¢, : X — [0,00] be an increasing
sequence of Borel functions, and set

o(x) = lim @, () Vee X.

n—oo

/sondu T /s@du-
X X

Then,
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Proof. Observe that, in consequence of the assumptions,

{on >t} T {o >t}  Vvt>0.

Therefore, pu(o, > t) T (e > t) for any t > 0. The conclusion follows from
Proposition 2.32. [

Combining Propositions 2.21 and 2.36 we deduce the following result.

Proposition 2.37 Let ¢ : X — [0,00| be a Borel function. Then, there
exist positive simple functions ¢, : X — [0,00) such that @, T ¢ pointwise

and
/ ondp | / pdji .
X X

Let us state some basic properties of the integral.

Proposition 2.38 Let p,¢ : X — [0, 00| be u—summable. Then the follow-
ing properties hold.

(i) If a,b>0, then [\(ap +bY)du = a [ edp+b [ dp.

(ii) If o > 1, then [, odu > [, ddp.

Proof. The conclusion of point (i) holds for ¢, 1) € S, (X), thanks to Propo-
sition 2.29. To obtain it for Borel functions it suffices to apply Proposi-
tion 2.37.

To justify (ii), observe that the trivial inclusion {¢) > t} C {p > t} yields
pu(p >t) < p(e > t). The conclusion follows (see also Exercise 2.31.3). O

Proposition 2.39 Let ¢, : X — [0,00] be a sequence of Borel functions
and set

o(z) = ngn(a:) Ve e X.

Then

Z/ sonduz/ pdy.
n=17X X
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Proof. For every n set
fo=D_ o
k=1

Then f,, T ¢. By applying Proposition 2.36 we get

/ Jndp — / pdj.
X X

On the other hand (i) of Proposition 2.38 implies

Jndp = Z/ prdp — Z/ erdp O
X k=1 k=1

The following basic result, known as Fatou’s Lemma, provides a semicon-
tinuity property of the integral.

Lemma 2.40 (Fatou) Let g, : X — [0,00] be a sequence of Borel functions
and set p = liminf, . ¢,. Then,

/gpd,ugliminf/ Ondpt . (2.14)
X n—oo X

Proof. Setting v, (z) = inf,,>,, o (x), we have that ¢, (z) T ¢(z) for every
x € X. Consequently, by the Monotone Convergence Theorem,

/sodu= lim / wndMZSup/ Yndps.
X n—oo Jx neN Jx

On the other hand, since ¢, < ¢, for every m > n, we have

[ < it [ o
X m2n [

So,

/godugsup inf/cpmdu:hminf/ Onpdp . U
X neN mzn Jx n—oo Jx
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Corollary 2.41 Let ¢, : X — [0,00] be a sequence of Borel functions con-
verging to ¢ pointwise. If, for some M > 0,

/gpndugM Vn € N,
X

then [y pdu < M.

Remark 2.42 Proposition 2.36 and Corollary 2.41 can be given a version
that applies to a.e. convergence. In this case, the fact that the limit ¢ is a
Borel function is no longer guaranteed (see Example 2.24). Therefore, such
a property must be assumed a priori, or else measure u must be complete.

Exercise 2.43 State and prove the analogues of Proposition 2.36 and of
Corollary 2.41 for a.e. convergence.

Example 2.44 Consider the counting measure p on (N, P(N)). Then any
function z : i +— x(¢) is Borel and @ = %, 2(i)x;;- Then, by Proposition
2.39, if x is positive we have

[ wdn =S sty = S at),

i=1 =1

Example 2.45 Consider the measure space (N, P(N), ) of the previous ex-
ample. Let (z,), be a sequence of positive functions such that, for every
i €N, z,(i) T z(i) as n — oco. Then, Beppo Levi’s Theorem ensures that

[e.e]

JLIEOan(i) = x(i).

=1

Compare with Lemma 1.45.

Exercise 2.46 Let a,; > 0 for n, i € N. Show that

n=1 =1 i=1 n=1

HINT: Set x,, : i — a,;. Then z,, is a sequence of positive Borel functions on
(N, P(N)). Use Proposition 2.39 to conclude.
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Exercise 2.47 Let ¢,1 : X — [0, 00] be Borel functions.
1. Show that, if ¢ < ¢ a.e., then [, @du < [, dp.
2. Show that, if ¢ = ¢ a.e., then fX pdp = fX Y.

3. Show that the monotonicity of ¢, is an essential hypothesis for Beppo
Levi’s Theorem.

HINT: consider ¢, (%) = X{nn+1)(2) for x € R.

4. Give an example to show that the inequality in Fatou’s Lemma can be
strict.

HINT: set pon(2) = xp,1)(%) and @o,11(x) = xp2)(x) for z € R.

Exercise 2.48 Let (X, &, 1) be a measure space. The following statements
are equivalent:

1. p is o-finite;
2. there exists a p-summable function ¢ on X such that ¢(x) > 0 for all

r e X.

2.2.5 Integral of functions with variable sign

Let o: X — R be a Borel function. We say that ¢ is u-summable if there
exist two p—summable Borel functions f, g : X — [0, co] such that

o(x) = f(z) — g(x) Ve e X. (2.15)

In this case, the number

/Xsodu :—/deu—/xgdu. (2.16)

is called the integral of ¢ over X with respect to u. Let us check, as usual,
that the integral of ¢ is independent of the choice of functions f, g used to
represent ¢ as in (2.15). Indeed, let fi,¢91 : X — [0,00] be p—summable
Borel functions such that

o(z) = fi(z) — g1(v) Vo e X.
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Then, f,g, fi and ¢, are finite a.e., and

f@)+ g(z) = fi(z) + g(x) z € X ae.

Therefore, owing to Exercise 2.47.2 and Proposition 2.38, we have

/fdu+/gldu=/f1du+/gdu-
X X X X

Since the above integrals are all finite, we deduce that
/ fdu —/ gdp = / frdp —/ grdp
X X X X

Remark 2.49 Let ¢: X — R be a p—summable function.

as claimed.

1. The positive and negative parts

" (x) = max{p(z), 0}, ¢~ (z) = max{—p(x),0}.

are positive Borel functions such that ¢ = ™ — ¢~. We claim that
¢ and ¢~ are p—summable. Indeed let f,g : X — [0, 00] be Borel
functions satisfying (2.15). If z € X is such that ¢(x) > 0, then
o (x) = p(z) < f(z). So, ¢ (x) < f(x) for all x € X and, recalling
Exercise 2.47.1, we conclude that ¢* is p—summable. Similarly, one
can show that ¢~ is y—summable. Therefore,

/sodﬂz/ @*du—/ p~dp.
X X X

2. From the above remark we deduce that ¢ is py—summable iff both o+
and ¢~ are summable. Since |p| = ¢t 4 ¢, it is also true that ¢ is
p—summable iff |¢| is p—summable. Moreover,

/Xsadu' S/X!w\du- (2.17)

/sodu‘ = /Wdu—/sodu‘é
X X X
< /s@*dw/s@du:/ |pldp.
X X X

Indeed,
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Remark 2.50 The notion of integral can be further extended allowing infi-
nite values. A Borel function ¢: X — R is said to be u—integrable if at least
one of the two functions ¢+ and ¢~ is p—summable. In this case, we define

/wduz/ w*du—/ P~ dp.
X X X

Notice that [, ¢du € R, in general.

In order to state the analogous of Proposition 2.38, we point out that the sum
of two functions with values on the extended space R may not be well defined;
thus we need to assume that at least one of the function is real-valued.

Proposition 2.51 Let p,1) : X — R be pu-summable functions. Then, the
following properties hold.

(i) If ¢ : X — R, then, for any o, B € R, ap + (1 is p—summable and

/X(asDJrW)du:oz/Xsodquﬁ/deu.

(il) If ¢ <, then [y pdp < [y bdpu.
Proof.

(i) Assume first o, 5 > 0 and let f, g, f1, g1 be positive u-summable func-
tions such that

o(z) = f(x) — glx)
V(@) = fi(z) — () } vreX

Then, since f and g are finite, we have ap+5Y = (af+0f1)—(ag+5g1)

and so,

[ e+ 0= [ (s s5au— [ g+ sodn

X

The conclusion follows from Proposition 2.38(i). The case when «, 3
have different signs can be handled similarly.
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(i) Let ¢ < 1. Tt is immediate that ¢ < ¢* and ¥~ < ¢~. Then by
Proposition 2.38(ii) we obtain

Jovtn= [ wran [ vinz [ i [ oau= [ oan
O

Let ¢: X — R be y—summable and let A € £. Then, y4¢ is g—summable
because |xap| < |¢|. Let us define

/wdu 12/ xapd .
A X

Since ¢ = xa¢ + Xacyp, from Proposition 2.51.(i) we obtain

/@du—l—/ <pd,u:/ od . (2.18)
A e X

Notation 2.52 If X = RY and A € B(RY), we will write “[, p(x)dz”,
“fA o(y)dy” etc. rather then fA wdp when the integrals are taken with respect
to the Lebesgue measure.

Proposition 2.53 Let ¢ : X — R be a p-summable function.
(i) The set {|p| = oo} has measure 0;
i) If o =0 a.e., then [, odu =0;
(ii) If A € € has measure 0, then [, edp = 0;
(iv) If [, edp =0 for every E € €, then ¢ =0 a.e.

Proof. Parts (i), (ii) and (iii) follow immediately from Proposition 2.35. Let
us prove (iv). Set £ = {¢™ > 0}. Then we have

O:/godu:/g0+du.
E X

Proposition 2.35(ii) implies ™ = 0 a.e. In a similar way we obtain ¢~ = 0
a.e. U

The key result provided by the next proposition is referred to as the
absolute continuity property of the integral.
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Proposition 2.54 Let ¢: X — R be p-summable. Then, for any ¢ > 0
there exists 0, > 0 such that

n(A) <d. = / loldp < €. (2.19)
A

Proof. Without loss of generality, ¢ may be assumed to be positive. Then,

¢n(x) == min{p(z),n} T p(z) VzeX.

Therefore, by Beppo Levi’s Theorem, fX Ondp T fX wdp. So, for any € > 0
there exists n. € N such that

()S/(gp—gon)al,u<E Yn >n..
e 2

Then, for p(A) < 55, we have

2ne?
/ pdu < / wnsdu+/ (¢ — e )dp < e.
A A b
We have thus obtained (2.19) with 0. = 5= O

Exercise 2.55 Let ¢: X — R be y—summable. Show that

lim loldp = 0.

"0 S {lel>n}

2.3 Convergence of integrals

We have already obtained two results that allow passage to the limit in
integrals, namely Beppo Levi’s Theorem and Fatou’s Lemma. In this section,
we will further analyze the problem.

2.3.1 Dominated Convergence

We begin with the following classical result, also known as Lebesgue’s Dom-
inated Convergence Theorem .



Chapter 2 63

Proposition 2.56 (Lebesgue) Let o, : X — R be a sequence of Borel
functions converging to @ pointwise. Assume that there exists a positive ji-
summable function ¢ : X — [0, 00] such that

lon(2)| < ¥(x) VreX,VneN. (2.20)

Then, ©n, ¢ are p—summable and

lim gpndp:/ wdjt . (2.21)
X b

n—oo

Proof. First, we note that ¢,, ¢ are py-summable because they are Borel
and, in view of (2.20), |¢(z)| < ¢(x) for any x € X. Let us prove (2.21)
when 1 : X — [0, +00). Since ¥ + ¢, is positive, Fatou’s Lemma yields

/(¢+<p)du§1iminf/(¢+90n)du:/ ¢d,u+liminf/ Ondpt .
X nmee JX X nmee JXx

Consequently, since | « Ydp is finite, we deduce

/gpd,ugliminf/ Ondjt . (2.22)
X e Jx
Similarly,
[ = ppdn < timint [ (0= o= [ v~ timsp [ g
X e JX X n—oo  JX
Whence,
/ wdp > limsup/ Ondfi . (2.23)
b n—oo JX

The conclusion follows from (2.22) and (2.23).

In the general case ¢ : X — [0, 00], consider £ = {x € X |¢(x) = oo}.
Then (2.21) holds over E¢ and, by Proposition 2.35(i), we have u(E) = 0.
Hence we deduce

/sﬁnduz/ sondu—>/ s@duz/ e
X Ec Ec¢ X

Exercise 2.57 Derive (2.21) if (2.20) is satisfied a.e. and ¢, == ¢, with ¢
Borel.

U
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Exercise 2.58 Let ¢, ¢ : X — R be Borel functions such that ¢ is -
summable and v in p-integrable. Assume that ¢ or 1 is finite. Prove that
@ + 1 is p-integrable and

/X(soﬂ/})du:/xsodw/x@/)dw

Exercise 2.59 Let ¢, : X — R be Borel functions satisfying, for some
summable function ¢ : X — R and some (Borel) function ¢,

on(z) > (x)
onlz) T () } vrex.

Show that ¢,, ¢ are p-integrable and

lim gondu:/ wdp .
D' X

n—oo

Exercise 2.60 Let ¢, : X — R be Borel functions satisfying, for some
p—summable function ¢ and some (Borel) function ¢,

on(z) > ()
onlz) — 9(2) } vreX.

Show that ¢,, ¢ are p-integrable and

/god,ugliminf/ Ondyt .
X n—oo X

Exercise 2.61 Let ¢, : X — R be Borel functions. Prove that, if y is finite
and, for some constant M and some (Borel) function ¢,

|on(2)] < M

enl) — () } VEEX,

then ¢, and ¢ are y-summable and

lim (,pndp:/ wdp .
b'e X

n—oo



Chapter 2 65

Exercise 2.62 Let ¢, : R — R be defined by

0 x < 0;
on(T) = ¢ (7] 10g.¢1:|)_% 0<z<1;
(xlogz)™ x> 1;

Prove that
i) ¢, is summable (with respect to the Lebesgue measure) for every n > 2;
i) limy, oo fp on(2)de = 1.

Exercise 2.63 Let (p,), be defined by

n x
on(T) = Wlog (1 + 5), z € [0,1].

Prove that
i) ¢, is summable for every n > 1;
i) lim, 400 fol on(x)dr = 2.
Exercise 2.64 Let (¢,), be defined by

e

on(x) = o 22 z € [0,1].
Prove that:
i) on(x) < \/%E for every n > 1;
i) limp,— oo fol on(x)dr = 0.
Exercise 2.65 Let (¢,), be defined by
on(T) = #Sin%, x> 0.

Prove that

1. ¢, is summable for every n > 1;

2. lim, f0+00 on(x)dz = 0.
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2.3.2 Uniform integrability

Definition 2.66 A sequence ¢, : X — R of u-summable functions is said
to be uniformly p—summable if for any € > 0 there exists d. > 0 such that

u(Ad) <o, = / lonldp < e Vn e N. (2.24)
A
In other terms, (¢,), is uniformly summable iff

lim / nldi = 0 uniformly in n.
w(A)—0 A‘QO | H Y

Notice that such a property holds for a single summable function, see Propo-
sition 2.54.

The following theorem due to Vitali uses the notion of uniform summa-
bility to provide another sufficient condition for taking limits behind the
integral sign.

Theorem 2.67 (Vitali) Let ¢, : X — R be a sequence of uniformly pu-
summable functions satisfying

Ve >0 3B. € £ such that u(B.) < +oo and lonldp < e ¥n. (2.25)

Be

If (on)n converges to ¢ : X — R pointwise, then ¢ is p-summable and

lim gpndp:/ wdp .
D' X

n—oo

Proof. Let ¢ > 0 be fixed and let §. > 0, B. € € be such that (2.24)-(2.25)
hold true. Since, by Theorem 2.25, ,, = ¢ in B., there exists a measurable
set A. C Be such that u(A.) < 0. and

©n — @ uniformly in B \ A.. (2.26)

So,
/ [on — @ldp = / lon — wldp +/ lon — wldp +/ lon — @ldp
X Bg Ae Be\Ae

S/ |son|d/z+/ |¢|du+/ |90n|du+/ \ldp + p(Be) sup |¢n — .
BEC Bg Ac Ac BE\AE
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Notice that [, [enldp <&, [ l@aldu < e by (2.24)-(2.25). Also, owing to
Corollary 2.41, [, |pldu <e, [p. |pldp <e. Thus,

/ lon — @ldu < 4e + pu(B.) sup |, — o .
X B:\ A

Since u(B:) < 400, by (2.26) we deduce

/ o — pldu — 0. (2.27)

Then ¢, — ¢ is p-summable; consequently, since ¢ = (¢ — ¢,) + @n, by
Proposition 2.51(i) ¢ is g-summable. The conclusion follows by (2.17) and
(2.27). O

Exercise 2.68 Derive (2.21) if ¢,,, ¢ : X — R, ¢, ¢ are a.e. finite, ¢, ——
@ and ¢ is Borel.

For finite measures, (2.25) is always satisfied by taking B. = X; hence
Vitali’s Theorem states that uniform summability is a sufficient condition to
pass to the limit under the integral sign.

Corollary 2.69 Let pu(X) < oo and let ¢, : X — R be a sequence of
uniformly p-summable functions converging to ¢ : X — R pointwise. Then

lim gpndp:/ wdpu .
D' b'e

n—oo

Exercise 2.70 Give an example to show that when p(X) = oo (2.25) is an
essential condition for Vitali’s Theorem.
HINT: consider ¢, () = Xjnnt1)(2) in R.

Remark 2.71 We note that property (2.25) holds for a single summable

function ¢. Indeed, by Proposition 2.34, the sets {|¢| > 1} have finite
measure and, by Lebesgue’s Theorem,

/ |pldp = / X{\¢|gl}‘¢‘dﬂ — 0 asn — oo.
{lel<5} X "
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Remark 2.72 We point out that Vitali’s Theorem can be regarded as a gen-
eralization of Lebesgue’s Theorem. Indeed, by Proposition 2.54 and Remark
2.71 it follows that properties (2.24)-(2.25) hold for a single summable func-
tion. Therefore, if (¢,), is a sequence of Borel functions satisfying (2.20)
for some summable function v, then ¢, is uniformly summable and satis-
fies (2.25). The converse is not true, in general. To see this, consider the
sequence p = nX[1 1y 1); since [, ppdr = l then (¢,), satisfies (2.24)-

(2.25); on the other hand sup, ¢, = ¥ Where Y = En 1 XL L4 ) and

fR Ydxr = :ﬁ% = 00; consequently the sequence (¢,)n cannot be domi-

nated by any summable function.

2.3.3 Integrals depending on a parameter

Let (X, &, u) be a o—finite measure space. In this section we shall see how to
differentiate the integral on X of a function ¢(x,y) depending on the extra
variable y, which is called a parameter. We begin with a continuity result.

Proposition 2.73 Let (Y,d) be a metric space, let yo € Y, let U be a neigh-
bourhood of vy, and let
p: X XY —R

be a function such that

(a) x> @(z,y) is Borel for everyy € Y;

(b)  y+— p(z,y) is continuous at yo for every x € X;
(¢)  for some p—summable function

ol y)l <o) VeeX,vyel

Then, ®(y) == [y ¢(z,y)p(dz) is continuous at yo.

Proof. Let (y,) be any sequence in Y that converges to yy. Suppose, further,
€ U for every n € N. Then,

©(x,yn) — p(T,0) as m — o0
Vere X
! { lo(z,yn)| < Y(x) Vn € N.
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Therefore, by Lebesgue’s Theorem,

/Xsa(x,yn)u(dx) — /Xso(%yo)u(dl’) as 1 — 00

Since (y,) is arbitrary, the conclusion follows. [J

Exercise 2.74 Let p > 0 be given. For t € R define

(2) = |71| gPe~ /It x € [0,1] (t#0)
70 (t =0)

For what values of p does each of the following hold true?
(a)  @i(x) == 0ast—0;
(b) ¢ — 0 uniformly in [0, 1] as t — 0;

(c) fol wi(x)dr — 0 as t — 0.

For differentiability, we shall restrict the analysis to a real parameter.
Proposition 2.75 Assume ¢ : X X (a,b) — R satisfies the following:
(a) x> p(x,y) is Borel for every y € (a,b);

(b)  y+ p(x,y) is differentiable in (a,b) for every x € X;

(¢)  for some p—summable function 1,

sup
a<y<b

)
8—§(x,y)‘ <y(z) VreX.

Then, ®(y) == [y ¢(z,y)p(dz) is differentiable on (a,b) and

¥(y) = /X Z—jm,y) u(de),  ye(ab).

69
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Proof. We note, first, that z — g—“;(x, y) is Borel for every y € (a, b) because

Op 1

@) = Imnfp(ry+ o) —eley)] V)€ X x (@),

Now, fix yo € (a,b) and let (y,) be any sequence in (a,b) converging to .
Then,

D(y,) — Py o(x,yn) — ©(T, Y
(Yn) (o):/( ) ( o)de)
Yn — Yo X Yn — Yo
R ACKTY)

and
o(x,yn) — (2, 10)
Yn — Yo

< (x) Vre X, VneN

thanks to the mean value theorem. Therefore, Lebesgue’s Theorem yields

®(yn) = (yo) / O
— —(z,y dr) as n— o0

Yn — Yo Xay( o) )
Since (y,) is arbitrary, the conclusion follows. [J
Remark 2.76 Note that assumption (b) above must be satisfied on the
whole interval (a,b) (not just a.e.) in order to be able to differentiate under
the integral sign. Indeed, for X = (a,b) = (0,1), let

1 if y>u
0 if y<ux.

p(r,y) = {
Then, g—‘;(x, y) = 0 for all y # x, but

<I>(y)=/090(x,y)dx=y = Py =1.

Example 2.77 Let us compute the integral
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71

Since ®(—y) = P(y), without loss of generality we can suppose y > 0.

Observe that

0 _xz_% . 2y _x2_Y
dy a2
e~ % 2 2 2 —x?
- = y—Qe*%S ¢ fory>r>0
y X r
—
<l/e
Therefore, for any y > 0,
o 2y 2y
@l — _ -J T 22 d
) JAE T
—y/a 2
t=y/ —2/ Y — et % dt = —2P(y)
0 Y
Since .
/ e dr = ﬁ ,
0 2
solving the Cauchy problem
{ ®'(y) =}2<I>(y)
©(0) =5
and recalling that ® is an even function, we obtain
a(y) = YT (yeR)

U

Example 2.78 Applying Lebesgue’s Theorem to counting measure, we shall

compute

2—2'
n

).

©n(i) := nsin < iz>

satisfies |, (7)] < 271. Then, by Lebesgue’s Theorem we have

lim igpn(z) = i lim (i) = i2_i =1
i=1 i=1 i=1

o0
lim n g sin(
n—oo

i=1

Indeed, observe that
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Exercise 2.79 Compute the integral

o -
sin
dx
0 x

proceeding as follows.

(i) Show that

is differentiable for all ¢ > 0.

HINT: recall
e sing| <e ™ <e ™ Vi>r >0, Ve e R,

(ii) Compute ®'(t) for t €]0, co.
HINT: proceed as in Example 2.77 noting that

. tsinx +cosx _
e msmx:——26 tz
1+t

(iii) Compute ®(t) (up to an additive constant) for all ¢ €]0, ool.

(iv) Show that ® continuous at 0 and conclude that

®sinx T
de = —
0 x 2

HINT: observe that, for any € > 0,

L4y SINT

dx

|c1>(t)|gg+)/:oe

i
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LP spaces

3.1 Spaces LP(X,E, u) and LP(X, &, 1)

For any p € [1,00), we denote by LP(X, €, u) the class of all Borel functions
¢ : X — R such that |p|P is p—summable, and we define

1/p
el = ( /X |s0|pdu) Ve € LI(X, E, ).

Remark 3.1 It is easy to check that £P(X,&,u) is closed under the fol-
lowing operations: sum of two functions (provided that at least one is finite
everywhere) and multiplication of a function by a real number. Indeed,

acR,peLVX.Ep) = apell(X,Ep) & fapl, = lalllel,-
Moreover, if @, € LP(X,E, u) and ¢ : X — R, then we have
lo(z) + (@) < 277 H(p(@) + [(@)P) Y Vre X,
and so ¢ + 1 € LP(X, &, ).

Example 3.2 Let p be the counting measure on N. Then, we will use the
notation ¢ for space L£P(N, P(N), ). We have

o0
xn € R, Z |z, |P < oo}.

n=1

o ={ @,

(WSince f(t) = P is convex on [0, 00), we have that |“T+b|p < M for all a,b > 0.

73



74 L? spaces

Observe that
1<p<q = PFcCu.

Indeed, since ) |z,|? < 00, (), is bounded, say |z,| < M for all n € N.
Then, |z,|? < M?P|z,[P. So, > |z,]? < oco.

Example 3.3 Consider Lebesgue measure A on ((0,1],B((0,1])). We use
the abbreviated notation £7(0, 1) for space £P((0,1], B((0,1]),\). Let us set,
for any o € R

Yo(z) =2%  Vze(0,1].

Then, ¢, € £P(0,1) iff ap+1 > 0. Thus, £7(0, 1) fails to be an algebra. For
instance, p_1/2 € L1(0,1) but vy = ¢*, , ¢ L1(0,1).

We have already observed that || - ||, is positively homogeneous of degree
one. However, || - ||, in general is not a norm ? since [|p||, = 0 if and only if
o(x) =0 for a.e. z € X.

In order to construct a vector space on which || - ||, is a norm, let us

consider the following equivalence relation on LP(X, &, p):

py = 9= (3.1)

Let us denote by LP(X, €, i) the quotient space LP(X,E, 1)/ ~. For any ¢ €
LP(X, E, u) we shall denote by ¢ the equivalence class determined by . It is
easy to check that LP(X, &, i) is a vector space. Indeed, the precise definition
of addition of two elements ¢y, @y € LP(X,E, u) is the following: let fi, fo
be “representatives” of ©; and @, respectively, i.e. fi € @1, fo € @9, such
that fi, fo are finite everywhere (such representatives exist by Proposition
2.53(i)). Then @ + @5 is the class containing fi + fo.
We set

1@l = llell,  Voe LP(X,E p).
It is easy to see that this definition is independent of the particular element ¢

chosen in ¢. Then, since the zero element of LP(X, £, ) is the class consisting
of all functions vanishing almost everywhere, it is clear that ||¢]|, = 0 iff

() Let Y be a vector space. A normon Y is a mapping Y — [0, +00), y ~ ||y|| such that:
(i) 1yl = 0iffy = 0, (i) llayl) = |a |ly] for all @ € Rand y € ¥, (ii) lys+2ll < 1y |+
for all y1,y2 € Y. The space Y, endowed with the norm || - ||, is called a normed space. It
is a metric space with the distance d(y1,y2) = |ly1 — v2||, y1,¥2 € Y. If it is a complete
metric space, then Y is called a Banach space.
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¢ = 0. To simplify notation, we will hereafter identify ¢ with ¢ and we will
talk about “functions in LP(X, &, pu)” when there is no danger of confusion,
with the understanding that we regard equivalent functions (i.e. functions
differing only on a set of measure zero) as identical elements of the space
LP(X,E ).

In order to check that || - ||, is a norm we need only to verify that || - ||,
is sublinear. First we derive two classical inequalities that play an essential
role in real analysis. Let 1 < p,q < co. We say that p and ¢ are conjugate

exponents if
1 1

Sio=1.
P q
Proposition 3.4 (Holder) Letp,q € (1,00) be conjugate exponents. Then,
for any o € LP(X,E, 1) and ¢p € LI(X,E, u), we have that o € LY (X, E, 1)
and

lells < llellp 19llq - (3.2)

Proof. The conclusion is trivial if ||¢||, = 0 or |||, = 0. Assume next
lell, > 0 and [|¢)[|, > 0, and set

PO P 10 I

el Il

Then, by Young’s inequality (A.4),

Vo e X. (3.3)

Integrating over X with respect to p yields

d 1 1
M:/fgdﬂg_/fpdﬁ_/quﬂzl_
el 121, Jx pJx 7 Jx

U

Remark 3.5 Suppose equality holds in (3.2). Then, equality must hold in
(3.3) for a.e. © € X. Therefore, recalling Example A.4, f(z)? = g(z)? for
a.e. x € X. We conclude that equality holds in (3.2) iff |p(z)[P = al(x)|?
for a.e. x € X and some « > 0.
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Corollary 3.6 Let pu(X) < oo. If 1 <p < g, then
LUX,E p) C LP(X,E, )

and
11
lelly < (u(X))r~allelly Ve e LUX,E p). (3.4)

Proof. By hypothesis, |p|P € L%(X ,E, ). Therefore, Holder’s inequality
yields

[ e < 0= ([ Jolran)

X X
The conclusion follows. U

Exercise 3.7 Let 1,9, ..., be functions such that
1 1 1 1

o e LP(X, Ep), —=—+—+...+— <1
p P P2 Pk

Then p1ps ..., € LP(X,E, 1) and

Iz prllp < leallp le2llps - - Nkl

Exercise 3.8 Let 1 <p<r <gandlet p € LP(X, &, u)NLUX,E, ). Then
pe L"(X, & p) and
lell- < llellp el ™

1_6 , 1-6
where = = 2 + =2,
T p + q

Proposition 3.9 (Minkowski) Let p € [1,00) and let p,¢ € LP(X,E, ).
Then, ¢+ € LP(X,E, 1) and

||90+¢Hp < ||90”p + Hpr (3.5)

Proof. The thesis is immediate if p = 1. Assume p > 1. We have

/ o+ oPdu < / o+ Pl + / o+ o[ ldu
X X X

Since |¢ + ¢[P~1 € LY(X,E, 1), where g = z%’ using Holder’s inequality we
find

1/q
[t upans ([ 1o+ opan) el + 1)
X X
and the conclusion follows. O

Then space LP(X, &, i), endowed with the norm || -||,,, is a normed space.
Our next result shows that LP(X, &, ) is a Banach space.
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Proposition 3.10 (Riesz-Fischer) Let (¢,), be a Cauchy sequence®™ in
the normed space LP(X,E, ). Then, a subsequence (¢, )ren and a function
@ in LP(X,E, u) exist such that

() P — @5
.. LP
(i) o — .

Proof. Since (¢,), is a Cauchy sequence in LP(X, &, ), for any i € N there
exists n; € N such that

lon — omllp < 9t Vn,m > n;. (3.6)

Consequently, we can construct an increasing sequence n; such that

ngmﬂ — Onillp < 27" Vi € N.

Next, let us set

90) = 3 [ona @) = pn@)]. 90(8) = D () — P, k2 1.

Minkowski’s inequality shows that ||gx||, < 1 for every k; since g T g, the
Monotone Convergence Theorem ensures that

/ |g[Pdp = lim /|9k|pdﬂ <1
X k—oo

Then, owing to Proposition 2.35, ¢ is finite a.e.; therefore the series

o0

Z(SDW-H - 90711) + Py

i=1
converges almost everywhere on X to some function . Since

k
Z(SOMH - 907%‘) T Oni = P

i=1

®that is for any € > 0 there exists n. € N such that n,m > n. = [|on — Pmll, < &
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then

o(x) = kirn ©n, (z) for a.e. z € X.

Observe that ¢ is a Borel function; moreover, |p(z)| < g(x) + |pn, (z)| for
a.e. x € X. So, p € LP(X, &, ). This concludes the proof of point (i).
Next, to derive (ii), fix € > 0; there exists N € N such that

lon — omll, <e Vn,m > N.

Taking m = nj and passing to the limit as k¥ — oo, Fatou’s Lemma yields

/ lon — @lPdp < liminf/ |on — @n, [Pdp < €P Yn > N.
b k—oo Jx
The proof is thus complete. O

Notation 3.11 If A € B(RY), we will use the abbreviated notation LP(A)
for space LP(A, B(A), \) where X is the Lebesgue measure.

Example 3.12 We note that the conclusion of point (i) in Proposition 3.10
only holds for a subsequence. Indeed, given any positive integer k, consider
the function

vi(x) = k k
0 otherwise,

defined on the interval [0,1). The sequence

1 2 2 k k k
P1:P1: P2y -5 P1 P2y Py - -

converges to 0 in LP([0,1)), but does not converge at any point whatsoever.
Observe that the subsequence ¥ = X[o,1) converges to 0 a.e.

Exercise 3.13 Generalize Exercise 2.55 showing that, if ¢, L, ©, then

lim sup/ lonld = 0.
#7220 neN J{lon|2k}

HINT: observe that

/ lonldp < 2/ lon — | V |o|du
{len|>2k} {len—wlV]p|>k}

2/ Ison—soldﬂ+2/ ol dp.
{lpn—el =k} {lpl>k}

IA
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Example 3.14 There are measure spaces (X, &, u) such that
LP(X, € p) & LYX,E, )

for p # q. For instance, consider Lebesgue measure A in [0, 1) and set

n=1

where d, denotes the Dirac measure concentrated at y. Then, p(z) := z is
in L2(X,&,u) \ L' (X, &, 1) because

1 1
2
xodp = ——1—5 — < 00,
/[0,1) g 3 n’

/ 1 1
xdp = =+ — =00.
0.0 2 =n

On the other hand,

[ = if z€[0,1)\Q
w(x)‘_{ 0 it z€0,1)NQ

belongs to L' (X, &, n) \ L*(X, &, ) since

w a\

e
W (x)dp = /

Exercise 3.15 Show that LP(R) ¢ L(R) for p # q.
HINT: consider f(z) = |z(log? |z| + 1)|7*/? and show that f € LP(R) but
/& LU(R) for g £ p.

Exercise 3.16 Let (¢,), be a sequence in L'(X, &, ). If

Z/ |nldp < 00,
n=1 X

[0,1)
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then

(i) Z |<,0n($)] < o0 a.e.,
(i) S on € LYX,E, 1),
(iii) Z/X@nd/i:/XZgondu.

Exercise 3.17 Let 1 < p < oo. Show that if ¢ € LP(R"Y) and ¢ is uniformly
continuous, then

| l‘im o(z) = 0.
HINT: if, by contradiction, (x,), C R is such that |x,| — oo and |o(z,)| >
0 > 0 for every n, then the uniform continuity of ¢ implies the existence of
n > 0such that [¢(z)| > 2 in B(z,,n). Show that this yields [,y [p[Pdz = occ.

Exercise 3.18 Show that the result in Exercise 3.17 is false in general if one

only assumes that ¢ is continuous.
HinT: Consider

falx) =< 1—na if

defined on R and set p(z) =Y o0 n'/Pf,(z —

3.2 Space L>*(X,&, )
Let ¢: X — R be a Borel function. We say that ¢ is essentially bounded if
there exists M > 0 such that u(|¢| > M) = 0. In this case, we set

[@lloc = inf{M > 0| u(le| > M) = 0}. (3.7)
We denote by L>(X, €, i) the class of all essentially bounded functions.
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Example 3.19 The function ¢ : (0,1] — R defined by

1
1 if z#—
n
p(z) =
n if r=-—
n

is essentially bounded and ||¢||o = 1.

Example 3.20 Let p be the counting measure on N. In the following we
will use the notation ¢ for space L>(N,P(N), ). We have

0 = {(xn)n | 2n € R, sup |z,| < oo}

Observe that
P Cl* Vpell, ).

Remark 3.21 Recalling that ¢ — p(]p| > t) is right continuous (see Propo-
sition 2.28), we conclude that

My | My & pllol>M,) =0 = pul(lg|l > M) =0.

So, the infimum in (3.7) is actually a minimum. In particular, for any ¢ €
L2(X,E, ),
lo(@)| < [|¢lloo for a.e. z € X. (3.8)

In order to construct a vector space on which || - ||« i a norm we pro-
ceed as in the previous section defining L*(X, &, ) as the quotient space
of £2(X, €&, u) modulo the equivalence relation introduced in (3.1). So,
L>(X,&, 1) is obtained by identifying functions in £>*(X, &, 1) that coin-
cide almost everywhere.

Exercise 3.22 Show that L>(X, &, ) is a vector space and || - || is @ norm
in L>(X, &, p).

HINT: use (3.8). For instance, for any a # 0, we have |ap(z)| < |a|||¢|lso
for a.e. x € X. So, ||ag|lw < |a|||¢lle. Hence, we also have

1 1
Iellee = || >0 < = ol
a e T af

Thus, [|o]lee = o] [|¢]|so-
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Proposition 3.23 L*(X, &, u) is a Banach space.

Proof. For a given Cauchy sequence (p,), in L>(X,E, u), let us set, for
any n,m € N,

An = {lenl > llenlleot
Bnn = {lon — @ml > llen — Omlloc} -

Observe that, in view of Remark 3.21,
w(A,) =0 & w(Bmn) =0  Vm,neN.
Therefore,
XQ = (UnAn) U (Um,an,n)

has measure zero and (¢y,), is a Cauchy sequence for uniform convergence on
X§. Thus, a Borel function ¢ : X — R exists such that ¢,, — ¢ uniformly
on X§. This suffices to get the conclusion. 4

Corollary 3.24 Let (¢n), C L™(X,E,u) be such that ¢, KGR ©. Then

)
Exercise 3.25 Show that
pe (X, p), b e L¥(X.Ep) = i€ IP(X,E p)

and
el < llllp 191 co-

Notation 3.26 If A € B(R"), we will use the abbreviated notation L>(A)
for space L>=(A, B(A),\) where X is the Lebesque measure.

Example 3.27 It is easy to realize that spaces L>([0, 1]) and ¢* fail to be
separable .
1. Set
() = Xjo,q(2) Vi, x € [0,1].
We have
t#s = |lor— psllo = 1.

(A metric space is said to be separable if it contains a countable dense subset.
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Let us argue by contradiction: assume that (¢,), is a dense countable set in
L>([0,1]). Then,
Loo([oa 1]) C UnBl/Q(()On> ) )

in contrast with the fact no pair of functions of the family (¢;):cp,1] belongs
to the same ball By/s(¢y,).

2. Let (x,), be a countable set in £>° and define the function

N — =
! T 1+ a(k) if |ze(k)| < 1.

We have z € (*° and ||z|| < 2. Furthermore, for every n € N

|7 = Znlloe = sup |2(k) = 2a (k)] 2 (n) = zn(m)] = 1;

consequently (z,), is not dense in .

Proposition 3.28 Let p € [1,4+00) and ¢ € LP(X,E, pn) N L=¥(X,E, ).
Then,

pe (X&) & Tim[lelly = ol

q2p
Proof. For ¢ > p we have
[p(@)|* < lloll&Ple(@)[” forae. v e X,

by which, after integration,

D 1—-P2
lellq < llells llselloo *

Consequently ¢ € N>, L9(X, E, 1) and

thUP||90Hq < ||90Hoo (3.9)

q—00

Conversely, let 0 < a < ||¢]|oo (for |||l = 0 the conclusion is trivial). By
Markov’s inequality

el > a) = p(lelf > a”) < a P[|p|b.

®)Given a metric space (Y,d), for any yo € Y and r > 0 we denote by B,(y0) the open
ball of radius r centered at yg, i.e. B.(yo) ={y €Y | d(y,y0) < r}.
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Consequently,

el > ap(le| > a)'?,

whence, since u(|¢| > a) > 0,
lim inf {|¢]l, = a.
Since a is any number less than ||¢[|«, we conclude that
lim inf {|p]l, 2 flolloc- (3.10)

From (3.9) and (3.10) the conclusion follows. O

Corollary 3.29 Let u be finite and let p € L=(X,E, ). Then,

pe(LMX.En) & Jim [lpll, = flolloo- (3.11)

p>1

Proof. For p > 1 we have

[ le@Putdz) < )l
So, p € N,LP(X, &, ). The conclusion follows from Proposition 3.28. O

It is noteworthy that

(VLP(X,E 1) # L¥(X,E, ).

p>1
Exercise 3.30 Show that
o(x):=logx  Va € (0,1]

belongs to LP((0, 1]) for all p € [1,00), but ¢ ¢ L>*((0, 1]).
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3.3 Convergence in measure

We now present a kind of convergence for sequences of Borel functions which
is of considerable importance in probability theory.

Definition 3.31 A sequence v, : X — R of Borel functions is said to con-
verge in measure to a Borel function o if for every € > 0:

w(lon — | >¢€) =0 asn — +o0.
Let us compare the convergence in measure with other kind of convergences.

Proposition 3.32 Let ¢,, ¢ : X — R be Borel functions. The following
holds:

1. If o, 2% o and p(X) < 400, then @, — @ in measure;
2. If v, — @ in measure, then there exists a subsequence (p, )r such that
Py, == ;

3. If1 <p< 400 and ¢, N @, then @, — @ in measure.

Proof. 1. Fix e, n > 0. According to Theorem 2.25 there exists £ € £ such
that u(E) < n and ¢,, — ¢ uniformly in X \ E. Then, for n sufficiently large

{lon —pl =} CE,

by which
plen — ol 2 €) < p(E) <.

2. For every k € N we have

1
u(!s@n—@\zﬁ—wasnﬁoo;

consequently, we can construct an increasing sequence (ny ), of positive inte-
gers such that
1 1
u(l% —p| = E> <5 VkeN

Now set
o0

A= {lon ol = %} A= ﬁAk.
k=1

i=k
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Observe that p(Ay) < Y7, 5 for every k € N. Since Ay, | A, Proposition
1.16 implies

p(A) = lim p(Ay) = 0.

For any x € A there exists k € N such that z € Af, that is
.
[oni(2) — @) < < Vi k.

This shows that (¢, )r converges to ¢ in A°.

3. Let € > 0 be fixed. First assume 1 < p < co. Then Markov’s inequality
implies

1
M(|80n_90’>5)§€—p/ lon — @Pdp — 0 as n — +oc.
X

If p = o0, for large n we have |¢, — ¢| < € a.e. in X, by which u(|p, — ¢| >
e)=0. O

Exercise 3.33 Show that the conclusion of Part 1 in Proposition 3.32 is
false in general if u(X) = oo.

HINT: Consider f, = Xjn,+o) in R.

Example 3.34 Consider the sequence constructed in Example 3.12: it con-
verges to 0 in L'([0,1)) and, consequently, in measure. This example shows

that Part 2 of Proposition 3.32 and Part (i) of Proposition 3.10 only hold for
a subsequence.

Exercise 3.35 Give an example to show that the converse of Part 3 in
Proposition 3.32 is not true in general.

HinT: Consider the sequence f, = nxj 1) in [0,1].

3.4 Convergence and approximation in L’

In this section, we will exhibit techniques to derive convergence in mean
of order p from a.e. convergence. Then, we will show that all elements of
LP(X, &, 1) can be approximated in mean by continuous functions.
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3.4.1 Convergence results

In this section we shall use the abbreviated notation LP(X) for LP(X, &, u)
when there is no danger of confusion.

The following is a direct consequence of Fatou’s Lemma and Lebesgue’s
Theorem.

Corollary 3.36 Let 1 < p < oo and let (¢,)n be a sequence in LP(X) such
that @, ~< .

(i) If (¢n)n is bounded in LP(X), then ¢ € LP(X) and

lpllp < liminf [[on],.

(i) If, for some ¢ € LP(X), |@n(x)| < ¢(x) for alln € N and a.e. x € X,
then ¢ € LP(X) and ¢, — .

Exercise 3.37 Show that, for p = oo, point (i) above is still true, while (ii)
is false.

HINT: consider the sequence ¢, (z) = X(,,l)(ﬂf) in (0,1).

1
Now, observe that, since | ||@n|l,—||¢llp | < lon—¢|lp, the following holds:

P
on— ¢ = leall, = llell-

Then a necessary condition for convergence in LP(X) is convergence of LP—

. a.e. P .
norms. Our next result shows that, if ¢, — ¢, such a condition is also
sufficient.

Proposition 3.38 Let 1 < p < oo and let (p,), be a sequence in LP(X)
such that o, —= @. If o € LP(X) and ||enll, — [l¢llp, then o, 0.

Proof. ©®) Define
on() — o) |”

) = [on(@)|P + le(@)[”
2

5 Ve e X.

Uy (2

(G)By Novinger, 1972.



88 L? spaces

Since p > 1, a simple convexity argument shows that v,, > 0. Moreover,
UVn 25 |plP. Therefore, Fatou’s Lemma yields

/ lp[Pdp < liminf / Undp
X n—oo X

_ p
— / lp[Pdy — limsup/ @n(2) = p(x) du.
X n—oo Jx 2
So, limsup,, ||¢n — ¢|, < 0, by which ¢, LN ®. d

The results below generalize Vitali’s uniform summability condition, and give
applications to LP(X) for p > 1. We begin by giving the following definition.

Definition 3.39 Let 1 < p < o0o. A sequence (@), in LP(X) is said to be
tight if for any € > 0 there exists A. € € such that

(A < oo & lonlPdu < € Vn e N.
Ag

Corollary 3.40 Let 1 < p < oo and let (p,)n be a sequence in LP(X)
satisfying the following:

A) w0
(ii)  for every € > 0 there exists § > 0 such that

p <5 — [ feupdn<e.
A

(i)  (¢n)n is tight.
Then, ¢ € LP(X) and ¢, N ©.

Proof. Let usset ¢, = |p,|P. Then, (¥,), is uniformly p-summable, satisfies
(2.25) and converges to |p|? a.e. in X. Therefore, Theorem 2.67 implies
p € LP(X) and

wm:L%W«e ol

The conclusion now follows from Proposition 3.38. U
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Remark 3.41 If p is finite, then, by taking A. = X we deduce that ev-
ery sequence is tight; hence, (i) and (ii) of Corollary 3.40 provide sufficient
conditions for convergence in LP(X).

Corollary 3.42 Assume u(X) < oco. Let 1 < q < oo and let (¢n)n be a
bounded sequence in LX) such that o, == . Then, © € Ni<pe LP(X)

and ., = o for any p € [1,q).

Proof. Let M > 0 be such that ||¢,|, < M for any n € N. Point (i)
of Corollary 3.36 implies ¢ € L(X); consequently, by Corollary 3.6, ¢ €
Mi<p<LP(X). Let 1 < p < q: by Hélder’s inequality for any A € £ we have

[ ([ erin) " ua s < o =t
A A
The conclusion follows from Corollary 3.40. 0

Corollary 3.43 Assume pu(X) < co. Let (¢n)n be a sequence in L' (X) such
that ©, == o and suppose that, for some M > 0,

/|¢n|10g+(|¢n|)du§M(7) neN.
X

Then, ¢ € LY(X) and ¢, -z, ®.

Proof. Fix e € (0,1), t € X, and apply estimate (A.5) with x = % and
y = €|en(t)] to obtain

[en(t)] < elon(®)og(elon(t)]) + = < elpn(t)log™ (lpn(t)]) + €=
Consequently, for any A € &,

/ lonldp < Me + p(A)e: VYn eN.
A

This implies that (p,), is uniformly pg-summable. The conclusion follows
from Theorem 2.67. U

Exercise 3.44 Show how Corollary 3.43 can be adapted to generic measures
for tight sequences.

(MHere, log* () = (logz) V 0 for any = > 0.
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3.4.2 Dense subsets of L?

Let  C RY be an open set and denote by C.(£2) the space of all real-valued
continuous functions on €2 which are zero outside a compact set K C ).
Clearly, if u be a Radon measure on (2, B(£2)), then

Ce(Q) € LP(Q,1)® Vp € [1,00].

Theorem 3.45 Let Q C RY be an open set and let ;v be a Radon measure
on (Q,B(2)). Then, for any p € [1,400), C.(2) is dense in LP(§2, u).

Proof. We begin by proving the theorem when Q = RY. We shall start
imposing additional assumptions and split the reasoning into several steps,
each of which will achieve a higher degree of generality.

1. Let us show how to approximate, by continuous functions with compact
support, any function ¢ € LP(RY, ) that satisfies, for some M,r >
0®

9

0< o) <M zeRYae (3.12)
o) =0 xcRY\ B, ae. (3.13)

Let € > 0. Since p is Radon, we have u(B,) < oo. Then, by Lusin’s
Theorem (Theorem 2.27), there exists a function ¢. € C.(R") such

that

plpe # @) < o) & leello <M.

Then,
/N lo — pelPdp < (2M)Pu(p: # ) < €.
R

2. We now proceed to remove assumption (3.13). Let ¢ € LP(RY, ) be
a function satisfying (3.12) and fix ¢ > 0. Since B, T RY, owing to
Lebesgue’s Theorem, fgc olPdp = fRN ‘90|pX§§Ldu — 0 asn — oo.
Then, there exists n, € N such that

/ loPdu < P (3.14)

ne

(8)Hereafter we shall use the abbreviated notation (€2, 1) for measure space (€, B(Q), ).
Hereafter, B, = B,.(0).



Chapter 3 91

Set . := @xg, - In view of Step 1, there exists ¢. € C.(RY) such that
loe — ¥e|l, < €. Then, by (3.14) we conclude that

o = Vellp < llp = @ellp + [l = Yellp, = H‘PXEZEHIJ + lpe — ellp < 2e.
3. Next, let us dispense with the upper bound in (3.12). Since
0 < pule) = min{p(x),n} 1 p(x) o €RY ac,

we have that ¢, LR @. Therefore, there exists n. € N such that

H(p_sOﬂ«S p<8

In view of Step 2, there exists ¥. € C.(R"Y) such that ||¢,. — .||, < e.
Then, [l = 4ellp < I = nllp + [ln. — Yellp < 2¢.

Finally, the extra assumption that ¢ > 0 can be disposed of applying Step 3
to ot and ¢~. The proof is thus complete in the case Q = R¥.
Next consider  C RY an open set and ¢ € LP(Q, 1). The function

{go(x) if x € Q,

PW=10  rerV\0

belongs to LP(RY | i) where ji(A) = u(AN Q) for every A € B(RY). Since
fi is a Radon measure on (RY, B(RY)), then there exists ¢. € C.(RY) such
that

/ ‘@—gps‘pdﬁgé‘.
RN

Let (V,,), be a sequence of open sets of RY such that

V, is compact, V, C Vyy, UpV, =9 (3.15)
(for example, we can choose V,, = B, N {z € Q|dg-(z) > 1} 19) and set

B dye, () 0
wn(l’) - 906(:6) dV,f+1 (l’) + an($)7 T :

(10)We recall that, given a nonempty set S C RV, dg(z) denotes the distance function of
x from S, see Appendix A.1
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We have 1, = 0 outside V1, by which v, € C.(Q). Furthermore 1, = ¢.
in V,, and |¢,| < ¢.; then, since V,, T Q, we deduce 1, — . in LP(Q, u).
Therefore, there exists n. € N such that

/ (e — V. [Pdp < €.
Q

Then,
/ o — Y [Pdp < 2“/ | — wePdp + 2”1/ e — . [Pdp
Q Q Q
—21 [ Jo— i 2 [ .- vnldn < 2
RN Q
O

Exercise 3.46 Given Q C R" an open set, explain why C.(f2) is not dense in
L>(Q) (with respect to the Lebesgue measure), and characterize the closure
of C.(2) in L>(Q).

HINT: show that the closure is given by the set Cy(€2) of the continuous
functions ¢ : 2 — R satisfying

Ve >0 3K C 2 compact s.t. sup |p(x)| <e.
zeQ\K

In particular, if Q = RY, we have

Co(RY) = {p: RY — R| ¢ continuous & lim o(z) = 0},

|x|—o00
while, if € is bounded,

Co(Q) = {¢: Q@ — Ry continuous & ] I%H)l ng(:p) =0},
QclT)—

Proposition 3.47 Let A € B(RY) and p a Radon measure on (A, B(A)).
Then LP(A, ) is separable for 1 < p < oo.

Proof. First assume 2 = RY. Denote by R the set of the rectangles in RY
of the form

N
R= H[akubk)a ak)7bk € Q7 ar < bk

k=1
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Let F the vector space on Q generated by (xr)rer, that is

F = {zn:CiXRi

i=1

neN,cie@,RieR}.

Then F is countable. We are going to verify that F is dense in LP(RY, )
for 1 < p < oo. Indeed, let ¢ € LP(RY, 1) and € > 0. According to Theorem
3.45 there exists p. € C.(RY) such that || — .|, < e. Let m € N be
sufficiently large such that, setting Q = [—m,m)", it results supp(p.) C Q.
Since p is Radon, we have u(Q) < oco. By the uniform continuity of ¢. we
get the existence of § > 0 such that

‘905(13) — Sps(y>| < W VJJ, Yy € RN S.t. ’13 — y’ <9

Next split the cube () in a finite number of disjoint cubes Q4,...,Q, € R
such that diam(Q;) < J, and define

n
ws = Z CZXQZ
=1
13

where ¢; € Q is chosen in the interval (infg, ¢, woyr T infg, ¢-). Then

Y. € F and ||pe — Ve|loo < Gon7ee Py which we have

lo = vellp < llo = @ellp + e = vellp < €+ (@) Pllpe = Velloo < 2e.

If A€ B(RY), then the set

n

f’A:{ZCiXRiﬂA‘neN, Cie@, RZGR}

=1

is dense in LP(A, u). O
Remark 3.48 If A € B(R) and p a Radon measure on (A, B(A)), then the
set
n—1
{Zcix[tk7tk+1)mA n e N, ci, t; € @, th<t1 <...< tn}
k=0

is countable and dense in LP(A, u) for 1 < p < oc.
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Exercise 3.49 (P is separable for 1 < p < oo.

HINT: show that the set

F={ (@)

xne(@,supn<oo}
Tn#0

is countable and dense in 7.

Our next result shows that the integral with respect to Lebesgue measure
is translation continuous.

Proposition 3.50 Let p € [1,+00) and let p € LP(RY) (with respect to the
Lebesgque measure). Then,

lim lo(x 4+ h) — p(z)|Pde =0.
|h|—0 RN

Proof. Let € > 0. Theorem 3.45 ensures the existence of ¢. € C.(RY) such
that |lo. —p||p < e. Let A. = supp(p.). Then, B; := {z € RV | du (z) < 1}
is a compact set and, since the Lebesgue’s measure A is translation invariant,
for |h| <1 we have

/ oz + 1) — p(x)Pde < 37 / 0@ + 1) — pu(a + h)Pda

RN RN

L3t / e+ h) — o (2)Pda + 3 / oe() — (@) Pda
RN RN

<Fe+3INB) sup eo(w) = eyl
lz—y|<|h|

Therefore,

limsup/ lo(x + h) — p(x)|Pde < 3Pe.
hl—0 JRN

Since ¢ is arbitrary, the conclusion follows. O
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Hilbert spaces

4.1 Definitions and examples

Let H be a real vector space.

Definition 4.1 A scalar product (-,-) in H is a mapping (-,-) : H x H — R
with the following properties:

1. {(x,z) >0 for allx € H and (x,x) =0 iff x = 0;
2. (x,y) = (y,z) for all z,y € H;
3. (ax + By, z) = alz,z) + By, z) for all z,y,z € H and o, 3 € R.
A real pre-Hilbert space is a pair (H, (-,-)).
Remark 4.2 Since, for any y € H, Oy = 0, we have
(,0) =0(x,y) =0 VreH.

Let us set
lz|| = v/ (z, x) Ve e H. (4.1)

The following inequality is fundamental.

Proposition 4.3 (Cauchy-Schwarz) Let (H, (-,-)) be a pre-Hilbert space.
Then
[z )l <zl llyll  Vo,ye H (4.2)

Moreover, equality holds iff x and y are linearly dependent.

95
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Proof. The conclusion is trivial if y = 0. So, we will suppose y # 0. In fact,
to begin with, let ||y|| = 1. Then,

0 < flo— (= pyll* = 2] — (=, 9)*, (4.3)

whence the conclusion follows. In the general case, it suffices to apply the
above inequality to y/||y/|.

If x and y are linearly dependent, then it is clear that |(z,y)| = ||z ||y||.
Conversely, if (z,y) = £||z|| ||ly|]| and y # 0, then (4.3) implies that x and y
are linear dependent. [J

Exercise 4.4 Define
F(A) = llz + Myll* = X[lyll* + 2Mz,y) + 2]* VA€R.
Observing that F'(A) > 0 for all A € R, give an alternative proof of (4.2).

Corollary 4.5 Let (H,(-,-)) be a pre-Hilbert space. Then the function || - ||
defined in (4.1) has the following properties:

1. ||z|| > 0 for allx € H and ||z|| =0 iff t = 0;
2. ||azx|| = |a|||z|| for any x € H and o € R;
3. Nl +yll < lzll + [yl for all z,y € H.

Function || - || is called the norm associated with (-, ).

Proof. The only assertion that needs a justification is property 3. For this,
observe that for all x,y € H we have, by(4.2),

lz+yl? = (e+yz+y) =+ yl* + 2(z,y)
<l + lyll* + 20zl gl = A=l + ly)* - O

Remark 4.6 It is easy to see that, in a pre-Hilbert space (H, (-,-)), the
function

d(z,y) =z —yl  VryeH (4.4)

1S a metric.

Definition 4.7 A pre-Hilbert space (H, (-,-)) is called an Hilbert space if it
is complete with respect to the metric defined in (4.4) .
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Example 4.8 1. RY is a Hilbert space with the scalar product

N
<‘T7 y> = Zxkylm
k=1

where z = (z1,...,25), ¥y = (y1,...,yn) € RV,
2. Let (X, &, 1) be a measure space. Then L*(X, &, i), endowed with the

scalar product

(o, 1) = /X o@)(@uldn), o € L(X,E ),

is a Hilbert space (completeness follows from Proposition 3.10).

3. Let £? be the space of all sequences of real numbers x = (z3) such that

o0
2
E T < 00.
k=1
(2 is a vector space with the usual operations,

a<x/€) = (CL{L‘k), ($k) + (yk) = (xk + yk)7 a € Ra (Ik)7 (yk:) € €2'

The space 2, endowed with the scalar product

<ZL’,y> = Zxkyky T = (wk)vy = (yk) S fz.

k=1
is a Hilbert space. This is a special case of the above example, with

X =N, £ =P(N), and p given by counting measure.

Exercise 4.9 1. Show that ¢2 is complete arguing as follows. Take a

Cauchy sequence (™) in ¢2, that is, (™ = (x,(cn))

(a) Show that, for any k& € N, (x,ﬁ”))neN is a Cauchy sequence in R,
and deduce that the limit x; := lim,,_ a:,(ﬁn) does exist.

(b) Show that () € 2.

(c) Show that (™ — (z;) as n — oo.
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2. Let H = C([—1,1]) the linear space of all real continuous functions on
[0,1]. Show that

(a) H is a pre—Hilbert space with the scalar product

o= gt

(b) H is not a Hilbert space.

HiINT: let
1 if te[l/n,1]

fot)=1<nt if te(=1/n,1/n)
-1 if te[-1,—1/n]
and show that (f,,) is a Cauchy sequence in H. Observe that, if

fu = f, then
1 if te (0,1
=4t el
-1 if te[-1,0)
3. In a pre-Hilbert space H, show that the following parallelogram identity
holds:
lz +yll* + llz = ylI* = 2(|2* + lylI*) ~ Vz,y € H. (4.5)

(One can prove that parallelogram identity characterizes the norms
that are associated with a scalar product.)

4.2 Orthogonal projections

Let H be a Hilbert space with scalar product (-, -).

Definition 4.10 Two elements x and y of H are said to be orthogonal if
(x,y) = 0. In this case, we write x L y. Two subsets A, B of H are said to
be orthogonal (A L B)ifx Ly for allx € A and y € B.

The following proposition is the Hilbert space version of the Pythagorean
Theorem .

Proposition 4.11 If zq,...,x, are pairwise orthogonal vectors in H, then
o1+ 22+ @all* = [l2al* + la® + -+ [zl

Exercise 4.12 Prove Proposition 4.11
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4.2.1 Projection onto a closed convex set

Definition 4.13 A set K C H is said to be convex if, for any x,y € K,
[z, yl ={ e+ (1 =Ny | Ae€[0,1]} C K.

For instance, any subspace of H is convex. Similarly, for any zo € H and
r > 0 the ball
B(zg) ={z € H |||z — x| <7}

is a convex set. We shall also use the notation B(xg,r) to denote such a set.

Exercise 4.14 Show that, if (K;);cs are convex subsets of H, then N;K; is
convex.

We know that, in a finite dimensional space, a point x has a nonempty
projection onto a closed set, see Proposition A.2. The following result extends
such a property to convex subsets of a Hilbert space.

Theorem 4.15 Let K C H be a nonempty closed convex set. Then, for any
x € H there exists a unique element y, = px(x) € K, called the orthogonal
projection of x onto K, such that

|l = yoll = inf f|lz — ]l (4.6)

Moreover, pg(x) is the unique solution of the problem

ye K
{ (x—y,z—y) <0 VzeK. (4.7)

Figure 4.1: inequality (4.7) has a simple geometric meaning

Proof. Let d = inf ey ||z — y||. We shall split the reasoning into 4 steps.
1. Let y, € K be a minimizing sequence, that is,

|t —yn|]| = d as n— oo (4.8)
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We claim that (y,) is a Cauchy sequence. Indeed, for any m,n € Y,
parallelogram identity (4.5) yields

1@ —yn)+ (@ =y I+ (2 —yn) = (@ =y) I* = 2l|z —yul*+2]|2 =y *

Hence, since K is convex and W% e K,

2

lyn = ymll* = 2z —yul® + 22 — yul* — 4|z

Yot Um
2

< 20w = gull® + 20z = yul* — 4d®

S0, ||Yn — Ym|| — 0 as m,n — oo, as claimed.

Since H is complete and K is closed, (y,) converges to some y, € K
satisfying ||z — y.|| = d. The existence of y, is thus proved.

We now proceed to show that (4.7) holds for any point y € K at which
the infimum in (4.6) is attained. Let z € K and let A € (0, 1]. Since
Az + (1 =Ny € K, we have that ||z —y|| < ||z —y — A (2 — y)]|. So,

o
v

Sl =yl ~ e =y = Az = )]

— 2 —yz—y) A=yl (4.9)

Taking the limit as A | 0 yields (4.6).

. We will complete the proof showing that (4.6) has at most one solution.

Let y be another solution of (4.6). Then,

(T =Y, ¥ = ¥2) <0 and  (z—y,y. —y) <0

The above inequalities imply that ||y — y.[|> <0, or y = y,. O

Exercise 4.16 Let K C H be a nonempty closed convex set. Show that

(x —y,px() — pr(¥)) = ok () —px W) Vo,ye H

HINT: apply (4.7) to z = pg(x) and z = pg(y).
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Example 4.17 In an infinite dimensional Hilbert space the projection of a
point onto a closed set may be empty (in absence of convexity). Indeed, let

@ consist of all sequences (™ = (:v,(cn))keN € (2 such that

(n) _ 0 it k#n
Tk _{1—1-% if k=n (n=1)

Then, @ is closed. Indeed, since
n#m = |z™ -z, > V2,

@ has no cluster points in H. On the other hand, ) has no element of
minimal norm (i.e., 0 has no projection onto @) as well, for

1
— M|, — ; -) =
do(0) = 11}2112 =1z = rlzgfl (1 * n) L
but |2y > 1 for every n > 1.

4.2.2 Projection onto a closed subspace

Theorem 4.15 applies, in particular, to subspaces of H. In this case, however,
the variational inequality in (4.7) takes a special form.

Corollary 4.18 Let M be a closed subspace of a Hilbert space H. Then
py () is the unique solution of

yeM
{ (x —y,v) =0 Yv e M. (4.10)

Proof. It suffices to show that (4.6) and (4.10) are equivalent when M is
a subspace. If y is a solution of (4.10), then (4.6) follows taking v = z — y.
Conversely, suppose y satisfies (4.6). Then, taking z = y + \v with A € R
and v € M we obtain

Mr—y,v) <0 VieR.

Since A is any real number, necessarily (z —y,v) = 0. O
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Exercise 4.19 1. It is well known that any subspace of a finite dimen-
sional space H is closed. Show that this is not the case if H is infinite
dimensional.

HINT: consider the set of all sequences x = (x}) € £* such that x; = 0
but for a finite number of subscripts &, and show that this is a dense
subspace of (2.

2. Show that, if M is a closed subspace of H and M # H, then there
exists xg € H \ {0} such that (x,y) =0 for all y € M.

3. Let Y be a subspace of H. Show that Y is a (closed) subspace of H.
4. For any A C H let us set
At ={zecH |z 1A}, (4.11)
Show that, if A, B C H, then

(a) At is a closed subspace of H
(b)) AcCB = BtcAt
(c) (AUB)t =AtnBt
A% is called the orthogonal complement of A in H.

1
H M

P ()

0 M
pu ()

Figure 4.2: Riesz orthogonal decomposition

Proposition 4.20 Let M be a closed subspace of a Hilbert space H. Then,
the following properties hold.

(i) For any x € H there exists a unique pair (Y., z,) € M x M+ giving the
Riesz orthogonal decompisition = = vy, + 2z,.. Moreover,

Yz = par(x) and 2y = pars () (4.12)
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(ii) py - H — H is linear and ||py(x)|| < ||| for all z € H.
(iii) (a) py o py =pu
(b) kerpy = M+
(¢) pu(H) = M
Proof. Let z € H.

(i): define y, = pp(x) and z, = & — y, to obtain, by (4.10), that z, L M
and
(= 25,0) = (Yp,v) =0 Yo &€ M™*.

Therefore, z, = pyi(x) in view of (4.10). Suppose z = y + z for some
y € M and z € M*. Then,

Yo —Y =2 — 2, € MO M+ ={0}.
(ii): for any xy,29 € H, oy, € R and y € M, we have

(1) + agxa) — (apu (1) + apar(2)),y)
= ar (w1 — pu(21),y) + az(ze — par(22),y) =0

Then, by Corollary 4.18 py(aqz1 + asxs) = (a1pa(x1) + eprr(xs)).
Moreover, since (x — pas(x), par(x)) = 0 for any x € H, we obtain

I*

[par(@)1° = (=, par(2)) < [l lpas ()] -

(iii): the first assertion follows from the fact that py(x) = x for any z € Y.
The rest is a consequence of (i). O

Exercise 4.21 1. In the Hilbert space H = L?*(0,1) consider sets

N:{ueH‘ /Olu(:c)d:c:O}

M ={u € H | u is constant a.c. on (0,1)}

and

(a) Show that N and M are closed subspaces of H.
(b) Prove that N = M*.
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(¢) Does u(z) :=1/¥/x,0 <z < 1, belong to H? If so, Find the Riesz
orthogonal decomposition of v with respect to N and M.

2. For any A C H, show that the intersection of all closed linear subspaces
including A is a closed linear subspace of H. Such a subspace, the so-
called closed linear subspace generated by A, will be denoted by sp(A).

Given A C H, we will denote by sp(A) the linear subspace generated by A,
that is,

sp(A) = {chaﬁk In>1, ¢, €R, xp EA}.
k=1
Exercise 4.22 Show that Sp(A) is the closure of sp(A).

HINT: since sp(A) is a closed subspace containing A, we have that Sp(A) C
sp(A). Conversely, sp(A) C sp(A) yields sp(A) C 5p(A).

Corollary 4.23 In a Hilbert space H the following properties hold.
(i) If M is a closed linear subspace of H, then (M*)+ = M.
(ii) For any A C H, (At)* =35p(A).
(iii) If N is a subspace of H, then N is dense iff N* = {0}.
Proof. We will show each point of the conclusion in sequence.
(i): from point (i) of Proposition 4.20 we deduce that
Pyt =1—pu.

Similarly, p(ajyr = I — pyr = pu. Thus, owing to point (iii) of the
same proposition,

(M4)E = piagsy s (H) = pus(H) = M.
(ii): let M = sp(A4). Since A C M, we have AX D M* (recall Exer-

cise 4.19.4). So, (AY)+ C (M+)t = M. Conversely, observe that A is
included in the closed subspace (A+)t. So, M C (A1)*.

(iii): first, observe that, since N is a closed subspace, N = sp(N). So, in
view of point (ii) above,

N=H <+ (NH)*=H <+ N'=/{0} O
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Exercise 4.24 1. Using Corollary 4.23 show that
= {(mn)neN ‘ x, €R, Z |z, | < oo}
n=1
is a dense subspace of £2.

2. Let x,y € H be linearly independent unit vectors. Show that

e+ (1—Ayl|<1 Vre(0,1).

HINT: observe that

Az + (1 =Ny|*=14+221-N)((z,y) — 1) (4.13)
N’

EDN

and recall the Cauchy-Schwarz inequality. (Property (4.13), recast as
Az + (1 = Ny||*> =1— A1 — \)||z — y||?, implies that a Hilbert space
is uniformly convez, see [3].)

Y
&

Figure 4.3: uniform convexity

4.3 The Riesz Representation Theorem

Let H be a Hilbert space with scalar product (-, -).

4.3.1 Bounded linear functionals

A linear functional F' on H is a linear mapping F' : H — R.
Definition 4.25 A linear functional F' on H is said to be bounded if

F@)| <Cla|l VeeH

for some constant C' > 0.
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Proposition 4.26 For any linear functional F' on H the following properties
are equivalent.

(a) F is continuous.
(b) F is continuous at 0.
(c) F is continuous at some point.

(d) F is bounded.

Proof. The implications (a)=-(b)=-(c) and (d)=-(b) are trivial. So, it suffices
to show that (c)=-(a) and (b)=-(d).

(c)=(a): let F be continuous at x¢ and let yo € H. For any sequence (y,) in H,
converging to o, we have that

Tn = Yn — Yo + To — To -

Then, F(z,) = F(y,) — F(yo) + F(x0) — F(xo). Therefore, F(y,) —
F(yo). So, F' is continuous at .

(b)=-(d): by hypothesis, for some § > 0 we have that |F'(z)| < 1 for every x € H
satisfying ||z|| < 0. Now, let ¢ > 0 and x € H. Then,

()] <1

So, |F(z)| < 3(||z| +¢€). Since € is arbitrary, the conclusion follows. [

Definition 4.27 The family of all bounded linear functionals on H is called
the (topolgical) dual of H and is denoted by H*. For any F' € H* we set

[E]l« = sup [F(z)].

[l=]I<1

Exercise 4.28 1. Show that H* is a vector space on R, and that || - ||, is
a norm in H*.

2. For any F' € H* show that

Fl(x
1F]l = sup |F(z)] = sup L&)
lz]=1 220 ||z

—inf {C >0 | |F(2)| < Cllall}
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4.3.2 Riesz Theorem

Example 4.29 For any fixed vector y € H define the linear functional F,
by

Fy(z) = (z,y) Ve € H.
Then, |F,(x)] < |ly|l||z|| for any x € H. So, F, € H* and || F, |« < [ly||. We
have thus defined a map

{j:H—>H*

ily)=F, VyeH )

It is easy to check that j is linear. Also, since |F,(y)| = ||y||* for any y € H,
we conclude that || Fy || = ||y|| Therefore, j is a linear isometry.

Our next result will show that map j above is onto. So, j is an isometric
isomorphism, called the Riesz isomorphism.

Theorem 4.30 (Riesz-Fréchet) Let F' be a bounded linear functional on
H. Then there is a unique vector yp € H such that

F(z) = (x,yr), Vz e H. (4.15)
Moreover, ||F||. = ||lyr||-

Proof. To show the existence of a vector y satisfying (4.15), suppose F' # 0
(otherwise the conclusion is trivial taking yr = 0) and let M = ker F. Since
M is a closed proper") subspace of H, there exists yo € M* \ {0}. We
can also assume, without loss of generality, that F'(yy) = 1. Thus, for any
x € H we have that F(x — F(x)yy) = 0. So, x — F(x)yo € M. Hence,

(x — F(x)yo,yo) = 0 or
F(2)|lyol|* = (z, yo) Ve e H

This implies that yr := yo/||yo||* satisfies (4.15). The rest of the conclusion
follows from the fact that the map j of Example 4.29 is an isometry. [

Example 4.31 From the above theorem we deduce that, if (X,&,u) is a
measure space and F' : L?(X) — R is a bounded linear functional, then
there exists a unique ¢ € L*(X) such that

F(g) = /X obdy Ve e IAX).

(Wthat is, M # H
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A hyperplane 11 in H is an affine subspace of codimension® 1. Given a
bounded linear functional F' € H*, for any ¢ € R let

I.={x € H| F(z) =c}.

From the proof Theorem 4.30 it follows that ker F' = I3 = {\yr | A € R}.
So, Iy can be viewed as a closed hyperplane through the origin. Moreover,
fixed any x. € ®., we have that II. = x. + IIy Therefore, II. is a closed
hyperplane in H.

Our next result provides sufficient conditions for two convex sets to be
strictly separated by closed hyperplanes.

Proposition 4.32 Let A and B be nonempty closed convexr subsets of a
Hilbert space H such that AN B = &. Suppose further that A is compact.
Then there exist a bounded linear functional ' € H* and two constants ¢y, co
such that

F<)<61<CQ<F \V/ZEGA ‘v’yEB

oL

Figure 4.4: separation of convex subsets

Proof. Let C = B — A := {zGH |z=y—z, x €A, yEB}. Then, it
is easy to see that C' is a nonempty convex set such that 0 ¢ C. We claim
that C is closed. For let C' > vy, — z, — 2. Since A is compact, there exists
a subsequence (xy, ) such that z;, — = € A. Therefore,

Ykp — Tk, T — 2+2T=0Y
N——

—0

and so yg, — y € B since B is closed. Then, z := pc(0) satisfies zg # 0 and

(0— 20,y —x—29) <0 Vre A, Vye B

(Here, codim II = dim II+.
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Hence,
(z,20) + [|z0]1* < (y,20) Vo€ A, VyeB

and the conclusion follows taking

F=F,, c1 = sup(z, z9) , co = inf (y, z0) O
TEA yeB

Exercise 4.33 Let H = (%,
1. For N > 1 let us set F'((z,),) = n. Find y € H satisfying (4.15).

2. Show that, for any « = (z,,), € H, the power series ), x,2" has radius
of convergence at least 1.

3. For a given z € (—1,1), set F((x,),) = >, ,2". Find y € H repre-
senting F', and determine [|F|,.

4. Consider the sets
A= {(z,) € H | n|z, —n 2B <x Vn> 2}

and
B:={(z,) €H |z,=0 Vn>2}.

(a) Prove that A and B are disjoint closed convex subsets of H.
(b) Show that

A-B={(z,) €H|3C>0 : nlz,—n ) <C Vn>2}.

(c¢) Deduce that A — B is dense in H.

HINT: fix # = (z,,) € H and define the sequence (z¥)) in A — B
by

) Tn ifk<n
z,” = .
1/n?3 ifk>n+1.

(d) Prove that A and B cannot be separated by a closed hyperplane.
HINT: otherwise A — B would be included in a closed half-space.

(This example shows that the compactness assumption of Proposi-
tion 4.32 cannot be dropped.)
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4.4 Orthonormal sets and bases
Let H be a Hilbert space with scalar product (-, -).

Definition 4.34 A sequence (ex)ren s called orthonormal if

1 if h=k

Vh,k € N <€h,€k>:{o if htk

Example 4.35 1. The sequence of vectors

k—1
——
er=(0,...,0,1,0,...) k=12...

is orthonornal in £2.

2. Let (ex)ren be the sequence of functions in L?(—m, ) given by

eo(t) = ——
Vt € [—71',7T] \/2_;11-11(jt)

62j—1(t) = \/7_1' €2; (t) = ﬁ

Since, for any j,h > 1,

1 ™
—/ cos(jt)sin(ht)dt = 0
77

—T

%/ﬂ sin(jt) sin(ht) dt = {0 it £ h

. 1 ifj=h
1 [7 if 1 £ h
—/ cos(jt) cos(ht)dt = 0 1 j%
T J) _n 1 ifj=h,

it is easy to check that (ey)ren is an orthonormal sequence in L?(—, ).
Such a sequence is called the trigonometric system.

4.4.1 Bessel’s inequality

Let (ex)ren be an orthonormal sequence in H.
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Proposition 4.36 1. For any N € N Bessel’s identity holds

N 9 N )
o=@ enter]| = ||:cu2—k2\<x,ek>\ Vee H  (4.17)
=1

k=1

2. Bessel’s inequality holds
Sl wen)|* <llz* VeeH (4.18)
k=1

In particular, the series in the left-hand side converges.

3. For any sequence (cx) € R

[o¢] oo
Y aeeH = ) |al <o
P k=1

Proof. Let x € H. Bessel’s identity can be easily checked by induction on
N. For N =1, (4.17) is true®. Suppose it holds for some N > 1. Then,

N+1

Hx— Z(a:,ek>ek

k=1

= Hx — Z(w, ex)Erk

2

2

+ |<fL’, €N+1>‘2 - 2<$ - <Jf7 €k>ek7 <$, e]\f—i-1>e]\7—|-1>

N
k=1

= Jzl? = 3" [ en)|” = |z, ensa) |

So, (4.17) holds for any N > 1. Moreover, Bessel’s identity implies that
all the partial sums of the series in (4.18) are bounded above by ||z]|?. So,
Bessel’s inequality holds as well. Finally, for all n € N we have

n+p n—+p

H > e = el vp=12...

k=n+1 k=n+1

Therefore, Cauchy’s convergence test amounts to the same condition for the
two series of point 3. [J

For any = € H, (x,ex) are called the Fourier coefficients of x, and
Y re i (x, ex)ey is called the Fourier series of x.

®)indeed, we used it to prove Cauchy’s inequality (4.2)
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Remark 4.37 Fix n € N and let M,, := sp({el, . ,en}). Then

n

P, (7) = Z(I7€k>ek Ve e H
k=1

Indeed, for any € H and any point Y, _, cxex, € M, we have
n 2 n n
Hx - chek ‘ = ||z|]* — Qch(I,ek) + Z |cx|?
k=1 k=1 k=1
_ (||x|‘z — 3" (@, en)| ) +3 Jex — (woen)]
k=1 k=1

= Hg: — i(x, ex)Er i + kzn; |Ck - (557€k>‘2

thanks to Bessel’s identity (4.17).

4.4.2 Orthonormal bases

To begin this section, let us characterize situations where a vector x € H is
given by the sum of its Fourier series. This fact has important consequences.

Theorem 4.38 Let (ex)ren be an orthonormal sequence in H. Then the
following properties are equivalent.

(a) sp(ey | k € N) is dense in H.

(b) Every x € H is given by the sum of its Fourier series, that is,

(x,ep)ex .
1

oo
Tr =
k=

(c) Every x € H satisfies Parseval’s identity

) =" |z, en)|” (4.19)

(d) If x € H and (x,er) =0 for every k € N, then x = 0.
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Proof. We will show that (a) = (b) = (¢) = (d) = (a).

(a) = (b)| : for any n € N let M, := sp({e1,...,€,}). Then, by hypothesis,

d(x,M,) — 0 as n — oo for any x € H. Thus, owing to Remark 4.37,

n

=St ener]| = e = pan, @)1 = e, M) =0 (0 00).

k=1

This yields (b).

(b) = (c)| : this part of the conclusion follows from Bessel’s identity.

(¢) = (d)| : obviuos.

(d) = (a)| : let N :=sp(e;, | k € N). Then, N* = {0} owing to (d). So, N is

dense on account of point (iii) of Corollary 4.23. [

Definition 4.39 The orthonormal sequence (ex)ren s called complete if
sp(er | k € N) is dense in H (or any of the four equivalent conditions of
Theorem 4.38 holds). In this case, (er)ken s also said to be an ortonormal
basis of H.

Exercise 4.40 1. Prove that, if H possesses an orthonormal basis (e )ken,
then H is separable, that is, H contains a dense countable set.

HiNT: Consider all linear combinations of the e;’s with rational coef-
ficients.

2. Let (yn)nen be a sequence in H. Show that there exists an at most
countable set of linearly independent vectors (x;);es in H such that

sp(yn | n € N) =sp(z; | j€J).
HINT: for any 7 =0,1,..., let n; be the first integer n € N such that
dimsp({y1, .-, Yn}) =7 -

Set x; := yn,;. Then, sp({z1,...,2;}) =sp({y1, .-, Un,;})- -
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3. Let (ex)ren be an orthonormal basis of H. Show that

(x,y> = Z<x7 ek><y76k> vxay € H.
k=1
HINT: observe that
lz +yl* = [|=)* = [Jy]]?

Our next result shows the converse of the property described in Exercise 4.40.1.

Proposition 4.41 Let H be a separable Hilbert space. Then H possesses an
orthonormal basis.

Proof. Let (y,)nen be a dense subset of H and let (z;);es be linearly in-
dependent vectors such that sp(z; | j € J) = H (constructed, e.g., as in
Exercise 4.40.2). Define

) = T eg)e;

=—— and e, = (k>2)W.
1] ka — 2 j<klTr €5)€;

€1

Then, (ex) is an orthonormal sequence by construction. Moreover,
sp({e1,...,ex}) =sp({z1,...,2x}) Vk>1.
So, sp(eg | k> 1) is dense in H. [

Example 4.42 In H = (2, it is immediate to check that the orthonormal
sequence (ex)ren of Example 4.35.1 is complete.

4.4.3 Completeness of the trigonometric system

In this section we will show that the orthonormal sequence (ey)ren defined
in (4.16), that is,

eo(t) =

5~
R

Vt € [—m, 7] sin(jt) 0 () = cos(jt)

VT VT

(UThis is the so-called Gram-Schmidt orthonormalization process.

e 1(t) = =1
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is an orthonormal basis of L*(—m, 7).

We begin by constructing a sequence of trigonometric polynomials with
special properties. We recall that a trigonometric polynomial q(t) is a linear
combination of the above functions, i.e., an element of sp(ey | k£ € N). Any
trigonometric polynomial ¢ is a continuous 27-periodic function.

Lemma 4.43 There ezists a sequence of trigonometric polynomials (qx)ken
such that, for any k € N,

(a) 0 VteR

>
b)) o / qi(t)dt =1 (4.20)
(c) V5>O lim sup qx(t) =0.

k—oo s<|tj<n

Proof. For any k£ € N define

1 t\F
+cos> Vi eR

an(t) = e —5—

where ¢ is chosen so as to satisfy property (b). Recalling that
1
cos(kt) cost = 5 [COS ((k+1)t) + cos ((k — l)t)]

it is easy to check that each g is a linear combination of (cos(kt))gen. S0 g
is a trigonometric polynomial.

Since (a) is immediate, it only remains to check (c). Observe that, since
qx is even,

T k s k
1:C_k <1+Cost> dth_k (1+cost> sint dt
T 0 2 T 0 2

B Ck [_2<1+Cost>k’+1]7f_ 2c¢y,

ok +1) 2 o wk+1)
to conclude that 1

cp < % Vk € N.

Now, fix 0 < § < 7. Since gy is even on [—m, 7] and decreasing on [0, 7],

using the above estimate for ¢, we obtain

m(k+1) /14 cosd\* oo
sup qu(t) = qr(0) < ( >< 5 >k—>0. O

s<t| < 2
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Our next step is to derive a classical uniform approximation theorem by
trigonometric polynomials.

Theorem 4.44 (Weierstrass) Let f be a continuous 2w-periodic function.
Then there ezists a sequence of trigonometric polynomials (py)nen such that
|f — Pnllc — 0 as n — oo.

Proof.®) Let (g,) be a sequence of trigonometric polynomials enjoying prop-
erties (4.20), e.g. the sequence given by Lemma 4.43. For any n € N and
t € R, a simple periodicity argument shows that

-/ £t = 5)ga(s)ds
/ F(r)aalt = 7)d =—/f Jault — 7)dr

This implies that p,, is a trigonometric polynomial. Indeed, if

kn

qn(t) = ag + Z [ak cos(kt) + by sin(kt)} :

k=1

then

- 5o [ st
— Z/ ak cos (k(t — 7)) + by sin (k(t — 7')):| dr

= 217T ak[cos (kt) / f(7) cos(kT)dr + sin(kt) 7; f(r) sin(kT)dT]

% Z b [sin(kt) [ f(e) cos(iryir —cos(ht) [ pir)sinfir)ar]

Next, for any o > 0 let

wr(0) = sup [f(x) — f(y)|.

|lz—y|<d

(5)This proof, based on a convolution method, is due to de la Vallée Poussin.
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Since f is uniformly continuous, w¢(§) — 0 as § — 0. Now, for § € (0, 7]
properties (4.20) (a) and (b) ensure that

£0) ~pul®)] = ]% / [7(0) ~ £(t — 5)]aa(s)ds

< / Oanlds + o= [ 2 fllwanls)ds
— w n P ocon

- 27 -5 ! 4 2w 5<|s|<m

< () +2[| fllc sup gn(s)

0<|s|<m

for any ¢t € R. Now, fix e > 0 and let 0. € (0, 7| be such that that w;(d.) < e.
Owing to (4.20) (c), n. € N exists such that sup,; <5<, qa(s) < € for all
n > n,.. Thus,

1f = Palloc < (1 +2[[flloc)e VR Z=mne. O

We are now ready to deduce the announced completeness of the trigono-
metric system. We recall that C.(a,b) denotes the space of all continuous
functions in (a,b) with compact support.

Theorem 4.45 (ep)ren is an orthonormal basis of L*(—m, 7).

Proof. We will show that trigonometric polynomials are dense in L?(—, ).
Let f € L*(—m,n) and fix € > 0. Since C.(—m, ) is dense in L*(—m,7) on
account of Theorem 3.45, there exists f. € C.(—m, ) such that || f— f.|]2 < e.
Clearly, we can extend f., by periodicity, to a continuous function on whole
real line. Also, by Weierstrass’ Theorem 4.44 we can find a trigonometric
polynomial p. such that ||f. — pe|le < &. Then,

1f = pellz < Nf = fella + 1fe = pells S & +ev2r. O
Exercise 4.46 Applying (4.19) to the function
z(t)=t te[-mmn],
derive Euler’s identity

=1
S E=t

k=1
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Banach spaces

5.1 Definitions and examples

Let X be a real vector space.

Definition 5.1 A norm (-,-) in X is a map || - || : X x H — R with the
following properties:

1. ||z|| > 0 for allz € H and ||z|| =0 iff x = 0;
2. ||ax|| = |a|||x|| for any x € H and o € R;
3. Mo +yll < llzll + llyll for all z,y € H.
A normed space is a pair (X, | - ||)-
As we already observed in Chapter 4, in a normed space (X, ||-||), the function
d(z,y) =z -yl  VryeX (5.1)
is a metric.

Definition 5.2 Two norms in X, || - || and || - ||2, are said to be equivalent
if there exist constants C' > ¢ > 0 such that

lely < lall: < Cllzlly Vo e X

Exercise 5.3 1. Show that two norms are equivalent if and only if they
induce the same topology on X.

119
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2. In R", show that the following norms are equivalent

n
1/p
lall, = (D" fal) ™ and oo = max [,
k=1

1<k<n

Definition 5.4 A normed space (X, || - ||) is called a Banach space if it is
complete with respect to the metric defined in (5.1) .

Example 5.5 1. Every Hilbert space is a Banach space.

2. Given any set § # &, the family B(S) of all bounded functions f :
S — R is a vector space on R with the usual sum and product defined,
for any f,g € B(S) and a € R, by

(f +9)(@) = f(z) + g(2)
Ve e S
"e {<af><x> — af(z).
Moreover, B(S) equipped with the norm
1flleo = Sup [f@)]  VfeB(S),
is a Banach space.

3. Let (M, d) be a metric space. The family, C,(M), of all bounded contin-
uous functions on M is a closed subspace of B(M). So, (Co(M), | - |l)
is a Banach space.

4. Let (X, &, u) be ameasure space. For any p € [1, oo, spaces LP(X, &, u),
introduced in Chapter 3, are some of the main examples of Banach
spaces with norm defined by

1/p
el = ( / !w\%) Vo € LP(X,E,p)
X

for p € [1,00), and, for p = 0o, by
[l = nf{m >0 | pu(le| >m) =0} Vo e LX(X,E pn).

We recall that, when p is the counting measure on N, we use the ab-
breviated notation ¢7 for £LP(N, P(N), ). In this case we have

o0
» 1/p
ol = (D laal?) ™ and izl = sup fra
n=1 n

The case of p = 2 was studied in Chapter 4.
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Exercise 5.6 1. Let (M, d) be alocally compact metric space. Show that
the set, Co(M), of all functions f € Cp(M) such that, for all € > 0,

{zreM]|f(x)] =<}
is compact, is a closed subspace of C,(M) (so, it is a Banch space).

2. Show that
o = {(x,) € £| lim z, =0} (5.2)

n—oo

is a closed subspace of £*°.

3. Show that || - || (in B(S), Cy(M) or £°) is not induced by a scalar
product.

4. In a Banach space X, let (z,) be a sequence such that > ||z,| < ooc.
Show that i
n = i n€ X.
Zl x ki% Zl Ty €

5.2 Bounded linear operators

Let X, Y be normed spaces. We denote by L(X,Y) the space of all continuous
linear mappings A : X — Y. The elements of £L(X,Y) are also called bounded
operators between X and Y. In the special case of X = Y, we abbreviate
L(X,X) = L(X) and any A € L£(X) is called a bounded operator on X.
Another special case of interest is when Y = R. As in the Hilbert space case,
L(X,R) is called the topological dual of X and will be denoted by X*. The
elements of X* are called bounded linear functionals.

Arguing exactly as in the proof of Proposition 4.26 one can show the
following.

Proposition 5.7 For any linear mapping A : X — Y the following proper-
ties are equivalent.

(a) A is continuous.
(b) A is continuous at 0.

(c) A is continuous at some point.
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(d) There exists C' > 0 such that |Azx|| < Cllz|| for all z € X.

As in Definition 4.27, let us set

IIA|| = sup ||Az]| VA e L(X,)Y). (5.3)

[lz]|<1

Then, for any A € £(X,Y), we have

Az
A = Hs1”1p1 |Az|| = sup ”H HH f{C >0 ! |Az|| < Cl|z]|, Yz € X}

(see also Exercise 4.28).

Exercise 5.8 Show that || - || is a norm in £(X,Y).

Proposition 5.9 If Y is complete, then L(X,Y) is a Banach space. In
particular, the topological dual of X, X*, is a Banach space.

Proof. Let (A,) be a Cauchy sequence in £(X,Y). Then, for any z € X,
(A,z) is a Cauchy sequence in Y. Since Y is complete, (A, x) converges to
a point in Y that we label Az. We have thus defines a mapping A : X — Y
which is easily checked to be linear. Moreover, since (A,) is bounded in
L(X,Y), say [|[A,]| < M for all n € N, we also have that ||A]| < M. Thus,
A € L(X,Y). Finally, to show that A, — A in £(X,Y), fix ¢ > 0 and let
n. € N be such that ||A, — L,,|| < € for all n,m > n.. Then,

|Anz — Lz|| < ellz — y| Ve e X.
Taking the limit as m — oo, we obtain
|Anz — Az|| < ||z — y| Ve e X.
Hence, ||A, — L|| < € for all n > n. and the proof is complete. O
Exercise 5.10 Given f € C([a,b]), define A : L'(a,b) — L'(a,b) by
Aglt) = F(B)g(t)  tefat].

Show that A is a bounded operator and ||Al| = || f||co-

HINT: ||A|] < ||f]|o follows from Hoélder’s inequality; to prove the equality,
suppose |f(x)] > ||f|l — € for all & € [xg,21] and let g(x) = X[zo,2,) be the
characteristic function of such interval ...
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5.2.1 The principle of uniform boundedness

Theorem 5.11 (Banach-Steinhaus) Let X be a Banach space, Y be a
normed space, and let {\;}ie; C L(X,Y). Then,

either a number M > 0 exists such that

Al <M Viel, (5.4)

or a dense set D C X exists such that

sup ||A;z|ly = oo VreD. 5.5
IE?H ?JHY =Mz (5:5)
x
Al < M
y=—Mzx

Figure 5.1: the Banach-Steinhaus Theorem

Proof. Define

a(x) = sup || Az Ve e X.
i€l

Since a : X — [0, 00] is a lower semicontinuous function, for any n € N
A, ={x e X |a(x)>n}

is an open set M. If all sets A, are dense, then (5.5) holds on D = N,A,
which is, in turn, a dense set owing to Baire’s Lemma, see Proposition A.6.

Now, suppose Ay fails to be dense for some N € N. Then, there exists a
closed ball B, (xy) C X \ Ay. Therefore,

lz]| <r = xy+r¢ Ay = oafzo+z)<N.
Consequently, ||[A;z]| < 2N for all i € I and ||z|| < r. Hence, for all ¢ € I,

IE4] re 2N
Il = S A o[ < = e
r T

]l

We have thus shown that (5.4) holds with M = 2N/r. O

Vo € X\ {0}

() Alternatively, let « € A,,. Then, for some i, € I, we have that ||A;, 2| > n. Since A;,
is contionuous, there exists a neighbourhood V of = such that ||A;, y|| > n for all y € V.
Thus, a(y) >n for ally € V. So, V C A,.
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Exercise 5.12 1. Let y = (y,) be a real sequence and let 1 < p,q < o0
be conjugate exponents. Show that, if > x,y, converges for all z =
(x,) € (P, then y € (1.

2. Let 1 < p,q < oo be conjugate exponents, and let f € L7 (R)®). Show
that, if

/_ " f@gla)de Vg e LU(R),

[e.o]

then f € LP(R).

5.2.2 The open mapping theorem

Bounded operators between two Banach spaces, X and Y, enjoy topological
properties—closely related one another—that are very useful for applications,
for instance, to differential equations. The first and main of these results is
the so-called Open Mapping Theorem that we give below.

Theorem 5.13 (Schauder) If A € £(X,Y) is onto, then A is open®.
Proof. We split the reasoning into four steps.
1. Let us show that a radius r > 0 exists such that

By, C A(By). (5.6)

Observe that, since A is onto,

Y = JABY.

Therefore, by Proposition A.6 (Baire’s Lemma), at least one of the

closed sets A(Bj) must contain a ball, say By(y) C A(By). Since A(By)
is symmetric with respect to 0,

By(~y) C —A(By) = A(By,) .

(2)We denote by L? (R) the vector space of all measurable functions f : R — R such

loc

that f € L?(a,b) for every interval [a,b] C R.
()that is, U open in X == A(U) open in Y.
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\
A(BY) >, J

Figure 5.2: the Open Mapping Theorem

Hence, for any x € By, we have that © +y € By(+y) C A(By). Since
A(By) is convex, we conclude that

Thus, Bs C A(By). Let us show how (5.6) follows with r = s/2k by a
rescaling argument. Indeed, let z € By, = By, Then, kz € B, and
there exists a sequence (x,,) in By such that Ax,, — kz. So, x,/k € B;
and A(z,/k) — z as claimed.

2. Note that, by linearity, (5.6) yields the family of inclusions

BQlfnT C A.(BQ*H) \V/TL E N . (57)
3. We now proceed to show that
B, C A(By). (5.8)

Let y € B,. We have to prove that y = Az for some = € By. Applying
(5.7) with n = 1, we can find a point

r1 € By-1 such that ||y — Ale < g
Thus, y — Ax; € By-1,. So, applying (5.7) with n = 2 we find a point
r
T9 € By—2 such that Hy — Az + xg)H < R

Repeated application of this construction yield a sequence (z,) in X
such that

T, € By-n and ||y—A(x1+---+xn)H < 2%
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Since . .
Sl <> =1,
n=1 n=1

recalling Exercise 5.6.5 we conclude that  := )z, € By, and, by the
continuity of A, Az =) Az, =y.

4. To conclude the proof, let U C X be open and let x € U. Then, for
some p > 0, B,(z) C U, whence Az + A(B,) C A(U). Therefore,

B,,(Ax) = Ax + B,, C Az + A(B,) C A(U). O

S

-~

by (5.8)

The first consequence we deduce from the above result is the following Inverse
Mapping Theorem.

Corollary 5.14 (Banach) If A € L(X,Y) is bijective, then A~ is contin-
uous.

Proof. We have to show that, for any open set U C X, (A~1)71(U) is open.
But this follows from Theorem refth:omt since (A™1)~! = A. [

Exercise 5.15 1. Let A € L(X,Y) be bijective. Show that a constant
A > 0 exists such that

IAzlly > Mzllx Vo€ X. (5.9)

HINT: use Corollary 5.14 and apply Proposition 5.7 to A7

2. Let ||-||; and ||-||2 be norms on a vector space Z such that Z is complete
with respect to both || - ||; and || - ||2. If a constant ¢ > 0 exists such
that ||z]ls < c||z||; for any x € X, then there also exists C' > 0 such
that ||z||; < C|z||2 for any x € X (so, || - ||; and || - ||2 are equivalent
norms).

HINT: apply (5.9) to the identity map (Z, | - ||1) — (Z,] - ||2)-

To introduce our next result, let us observe that the Cartesian product X xY
is naturally equipped with the product norm

(@, y)lxxy = llzllx +llylly  V(z,y) e X xY.
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Exercise 5.16 (X x Y, ||(-,-)| xxy) is a Banach space.
We conclude with the so-called Closed Graph Theorem.

Corollary 5.17 (Banach) Let A : X — Y be a linear mapping. Then
A€ L(X,Y) if and only if the graph of A, that is

Graph(A) := {(z,y) € X XY | y = Az},
is closed in X x Y.
Proof. Suppose A € L(X,Y). Then, it is easy to see that
A: X XY =Y Alz,y) =y — Az

is continuous. Therefore, Graph(A) = A71(0) is closed.

Conversely, let Graph(A) be a closed subspace of the Banach space X x
Y. Then, Graph(A) is, in turn, a Banach space with the product norm.
Moreover, the linear map

II5 : Graph(A) — X p(z, Ax) == x
is bounded and bijective. Therefore, owing to Corollary 5.14,
IT,' : X — Graph(A) 'z = (z,A)
is continuous, and so is A = [Ty o I, where
IIy : X xY =Y Iy (z,y) :==1y. O

Example 5.18 Let X = C'([0,1]) and Y = C([0, 1]) be both equipped with
the sup norm || - ||o. Define

Az(t) = 2/'(¢) Vee X, Vtel0,1].
Then Graph(A) is closed since
.00

{zk g;: — 2 €CH0,1)) & 7=y

On the other hand, A fails to be a bounded operator. Indeed, taking
T,(t) =t"  Vte|0,1],

we have that

T, € X, |znlloo =1, Az, ||co =7 Yn>1.

This shows the necessity of X being a Banach space in Thorem 5.13.
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Exercise 5.19 1. For a given operator A € £(X,Y’) show that the fol-
lowing properties are equivalent:

(a) there exists ¢ > 0 such that ||Az| > ¢||z| for all z € X;
(b) ker A = {0} and A(X) is closed in Y.

HINT: use Exercise 5.15.1.

2. Let H be a Hilbert space and let A, B : H — H be two linear maps
such that

(Az,y) = (z, By) Ve,y € H. (5.10)
Show that A, B € L(H).

HINT: use (5.10) to deduce that Graph(A) and Graph(B) are closed
in X x X; then, apply Corollary 5.17.

3. Let (X, |- ]|) be an infinite dimensional separable Banach space and let
(e:)icr be a Hamel basis of X @ such that |le;|| = 1 for all i € 1.

(a) Show that I is uncountable.

HINT: use Baire’s Lemma.

(b) Prove that
el = STl it o= 3 e,
iel iel
is a norm in X and that ||z|| < ||z||; for every z € X (observe
that both series above are finite sums).
(c¢) Show that X is not complete with respect to || - |;.

HINT: should (X, | - ||;) be a Banach space, then || - || and || - |1
would be equivalent norms by Exercise 5.15.2, but, for any i # j,
we have [|e; — ;|1 = ...

(Mthat is, a maximal linearly independent subset of X. Let us recall that, applying
Zorn’s Lemma, one can show that any linearly independent subset of X can be completed
to a Hamel basis. Moreover, given a Hamel basis (e;);cr, we have that X = sp{e; | i € I'}.
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5.3 Bounded linear functionals

In this section we shall study a special case of bounded linear operators,
namely R-valued operators or—as we usually say—bounded linear function-
als. We will see that functionals enjoy an important extension property
described by the Hahn-Banach Theorem. Then we will derive useful ana-
lytical and geometric consequences of such a property. These results will be
essential for the analysis of dual spaces that we shall develop in the next
section. Finally, we will characterize the duals of the Banach spaces /7.

5.3.1 The Hahn-Banach Theorem

Let us consider the following extension problem: given a subspace M C X
(not necessarily closed) and a continuous linear functional f : M — R,

A, =7
1EN = (1A

Remark 5.20 1. Observe that a bounded linear functional f defined on
a subspace M can be extended to the closure M by a standard com-
pleteness argument. For let Z € M and let (z,) C M be such that
T, — T. Since

find F € X* such that { (5.11)

[f(zn) = f(@m)] < \[fIlzn = 2mll

(f(xy)) is a Cauchy sequence in R. Therefore, (f(z,)) converges. Then,
it is easy to see that F(Z) := lim,, f(z,) is the required extension of
f. So, the problem of finding an extension of f satifying (5.11) has a
unique solution when M is dense in X.

2. Another case where the extension satifying (5.11) is unique is when X
is a Hilbert space. Indeed, let us still denote by f the extension of the
given functional to M, obtained by the procedure described at point 1.
Note that M is also a Hilbert space. So, by the Riesz-Fréchet Theorem,
there exists a unique vector y; € M such that ||zf| = || f| and

f(2) = (x,yy) Vel

Define
F(x) = (x,yy) Ve e X.
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Then, f € X* satisfies (5.11) and || F|| = ||y¢|| = || f]|. We claim that F
is the unique extension of f with these properties. For let G be another
bounded linear functional satifying (5.11) and let yo be the vector in
X associated with G in the Riesz representation of G. Consider the
Riesz orthogonal decomposition of yq, that is,

Yo = Yo +yh where yn, €M and yp L M.

Then, o
(r.y6) = G(x) = f(x) = (z,y;) Ve eM.
So, y¢: = yy. Moreover,

!

&1 = llyell* = llye 1 = 11£17 = llyglI* = 0.

In general, the following classical result ensures the existence of an extension
of f satisfying (5.11) even though its uniqueness is no longer guaranteed.

Theorem 5.21 (Hahn-Banach: first analytic form) Let (X, | -||) be a
normed space and let M be a subspace of X. If f : M — R s a continuous
linear functional on M, then there is a functional F' € X* such that

F|M=f and || F[| = [Lf]-

Proof. To begin with, let us suppose that || f|| # 0 for otherwise one can
take ' = 0 and the conclusion becomes trivial. Then we can assume, without
loss of generality, that ||f|| = 1. We will show, first, how to extend f to a
subspace of X which strictly includes M. The general case will be treated
later—in steps 2 and 3—by a maximality argument.

1. Suppose M # X and let xy € X \ M. Let us construct an extension of
f to the subspace

My :=sp(M U{zo}) ={z+ Ao |z € M, N € R}.
Define
folx + Axg) :== f(x) + da Ve M, VAeR, (5.12)

where « is a real number to be fixed. Clearly, fy is a linear functional
on M, that extends f. We must find € R such that
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A simple re-scaling argument shows that the last inequality is equiva-
lent to

|fo(xzo — y)| < |lwo — v Yye M.

Therefore, replacing fy by its definition (5.12), we conclude that v € R
must satisfy | — f(y)| < ||xo — y|| for all y € M, or

f) = llwo—yll <a < fly) + w0 —yll  Yye M.

Now, such a choice of « is possible because

F) = F(2) = fly = 2) <ly = 2l < [lzo = yll + [0 — ]|

for all y, z € M, and so

sup {£(y) = lzo —ll} < inf {f() — lla = =II}.

2. Denote by P the family of all pairs (]T/[/ , f) where M is a subspace of

X including M, and f is a bounded linear functional extending f to
M such that ||f|| = 1. P # @ since it contains (M, f). We can turn P
into a partially ordered set defining, for all pairs (M, f1), (Ma, f2) € P,

M; subspace of M,
fo=fi on M.

We claim that P is inductive. For let Q = {(M;, f;)ier} be a totally
ordered subset of P. Then, it is easy to check that

_ i€l

f(z):= filzx) if zeM,;

(My, fr) < (Mo, f2) <~ { (5.13)

defines a pair (M , f) € P which is an upper bound for Q.

3. By Zorn’s Lemma, P has a maximal element, say (M, F'). We claim
that M = X and F is the required extension. Indeed, F' = f on M and
|F|| = 1 by construction. Moreover M = X, for if M # X then the
first step of this proof would imply the existence of a proper extension
of (M, F), contradicting its maximality. [J
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Example 5.22 In general, the extension provided by the Hahn-Banach The-
orem is not unique. For instance, consider the space

¢ = {z=(z,) €| 3 lim z,}.

n—oo

As it is easy to see, ¢; is a closed subspace of £*° and ¢ is a closed subspace
of ¢;. The map
f(z) := lim z, Vo = (z,) € &1

n—oo
is a bounded linear functional on ¢; such that f = 0 on ¢y. Then, f is a
nontrivial extension of the null map on cy.

We shall now discuss some useful consequences of the Hahn-Banach Theorem.

Corollary 5.23 Let M be a closed subspace of X and let xog ¢ M. Then
there exists ' € X* such that

=0 (5.14)
(©) NFll = 1/du(xo) .
Proof. Let My =sp(M U{zy}) = M + Raxy. Define f: My — R by
flz+ Azg) = A Ve e M, V2eR.

Then, f(zo) =1 and f|M = 0. Also, since

o+ Azoll = A [|5 + ol > [Alda (o)

we have that || f|| < 1/da(xg). Moreover, let (z,,) be a sequence in M such
that

1
2 — 20| < (1 + —)dM(xo) Vn > 1.
n
Then,

n_ llen — ol

>1.
n+1 dy(zo) vn 2

1 Hlzn = 2oll = f(zo — n) =1 >

Therefore, ||f|| = 1/dpy(zo). Now, the existence of an extension F' € X*
satisfying (5.14) follows from the Hahn-Banach Theorem. [J
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Corollary 5.24 Let xg € X \ {0}. Then there exists F' € X* such that
F(xo) = ||xo|| and |F|=1. (5.15)
Proof. Let M = Rxzq. Define f: M — R by
f(Azg) = Alzof VA ER.

Then, one can easily check that f(zg) = ||xo|| and ||f]] = 1. Now, the
existence of an extension F' € X* satisfying (5.15) follows from the Hahn-
Banach Theorem. [

Exercise 5.25 Hereafter, for any f € X*, we will use the standard notation
(f,z) = f(x) Ve e X.

1. Let zq,...,x, be linearly independent vectors in X and let \y,..., A,
be real numbers. Show that there exists f € X* such that

2. Let M be a subspace of X.

(a) Show that a point # € X belongs to M iff f(x) = 0 for every
f € X* such that f|M = 0.

(b) Show that M is dense iff the only functional f € X* that vanishes
on Mis f=0.

3. Show that X* separates the points of X, that is, for any z1,29 € X
with x; # x5 there exists f € X* such that f(z1) # f(z2).

4. Show that ||lz]| = max {(f,z) | f € X", |fI| <1}.

5.3.2 Separation of convex sets

It turns out that the Hahn-Banach Thoerem has significant geometric appli-
cations. To achieve this, we shall extend our analysis to vector spaces.

Definition 5.26 A sublinear functional on a vector space X is a function
p: X — R such that
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(a) p(Ax) = Ap(x) Ve e X VA>0

()  plz+y) <plx)+ply) VryeX.
The Hahn-Banach Theorem can be extended in the following way:.

Theorem 5.27 (Hahn-Banach: second analytic form) Let p be a sub-
linear functional on a wvector space X and let M be subspace of X. If
f: M — R is a linear functional such that

f(z) < p(x) Ve e M, (5.16)

then there is a linear functional F' : X — R such that

F, =
{ | (5.17)
F(z) < p(x) Vo e M.

The proof of Theorem 5.27 will be omitted. The reader is invited to check
that the proof of Theorem 5.21 can be easily adapted to the present context.

Theorem 5.28 (Hahn-Banach: first geometric form) Let A and B be
nonempty disjoint convexr subsets of a normed space X. If A is open, then
there is a functional f € X* and a real number o such that

fz) <a< fly) VreA VyeB. (5.18)

Remark 5.29 Observe that (5.18) yields, in particular, f # 0. It can be
proved that, given a functional f € X*\ 0, for any a € R the set

= fa)={z e X | fz)=a} (5.19)

is a closed subspace of X. We will call any such set a closed hyperplane in
X. Therefore, an equivalent way to state the conclusion of Theorem 5.28 is
that A and B can be separated by a closed hyperplane.

Lemma 5.30 Let C be a nonempty convexr open subset of a normed space
X such that 0 € C'. Then

pe(z) :=inf{r >0 |z erC} Vee X (5.20)

is a sublinear functional on X called the Minkowski function of C' or the
gauge of C'. Moreover.

e Jc>0 suchthat 0<pc(z)<c|z] Ve e X (5.21)
o C={xe X |pc(x)<1}. (5.22)
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Proof. To begin with, observe that, being open, C' contains a ball Bg.
1. Let us prove (5.21). For any € > 0 we have that

Rz
x| + €

€ BpcC.

Since ¢ is arbitrary, this yields 0 < pe(x) < ||z||/R.

2. We now proceed to show that pc is a sublinear functional. Let A > 0
and x € X. Fixe > 0 and let 0 < 7. < po(x)+¢ be such that x € 7.C.
Then, \x € A.C. Thus, pc(Ax) < A < Ape(z) + €). Since € is
arbitrary, we conclude that

pe(Ar) < Ape(x) YA>0,VreX. (5.23)

To obtain the converse inequality observe that, in view of (5.23),

1 1
po(r) = pe <X MJ) < ch()\w) .
Finally, let us check that pc satisfies property (b) of Definition 5.26.
Fix z,y € X ande > 0. Let 0 < 7. < po(z)+ecand 0 < 0. < pc(y)+e
be such that x € 7.C' and y € 0.C'. Then, x = 7.z, and y = 0.y, for
some points x.,y. € C. Since C' is convex,

Te O¢
x+y:Tsx5+aey6:(76+Us)<T_|_0_ xs+7+0_ y5>
3 € 3 €

eC

Thus,
pe(r+y) <7+ 0. <po(x) +po(y) + 2 Ve >0,

whence po(z +vy) < pe(z) + pe(y).

3. Denote by C the set in the right-hand side of (5.22). Since 7C' C C for
every T € [0, 1], we have that Ccc. Conversely, since C' is open, any
point z € C belongs to some ball B,.(z) C C. Therefore, (1 +r)x € C
and so po(z) <1/(1+7r)<1. O
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Lemma 5.31 Let C' be a nonempty convex open subset of a normed space X
and let xg € X\ C. Then there is a functional f € X* such that f(x) < f(zo)
forall x € C.

Proof. First, we note that we can assume that 0 € C' without loos of
generality. Indeed, this is always the case up to translation. Define M := Rx,
and

g: M —R by g(Azg) = Apc(xo) YAER,

where p¢ is the Minkowski function of C'. Observe that g satisfies condition
(5.16) with respect to the sublinear functional p¢ since, for any x = A\xy € M,
it is easy to see that

g(z) = Apc(ro) < pe(w) VAeR.

Therefore, Theorem 5.27 ensures the existence of a linear extension of g, say
f, which satisfies (5.17). Then, f(zo) = g(zo) = 1 and, owing to (5.22),

f(z) =g(x) <pc(x) <1 Ve e C. O
Proof of Theorem 5.28. It is easy to see that
C:=A-B={zx—yl|lzecA, ye B}

is a convex open set and that 0 ¢ C. Then, Lemma 5.31 ensures the existence
of a linear functional f € X* such that f(z) < 0= f(0) for all z € C. Hence,
f(x) < f(y) for all z € A and y € B. So,

o= sggf(fﬂ) <flyy VyeB.

We claim that f(z) < « for all z € A. For suppose f(zp) = a for some
xo € A. Then, since A is open, B,(zq) C A for some r > 0. So,

flzo+rz)<a VreB.
Now, taking x € B; such that f(z) > || f]|/2(> 0), we obtain

flzo +rx) = f(ag) +rf(x) > a+@.

a contradiction that concludes the proof. [J
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Theorem 5.32 (Hahn-Banach: second geometric form) Let C' and D
be nonempty disjoint convex subsets of a normed space X. If C' is closed and
D is compact, then there is a functional f € X* such that

sup f(z) < inf f(y). (5.24)

zeC

Proof. Let us denote by d¢ the distance function from A. Since C' is closed
and D is compact, the continuity of d¢ yields

J = g’éléldc(ﬂi) > 0.
Define
Cs:=C+ Bsj, and Ds:= D+ Bs,.

It is easy to see that Cs and Ds are nonempty open convex sets. They are
aslo disjoint for if c+ 2 = d+y for some points ¢ € C,d € D and x,y € Bjss,
then

de(d) <lle—df = |ly —=| < 0.

Then, by Theorem 5.28, there is a linear functional f € X* and a number «
such that

f(c+ gx> §a§f<d+ gy> Vee O, Yde D, Va,y € By .

Now, let x € B; be such that f(z) > ||f]|/2®. Then

s+ il <s(e+ 52) << sa- 52) <10 - 2

for all c € C and d € D. The conclusion follows. J

5.3.3 The dual of /#

In this section we will study the dual of the Banach spaces ¢y and #? defined in
Example 5.5.4. To begin, let p € [1, 00| and let ¢ be the conjugate exponent,
that is, 1/p+ 1/q¢ = 1. With any y = (y,) € ¢4 we can associate the linear
map f, : ¥ — R defined by

Fol@) = anyn Vo= (z,) €0 (5.25)

®)Recall that | f|| > 0, see Remark 5.29.
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Holder’s inequality ensures that
[fy@) < llyllgllzll, — Voel
Hence, f, € (¢7)* and || f,]| < ||y|l- Therefore,
2 04 p)*
Jp 01— () (5.26)
]p(y) . fy

is a bounded linear operator such that ||j,|| < 1. Moreover, since ¢ is a
subspace of £>, f, is also a bounded linear functional on ¢, for any y € ¢*. In
this section, for p = oo, we shall restrict our attention to the bounded linear
operator ju, : €' — (co)*.

Proposition 5.33 The bounded linear operator
= (P df 1<p<oo
e {51 — (co)* if p=o0

1 an isometric isomorphism.

Let us first prove the following

Lemma 5.34 Let
X {@p zf 1<p< o
co if p=oo.

Then X is the closed linear subspace (with respect to || - ||,) generated by the

set of vectors
k—1
—
er =(0,...,0,1,0,...) k=1,2... (5.27)

Consequently, X s separable.

Proof. For any z = (z,) € /*, 1 < p < oo we have

n
H.Z‘— E TkCrL
k=1

Similarly, for any = = (z,,) € ¢,

n
HJI— E TrCL
k=1

because x,, — 0 by definition. The conclusion follows. [

p oo
= Z|xk|p—>0 (n — 00).
P k=n+1

=max{|zg| | k>n} =0 (n— o0)
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Remark 5.35 We note that the conclusion of above lemma is false for ¢*°

since
splex | k>1)=1co S . (5.28)

In fact, we know that ¢°° is not separable, see Exercise 5.6.4.

Proof of Proposition 5.33. Let us consider, first, the case of 1 < p < o0.
Fix f € (¢*)* and set

yp = fler) VE>1 (5.29)
where e, is defined in (5.28). It suffices to show that y := (yx) satisfies
yett, ylly <l F=1y (5.30)

For any n > 1 let ©)

L) _ e Py, i k<n
k 0 if k>n.

Then 2™ € ¢, since all its components vanish but a finite number, and

~ -~ 1/p
Sluele = ) < 1A = 1A D k)
k=1 k=1

whence
- 1/q
(S twl) “<url wnz1.
k=1

This yields the first two assertions in (5.30). To obtain the third one, fix
x € (P and let
Ty = '
0 if kE>n.

Observe that

f(x(n)) = Zxkf(ek) = Zxkyk
k=1 k=1

Since ™ — x in ¢’ and the series > & Try, converges, we conclude that
f = fy. This completes the analysis of the case 1 < p < oo. The similar
reasoning for the remaining cases is left as an exercise. [

6)observe that |yg|?7 2y, = 0 if y, = 0 since ¢ > 1.
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Exercise 5.36 1. Prove Proposition 5.33 for p = 1.
HINT: defining y as in (5.29) the bound ||y||ec < || f|| is immediate . ..

2. Prove Proposition 5.33 for p = oo.
HINT: define y as in (5.29) and

i

2™ = il
0 if =0 or k>n.

it k<n and y,#0

Then [|2™]| <1 ...

5.4 Weak convergence and reflexivity

Let (X, || -|) be a normed space. Then the dual space X* is itself a Banach
space with the dual norm.

Definition 5.37 The space X** = (X*)* is called the bidual of X.

Let Jx : X — X™ be the linear map defined by
(Jx (), f) = {f,x) Vee X, VfeX". (5.31)

Then, |[(Jx(x), )| < ||f]l [|z|| by definition. So, ||Jx(z)|| < ||=|]. Moreover,
by Corollary 5.24, for any x € X a functional f, € X* exists such that
fo(x) = |zl and [[fo]] = 1. Thus, |[z[] = |(Jx (2), fa)| < [[Jx(2)[|. Therefore,
|Jx (z)|| = ||=|| for every x € X, that is, Jx is a linear isometry.

5.4.1 Reflexive spaces

The above considerations imply that Jy (X) is a subspace of X**. It is useful
to single out the case where such a subspace coincides with the bidual.

Definition 5.38 A space X is called reflexive if the map Jx : X — X**
defined in (5.31) is onto.

Recalling that Jx is a linear isometry, we conclude that any reflexive space
X is isometrically isomorphic to its bidual X**. Since X** is complete, like
every dual space, every reflexive normed space must also be complete.
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Example 5.39 1. If X is a Hilbert space, then X* is isometrically iso-
morphic to X by the Riesz-Fréchet Theorem. Therefore, so is X**. In
other words, any Hilbert space is reflexive.

2. Let 1 < p < co. Then Proposition 5.33 ensures that (¢7)* = (7, where
p and ¢ are conjugate exponents. So, (7 is reflexive for all p € (1, 00).

Theorem 5.40 Let X be a Banach space.
(a) If X* is separable, then X is separable.

(b) If X* is reflexive, then X is reflezive.

Proof.
(a) Let (fx) be a dense sequence in X*. There exists a sequence () in X
such that
el and (Al 2 2 v

We claim that X coincides with the closed subspace generated by (zy).
For let M = 8p(xy | kK > 1) and suppose there exists g € X\ M. Then,
applying Corollary 5.23 we can find a functional f € X* such that

fla) =1, S, =0 Il =7
So,
Wl < o) = 1) = sl < 15— 11,
whence .
s = IS 7= il + 10 <3015 - Al

Thus, (fx) cannot be dense in X*—a contradiction.

(b) Observe that, since X is a Banach space, Jx(X) is a closed subspace of
X**. Suppose there exists ¢g € X\ Jx(X). Then, by Corollary 5.23
applied to the bidual, we can find a bounded linear functional on X**,
valued 1 at ¢y and 0 on Jx(X). Since X* is reflexive, such a functional
will belong to Jx«(X*). So, for some f € X*,

(po, f)=1 and 0= (Jx(z), f) = (f,z) Ve e X,

a contradiction that concludes the proof. [J
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Remark 5.41 1. From point (a) of Theorem 5.40 we conclude that, since
(> is not separable, (£*°)* also fails to be separable. So, (¢*°)* is not
isomorphic to ¢*, and ¢! is not reflexive. Moreover, ¢> also fails to be
reflexive since otherwise ¢! would be reflexive by point (b) above.

2. The result of point (b) of Theorem 5.40 is an equivalence since the
implication
X reflexive = X* reflexive
in trivial. On the contrary, the implication of point (a) cannot be
reversed. Indeed, ¢! is separable, whereas (> = (¢!)* is not.

Corollary 5.42 A Banach space X is reflexive and separable iff X* is re-
flexive and separable.

Proof. The only part of the conclusion that needs to be justified is the fact
that, if X is reflexive and separable, then X* is separable. But this follows
from the fact that X** is separable, since it is isomorphic to X, and from
Theorem 5.40 (a). O

We conclude this section with a result on the reflexivity of subspaces.

Proposition 5.43 Let M be a closed linear subspace of a reflexive Banach
space X. Then M 1is reflexive.

Proof. Let ¢ be a bounded linear functional on M*. Define a functional ¢
on X* by _

@.0)=(0.1),)  VfeX".
Since ¢ € X**, by hypothesis we have that ¢ = Jx (%) for some Z € X. The
proof is completed by the following two steps.

1. We claim that T € M. For if T € X \ M, then by Corollary 5.23 there
exists f € X* such that

(f,Z) =1 and 7|M =0.
This yields a contradiction since

2. We claim that ¢ = Jy(Z). Indeed, for any f € M* let f € X* be the
extension of f to X provided by the Hahn-Banach Theorem. Then,

(0. f)= (0, f) =([.7) =(f,7) VfeX". 0
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5.4.2 Weak convergence and BW property

It is well known that the unit ball B; of a finite dimesional Banach spaces is
relatively compact. We refer to such a property as the Bolzano- Weierstrass
property. One of the most striking phenomena that occur in infinite dimen-
sions is that the Bolzano-Weierstrass property is no longer true. In fact, the
following result holds.

Theorem 5.44 Any Banach space with the Bolzano-Weierstrass property
must be finite dimensional.

Lemma 5.45 Let M be a closed linear subspace of a Banach space X such
that M # X . Then a sequence (x,) C X exists such that

|zn] =1 Vn>1 and dy(z,) —1 as n— oo. (5.32)
Proof. Invoking Corollary 5.23, we can find a functional f € X* such that

=1 and £, =0.

Then, for every n > 1 there exists z,, € X such that

1
laall =1 and (e > 1- .

Therefore, for every n > 1,

L= < fan) ~ F@)] < e~y Wy M.

Taking the infinum over all y € M we obtain that 1 —1/n < dy(x,) < 1.
The conclusion follows. [J

Proof of Theorem 5.44. Suppose dim X = oco. Let x; be a fixed unit
vector and let Vi := Rx; = sp({x1}). Since Vi # X, the above lemma
implies the existence of a vector x5 € X such that

1
|zo]| =1 and dy,(x2) > 7

Let V4 :=sp({z1,22}) and observe that V; C V5 € X. Again by Lemma 5.45
we can find a vector xz € X such that
1

|lzs|| =1 and dy,(z3) > 1— 3
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Iterating this process we can construct a sequence (x,) in X such that

1
n+1’

|lzn|| =1 and dy, (zpe1) >1—

where V,, = sp({z1,...,2,}) € X. Then, (z,) has no cluster point in X
since, for any 1 < m < n, we have 1 — 1/n < dy, (z,) < ||z, — 2. O

A surrogate for the Bolzano-Weierstrass property in infinite dimensional
spaces is ther notion of convergence we introduce below.

Definition 5.46 A sequence (z,) C X is said to converge weakly to a point
xe X f

lim (f, z,,) = (f, z) VfeX™.
In this case we write w — lim,, oo T,, = T 07 T,, — T.

A sequence (x,) that converges in norm is also said to converge strongly.
Since [(f,xn) — (f,2)| < ||f|l llxn — ||, n it is easy to see that any strongly
convergent sequence is also weakly convergent. The conserve is not true as
is shown by the following example.

Example 5.47 Let (e,) be an orthonormal sequence in an infinite dimen-
sional Hilbert space X. Then, owing to Bessel’s inequality (x,e,) — 0 as
n — oo for every x € X. Therefore, e,, — 0 as n — oco. On the other hand,
len|| = 1 for every n. So, (e,) does not converge strongly to 0.

Proposition 5.48 Let (x,,), (y,) be sequences in a Banach space X, and let
z,y € X.

(a) If x, — x and x, — y, then x =y.

(b) If x, — = and y, — vy, then x, + y, =z +y.

(c) If x, = = and (\,) C R converges to \, then A\,x, — Az.
(d) If 1, > 2 and A € L(X,Y), then Az, - Ax.

(e) If x,, — z, then (x,) is bounded.

(f) If x, — x, then ||z|| < liminf ||z,].
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Proof.

(a) By hypothesis we have that (f,x —y) = 0 for every f € X*. Then, the
conlusion follows recalling Exercise 5.25.3.

(b) The proof is left to the reader.

(¢) Since (A,) is bounded, say |\,| < C, for any f € X* we have that

(An(fyzn) = M) < [Anl [{frzn —2) [+ ] A = AL [{f,2)]-
\gg/ 10 10

(d) Let g € Y*. Then (g,Ax,) = (go A, z,) — 0 since go A € X*.
(e) Consider the sequence (Jx(x,)) in X**. Since
<JX<xn)7f>:<faxn>_><fax> vaX*

we have that sup,, [(Jx(z,), f)| < oo for all f € X*. So, the Banach-
Steinhaus Theorem implies that

sup [zn[| = sup [[Jx ()| < o0

(f) Let f € X* be such that || f|| < 1. Then,

(o] < ol = [(f.2)] < limin |
I(fz)] T

The conclusion follows recalling Exercise 5.25.4. [

Exercise 5.49 1. Let f, : R — R be defined by

2% if z € [27, 271,
fu(r) =

0 otherwise.
Show that

e f, > 0in LP(R) for all 1 < p < 4o0;
e {f.} does not converge weakly in L'(R).
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2. Show that, in a Hilbert space X,

T, — T <= x,—c and |z,] — |z].

HINT: observe that ||z, — z|* = ||z, ||> + [|=]|* — 2(zp, ) . ..

3. Let C be a closed convex subset of X and let (x,) C C. Show that, if
r, — x, then z € C.

HINT: use Lemma 5.31.

Besides strong and weak convergence, in dual spaces one can define another
notion of convergence.

Definition 5.50 A sequence (f,) C X* is said to converge weakly—x to a
functional f € X* iff

(fa,x) = (f,x) as n—oo VreX. (5.33)
In this case we write
w*— lim f,=f or fo=f (as n— 00).

Remark 5.51 It is interesting to compare weak and weak—+ convergence
on X*. By definition, a sequence (f,,) C X* converges weakly to f iff

(¢, fn) = (&, f) as n— o0 (5.34)
for all ¢ € X**, whereas, f,, — f iff (5.34) holds for all ¢ € Jx(X). Therefore,

weak convergence is equivalent to weak—x convergence if X is reflexive but,
in general, weak convergence is stronger than weak—x* convergence.

Example 5.52 In ¢>® = ({')* consider the sequence (z(™) defined by

(n) 0 if k‘Sn
R FEET I

Then 2™ = 0. Indeed, for every y = (y;) € £*,

<]1 (n) y> Zxk Y = Zyk—>0 (n — 00).

k=n+1
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where j; : £°° — (¢£')* is the linear isometry defined in (5.26). On the other
hand, we have that 2™ - 0. Indeed, define

f(z) = klim x,  Yr=(xp) €
where ¢; 1= {x = (z;;) € £ | Ilimj, z;,} (see Example 5.22). Then, denoting
by F' any bounded linear functional extending f to />**—for instance, the one
provided by the Hahn-Banach Theorem—we have that
<F, x(")> = klim x,in) =1 Vn>1.

Exercise 5.53 1. Show that any (f,) C X* that converges weakly—sx is
bounded in X*.

2. Show that, if x,, — = and f, — f, then (f,,z,) — (f,x) as n — oc.
3. Show that, if x, — = and f,, = f, then (f,,2,) — (f,2) as n — oc.

One of the nice features of weak—s* convergence is the following result yielding
a sort of weak—x Bolzano-Weierstrass property of X*.

Theorem 5.54 (Banach-Alaoglu) Let X be a separable normed space.
Then every bounded sequence (f,) C X* has a weakly—* convergent sub-
sequence.

Proof. Let (z,) be a dense sequence in X and let C' > 0 be an upper bound
for || fa||. Then |f,(z1)] < C|lz1||. So, there exists a subsequence of (f,),
say (fin), such that fi ,(x;) converges. Next, since |f; ,(x2)| < C||z2]|, there
exists a subsequence (f2,,) C (f1.), such that fo,(z2) converges. Iterating
this process, for any k£ > 1 we can construct nested subsequences

(fin) C (frm1m) C - C (frn) € (fa)

such that |f,(z)] < Cl|zk]| and fin(zg) converges as n — oo for every
k > 1. Define, for n > 1, g,(x) := fu.(2z) for all z € X. Then, (g,) C (fn),
llgn(z)]] < C||z||, and g, (zx) converges as n — oo for every k > 1 since it is,
for n > k, a subsequence of fi ,(xy).

Let us complete the proof showing that g, (z) converges for every x € X.
Fix x € X and € > 0. Then, there exist k.,n. > 1 such that

l — x| <&
|9n(2h.) = gm(z1)| <& Ym,n = mn.
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Therefore, for all m,n > n.,

|9n(2) = gm ()] < |gn(@) = gn(w.)] + |9 (Tk.) = gm ()]
<2C||z—zp, ||

+gn(zr.) = gm(21.)] < (2C + 1)e.

Thus, (g,(z)) is a Cauchy sequence satisfying |g,(x)| < C||z|| for all z € X.
This implies that f(z) := lim, g,(x) is an element of X*. [J

The main result of this section is that reflexive Banach space have the weak
Bolzano-Weierstrass property as we show next.

Theorem 5.55 In a reflexive Banach space, every bounded sequence has a
weakly convergent subsequence.

Proof. Define M := sp(z, | n > 1). Observe that, in view of Proposi-
tion 5.43, M is a separable reflexive Banach space. Therefore, Corollary 5.42
ensures that M* is separable and reflexive too. Consider the bounded se-
quence (Jy(z,)) C M**. Applying Alaoglu’s Theorem, we can find a subse-
quence (x,, ) such that Jyr(x,,) — ¢ € M*™ as n — oo. The reflexivity of M
guarantees that ¢ = Jy; (%) for some T € M. Therefore, for every f € M*,

f@n,) = (In(zn,), f) = (Ju(@), f) = f(T) as n— oo,
Finally, for any F' € X* we have that F‘M e M*. So,

F(z,,) = FlM(xnk) — F‘M(E) = f(Z) as n— . O

Exercise 5.56 1. Let 1 < p < oo and let (™ = (wén))k21 be a bounded
sequence in 7. Show that (™ — 2 = (w4)r>1 in ¢ if and only if, for

every k > 1, xl(:) — T} as n — 00.

HINT: suppose ¥ = 0, fix y € £, and let ||z(™||, < C for all n > 1. For
any € > 0 let k. > 1 be such that

oo 1
( Z ’yk’q> ! <e,
k=ko+1

and let n. > 1 be such that

ke f
(Z]x,g"”p)p <e Vn>n,..
k=1
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Then, for all n > n,,

ke 00
}UAw¢ﬂmﬂ=‘§:ymfﬂ%w > g
k=1

k=kes+1
ke 1 ke 1 o 1 0 1
< (D twlt) (D 1er) (0 )" (D 1elr)”
N k=1 N k=1 PN k=ke+1 k=ke+1 B
<Ilyl < < <c

2. Find a counterexample to show that the above conclusion is false if (™
fails to be bounded.

HINT: in ¢2 let (™ = n2e, where e, is the sequence of vectors defined
in (5.27). Then, for every k > 1, x,ﬁn) — 0 as n — oo. On the other
hand, taking y = (1/k)k>1 we have that

ye® and (ja(y),z™) =n — 0.

3. Let 2™ = ()p>1 be bounded in ¢y. Show that 2™ — 2 = (z})4>1 in ¢

if and only if, for every k > 1, x,(gn) — Tk as n — 00.

HINT: argue as in point 1 above.

4. Let 1 < p < oo and let z, 2™ C ¢?. Show that

W S = - (5.35)
|| = ||

HINT: use point 1 of this exercise and adapt the proof of Proposi-
tion 3.38 observing that, for any k£ > 1,

P + e \xi”) —

0<
- 2 2

= [z (n — o0).

5. Show that property (5.35) fails ¢q.

HINT: consider the sequence z(™ = e; + e,, where (e;) is the sequence
of vectors defined in (5.27).
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Remark 5.57 1. We say Banach space X has the Radon-Riesz property
if (5.35) holds true for every sequence (™ in X. By the above exercise,
such a property holds in /7 for all 1 < p < oo, but not in ¢y. Owing to
Exercise 5.49.2, all Hilbert spaces have the Radon-Riesz property.

2. A surprising result known as Schur’s Theorem () ensures that, in ¢,
weak and strong convergence coincide, that is, for all 2™, z € ¢, we
have that

™ s = g

Then, in view of Schur’s Theorem, ¢! has the Radon-Riesz property.
On the other hand, this very theorem makes it easy to check that the
property described in Exercise 5.56.1 fails in ¢!. Indeed, the sequence
(e) in (5.27) does not converge strongly—thus, weakly—to 0.

(Msee. for instance, Proposition 2.19 in [3].
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Product measures

6.1 Product spaces

6.1.1 Product measure

Let (X, F) and (Y, G) be measurable space. We will turn the product X x Y
into a measurable space in a canonical way.

A set of the form A x B, where A € F and B € G, is called a measurable
rectangle. Let us denote by R the family of all finite disjoint unions of
measurable rectangles.

Proposition 6.1 R is an algebra.

Proof. Clearly, @ and X xY are measurable rectangles. It is also easy to see
that the intersection of any two measurable rectangles is again a measurable
rectangle. Moreover, the intersection of any two elements of R stays in
R. Indeed, let U;(A; x B;) and U;(C; x D;)) be finite disjoint unions of
measurable rectangles. Then,

(G x B ) () (95(C5 % Dy)) = Ui (A x BN (G5 x D)) € R

Let us show that the complement of any set £/ € R is again in R. This is
true if £ = A x B is a measurable rectangle since

E° = (A° x B)U(A x BY)J(A° x BE).

(DHereafter the symbol U denotes a disjoint union.

151
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Now, proceeding by induction, let

E= (U(Ai X Bi)) UJ(Ans1 X Bu) €R
i=1 g

and suppose F¢ € R. Then, £ = F°N (A1 X Bpy1)¢ € R because
(Api1 X Byi1)© € R and we have already proven that R is closed under
intersection. This completes the proof. U

Definition 6.2 The o—algebra generated by R is called the product o—algebra
of F and G. It 1s denoted by F x G.

For any E € F x G we define the sections of E putting, forx € X andy € Y,
E,={yeY: (z,y) e £}, E'={reX: (x,y) € E}.

Proposition 6.3 Let (X, F,u), (Y,G,v) be o-finite measure spaces and let
E € F xG. Then the following statements hold.

(a) E, € G and EY € F for any (v,y) € X X Y.

(b) the functions

X —R d Y - R
v v(B) My p(EY)

are p—measurable and v—measurable, respectively. Moreover,
/I/(Ex)d,u:/,u(Ey)dy. (6.1)
b's Y

Proof. Suppose, first, that £ = U]_,(A; x B;) stays in R. Then, for (z,y) €
X xY we have E, = U;_,(A; x B;), and EY = U,_,(A; x B;)Y, where

(B ifreA, ,_ [ A ifyeB,
Consequently,

v(Bs) =) v((Ai x Bi)a) = Y v(Bi)xa, (@),

i=1 =1
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n n

u(EY) =Y n((A x B)Y) =Y pulA)x,(y)

=1 i=1

so that (6.1) follows. Then the thesis holds true when E stays in R.

Now, let € be the family of all sets £ € F x G satisfying (a). Clearly,
X xY € &. Furthermore for any F, (E,), C F x G and (z,y) € X XY we
have

(Ec)m = (Em>c7 (Ec)y - (Ey)ca
Un(En)m = (UnEn>za Un(En)y - (UnEn)y'

Hence € is a g-algebra including R and, consequently, £ = F x G.
We are going to prove (b). First assume that g and v are finite and define

M={EecFxg ‘ E satisfies (b)}.

We claim that M is a monotone class. For let (E,), C M be such that
E, 1 E. Then, for any (z,y) € X XY,

(En.): T E, and (E,)Y 1 EY.

Thus
V((B)a) 1 v(Es) and p((Ea)) 1 p(EY).

Since z — v((E,),) is p—measurable for all n € N, we have that = — v(E,)
is p—measurable too. Similarly, y — u(EY) is v—measurable. Furthermore,
by the Monotone Convergence Theorem,

/XV(EJ,,)d,u: lim [ v((E,).)dp= lim [ p((E,)")dv = / wu(EY)dv.

Therefore, £ € M. Next consider (FE,), C M such that E, | F. Then, a
similar argument as above shows that for every (z,y) € X x Y

v((Ena) | W(E) and u((Ea)) | u(EY).

Consequently the functions x — v(E,) and y — p(EY) are u—measurable
and v—measurable, respectively. Furthermore,

v((Bn)e) <v(Y) YzeX,  p((E)Y) <uX) Vyev,
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and, since p and v are finite, the constants are summable. Then, Lebesgues’s
Theorem yields

/)(V(Ex>du: lim [ v((En).)dp = lim [ p((E,)Y)dv = / pu(EY)dv,

which implies £ € M. So, M is a monotone class as claimed. For the first
part of the proof R C M. Theorem 1.29 implies that M = F x G. Then
the thesis is proved when g and v are finite. Now assume that p and v

are o-finite; we have X = U, X, Y = U,Y} for some increasing sequences
(Xp)r € F and (Yy)r C G such that X = UX}, Y = UY}, and

u(Xg) < oo, v(Yy) <oo VkeN. (6.2)
Define pp = u Xy, vy = vLYy and fix £ € F x G. For any (z,y) € X XY,
E.NY,TE, and EYNX,TEY.
Thus
(Ee) = v(B.NY) 1 (E,) and ju(BY) = p(EY 0 X, 1 ()

Since py, and vy are finite measures, for all £ € N the function = — v (E,)
is pu—measurable; consequently z — v(FE,) is pu—measurable too. Similarly,
y — p(EY) is v—measurable. Furthermore, by the Monotone Convergence
Theorem,

/ v(E,)dp = lim | v(Ey)dp = lim [ up(EY)dv = / w(EY)dv.
X Y Y

k—oo X k—o0

g

Theorem 6.4 Let (X, F,u) and (Y,G,v) be o-finite measure spaces. The
set function p X v defined by

(uxv)(E)= /X v(E,)dpu = /Y,u(Ey)dV VEeFxg (6.3)

is a o-finite measure on (X XY, F X G), called product measure of p and v.
Moreover, if X is any measure on (X X Y, F X G) satisfying

MAx B) = u(A)w(B) VAeF,VBeg, (6.4)

then A = pu X v.
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Proof. First, to check that uxv is o-additive let (E,), be a disjoint sequence
in F x G. Then, for any (z,y) € X XY, ((Eyn).), and ((E,)?)  are disjoint
families in G and F, respectively. Therefore,

(B = [ r(UE)dn

= [ oo du/Z

[Proposition 2.39] = Z/ Z(,u x v)(E,) .
To prove that p x v is o-finite, observe that if (X)), C F and (Y;)r C G are
two increasing sequences such that

w(Xg) < oo, v(Yy) <oo VkeN,

then, setting Zy, = X, x Y}, we have Z, € Fx G, (uxv)(Zy) = p(Xi)v(Yy) <
oo and X X Y = UgZg. Next, if A is a measure on (X x Y, F x G) satisfying
(6.4), then A and p x v coincide on R. Theorem 1.26 ensures that A and
i X v coincide on o(R). 0

The following result is a straightforward consequence of (6.3).

Corollary 6.5 Under the same assumptions of Theorem 6.4, let E € F x G
be such that (n x v)(E) = 0. Then, u(EY) = 0 for v-a.e. y € Y, and
v(E,) =0 for p-a.e. z e X.

Example 6.6 We note that © X v may not be a complete measure even
when both g and v are complete. Indeed, let A denote Lebesgue measure
on X = [0,1] and take G to be the o—algebra of all Lebesgue measurable
sets in [0,1] (that is, G consists of all additive sets, see Definition 1.33).
Let A C [0,1] be a nonempty negligible set and let B C [0,1] be a set
that is not measurable (see Example 1.52). Then, A x B C A x [0, 1] and
(A X A)(Ax[0,1]) = 0. On the other hand, A x B ¢ G x G for otherwise one
would get a contradiction with Proposition 6.3(a).

6.1.2 Fubini-Tonelli Theorem

In this section we will reduce the computation of a double integral with
respect to p X v to the computation of two simple integrals. The following
two theorems are basic in the theory of multiple integration.



156 Product measures

Theorem 6.7 (Tonelli) Let (X, F,pn) and (Y,G,v) be o—finite measure spaces.
Let F': X XY — [0,00] be a (1 X v)—measurable function. Then the following
statements hold true.

(a) (i) For every x € X the function y — F(x,y) is v—measurable.
—_—
F(xv)
(ii) For everyy € Y the function x — F(x,y) is p—measurable.
———
F('vy)
(b) (1) The function x — [, F(x,y)dv(y) is p-measurable.
(ii) The function y — [y F(x,y)du(x) is v-measurable.

(¢) We have the identities

Léwf@wmwxw&w%ié{AF@wmwwym@) (6.5)

~ [ [ Femauo)| ) ©0)

Proof. Assume first that F' = yg with £ € F x G. Then,

F(z,') = xg, Vo e X,
F(,y)=xe VyevyY.

So, properties (a) and (b) follow from Proposition 6.3, while (c¢) reduces to
formula (6.3), used to define product measure. Consequently, (a), (b), and
(c) hold true when F' is a simple function. In the general case, owing to
Proposition 2.37 we can approximate F' pointwise by an increasing sequence
of simple functions

F,: X xY —[0,00].

The F,(z,-)’s are themselves simple functions on Y such that
F.(x,-) 1 F(x,-) pointwise as n — oo Vz € X .

So, the function F(x,-) is v—measurable and (a)(i) is proven. Moreover,
x — [, Fo(z,y)dv(y) is an increasing sequence of positive simple functions
satisfying

[ Bleay) 1 [ Papit)  veex.
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thanks to the Monotone Convergence Theorem. Therefore, (b)(i) holds true
and, again by monotone convergence,

/X{/}/Fn(x,y)du(y)} du(z) 1 /X{/yF(:L',y)dy(y)} du(z) .

Since we also have that

/X Raepdux e 1 P, y)d(u x v)(z,3).

XxXY

-

g

=[x [fy Fn(z.y)dv(y)]dp(z)

we have obtained (6.5). By a similar reasoning one can show (a)-(b)(ii) and
(6.6). The proof is thus complete. d

Theorem 6.8 (Fubini) Let (X, F,pu), (Y,G,v) be o—finite measure spaces
and let F' be a (u X v)—summable function on X x Y. Then the following
statements hold true.

(a) (i) For pu—a.e. x € X the function y — F(x,y) is v—summable on Y.
(ii) Forv-a.e. y €Y the function x — F(x,y) is p—summable on X.

)
1)
(b) (i) The function x — [, F(z,y)dv(y) is p-summable on X.
(ii) The function y — [y F(x,y)du(x) is v-summable on Y.
(c) Identities (6.5) and (6.6) are valid.

Proof. Let F™ and F~ be the positive and negative parts of F. Theo-
rem 6.7 (c), applied to F* and F~, yields identities (6.5) and (6.6). Also,
we have that

/X {/y Fi(l’,y)dV(y)} du(z) < oo /Y {/X Fi(:(;,y)d’u(q;)} dv(y) < oo

Therefore, (b) holds true for F* and F~, hence for F. So, on account of
Proposition 2.35,

o z— [, F¥(z,y)dv(y) is p—a.e. finite;

o y— [ FE(x,y)du(x) is v-a.c. finite.
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Consequently, (a) holds true and the proof is complete. U
Example 6.9 Let X =Y = [—1, 1] with the Lebesgue measure and set
_ Ly
f(:v,y) - (372 +y2)2'

Observe that the iterated integrals exist and are equal; indeed

/_lldy/_llﬂx’y)dx - /_jdx/_llf(%‘,y)dyz

On the other hand the double integral fails to exist, since

1 2w in@ 0 1d
[ iy [Car [Ty [P
[-1,1]2 0 0 r o T

This example shows that the existence of the iterated integrals does not imply
the existence of the double integral.

Example 6.10 Consider the spaces
([0, 1], P([0, 1]), ), ([0, 1], B([0,1]), A)

where 1 denotes the counting measure and A the Lebesgue measure. Consider
the diagonal of [0, 1]?, that is

A ={(z,x)|x €]0,1]}.

For every n € N, set

Qn = [O,lru [l,zru...u [ngl,lr.

n nn

@, is a finite union of measurable rectangles and A = N,Q,, by which
A € P([0,1]) x B([0,1]). So the function xp is (u X A)-measurable. We have

/dy/fxyd,u /01dy_1,
/Odu(x)/o f(x,y)dyzfo 0dp = 0.

Then, since p is not o-finite, the thesis of Tonelli’'s theorem fails.
Exercise 6.11 Show that
B(R?) = B(R) x B(R).
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6.2 Compactness in L?

In this section we shall characterize all relatively compact subsets of LP(RN) (2)
for any 1 < p < oo, that is, all families of functions M C LP(RY) whose
closure M in LP(R") is compact. We shall see that two properties that were
examined in chapter 3, namely tightness and continuity under translations,
characterize relatively compact sets in LP(RY).

Definition 6.12 Let 1 < p < co. For any r > 0 and ¢ € LP(RY) define
Sy RN — R by the Steklov formula

1
S, — d Ve e RV,
o(x) o /B (O’T)so(aﬂry) Y T

where wy 1s the surface measure of the unit sphere in RY.

Proposition 6.13 Let 1 < p < oo and p € LP(RY). Then for every r > 0
S, is a continuous function. Furthermore S,p € LP(RY) and, using the
notation Th(x) = @(x + h), the following hold:

1
|Srp(2)] < WH@HP; (6.7)
1Srelly < el
1
1Srp(@) = Srp(x + h)| < WH@ = 0 lp; (6.8)
lp = Srplly < sup o = Taeplp. (6.9)
0<l<r

Proof. (6.7) can be derived using Holder’s inequality:

1 » 1/p
60 < oy ([, e ewbar) o)

(6.8) follows from (6.7) applied to ¢ — 7,¢0. Thus, (6.8) and Proposition 3.50
imply that S, is a continuous function. By (6.10), using Fubini’s theorem

we get
1
[ iserar<— [ (/ \¢<x+y>\pd:c)dy
RN WNT JB(0s) \JRN

H@H?/
= dr = P
o o dr=lelt

@ LP(RN) = LP(RN, B(RN), \) where ) is Lebesgue measure.
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To obtain (6.9) observe that (¢ — S,p)(z) = ﬁ fB(O’r)(go(:z:) —(x+y))dy,
by which

1 ) 1/p
(=50 < g ([ et = ot ubay)

Therefore, Fubini’s Theorem yields

1
— S,olPda < / (/ x)— oz + pd)dx
[temserars o [ ([ lete) — et s iy
1
= x) —plr+ pda:)d
o Lo (L 1ot = st e ) ay

and (6.9) follows. d

Theorem 6.14 (M. Riesz) Let 1 < p < oo and let M be a bounded family
in LP(RN). Then, M is relatively compact iff

SUD e lplPde — 0 as R — oo (6.11)
|z|>R

SUP e g /RN lo(x +h) —p(x)|Pde — 0 as h—0 (6.12)

Proof. Let us set ,p0(x) = @(z + h) for any z,h € RY. We already know
that (6.11) and (6.12) hold for a single element of LP(RY) ((6.11) follows
from Lebesgue Theorem; see Proposition 3.50 for (6.12)). If M is relatively
compact, then for any € > 0 there exist functions ¢, ..., @, € M such that
M C B.(p1)U---UB:(¢m). As we have just recalled, each ; satisfies (6.11)
and (6.12). So, there exist R.,d. > 0 such that, for every i =1,...,m,

/| eilPde < 2 & lgs = mgill, <2 VIR < 6. (6.13)
z|>Re

Let ¢ € M and let ¢; be such that ¢ € B.(y;). Therefore, recalling (6.13),
we have

1/p 1/p 1/p
([ weras) < ([ temera) 4 ([ eia)
|z|>Re |z|>Re |z|>Re

1/p
< ||so—soi||p+(/ |goi|pdm) <2
|z|>Re
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and

HSO - ThSOHp < HSO - %‘Hp + H%’ - Th%’Hp + HThSOi - ThSOHp < 3e.

The necessity of (6.11) and (6.12) is thus proved.
To prove sufficiency it will suffice to show that M is totally bounded. Let
e > 0 be fixed. On account of assumption (6.11),

JR. > 0 such that / |p|Pdx < €P Ype M. (6.14)

|z|>Re

Also, recalling (6.9), assumption (6.12) yields
36. >0 such that |l —Ss. ¢, <e VoeM, (6.15)

where Ss, is the Steklov operator introduced in Definition (6.12). Moreover,
properties (6.7) and (6.8) ensure that {Ss.¢} ¢ is a bounded equicontin-
uous family on B(0, R.). Thus, {Ss.¢} peam 18 relatively compact thanks to
Ascoli-Arzela’s Theorem. Consequently, there exists a finite set of continuous
functions {11, ...,%,} on B(0, R.) such that for each ¢ € M the function
Ss.¢ : B(0, R.) — R belongs to a ball of sufficiently small radius centered at

¢i7 say
g

(WNRN)l/p

€

|Ss.(x) — i()] < Vz € B(0,R.). (6.16)

Set

o ¢1($) |33‘ < R.
pil) = { 0 |z|>R..

Then, ¢; € LP(RY) and, by (6.14), (6.15), and (6.16)

1/p 1/p
le =gl = ( / rwrpdx) T ( / \so—wirpdx)
|z|>Re B(0,R.)
1/p 1/p
£+ (/ Iw—SagwldeJ) + (/ !&M—%Ipdﬁc)
B(0,R.) B(0,R:)

< 3e.

A

This shows that M is totally bounded and completes the proof. Il
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6.3 Convolution and approximation

In this section we will develop a systematic procedure for approximating a
L? function by smooth functions. The operation of convolution provides the
tool to build such smooth approximations. The measure space of interest is
RY with Lebesgue measure \.

6.3.1 Convolution Product

Definition 6.15 Let f, g : RN — R be two Borel functions such that for
a.e. x € RN the function

yeRY — flz—y)g(y) (6.17)

is summable. We define the convolution product of f and g by

(f*g)(z) = - flz—y)g(y)dy reRY ae.

Remark 6.16 1. If f, g : RY — [0, 00] are Borel functions, then, since the
function (6.17) is positive and Borel, f * g : RN — [0, 0c] is well defined for
every v € RV,

2. By making the change of variable 2 = z — y and using the translation
invariance of the Lebesgue measure we obtain that the function (6.17) is
summable iff the function z € RY +— f(2)g(x — 2) is summable and (f *
g)(x) = (g f)(x). This proves that the convolution is commutative.

Next proposition gives a sufficient condition to guarantee that f x g is well-
defined a.e. in RY.

Proposition 6.17 (Young) Let p,q,r € [1,00] be such that
1 1 1
=141 (6.18)
rp q T

and let f € LP(RY) and g € LY(RY). Then for a.e. z € RN the function
(6.17) is summable. Furthermore f* g € L"(RY) and

L7 gllr < 17115 [lgllq- (6.19)

Moreover, if r = 0o, then f * g is a continuous function on RY.
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i —— 1,1 _ L .
Proof. First assume [r = oo]; then st = 1. By the translation invariance

of the Lebesgue measure we have that for every x € RV the function y €
RY — f(x —y) stays in LP(R"Y) and has the same LP-norm as f. Then, by
Holder’s inequality and Exercise 3.25 we deduce that for every € RY the
function (6.17) is summable and

(f*g)@)] < Ifllllglly Yz eRY. (6.20)

Since p and ¢ are conjugate, at least one of them is finite and, since the
convolution is commutative, without loss of generality we may assume p < oo.
Then, for any z, h € RV, the above estimate yields

((fxg)(z+h) = (fxg)(@)| = [((Tf = f) * 9) (@) <t = Fllpllgllq

where 7, f(z) = f(x+h). Since ||7,f— f|, — 0 as h — 0 by Proposition 3.50,
the continuity of fx*g follows; (6.19) can be derived immediately from (6.20).

Thus, assume (whence p,q < 0o). We will get the conclusion in
four steps.

1. Suppose f,g > 0. Then f*g:RY — [0, +00] (see Remark 6.16.1) is a
Borel function.

Indeed the function
F:RYxRY —[0,00]  (z,9) — flz—y)g(y)

is Borel in the product space RY x R™. Then Tonelli’s Theorem ensures
that the function € RN — [ F(x,y)dy = (f * g)(x) is Borel.

2. Suppose p = 1 = ¢ (whence r = 1). Then, |f| * |g| € L'(RY) and
111 gl = [1f11x gl

Indeed, according to Step 1, |f] * |g| is a Borel function and Tonelli’s
Theorem ensures that

[ansb@as = [ [ 156 sl @
= [ 061 [[ 156 = e dw =101 bl

Therefore the thesis of Step 2 follows.
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3. We claim that, for all f € LP(RY) and g € LY(RY),

(If11gD (@) < WAL gl (1P + gl (z) Vo e RY. (6.21)

First assume 1 < p, ¢ < oo and let p’ and ¢’ be the conjugate exponents
of p and ¢, respectively. Then,

11 11 1
-
Pooq P q r

1
P p<1__) r
r q q
1
T q<1__) 4,
r p

Using the above relations for every z,y € R we obtain

1f@ = 9)gW)] = (1f(z =) (gD (f (@ = y)Plaw)|)"

Thus,

~

~

whence, by Exercise 3.7,

(1£1% gD @) < W1 Nghd™ (P = 1gl) " (@) Vo € RY.

Since rp/q =r — p and rq/p’ =r — q, (6.21) follows.
(6.21) is immediate for p =1 = g.

Consider the case p =1 and 1 < ¢ < oo (whence r = ¢). We have
(@ =y)g()| = @ =)V (@ =y)llgw)H",
Thus, by Hélder’s inequality we get

(1F1* 19 (@) < I/ (1 f1* gl a(z) @ € R ace.

The last case ¢ = 1, 1 < p < oo follows from the previous one since the
convolution is commutative.



Chapter 6 165

4. Owing to Step 1, |f| *|g| is a Borel function and

(11 [g)dz < I FIL7 gl L7 1gl* [l = £ 1lgllg -
RN N\ ~— Z

-~

by (6.21) by step2

(6.22)
Then |f| * |g| € L"(RY), that is,

[ (17 = st dy) do < oo.

Therefore, y — f(z —y)g(y) is summable for a.e. x € RY. Hence, fxg
is well defined and a.e. finite. Since f*,f~ € LP(RY) and ¢g%,¢9~ €
LA(RYN), then the functions f* g™, f=xg~, fFxg~, f~ xg" are finite
a.e. and, according to part 1, are Borel. Moreover we have

frg=fTxgt+f xg —(fT*xg +f xg") aec zecRY
We deduce that f * g is Borel and

/ [f gl da < [ f]+ gl < [1F115 Nlgllg
RN ——

by (6.22)
]
Remark 6.18 For r = 0o and 1 < p,q < oo in (6.18),
‘llim (f*g)(z)=0.
Indeed, for € > 0 let R. > 0 be such that
[ liwra<e & [ gy <<
ly|>Re ly|=Re
Then,
[(f xg)(z)] < ’/ f@—y)g(y) dy( +)/ fl@—y)gy) dy‘
ly|>Re ly|<Re
g 1/q » 1/p
< ([ tawrdn) gl [ rerd)”
ly|>Re B(z,Rc)

Therefore, for all |z| > 2R,,
[(Fxg) (@) < eIl + llglla) -
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Remark 6.19 As a particular case of Young’s Theorem, if f € L'(RY)
and g € LP(RY) with 1 < p < oo, then f * g is well defined and, further
f*g € LP(RY) with

1+ gllp < 1Al (6.23)

Remark 6.20 By taking p = 1 in Remark 6.19, we obtain that the operation
of convolution

«: LYRY) x LYRY) — LY(RY)
provides a multiplication structure for L'(RY). This operation is commuta-

tive (see Remark 6.16.2) and associative. Indeed, if f,g,h € LY(RY), then,
by using the change of variables z =t — y and by Fubini’s Theorem

((f %) % ) (x) = / (f * )& — y)h(y)dy

RN

= /RN h(y)dy - flx =y —2)g(z)dz
= [ #a=ndt [ ott=unimdy

RN
= [ r@= g N = (7« (g« W)

R
which proves the associativity. Finally, it is apparent that convolution obeys
the distributive laws. However, there is not unit in L'(R") under this mul-
tiplication. Indeed, assume by absurd the existence of g € L'(R") such that
g* f = f forevery f € L*(RY). Then the absolute continuity of the integral
implies the existence of § > 0 such that

AGB(RN)&)\(A)§6:>/|g|dx<1.
A

Let p > 0 be sufficiently small such that A\(B(0,p)) < § and, taking f =
XB(0,p) € L'(RY), for every x € RY we compute

[f(@)| = [(g* f)(z)] S/ \g(x—y)llf(y)ldyz/ l9(z — y)|dy

RN B(0,p)

- / 9(2)ldz < 1
B(w,p)

and the contradiction follows.

Exercise 6.21 Compute f * g for f(z) = y_1.1(z) and g(z) = e~ll.
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6.3.2 Approximation by smooth functions

Definition 6.22 A family (f.). in L*(RY) is called an approximate identity
if satisfies the following

f->0, fe(x)de =1 Ve >0, (6.24)
RN

Vo >0: f-(z)dz — 0 ase — 07, (6.25)

jo]>8

Remark 6.23 A common way to produce approximate identities in L!(R%)
is to take a function f € L*(R") such that f > 0 and [,y f(z)dz =1 and
to define for ¢ > 0

folx) = Nfe ).

Condition (6.24)-(6.25) are satisfied since, introducing the change of variables
y = £~ 1z, we obtain

fe(x)de = | f(y)dy =1
RN RN

and
fe(x)dz = / f(y)dy — 0 as e — 07,
ly|>e=18

|z[>6

the latter convergence is by the Lebesgue dominated convergence theorem.

Proposition 6.24 Let (f.). C L'(RY) be an approzimate identity. Then
the following hold

1. If f € L=®(RY) and f is continuous in RY, then f x f. — f uniformly
on compact sets of RN as e — 0F;

2. If f € L=(RY) and f is uniformly continuous in RN then fx f. RO f
ase— 07,

3. If1<p<ooand f € LP(RY), then f f. 25 f ase — 0%,

Proof. 1. By Young’s theorem we get that f * f. is continuous and f * f. €
L®(RY). Let K C RY be a compact set. Hence the set {z € RY | dg(z) < 1}
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is compact and f is uniformly continuous over it; then, given n > 0, there
exists 6 € (0,1) such that

|fle—y)—fl@)|<n VeeK Vye B(z,0).
Since [pn fe(y)dy = 1, for every x € K we have

|(f * f) (@ |_‘/ @)ty dy‘
/ |z —y) — f(2)]f-(y)
lyl<é
’ /Iy>5 [f(@ =) = f@)| f-(y)dy (6.26)

<o w2l [

ly|>d

:77+2||f||oo fa(y)dy

ly|>d

The conclusion follows from (6.25).

2. The proof is the same as in Part 1 except that in this case estimate
(6.26) holds for every x € RY.

3. According to Remark 6.19 f * f. € LP(RY) for all ¢ > 0. Since
Jan fe(y)dy = 1, for every x € RY we have

(F« 1)) = f@) = | [ (=)= F@) £ty dy\

/‘um— — F@) |-y

If p>1,let p’ € (1,00) be the conjugate exponent of p. Then

(F + £)@) = F@)| < [ 17 =) = @Il dy.

By applying Hélder’s inequality we obtain

(7= 0 g < ( [ 1760 - st dy>(/ row)

= [ 116 =) = s@P )y

(6.27)
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Combing this with (6.27) we deduce that the following inequality holds for
1<p<oo:

(f  £)(@) — F@)P < / (e — 1) — F@P () dy.

RN

After integration over R, by applying Tonelli’s Theorem, we have

£ = fIp < [ It = A3 )

where 7_, f(x) = f(x —y). Setting A(y) = ||7—, f — f]|p, the above inequality
becomes

For every v, yo € RY by using the translation invariance of the Lebesgue
measure

[A®WY) = Awo)| = [y f = fllp = 17y f = Fllp] < 7=y f = 740 f 1o

= ||T—y+yof - f”p — 0 as y — yo;

the latter fact follows by Proposition 3.50. Hence A is a continuous function.
Since AP(y) < 27||f||2, then A? € L*°(RY). By part 1 we conclude (AP x
fo)(0) — AP(0) = 0. O

Notation 6.25 Let Q C RY be an open set and k € N. C*(Q) is the space of
the functions f : QQ — R which are k times continuously differentiable, C.(£2)
is the space of the continuous functions f : € — R which are zero outside a
compact set K C ), and

C(Q) = MCH(Q), CH(Q) =CHR) NC(Q),  CZ(Q) = C(Q) NC(N).

In particular, if k =0, C°(Q) = C(Q) is the space of the continuous functions
f:Q—=R IffeCQ) and a = (v, ...,ay) is a multiindex such that
la| == a1 + ...+ ay <k, then we set

olel f

a1 a2 apn -*
0x{" 03 ... 0xy

Dof =

If a=(0,...,0), we set D°f = f.
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Proposition 6.26 Let f € LY(RY) and g € C*RY) such that D%g €
L®(RYN) for every a € NV such that 0 < || < k. Then f* g € C*RY)
and

D(fxg)=f*xD% VYaecN' st 0<|al <E.

Proof. The continuity of f x g follows from Young’s Theorem. By induction
it will be sufficient to prove the thesis when k£ = 1. Setting

o(r,y) = f(y)g(z —y),

we have p
)| = 5
2 e = gt - < | 22|
Since (f * g)(x) = [pn (2, y)dy, Propos1t10n 2.75 implies that f * g is differ-
entiable and
O(f *9g) g g
G W= | T gy = (7 x50 )@

By hypothesis g—fj € C(RY) N L*(RY). Again Young’s Theorem implies
f*aa—iEC(RN);hencef*gECI(RN). O

Thus convolution with a smooth function produces a smooth function.
This fact provides us with a powerful technique to prove a variety of density
theorems.

Definition 6.27 For every e > 0 define the function p. : RY — R by

2
Ce™N exp T if |z] < e,
x> — ¢

0 if lz] > e

p-(r) =

where C' = (f|$|<1 exp( )da:) Y The family (p:)e is called the standard

mollifier.
Lemma 6.28 The standard mollifier (p.). satisfies
pe € C°(RY), supp(p.) = B(0,g) Ve > 0;

(pe)e is an approzimate identity.
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Proof. Let f: R — R be defined by

! ift <1
jo-{ 0 (=3) e

0 iftt>1

Then f is a C* function. Indeed we only need to check the smoothness at
t =1. Ast 11 all the derivatives are zero. As ¢t T 1 the derivatives are finite
linear combination of terms of the form ﬁ exp (ﬁ), [ being an integer
greater than or equal to zero and these terms tend to zero as ¢t T 1.

Observe that for every € > 0

o= on(2) = o)

Then p. € C®(RY) and supp(p.) = B(0,¢). Further the definition of C
implies [ox p1(x)dz = 1. Remark 6.23 allows us to conclude. U

Lemma 6.29 Let f, g € C.(RY). Then f x g € C.(RY) and
supp(f * g) C supp(f) + supp(g),
where for sets A and B of RN: A+ B={x+vy|z € A, y € B}.

Proof. By Proposition 6.26 we get f* g € C(RY). Set A = supp(f),
B = supp(g). For every x € RY we have

(f*g)(x) = / f(x —y)g(y)dy.
(z—supp(f))Nsupp(g)

In order to obtain that (f*g)(x) # 0, necessarily (z—supp(f))Nsupp(g) # 0,
that is = € supp(f) + supp(g). O

Proposition 6.30 Let Q C RY be an open set. Then
e space C°(Q) is dense in Co(Q) ),

o space C°(R2) is dense in LP(S2) for every 1 < p < oc.

()see Exercise 3.46 for the definition of Co(£2).



172 Product measures

Proof. According to Theorem 3.45 and Exercise 3.46 it is sufficient to prove
that, given f € C.(Q2), there exists a sequence (f,), C C*(2) such that

fo 25 fand f, 2 f. Indeed, fixed f € C.(Q), set

- | flz) ifzeq,
T=10 if 2 € RV \ Q.

Then f € C.(RN). Let (p.). be the mollifier constructed in Definition 6.27
and for every n define f, := f * p1/,. According to Proposition 6.26 f, €
C®(RV). Next let K = supp(f) and 1 = inf,cx dog(x) > 0. Then K :=
{z € RV |dk(x) < 1} is a compact set and K C Q. By Proposition 6.29, if
n is such that + < Z we obtain

— 1 1 .
supp(fn) C K—i—B(O, —> = {:1: € RN’dK(x) < —} C K.
n n
Then f,, € C(R2) for n sufficiently large. Since f is uniformly continuous,
Proposition 6.24.2 gives f, SN f in L>°(RYN), which implies
fo— fin L=(Q).

Finally, for large n,

/ fo— fPde = / fo— fPPdz < AE)| fa — fII2 — 0.
Q K

O
An interesting consequence of smoothing properties of convolution is the
following Wezierstrass approximation Theorem.

Theorem 6.31 (Weierstrass) Let f € C.(RY). Then there exists a se-
quence of polynomials (py)n Ssuch that p, — f uniformly on compact sets
of RN,

Proof. For every € > 0 define
u.(v) = e Nu(etz), xeRY,

where

N/

u(zr) = 7V exp(—|z[*), = €RN.
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The well-known Poisson formula

/ exp(—|z|*)dz = 7N/
RN

and Remark 6.23 imply that (u.). is an approximate identity. Theorem 6.24.2
yields

uox f 25 fase — 0. (6.28)

Fix ¢ > 0 and let X C R" be a compact set. We claim that there exists
a sequence of polynomials (P, ), such that

P, — u. * f uniformly in K. (6.29)

Indeed the function u. is analytic and so on any compact set can be uniformly
approximated by the partial sums of its Taylor series which are polynomials.
The set K := K — supp(f) is compact, then there exists a sequence (Pn)n of
polynomials on RN such that p, — u. uniformly in K. Next set

Poe) = [ pale =)y (6.30)

Since f is compactly supported, then the integrand in (6.30) is bounded
by | f1SUPyesupp(s) [Pn(2 — y)| which is summable for every 2 € RY. Then
P, is well defined on RY. Observe that p,(z — y) is a polynomial in the
variables (,v), that is p,(z —y) = Sor, qi(x)sk(y) with g, s, polynomials
in RY; substituting in (6.30) we obtain that each P, is also a polynomial.
Furthermore for every x € K

Pa(e) — (ue * f) (@) < / 1Pule — ) — el — )| F@)|dy

supp(f)

< sup lpa(t) — we0)] |17l
teK RN
and (6.29) follows.
To conclude, consider a sequence £, — 0. For every n € N, since the
set {|z| < n|} is compact, we can find a polynomial @,, such that

sup |@n () = (ue, * f)(2)] < €.

|z|<n
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If K C RY is a compact set, then for n sufficiently large K C B(0,n), which
implies

Sup |Qn(z) — flz)] < sup |Qn(2) = (ue, * f)(@)] + sup |(ue, * f)(z) — f(z)|

zeK
< et ey + £) = Flloe = 0

by (6.28). O

Corollary 6.32 Let A € B(RY) be a bounded set and 1 < p < co. Then the
set P4 of all polynomials defined on A is dense in LP(A).

Proof. Consider f € L?(A) and let f be the extension of f by zero outside
A. Then f € LP(RY); fixed € > 0, Proposition 6.30 implies the existence
of g € C.(RY) such that [y |f — g|Pdz < e. Since A is a compact set, by
Theorem 6.31 we get the existence of a polynomial p such that sup,. 5 [p(z) —

9(x)] < (555)"""- Then

[ lat@) = ploypas < (suplgta) =pla)] ) M) <

z€EA

by which

/|f x)|Pde < 2P 1/|f (x)[Pdx + 2P~ 1/|g (x)[Pdx

< o1 /R @) — ge)Pdr + 27 < 20,
tl

Remark 6.33 By Corollary 6.32 we deduce that if A € B(RY) is a bounded
set, then the set of all polynomials defined on A with rational coefficients is

countable and everywhere dense in LP(A) for 1 < p < oo (see Proposition
3.47).
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Functions of bounded variation
and absolutely continuous
functions

Let f and F be two functions on [a, b] such that f is continuous and F' has
a continuous derivative. Then it will be recalled from elementary calculus
that the connection between the operations of differentiation and integration
is expressed by the familiar formulas

= [ =1 (7.1)

/ F'(t)dt = F(z) — F(a). (7.2)

This immediately suggests:

1. Does (7.1) continue to hold almost everywhere for an arbitrary summable
function f?

2. What is the largest class of functions for which (7.2) holds?

These questions will be answered in this chapter. We observe that if f is
nonnegative, then the indefinite Lebesgue integral

/ Crdt, w e fa b, (7.3)

175
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as a function of its upper limit, is nondecreasing. Moreover, since every
summable function f is the difference of two nonnegative summable functions
f* and f~, the integral (7.3) is the difference between two nondecreasing
functions. Hence, the study of the indefinite Lebesgue integral is closely
related to the study of monotonic functions. Monotonic functions have a
number of simple and important properties which we now discuss.

7.1 Monotonic functions

Definition 7.1 A function f : [a,b] — R is said to be nondecreasing if
a <z <z <bimplies f(x1) < f(x2) and nonincreasing if a < x1 < x5 < b
implies f(x1) > f(x2). By a monotonic function is meant a function which
15 either nondecreasing or nonincreasing.

Definition 7.2 Given a monotonic function f : [a,b] — R and xy € [a,b),
the limit

I =, B o )

(which always exists) is said to be the right hand limit of f at the point xg.
Similarly, if o € (a,b], the limit

flzg) = lim_ f(zo—h)

h—0,h>0

15 called the left-hand limit of f at xg.

Remark 7.3 Let f be nondecreasing on [a,b]. If a < x <y <b, then
fl@) < fly).

Analogously, if f is nonincreasing on [a,b] and a < x <y < b, then
f@) > fly).

We now establish the basic properties of monotonic functions.

Theorem 7.4 FEvery monotonic function f on [a,b] is Borel and bounded,
and hence summable.
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Proof. Assume that f is nondecreasing. Since f(a) < f(z) < f(b) for all
x € [a,b], f is obviously bounded. For every ¢ € R consider the set

E.={z €[a,b]| f(x) < c}.

If E. is empty, then E, is (trivially) a Borel set. If E. is nonempty, let y be
the least upper bound of all x € E.. Then FE, is either the closed interval
la,y], if y € E,, or the half-open interval [a,y), if y & E.. In either case, E,
is a Borel set; this proves that f is Borel. Finally we have

/ [f () |de < max{[f(a)l,[f()[}(b— a),

by which f is summable. O

Theorem 7.5 Let f : [a,b] — R be a monotonic function. Then the set of
points of [a,b] at which f is discontinuous is at most countable.

Proof. Suppose, for the sake of definiteness, that f is nondecreasing, and
let E be the set of points at which f is discontinuous. If x € F we have
f(z7) < f(a™); then with every point x of E we associate we associate a
rational number r(x) such that

fl@™) <r(x) < f(=h).

Since by Remark 7.3 z; < zo implies f(z]) < f(z;), we see that r(x;) #
r(x2). We have thus established a 1-1 correspondence between the set £ and
a subset of the rational numbers. g

7.1.1 Differentiation of a monotonic function

The key result of this section will be to show that a monotonic function f
defined on an interval [a, b] has a finite derivative almost everywhere in [a, b].
Before proving this proposition, due to Lebesgue, we must first introduce
some further notation. For every x € (a,b) the following four quantities
(which may take infinite values) always exist:

r+h)— f(z z+h)— flx
D170 = it LI ) L)1)
flx+h) = f(z) fle+h) - fla)

D] = liminf D, = li
R Y

?
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These four quantities are called the derived numbers of f at x. It is clear
that the inequalities

Dyf(z) < Dpf(x), Dipf(z) < Dpf(z) (7.4)

always hold. If D) f(z) and D7 f(x) are finite and equal, their common value
is just the left-hand derivative of f at z. Similarly, if D% f(z) and D% f(x)
are finite and equal, their common value is just the right-hand derivative of f
at x. Moreover, f has a derivative at x if and only if all four derived numbers

D) f(x), D} f(x), D f(z) and DY, f(z) are finite and equal.

Theorem 7.6 (Lebesgue) Let f : [a,b] — R be a monotonic function.
Then f has a derivative almost everywhere on |a,b|. Furthermore f' €
L([a,b]) and

b
[ ol <150) - sl (75
Proof. There is no loss of generality in assuming that f is nondecreasing,
since if f is nonincreasing, we can apply the result to —f which is obviously
nondecreasing. We begin by proving that the derived numbers of f are equal

(with possibly infinite value) almost everywhere on [a,b]. It will be enough
to show that the inequality

Dyf(x) > Dy f(x) (7.6)

. In fact, setting, f*(z) = —f(—x), we see
—al; moreover, it is easily verified that

Dyf*(z) = Dpf(=x), Dpf*(x) = Dgpf(-x).

holds almost everywhere on |[a, b]
that f* in nondecreasing on [—b,

Therefore, applying (7.6) to f*, we get
Dyf*(x) = Dy f*(x)

or
Dypf(z) = D] f(x).
Combining this inequality with (7.6), we obtain

Dipf < Dyf < DYf < Dif < Dyf,



Chapter 7 179

after using (7.4), and the equality of the four derived numbers follows. To
prove that (7.6) holds almost everywhere, observe that the set of points
where D; f < D} f can clearly be represented as the union over u, v € Q
with v > u > 0 of the sets

E.,={z € (a,b) | D}f(xz) >v>u> D} f(x)}.

It will then follow that (7.6) holds almost everywhere, if we succeed in show-
ing that A(E,,) = 0. Let s = A(E,,). Then, given ¢ > 0, according to
Proposition 1.53 there is an open set A such that £, , C A and A\(4) < s+-e¢.
For every z € E,, and 0 > 0, since D} f(x) < u, there exists h, s € (0,0)
such that [z — h,s,2] C A and

f(x) = f(x — hys) < uhyps.

Since the collection of closed intervals ([x — hy.s, T])ze(ap), 550 1S @ fine cover
of E,,, by Vitali’s covering lemma there exists a finite number of disjoint
intervals of such collection, say

I = [1‘1 —hl’m'l],...,IN = [Z'N —hN,iEN],

such that, setting B = E, , N UZ]\;(% — hi, x;),

A(B) = /\(EW N C)@ >s—c
=1

Summing up over these intervals we get

N

> (fla) = fla—h)) < uZh < uMA) < uls +e). (7.7)

i=1

Now we reason as above and use the inequality DY, f(z) > v; for every y € B
and n > 0, since D% f(x) > v, there exists k,,, € (0,n) such that [y, y+k,,] C
I; for some i € {1,..., N} and

fy+kyn) = fly) > vky,.

Since the collection of closed intervals ([y, y+ky»])yen, >0 is a fine cover of B,
by Vitali’s covering lemma there exists a finite number of disjoint intervals
of such collection, say

Jii= [y, v+ k- I = [yms ym + K,
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such that,
M
A(BHUJj> > A(B) —¢ > s — 2.
j=1

Summing up over these intervals we get

> (Fly+ k) = flyy) > UZ’%’ = W\( U Jj) >uv(s—2).  (7.8)

Jj=1

For every i € {1,...,N}, we sum up over all the intervals J; such that
J; C I;, and, using that f is nondecreasing, we obtain

D (Pl +ky) = F) < flao) = i = h)

by which, summing over ¢ and taking into account that every interval J; is
contained in some interval I;,

> ()1 >ZZ Fitk) = F () =Y (fy+k)—f ()

=1 j,J;CI; j=1
Combining this with (7.7)-(7.8),
u(s+¢) > v(s — 2¢).

The arbitrariness of € implies us > vs; since u < v, then s = 0. This shows
that A(E,,) = 0, as asserted.
We have thus proved that the function

_ o fleth) - f(2)
() = Jim h

is defined almost everywhere on [a, b] and f has a derivative at z if and only
if ®(x) is finite. Let

() = n(f(x + %) - f(x))

where, to make ®,, meaningful for all z € [a, b], we get f(x) = f(b) for x > b,
by definition. Since f is summable on [a, b], so is every ®,,. Integrating ®,,,
we get
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/abcpn(x)dx _ n/: (f (v +2) - f(x))d:c _ n</aijf(x)dx _ abf(x)dx)
_ n( /b " e / " f(x)dx) — ) —n / " s

< f(b) = f(a)

where in the last step we use the fact that f is nondecreasing. From Fatou’s
lemma it follows that

/ B()de < f(5) — f(a).

In particular ® is summable, and, consequently, a.e. finite. Then f has a
derivative almost everywhere and f'(z) = ®(x) a.e. in [a, b]. O

Example 7.7 It is easy to find monotonic functions f for which (7.5) be-
comes a strict inequality. For example, given points a = 2o < 1 < ... <
x, = b in the interval [a,b] and hq, hs, ..., h, corresponding numbers, con-
sider the function

hi ifa<x<uz,
ho ifl'1§$<£€2,
f(z) =

h, ifz, 1 <z<bh.

A function of this particularly simple type is called a step function. If hy <
hy < ... < h,, then f is obviously nondecreasing and

0= [ Flade < 10) ~ f@) = o~ .

Example 7.8 [Vitali’s function] In the preceding example, f is discontin-
uous. However, it is also possible to find continuous nondecreasing functions
satisfying the strict inequality (7.5). To this end let

= (52



182 BV and AC functions

be the middle third of the interval [0, 1], let

)= (5:5) @0=(5)

be the middle thirds of the intervals remaining after deleting (ai,b}) from
[0,1], let
7 8

@)= (5o5r) @8 = (50,

19 20 25 26
3 13 3 13
7b :<_7_>a 7b :<_7_>
(a3, b3) o7’ 97 (az, by) o7’ 97
be the middle thirds of the intervals remaining after deleting (a}, b}), (a3, b?),
(a2,b3) from [0,1] and so on. Note that the complement of the union of all
the intervals (af,b}) is the Cantor set constructed in Example 1.49. Now
define a function

2k —1 . I
fO)=0, f)=1, f@)="5—ift€ (b)),
so that . 5
)= - if-<t< =
f(t) ; fg<t<s,
1 2
1 1f—<t<§,
ft)=
§ 1f—<t<§
4 9 9’
E f <t<2
s Uo7 97’
§ 1f—<t<§
T
8 27 27’
T 1f§<t<%
8 27 27’

and so on. Then f is defined everywhere except at points of the Cantor set
C; furthermore f is nondecreasing on [0, 1]\ C' and f([0,1]\C) = {Z£-|n €
N, 1 < k < 2"7'} which is dense in [0, 1], that is

F([0,1]\ €) = [0, 1]. (7.9)




Chapter 7 183

Given any point t* € C, let (¢,), be an increasing sequence of points in
[0,1] \ C converging to t* and let (¢]), be a decreasing sequence of points in
[0, 1]\ C converging to t*. Such sequences exist since [0, 1]\ C is dense in [0, 1].
Then the limits lim,, f(¢,) and lim, f(¢/) exist (since f is nondecreasing in
[0,1] \ C); we claim that they are equal. Otherwise, setting a = lim,, f(¢,)
and b = lim,, f(¢),), then (a,b) C [0,1]\ f([0,1] \ C), in contradiction with
(7.9). Then let
f(#7) = Tim f(t,) = lim f(£,).

Completing the definition of f in this way, we obtain a continuous nonde-
creasing function on the whole interval [0, 1], known as Vitali’s function. The
derivatives f’ obviously vanishes at every interval (a}, b}), and hence vanishes
almost everywhere, since the Cantor set has measure zero. It follows that

0= / f(@)de < (1)~ £(0) = 1.

7.2 Functions of bounded variation

Definition 7.9 A function f defined on an interval [a,b] if said to be of
bounded variation if there is a constant C' > 0 such that

2_: |f(@p1) — flap)| < C (7.10)

for every partition
a=x0<x1<...<x,=> (7.11)

of [a,b]. By the total variation of f on |a,b], denoted by VE(f), is meant the
quantity:
n—1
Va(f) =sup Y f(wesn) = f) (7.12)
k=0

where the least upper bound is taken over all partitions (7.11) of the interval

[a,b].

Remark 7.10 It is an immediate consequence of the above definition that
if € R and f is a function of bounded variation on [a, b], then so is af and

Vo (af) = lalVy(f).
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Example 7.11 1. If f is a monotonic function on [a, b], then the left-hand
side of (7.10) equals |f(b) — f(a)| regardless of the choice of partition.
Then f is of bounded variation and V’(f) = |f(b) — f(a)|.

2. If f is a step function of the type considered in Example 7.7 with
hi,...,h, € R, then f is of bounded variation, with total variation
given by the sum of the jumps, i.e.

n—1
VI(F) =D [higr = hl.
=1

Example 7.12 Suppose f is a Lipschitz function on [a,b] with Lipschitz
constant K’; then for any partition (7.11) of [a, b] we have

—_

n—1

|f (1) = flaw)| < KZ | k1 — 2] = K(b—a).

0 k=0

n—

il

Then f is of bounded variation and V’(f) < K(b — a).

Example 7.13 It is easy to find a continuous function which is not of
bounded variation. Indeed consider the function

1
rsin— if0<ax <1,
flz) = x
0 ifxr=0

and, fixed n € N, take the following partition

2 2

2 2
0 ey —,—, L.
"An—1D7 (dn—3)7 31 7w

The sum on the left-hand side of (7.10) associated to such partition is given

by
2n—1 1

4 j{: i 2 +}‘ 01 2‘
— — sinl — —|.
™ 2k+1 7 T

Taking into account that > ;- ﬁ = 00, we deduce that the least upper
bound on the right-hand side of (7.12) over all partitions of [a, b] is infinity.
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Proposition 7.14 If f and g are functions of bounded variation on [a,b],
then so is f + g and
Vo(f +9) S VI(F) + Vi (9).

Proof. For any partition of the interval [a, b], we have

3
—

|f(zrs1) + g(xrr1) — flaw) — g(zp)]

B
Il

3
—-

< S f i) — Fa) + 3 alnn) — gl < VI + V2g).

0

B
Il

Taking the least upper bound on the left-hand side over all partitions of [a, b|
we immediately get the thesis. U

It follows from Remark 7.10 and Proposition 7.14 that any linear com-
bination of functions of bounded variation is itself a function of bounded
variation. In other words, the set BV (]a,b]) of all functions of bounded
variation on the interval [a,b] is a linear space (unlike the set of all mono-
tonic functions).

Proposition 7.15 If f is a function of bounded variation on [a,b] and a <
c < b, then

Vo (f) = Va(h) + Vs,

Proof. First we consider a partition of the interval [a, b] such that ¢ is one
of the points of subdivision, say z, = ¢. Then

—_

3

|f(zhy1) — f ()]

0

i

r—1 n—1 7.13
- Z|f<xk+1) —f($k>|+Z’f($k+1) — f (@) )

k=0 k=r
< Vi) +V2(f)-

Now consider an arbitrary partition of [a,b]. It is clear that adding an extra
point of subdivision to this partition can never decrease the sum Y27~ | f(2411)—
f(zx)|. Therefore (7.13) holds for any subdivision of [a, b], and hence

V) S VI + V2.
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On the other hand, given any € > 0, there are partitions of the intervals [a, ]
and [c, b], respectively, such that

(i) = F)] > Vi) = -,

Do)~ S >V -5

Combining all points of subdivision z}, 7/, we get a partition of the interval
[a, b], with points of subdivision zj, such that

VIUF) 2 3 1 (wnen) = Flon)| =D 1 (i) = f(a) +Z [ (@fa1) = £
k i
> V() +V2(f) —e.
Since € > 0 is arbitrary, it follows that V2(f) > Ve(f) + V2(f). O

Corollary 7.16 If f is a function of bounded variation on [a,b], then the
function
x— VI (f)

1s nondecreasing.

Proof. If a < x < y < b, Proposition 7.15 implies

V() = Ve () + V() = Ve ()
U

Proposition 7.17 A function f : [a,b] — R is of bounded variation if and
only if f can be represented as the difference between two nondecreasing func-
tions on [a,b].

Proof. Since, by Example 7.11, any monotonic function is of bounded varia-
tion and since the set BV ([a, b]) is a linear space, we get that the difference of
two nondecreasing functions is of bounded variation. To prove the converse,
set

gi(x) =V7(f),  ga(z) = VI(f) = fla).
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By Corollary 7.16 g; is a nondecreasing function. We claim that g is non-
decreasing too. Indeed, if x < y, then, using Proposition 7.15, we get

92(y) — g2(x) = VI (f) = (f(y) — f(x)). (7.14)

But from Definition 7.9

[f(y) = )] < V2(S)

and hence the right hand side of (7.14) is nonnegative. Writing f = ¢; —
g2, we get the desired representation of f as the difference between two
nondecreasing functions. Il

Theorem 7.18 Let f : [a,b] — R be a function of bounded variation. Then
the set of points of [a,b] at which f is discontinuous is at most countable.
Furthermore f has a derivative almost everywhere on |a,b], f' € L'([a,b])
and

/ P (@)lde < V(). (7.15)

Proof. Combining Theorem 7.5, Theorem 7.6 and Proposition 7.17 we im-
mediately obtain that f has no more than countably many points of discon-
tinuity, has a derivative almost everywhere on [a,b] and f’ € L'([a,b]). Since
fora<zr<y<b

[f(y) = f(@)| S V() = V() = Vi (f),

we get
[f'(@)] < (VI(f) ae in fa,b].
Finally, using (7.5)

g

Remark 7.19 Any step function and the Vitali’s function (see Example
7.8) provide examples of functions of bounded variation satisfying the strict
inequality (7.15).
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Proposition 7.20 A function f : [a,b] — R is of bounded variation if and
only if the curve
y=f(z) a<a<b

is rectificable, i.e. has finite lenght®.

Proof. For any partition of [a, b] we get

n—1 n—1
Z |f(@ir1) = f(@)] < V(@i — @) + (f(zin) — [(2:))?
=0 i=0
n—1
<(b—a)+ Z | f(@ie1) — [ (i)
=0
Taking the least upper bound over all partitions we get the thesis. U

Exercise 7.21 Let (a,), be a sequence of positive numbers and let

@) = an x:%,nzl;

0  otherwise.

Prove that f is of bounded variation on [0, 1] iff Y~ | a, < oo.

Exercise 7.22 Let f be a function of bounded variation on [a, b] such that
f(x) >ec>0 Vzela,b.

Prove that % is of bounded variation and

vi(3) < 5.

Exercise 7.23 Prove that the function

2. 1
z7sin — 0 <z <1,
x

0 =0

fx) =

is not of bounded variation on [0, 1].

(By the length of the curve y = f(z) (a < z < b) is meant the quantity

sup i V(@ipr —2)2 + (f(ig1) — f(2))?
i=0

where the least upper bound is taken over all possible partitions of [a, b].
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7.3 Absolutely continuous functions

We now address ourselves to the problems posed at the beginning of the chap-
ter. The object of this section is to describe the class of functions satisfying

(7.2).

Definition 7.24 A function f defined on an interval [a,b] is said to be ab-
solutely continuous if, given € > 0, there is a 6 > 0 such that

> 1fbe) — flap) < e (7.16)

for every finite system of pairwise disjoint subintervals
(ag,bg) C a,b] k=1,...,n
of total length Y ,_, (by — ag) less than é.

Example 7.25 Suppose f is a Lipschitz function on [a,b] with Lipschitz
constant K; then, choosing § = =, we immediately get that f is absolutely
continuous.

Remark 7.26 Clearly every absolutely continuous function is uniformly con-
tinuous, as we see by choosing a single subinterval (a1, b1) C [a, b]. However,
a uniformly continuous function need not be absolutely continuous. For ex-
ample, the Vitali’s function f constructed in Example 7.8 is continuous (and
hence uniformly continuous) on [0, 1], but not absolutely continuous on [0, 1].
In fact, for every n consider the set

C, = {me [O,l]‘x:;% Withal,...,an%l}
which is the union of 2" pairwise disjoint closed intervals I;, each of which has
measure 3 (then the total length is ()"). Denoting by C' the Cantor set (see
Example 1.49), we have C' C C,,; since, by construction, the Vitali’s function
is constant on the subintervals of [0, 1] \ C, then the sum (7.16) associated
to the system (I;) is equal to 1. Hence the Cantor set C' can be covered by
a finite system of subintervals of arbitrarily small length, but the sum (7.16)
associated to every such system is equal to 1. The same example shows
that a function of bounded variation needs not be absolutely continuous. On
the other hand, an absolutely continuous function is necessarily of bounded

variation (see Proposition 7.27).
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Proposition 7.27 If f is absolutely continuous on |a, b], then f is of bounded
variation on [a,b].

Proof. Given any € > 0, there is a § > 0 such that
Z |f(br) — flax)| < e
k=1

for every finite system of pairwise disjoint subintervals (ay, b;) C [a, b] such
that

n

Z(bk — ak) < 0.

k=1

Hence if [a, ] is any subinterval of length less than §, we have
VI(f) <e.

Let a = 29 < 27 < ... < zy = b be a partition of [a,b] into N subintervals
[k, 21 1] all of length less than §. Then, by Proposition 7.15,

V,(f) < Ne.

g

An immediate consequence of Definition 7.24 and obvious properties of
absolute value is the following.

Proposition 7.28 If f is absolutely continuous on [a,b], then so is af,
where « is any constant. Moreover, if f and g are absolutely continuous
on la,bl, then so is f + g.

It follows from Proposition 7.28 together with Remark 7.26 that the set
AC([a, b]) of all absolutely continuous functions on [a, b] is a proper subspace
of the linear space BV ([a, b]) of all functions of bounded variation on [a, b].

We now study the close connection between absolute continuity and the
indefinite Lebesgue integral. To this aim we need the following result.

Lemma 7.29 Let g € L'([a,b]) be such that [, g(t)dt = 0 for every subin-
terval I C la,b]. Then g(x) =0 a.e. in [a,b).
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Proof. If we denote by Z the family of all finite disjoint union of subintervals
of [a, D], it is immediate to see that 7 is an algebra and [, g(t)dt = 0 for every
A € Z. Let V be an open set in [a,b]; then V = UX I, where I,, C [a,b]
is a subinterval. For every n, since Ul ;I; € Z, we have fuﬂ_llz- g(t)dt = 0;
Lebesgue Theorem implies -

/ g(t)dt = lim g(t)dt =0

n—oo n .
Ui 1i

Assume by contradiction the existence of E € B([a,b]) such that A(E) > 0
and g(x) > 0 in E. By Theorem 1.55 there exists a compact set K C E such
that A(K) > 0. Setting V' = [a,b] \ K, V is an open set in [a, b]; then

0:/abg(t)dt:/Vg(t)dt+/Kg(t)dt:/Kg(t)dt>0,

and the contradiction follows. O

Returning to the problem of differentiating the indefinite Lebesgue in-
tegral, in the following Theorem we evaluate the derivative (7.1), thereby
giving an affirmative answer to the first of the two questions posed at the
beginning of the chapter.

Theorem 7.30 Let f € L'([a,b]) and set

F(z) —/ ft)dt, x € a,b].
Then F' is absolutely continuous on |a,b] and
F'(z) = f(z) for a.e. x € [a,b]. (7.17)

Proof. Given any finite collection of pairwise disjoint intervals (ag, by), we
have

;|F(bk)_F(ak)| = g‘/aikf(t)dt‘ < g;/aik|f(t)|dt = /ukmk,bk) | F(£)]dt.

By the absolute continuity of the integral, the last expression on the right
approaches zero as the total length of the intervals (ay,bx) approaches zero.
This proves that F' is absolutely continuous on [a, b]. By Proposition 7.27 F'



192 BV and AC functions

is of bounded variation; consequently, by Theorem 7.18, F' has a derivative
almost everywhere on [a,b] and F' € L'([a,b]). Tt remains to prove (7.17).
First assume that there exists K > 0 such that | f(x)| < K for every = € [a, b]
and let

gn(z) = n[F(Jc + %) — F(x)]

where, to make g, meaningful for all © € [a,b], we get F(x) = F(b) for
b<x < b+ 1, by definition. Clearly

lim g,(z) = F'(x)

n—oo

almost everywhere on [a, b]. Furthermore

|9n(2)] = ]n/+ f(t)dt) <K Vzé€la,b).

Consider a < ¢ < d < b and, by using Lebesgue Theorem, we get

/Cd F'(z)dx = lim dgn(x)dx = lim n[/cdtlb F(x)dx — /Cd F(:B)dx}

n—oo n—oo
c +%

n—oo

~ Jim | /d Y p(a)de — / o P(a)dz] = P(d) ~ F(c)

where last equality follows from the mean value theorem. Hence we deduce

/Cd Fl(2)dz = F(d) — F(c) = /Cdf(t)dt

by which, using Lemma 7.29, we conclude F'(z) = f(z) a.e. in [a, b].

Next we want to remove the hypothesis on the boundedness of f. Without
loss of generality we may assume f > 0 (otherwise, we can consider separately
f* and f7). Then F is a nondecreasing function on [a,b]. Define f, as
follows:

n if f(z) > n.

f(2) {f(x) if 0 < f(z) <,

Since f — f, > 0, the function H,(z) := [7(f(t) — fu(t))dt in nondecreasing;
hence, by Theorem 7.6, H, has nonnegative derivative almost everywhere.
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Since 0 < f,, < n, by the first part of the proof we have % [F fa)dt = fo(2)
a.e. in [a, b]; therefore for every n € N

F'(x) = H] (z) + dix /z fut)dt > fo(z) a.e. in [a,d]

by which F'(x) > f(z) for a.e. x € [a,b] and so, after integration,
b b
/ F'(z)dz > / f(z)dx = F(b) — F(a).

On the other hand, since F' is nondecreasing on [a, b], (7.5) gives f; F'(z)dx <
F(b) — F(a), and then

/ab F'(z)dz = F(b) — F(a) = /abf(x)dx.

We obtain ff(F’(x) — f(z))dz = 0; since F'(z) > f(x) a.e., we conclude
F'(x) = f(x) a.e. in [a,b]. O

We are going to give a definite answer to the second of the question posed
at the beginning of the chapter.

Lemma 7.31 Let f be an absolutely continuous function on [a,b] such that
f'(x) =0 a.e. in[a,b]. Then f is constant on [a,b].

Proof. Fixed ¢ € (a,b), we want to show that f(c) = f(a). Let E C (a,c)
be such that f’(z) = 0 for every x € E. Then E € B([a,b]) and A\(E) = c—a.
Given € > 0, there is a 6 > 0 such that

Z|f(bk) — flax) <e¢

for every finite system of pairwise disjoint subintervals (ay, by) C [a, b] such
that

n

Z(bk — ak) < 0.

k=1

Fix n > 0. For every x € E and v > 0, since lim,_,, f(y;:i(fc) = 0, there

exists y, , > x such that [z,y,,] C (a,¢), |Yzy — x| < v and

[f Yan) = (@) < Yoy = 2)0- (7.18)
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The intervals ([, Yz+])zec(a,c)y>0 Provide a fine cover of E; hence, by Vitali’s
covering Theorem, there exists a finite number of such disjoint subintervals
of (a,c)

I = [l’l, y1]7 o In = [xn,yn]

with xp < xj41, such that A(E \ U, I;) < 0. Then we have

n

Yo =a<xy <y <Ty<...<Yp<C:=Tpyq, Z(xk+1—yk)<5.

k=0
From the absolute continuity of f we obtain
S 1 f(xe) = fu)l <e (7.19)
k=0

while, by (7.18),

n

> 1) = fae)] <0 (e — ) < n(b - a). (7.20)

k=1 k=1

Combining (7.19)-(7.20) we deduce

|ﬂ@—f®ﬂ=‘ (f(@rn) = Fle) + D (fle) = flan)| < e +n(b—a).
k=0 k=1
The arbitrariness of ¢ and 7 allows us to conclude. U

Theorem 7.32 If f is absolutely continuous on |a, b, then f has a derivative
almost everywhere on [a,b], f' € L'([a,b]) and

F(x) = fla) + / “PWdt Ve e lob). (7.21)

Proof. By Proposition 7.27 f is of bounded variation; hence, by Theorem
7.18, f has a derivative almost everywhere and f' € L'([a,b]). To prove
(7.21) consider the function

g(z) = / " por.
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Then, by Theorem 7.30, g is absolutely continuous on [a, b] and ¢'(z) = f'(x)
a.e. in [a,b]. Setting ® = g — f, ® is absolutely continuous, being the
difference of two absolutely continuous functions, and ¢'(x) = 0 a.e. in [a, b].
It follows from the previous lemma that @ is constant, that is ®(z) = ®(a) =

7(@) — g(a) = f(a), by which
flx)=®(x)+ g(z) = f(a) + /z f'()dt Yz € la,b).

g

Remark 7.33 Combining Theorem 7.30 and 7.32 we can now give a defini-
tive answer to the second question posed at the beginning of the chapter:
the formula

/ Pt = Flz) - Fla)

holds for all = € [a,b] if and only if F' is absolutely continuous on [a, b].

Proposition 7.34 Let f : [a,b] — R. The following properties are equiva-
lent:

a) [ is absolutely continuous on [a,b];

b) f is of bounded variation on [a,b] and

[ 17wl =vi.

Proof. |a) = b)| For any partition a = zy < 21 < ... < x, = b of [a, ], by
Theorem 7.32 we have

—_

n— n Thtl

It flel = | [0 < 2;/ W= [ 170k

which implies
b
< [ 1o

On the other hand, by Theorem 7.18, f |f/(t)|dt < VE(f), and so VE(f) =
o 1£(0)dt.

e
Il
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b) = a)| For every z € [a,b], using (7.15), we have

/ row- / o= [ o =vio - [ ol

> VEi(f

where last equality follows from Proposition 7.15. Then we get

- [ 17

Since f’ € L'([a,b]), Theorem 7.30 implies that the function x — V*(f)
is absolutely continuous. Given any collection of pairwise disjoint intervals
(ax, by), we have

n

> 1 (br) = flar)] < vak = (V) = V(L)

k=1

By the absolute continuity of z — V(f), the last expression on the right
approaches zero as the total length of the intervals (ay, bx) approaches zero.
This proves that f is absolutely continuous on [a, b]. O

By applying the above proposition to the particular case of monotonic
functions, we obtain the following result.

Corollary 7.35 Let f : [a,b] — R be a monotonic function. The following
properties are equivalent:

a) [ is absolutely continuous on |a, b);
b) [ 1F/(@)ldt = £(b) = f(a)l.

Remark 7.36 Let f, g absolutely continuous functions on [a,b]. Then the
following formula of integration by parts holds:

b b
(/f@W@Mﬁ=ﬂ@%@-ﬂ@M@—/ N@ﬂ@M

Indeed, by Tonelli’s Theorem [, .. |f'(x)g'(y)|dzdy = f: |f'(z)|dz f 19 (y)|dy <
oo, that is f'(z)g'(y) € L*([a,b]?). Then consider the set

A={(z.y) €lab]’la<z<y<b}
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and let us evaluate the integral

]_//f y)dzdy

in two ways using Fubini’s theorem and formula (7.21). On the one hand

-/ ) / P (@) dy = / J W) W)y fla) / )y

B / 9 () f(y)dy — f(a)(g(b) — g(a))

a

and, on the other hand

1_/f / dydy—g /f )dy — /f
— g(0)(f() - () - / F()g(x)d

Exercise 7.37 Prove that if f and ¢ are absolutely continuous functions on
[a,b], then so is fg.

Exercise 7.38 Let (f,), be a sequence of absolutely continuous functions
on [0, 1], which converges pointwise to a function f on [0, 1], such that

1
/ f(@)lds < M, WneN,
0

where M > 0 is a constant.
e Show that lim,, fol fulz)de = [ f(x)dz;
e Prove that f is of bounded variation on [0, 1];

e Give an example to show that, in general, f is not absolutely continuous
on [0, 1].
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Appendix A

A.1 Distance function

In this section we recall the basic properties of the distance function from a
nonempty set S C R¥.

Definition A.1 The distance function from S is the function dg : RN — R
defined by
ds(z) = inf ||z — y|| Vr € RY
yeS

The projection of x onto S consists of those points (if any) at which the
infimum defining dg(z) is attained. Such a set will be denoted by projg(x).

Proposition A.2 Let S be a nonempty subset of RY. Then the following
properties hold true.

1. dg is Lipschitz continuous of rank 1.
2. For any v € RY we have that dg(z) =0 iff z € S.

3. projg(x) # @ for every x € RN iff S is closed.

Proof. We shall prove the three properties in sequence.

(WA function f: Q c RY — R is said to be Lipschitz of rank L > 0 in § iff

[f(@) = fy)l < Lllz -yl Vo,yeQ

199
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1. Let 2,2/ € RN and € > 0 be fixed. Then there exists 5. € S such that
|z — ye|| < ds(z) +e. Thus, by the triangle inequality for Euclidean
norm,

ds(z') —ds(x) < |2’ —yel| = [lz —pel| + e < [o" — 2l + ¢

Since ¢ is arbitrary, dg(z') — ds(z) < ||#’ — z||. Exchanging the role of
x and 2’ we conclude that |dg(z) — dg(z)| < ||2" — z|| as desired.

2. For any z € RY we have that ds(z) = 0 iff a sequence (y,) C S exists
such that ||z — y,|| — 0 as n — oo, hence iff x € S.

3. Let S be closed and = € RY be fixed. Then
Ki={yeS||z—yl <ds(x)+1}

is a nonempty compact set. Therefore, any point T € K such that

|lz — 7l = min [lz —y|

lies in projg(z). Conversely, let # € S. Observe that, by point 2,
ds(x) = 0. Take T € projg(z). Then ||z —Z|| =0. Sox =z € 5. O

A.2 Legendre transform

Let f : RY — R be a convex function. The function f* : RY — R U {oco}
defined by

ffy)=sup{z-y— f(x)} VyeRY (A.1)

z€R

is called the Legendre transform (and, sometimes, the Fenchel transform or
convex conjugate) of f. From of the definition of f* it follows that

vy < f(x)+ f(y) Ve,yeRY. (A.2)

Some properties of the Legendre transform of a superlinear function are de-
scribed below.

Proposition A.3 Let f € CHRY) be a convex function satisfying

J) 00. (A.3)

lzl|—oo |||

Then, the following properties hold:
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a

b
(c

(
(

)
)
)
)

Vy e RV dz, e RN such that  f*(y) =z, -y — f(x,);
y=Df(x) if and only if f*(y)+ f(x)=z-y;

f* is convex;

(d) f* is superlinear;

(e) [ =T
Proof.

(a):

(b):

the conclusion is a straightforward consequence of the continuity and
superlinearity of f.

let z,y € RY satisfy f*(y) + f(z) = - y. Then, F(z) :=z -y — f(z)
attains its maximum at z, whence y = D f(x). Conversely, being F'(x)
concave, the supremum in (A.1) is attained at every point at which
0=DF(x)=y— Df(x).

. take any y1,y, € RY and t € [0,1], and let z; be a point such that

ity + (L= t)y2) = [ty + (1 = O)yo]a — flz).
Since f*(y;) > yi - x — f(xy) for i = 1,2, we conclude that
[y + (L —=t)y2) <tf (y) + (1 —1)f"(y2),

ie., f*is convex.

. for all M > 0 and y € RY, we have

« Yy
Fy) = M —f( ||y||) Myl - max f(z).

llyll - lzl|=M
So, for all M > 0,

lim inf ==~ /") > M.
lyll—oo ||y

Since M is arbitrary, f* must be superlinear.

: by definition, f(z) >z -y — f*(y) for all z,y € RY. So, f > f*. To

prove the converse inequality, fix € RY and let y, = Df(z). Then,
owing to point (b) above,

f@) =2 ys — ["(y2) < f(2). O
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Example A.4 (Young’s inequality) Define, for p > 1,
fo) =" wvzeR.
p

Then, f is a superlinear function of class C*(R). Moreover,

f'(x) = |z["sign(x)

where
) % if x#0
Sen() =10 i =0

So, f’is an increasing function, and f is convex.
In view of point (b) of Proposition A.3, we can compute f*(y) by solving
1
y = |x[P~tsign(z). We find z, = |y|>Tsign(y), whence

e ~lyl
[ ) =2y f(l’y)—T Vy e R,

where ¢ = -5, Thus, on account of (A.2), we obtain the following estimate:

p q
lzy| < i + lyl* Vr,y € R, (A4)
p q

where %%— % = 1. Moreover, owing to point (b) above, we conclude that
equality holds in (A.4) iff |y|? = |x|P.

Exercise A.5 Let f(z) = e*, z € R. Show that
00 if y<0
[*(y) = sup{wy — "} = 0 if y=0
ok ylogy —y if y>0.

Deduce the following estimate

xy < e’ +ylogy —y Va,y > 0. (A.5)
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A.3 Baire’s Lemma

Let (X, d) be a nonempty metric space. The following result is often referred
to as Baire’s Lemma. It is a classical result in topology.

Proposition A.6 (Baire) Let (X, d) be a complete metric space. Then the
following properties hold.

(a) Any countable intersection of dense open sets G, C X is dense.

(b) If X is the countable union of nonempty closed sets Fy, then at least
one Fy has nonempty interior.

Proof. We shall use the closed balls
By(z):={ye X |d(z,y) <r} r>0,reX.

(a) Let us fix any ball B, (o). We shall prove that (N, G,,)NB,,(z0) # .
Since G, is dense, there exists a point 1 € G; N B, (o). Since G is
open, there also exists 0 < r; < 1 such that

B,ﬂ1 (1‘1) cGinN Bro(l’o) .

Since (5 is dense, we can find a point xo € G2 N B, (x1) and—since G
is open—a radius 0 < ry < 1/2 such that

B,ﬂ2 (.1'2) C G2 N Brl (.ﬁEl) .

Iterating the above procedure, we can construct a decreasing sequence
of closed balls B,, (x)) such that

B, () CGyN By, (z4—1) and 0<r, <1/k.

We note that (x,)nen is a Cauchy sequence in X. Indeed, for any
h, k > n we have that xy, zy, € B, (x,). So, d(zk, xp) < 2/n. Therefore,
X being complete, (x,),eny converges to a point z € X which must
belong to N, G,,.

(b) Suppose, by contradiction, that all F}’s have empty interior. Applying
point (a) to Gy := X \ Fy, we can find a point z € N,G,. Then,
x € X \ UpFy in contrast with the fact that the F)’s do cover X. O
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A.4 Precompact families of continuous func-
tions

Let K be a compact topological space. We denote by C(K') the Banach space
of all continuous functions f : K — R endowed with the uniform norm

1£lloo = max|f(x)]  Vf € C(K).
We recall that convergence in C(K) is equivalent to uniform convergence.

Definition A.7 A family M C C(K) is said to be:

(i) equicontinuous if, for any ¢ > 0 and any x € K there exists a neigh-
bourhood V' of x in K such that

f(x) = fly)l<e VYyeV,VfeM,

(ii) pointwise bounded if, for any x € X, {f(x) | f € M} is a bounded
subset of R.

Theorem A.8 (Ascoli-Arzela) A family M C C(K) is relatively compact
iff M is equicontinuous and pointwise bounded.

Proof. Let M be relatively compact. Then, M is bounded, hence pointwise
bounded, in C(K). So, it suffices to show that M is equicontinuous. For any
e > 0 there exist fi,..., fi, € M such that M C B.(f;)U---U B.(fn). Let
x € K. Since each function f; is continuous in x, x possesses neighbourhoods
Vi,...,V, C K such that

filx) = fily)l <e  VyeVi, i=1,...,m.

Set V:=Vin---NV, and fix f € M. Let i € {1,...,m} be such that
f € B:(f:;). Thus, for any y € V,

|f(y) = F@) < [fw) — i) + | fily) — fil)| + | fi(z) — f(2)] < 3e.

This shows that M is equicontinuous.
Conversely, given a pointwise bounded equicontinuous family M, since K

is compact for any € > 0 there exist points x4, ..., x,, € K and corresponding
neighbourhoods V4, ..., V,, such that K =V, U---UV,, and

1f(x) = f(z))| <e VYfeM, VzeV,, i=1,...,m. (A.6)
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Since {(f(x1),..., f(zm)) | f € M} is relatively compact in R™, there exist
functions fi,..., f, € M such that

{(f@1),-o o flam)) | f € MY Belfi(@1), - filwm)) - (A7)

=1

We claim that
M C Bs(f1)U---UBs(fn), (A.8)

which implies that M is totally bounded ® | hence relatively compact. To
obtain (A.8), let f € M and let j € {1,...,n} be such that

(f1), s f(wm) € B(f3(1), -5 fi(2m) -

Now, fix z € K and let i € {1,...,m} be such that € V;. Then, in view of
(A.6) and (A.7),

|f(x) = fi(@)] < |f(2) = flz)] + [ (i) = fi(za)] + | fi(z) — fi(2)] < 3e.
This proves (A.8) and completes the proof. d
Remark A.9 The compactness of K is essential for the above result. In-

deed, the sequence
fola) i= e~ (@’ Vr e R

is a bounded equicontinuous family in C(R). On the other hand,

1
ntm = =l =12

So, (fn)n fails to be relatively compact.

A.5 Vitali’s covering theorem

We present in this section the fundamental covering theorem of Vitali.

()given a metric space X and a subset M C X, we say that M is totally bounded if for
every £ > 0 there exist a finite set {z1,...,2,} C X such that M C U™, B.(x;). A subset
M of a complete metric space X is relatively compact iff it is totally bounded.
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Definition A.10 A collection F of closed balls in RY is a fine cover of a
set E C RY iff
Ec | B,

and, for every x € E
inf{diam(B) |z € B, B€ F} =0,
where diam(B) denotes the diameter of the ball B.

Theorem A.11 (Vitali) Let E € B(RY) such that \(E) < co®). Assume
that F is a fine cover of E. Then, for every € > 0 there exists a finite
collection of disjoint balls By, ..., B, € F such that

A(E\CJBi> <e.

Proof. According to Proposition 1.53, there exists an open set V' such
that £ C V and A(V) < oo. Possibly substituting F by the subcollection
F = {B € F|B C V}, which is still a fine cover of E, we may assume
without loss of generality all the balls of F are contained in V. This implies

sup{diam(B) | B € F} < o0.

We describe by induction the choice of By, Bs, ..., B, .... We choose B; so
that diam(B;) > 1sup{diam(B)|B € F}. Let us suppose that By, ..., By
have already been chosen. There are two possibilities: either

a) E C UleB]€7
or
b) there exists z € £\ UY_, By.

In the case a), we terminate at By and the thesis immediately follows. As-
sume that b) holds true. Since UY_| By, is a compact set, we denote by ¢ > 0
the distance of T from U¥_, B;.. Since F is a fine cover of E, there exists a ball
B € F such that € B and diam(B) < 2. In particular B is disjoint from

()B(RYN) is the o-algebra of the Borel sets of RY and A denotes the Lebesgue measure.
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By, ..., By. Then the set {B € F | B disjoint from By,..., B} is nonempty,
hence we can define

dy = sup{diam(B) | B € F, B disjoint from By, ..., By} > 0.

We choose Byy1 € F such that By is disjoint from By, ..., By and diam(By,1) >
%’“. If the process does not terminate, we get a sequence By, By, ..., By, ...,
of disjoint balls in F such that

% < diam(BkH) < dk

Since Uy, By, C V, we have > 7 A(By) < A(V) < co. Then there exists
n € N such that .
3 ABy) < 5%
k=n+1

We claim that . .

ExUUB.c | B (A.9)

k=1 k=n-+1

where B}, denotes the ball having the same center as Bj but whose diameter
in five times as large. Indeed let x € E\ U}_, Bx. By reasoning as in case b),
there exists a ball B € F such that x € B and B is disjoint from By, ..., B,.

We state that B must intersect at least one of the balls By (with & > n),
otherwise from the definition of d for every k it would result

diam(B) < dj, < 2diam(Bj+1);

since ) 3, A(Bj) < 0o, then A\(By) — 0, by which diam(Bj,) — 0; consequently
the above inequality cannot be true for large k.
Then we take the first j such that BN B; # (). We have j > n and

diam(B) < dj_; < 2diam(B;).

From an obvious geometric consideration it is then evident that B is con-
tained in the ball that has the same center as B; and five times the diameter
of By, i.e. B C Bj. Thus we have proved (A.9), and so

A(E\QBQ < i A(B;) =5 i ABy) < ¢

k=n+1 k=n+1

which proves the theorem. [l
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