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Chapter 1

Phase–type distributions

1.1 Notation

We will use 111 to denote a column vector of ones of appropriate dimension.

111 =


1
1
...
1

 .

Correspondingly we will let 000 denote the vector of zeros.

Matrices is represented by capital primarily roman letters like TTT and AAA. The symbol III will be used for a unity
matrix of appropriate dimension, while 000 is a matrix of zero’s of appropriate dimension.

1.2 Matrix results

In this section we have collected a few slightly specialized matrix results.

Lemma 1. The inverse of the block Matrix [
AAA BBB
000 CCC

]
(1.1)

can be written as [
AAA−1 −AAA−1BBBCCC−1

000 CCC−1

]
(1.2)

whenever AAA and CCC are invertible.

Proof. By direct verification.
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1.2.1 The Kronecker product

Many operations with phase–distributions are conveniently expressed using the Kronecker product. For two
matrices AAA with dimension `× k and BBB with dimension n×m we define the Kroneckerproduct ⊗ by

AAA⊗BBB =


a11BBB a12BBB . . . a1kBBB
a21BBB a22BBB . . . a2kBBB

... . . .
...

...
a`1BBB a`2BBB . . . a`kBBB

 (1.3)

Example 1. Consider the matrices AAA, BBB, and III given by:

AAA =

[
2 7 1
3 5 11

]
, BBB =

[
13 4
0 17

]
, III =

1 0 0
0 1 0
0 0 1

 .

Then AAA⊗BBB, AAA⊗ III and III⊗BBB is given by

AAA⊗BBB =


2 ·13 2 ·4 7 ·13 7 ·4 1 ·13 1 ·4
2 ·0 2 ·17 7 ·0 7 ·17 1 ·0 1 ·17

3 ·13 3 ·4 5 ·13 5 ·4 11 ·13 11 ·4
3 ·0 3 ·17 5 ·0 5 ·17 11 ·0 11 ·17



AAA⊗ III =


2 0 0 7 0 0 1 0 0
0 2 0 0 7 0 0 1 0
0 0 2 0 0 7 0 0 1
3 0 0 5 0 0 11 0 0
0 3 0 0 5 0 0 11 0
0 0 3 0 0 5 0 0 11



III⊗BBB =


13 4 0 0 0 0
0 17 0 0 0 0
0 0 13 4 0 0
0 0 0 17 0 0
0 0 0 0 13 4
0 0 0 0 0 17

 .

The following rule is very convenient. If the usual matrix products LLLUUU and MMMVVV exist, then

(LLL⊗MMM)(U⊗V) = LLLUUU⊗MMMVVV . (1.4)

A natural operation for continuous time phase–type distributions is AAA⊗ III+ III⊗BBB, thus motivating the definition
of the Kronecker sum defined by the symbol ⊕.

AAA⊕BBB = AAA⊗ III + III⊗BBB (1.5)
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1.3 Discrete phase–type distributions

Definition 1. A discrete phase–type distribution is the distribution of the time to absorption in a finite discrete
time Markov chain with transition matrix PPP of dimension m+ 1 as given by 1.6. The Markov chain has m
transient and 1 absorbing state.

PPP =

[
SSS sss
000 1

]
. (1.6)

The initial probability vector is denoted by (ααα,αm+1). The pair (ααα,SSS) is called a representation for the phase–
type distribution.

The matrix (III−SSS) is non–singular (i.e. the only solution to xxx = xxxSSS is xxx = 000). One consequence is, that at least
one of the row sums of SSS is strictly less than 1. As PPP is a stochastic matrix it satisfies equation 1.7.

PPP111 = 111 (1.7)

and we have
SSS111+sss = 111 or sss = (III−SSS)111 . (1.8)

It follows from

PPPn =

[
SSSn (III−SSSn)111
000 1

]
that

P(X > n) =αααSSSn111 .

Thus
P(X ≤ n) = 1−αααSSSn111 . (1.9)

Example 2. The simplest possible discrete phase–type distribution is obtained, when the dimension of SSS is m=1.
In this case we have

PPP =

[
p 1− p
0 1

]
ααα = (1). As will be clear later this phase–type distribution is simply a geometric distribution with parameter
1− p. A sum of geometrically distributed random variables has a negative binomial distribution. The negative
binomial distribution can be expressed as a phase–type distribution by

PPP =



p 1− p 0 0 . . . 0 0 0
0 p 1− p 0 . . . 0 0 0
0 0 p 1− p . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . p 1− p 0
0 0 0 0 . . . 0 p 1− p

000 1


ααα = (1,0, . . . ,0).
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1.3.1 Cumulative distribution and probability mass function

We will now give the argument leading to formula (1.9) in more detail. We first consider the probabilities for
the transient states after n transitions. That is p(n)i = Prob(Xn = i). We collect these probabilities in a vector to
get ppp(n) = (p(n)1 , . . . , p(n)m ). Using standard arguments for discrete time Markov chains we get

ppp(n) = ppp(n−1)SSS =αααSSSn . (1.10)

The event that absorption occurs at time x can be partitioned using the union of the events that the chain is in
state i (i = 1, . . . ,m) at time x− 1, and that absorption happens at i at time x. The probability of the former is
p(x−1)

i while the probability of the latter event is si. Thus the probability mass function can be expressed as

f (x) =
m

∑
i=1

p(x−1)
i si = ppp(x−1)sss =αααSSSx−1sss, x > 0 . (1.11)

The cumulative probability function can now be found by summation of f (x) or by noting that absorption has
occurred if the process is no longer in one of the transient states at time x. The probability of being in one of
the transient states is ∑

m
i=1 p(x)i = ppp(x)111 =αααSSSx111. Thus, the cumulative distribution function is given by

F(x) = 1−αααSSSx111, x≥ 0 (1.12)

Example 3. For the geometric distribution in Example 2 we find using (1.11) and (1.12):

f (x) = 1 · px−1(1− p) (1.13)

F(x) = 1−1 · px (1.14)

(1.15)

1.3.2 The generating function

The generating function for a non–negative discrete random variable X is given by (1.16)

H(z) = E
(
zX)= ∞

∑
x=0

zx f (x) (1.16)

For a discrete phase–type random variable we find

H(z) =
∞

∑
x=0

zx f (x) = αm+1 +
∞

∑
x=1

zx
αααSSSx−1sss = αm+1 + zααα(III− zSSS)−1sss (1.17)

Here we have used the geometric series ∑
∞
i=0 xi = 1

1−x for matrices. (see e.g. [2] Theorem 28.1). The result is
∑

∞
i=0 AAAi = (III−AAA)−1 whenever |λi|< 1 for all i, where λi are the eigenvalues of AAA.

Example 4. For the geometric distribution we get the well–known result
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H(z) = z(1− pz)−1(1− p) =
z(1− p)
1− zp

(1.18)

1.3.3 Moments

The factorial moments for a discrete random variable can be obtained by successive differentiation of the
generating function.

E(X(X−1) . . .(X− (k−1)) =
dH(z)k

dzk

∣∣∣∣∣
z=1

.

Thus for a discrete phase–type variable with representation (ααα,SSS) we get

E(X(X−1) . . .(X− (k−1))) = k!ααα(III−SSS)−kSSSk−1111 .

The matrix UUU = (III− SSS)−1 is of special importance as the i, j’th element has a probabilistic interpretation as
the expected time spent in state j before absorption conditioned on starting in state i. By a little bit of matrix
calculation we can express the generating function using UUU rather than SSS to get

H(z) = αm+1 +ααα

(
UUU

1− z
z

+ III
)−1

111 ,

(where the latter expression obviously is not defined for z = 0).

1.3.4 Closure properties

One appealing feature of phase–type distributions is that the class is closed under a number of operations. The
closure properties are a main contributing factor to the popularity of phase–type distributions in probabilis-
tic modeling of technical systems. In particular we will see the that the class is closed under addition, finite
mixtures, and finite order statistics.

Theorem 1. [Sum of two independent PH variables] Consider two discrete random variables X and Y with
representation (ααα,SSS) and (βββ ,TTT ) respectively. Then the random variable Z = X +Y follows a discrete phase–
type distribution with representation (γγγ,L) given by 1.19.

[
LLL lll
000 1

]
=



S11 S12 . . . S1m s1β1 s1β2 . . . s1βk s1βk+1
S21 S22 . . . S2m s2β1 s2β2 . . . s2βk s2βk+1

...
...

...
...

...
...

...
...

...
Sm1 Sm2 . . . Smm smβ1 smβ2 . . . smβk smβk+1
0 0 . . . 0 T11 T12 . . . T1k t1
0 0 . . . 0 T21 T22 . . . T2k t2
...

...
...

...
...

...
...

...
...

0 0 . . . 0 Tk1 Tk2 . . . Tkk tk
0 0 . . . 0 0 0 . . . 0 1


, (1.19)

γγγ = (α1,α2, . . . ,αm,αm+1β1,αm+1β2, . . . ,αm+1βk). In matrix notation



10 [
LLL lll
000 1

]
=

SSS sssβββ βk+1sss
0 TTT ttt

000 1

 (1.20)

γγγ = (ααα,αm+1βββ ),γm+k+1 = αm+1βk+1.

Proof. The probabilistic proof is done by concatenating the transition matrices for the transient states of the
Markov chains related to X and Y . We interpret the random variables Z, X , and Y as time variables. In order
to get the random variable Z we first start a Markov chain related to X given by (ααα,SSS). Immediately upon
absorption from X we start the Markov chain related to Y given by (βββ ,TTT ). The terms siβ j ensures that the
initial probability distribution of the Y chain is indeed βββ .

One can alternatively proceed entirely analytically by manipulations with generating functions.

HZ(z) = HX (z)HY (z) = (αm+1 + zααα(III− zSSS)−1sss)(βk+1 + zβββ (III− zTTT )−1ttt) (1.21)

After some straightforward but tedious calculations, we omit the details for now, one obtains

HZ(z) = γm+1 + zγγγ(III− zL)−1lll (1.22)

Remark 1. An important implication is that the representation for a phase–type distribution can not be unique
as the representation for Z = X +Y is not in general symmetric in the parameters of the X and Y chains.
Thus, typically the L matrix will be different depending on which chain we choose to represent X while the
expressions for the distribution like FZ(x), fZ(x) or HZ(z) will be identical. See Section 1.3.5 for a somewhat
deeper discussion of this and some supplementary examples.

1.3.4.1 Finite mixtures of phase–type distributions

Given Xi phase–type distributed with representation (αiαiαi,SSSi) we have Z = IiXi with ∑
k
i=1 Ii = 1 and P(Ii = 1) =

pi). We see that the random variable Z is itself phase–type distributed with representation (γγγ,L) given by 1.23:

L =


SSS1 0 . . . 0
0 SSS2 . . . 0
...

...
...

...
0 0 . . . SSSk

 (1.23)

γγγ = (p1α1α1α1, p2α2α2α2, . . . , pkαkαkαk).

Example 5. For two geometric distributions with parameters px and py we have the representation

L =

[
px 0
0 py

]
with γγγ = (p0x, p0y) = (p0x,1− p0x), where p0x is the probability of choosing the first respectively the second
geometric distribution.
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1.3.4.2 Order statistics

Initially we focus on the distribution of the smallest Z1 and the largest Z2 of two independent variables X and
Y . Thus Z1 = min(X ,Y ) and Z2 = max(X ,Y ). First we will consider the an example.

Example 6. Let X be negative binomially distributed with parameters kx = 2, px and let Y be negative binomially
distributed with parameters ky = 2, py. The matrices SSSx and SSSy are given by

SSSx =

[
px 1− px
0 px

]
SSSy =

[
py 1− py
0 py

]
with αααx = (1,0) and αααy = (1,0). We define Z1 = min(X ,Y ) and proceed by creating a Markov chain that
describes the simultaneous evolution of the X and the Y chains and thus the evolution of the Z chain. The
process will have 4 transient states corresponding to all possible combinations of the X and Y states. We denote
the four states by (1,1),(1,2),(2,1),(2,2). The transition from (1,1) to (1,2) occurs whenever we have no state
change in the X chain (probability px) and the Y chain changes state (probability 1− py). In summary the final
Markov chain tracks the time until the first of the two original chains reaches the absorbing state. Thus,

SSSmin(X ,Y ) =


px py px(1− py) (1− px)py (1− px)(1− py)

0 px py 0 (1− px)py
0 0 px py px(1− py)
0 0 0 px py


and we have that αααmin(X ,Y ) = (1,0,0,0). Further, we see that we can write SSSmin(X ,Y ) = SSSx⊗SSSy and αααmin(X ,Y ) =
αααx⊗αααy.
With respect to the distribution of Z2 = max(X ,Y ) we need to include 4 more states (1,3),(2,3),(3,1),(3,2)
corresponding to the possibility that one of the two chains survives the absorption of the other. It is convenient
to order the state space as (1,1),(1,2),(2,1),(2,2),(1,3),(2,3),(3,1),(3,2). And we obtain the phase type
generator SSSmax(X ,Y )

SSSmax(X ,Y ) =

px py px(1− py) (1− px)py (1− px)(1− py) 0 0 0 0
0 px py 0 (1− px)py px(1− py) (1− px)(1− py) 0 0
0 0 px py px(1− py) 0 0 (1− px)py (1− px)(1− py)
0 0 0 px py 0 px(1− py) 0 (1− px)py)
0 0 0 0 px 1− px 0 0
0 0 0 0 0 px 0 0
0 0 0 0 0 0 py 1− py
0 0 0 0 0 0 0 py



The general result is that for X phase–type distributed with (SSSx,αααx) and Y phase–type distributed with (SSSy,αααy)
min(X ,Y ) is phase–type distributed with representation (LLL,γγγ) given by 1.24:

LLL = SSSx⊗SSSy , (1.24)

where γγγ =αααx⊗αααy. Further max(X ,Y ) is phase–type distributed with representation (L,γγγ) given by 1.25:

LLL =

SSSx⊗SSSy SSSx⊗ttty tttx⊗SSSy
0 SSSx 0
0 0 SSSy

 (1.25)

with γγγ = (αααx⊗αααy,αααxαy,m+1,αx,k+1αααy). Here the dimension of SSSx is k and the dimension of SSSy is m. We write
lll explicitly:
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lll =

tttx⊗ttty
tttx
ttty

 (1.26)

1.3.4.3 Other properties

We briefly mention that all discrete probability distribution functions with finite support (i.e. f (x) = 0 for all
x≥ x0) are of phase–type.

Random sums of independent discrete phase–type variables where the number of terms in the random sum is
itself phase–type distributed is phase type distributed with representation.

(ααα⊗βββ ,SSS⊗ III +sssααα⊗TTT )

1.3.5 Non–uniqueness of representations

A main drawback when modeling with phase–type distributions is the non–uniqueness of their representations.
Thus in most cases a number of different representations will give rise to the same distribution. Thus, only in
very special cases will a representation be unique.

Example 7. The distribution with representation ((1,0),SSS) with SSS given by

SSS =

[
p1 p2− p1
0 p2

]
(1.27)

is simply a geometric distribution with f (x) = px−1
2 (1− p2).

This can be seen by deriving the generating function for the distribution. Alternatively it is seen that ttt =[
1− p2
1− p2

]
, thus there is a constant probability 1− p2 of absorption not dependent on the state of the chain and

thus independent of the time elapsed.
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1.4 Continuous phase–type distributions

Many definitions and results regarding discrete time phase–type distributions carry over verbatim to the con-
tinuous time case, other need minor modifications. We first extend Definition 1 in.

Definition 2. A phase–type distribution is the distribution of the time to absorption in a finite Markov jump
process (continuous time Markov chain) of dimension m+ 1, where one state is absorbing and the remaining
m states are transient. A phase type distribution is uniquely given by an m dimensional row vector ααα and an
m×m matrix SSS. We call the the pair (ααα,SSS)a representation for the phase type distribution. The vector ααα can
be interpreted as the initial probability vector among the m transient states, while the the matrix SSS can be
interpreted as the one step transition probability matrix among the transient states in the discrete case and as
the infinitesimal generator matrix among the transient states in the continuous case. A phase–type distribution
is uniquely given by any representation. However, several representations can lead to the same phase–type
distribution. We will elaborate a little bit on this in Section 1.4.7.

The generator matrix for the Markov jump process in the continuous case for a given representation is given
by (1.28)

Q =

[
SSS sss
000 0

]
(1.28)

This section will be quite repetitive restating a number of results now for the continuous case. In some cases
the exact formulation of results and properties will vary slightly.

1.4.1 Probability functions

Once again the most apparent result regards the survival function.

As in Section 1.3.1 we will consider the probabilities pi(t)(i = 1, . . . ,m) of the Markov jump process {J(t); t ≥
0} being in transient state i at time t. We collect these probabilities in the vector ppp(t). Further we define the
vector p+p+p+(t) = (ppp(t), pm+1(t)), which can be found as the standard solution to the Chapman-Kolmogorov
equations

p+p+p+′(t) = p+p+p+(t)Q , (1.29)

such that ppp(t) satisfies:
ppp′(t) = ppp(t)SSS . (1.30)

The solution to this system is ppp(t) =αααetSSS ([1] page 182). Thus the probability that the jump process is not yet
absorbed at time t is ppp(t)111 =αααetSSS = P(X > t), where X is the time to absorption. We get

P(X ≤ x) = F(x) = 1−αααeSSSx111 . (1.31)

Now using exSSS = ∑
∞
i=0

(xSSS)i

i! we find f (x) = F ′(x) =−αααeSSSxSSS111. Finally using SSS111+sss = 000 we get

f (x) =αααeSSSxsss . (1.32)

Example 8. Choosing the dimension of SSS to be 1 we find the
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Q =

[
−λ λ

0 0

]
corresponding to the phase–type representation ((1), [−λ ]). We find F(t) = 1− e−λ t and f (t) = λe−λ t - an
exponential distribution.

1.4.2 The Laplace-transform

The Laplace transform of a continuous probability distribution for the random variable X is defined by
E
(
e−θX

)
. For the continuous part of a phase type distribution we need to evaluate

∫
∞

0 e−θ t f (t)dt = ααα(θ III−
SSS)−1sss, and we get

E
(

e−θX
)
= H(θ) = αm+1 +ααα(θ III−SSS)−1sss (1.33)

Theorem 2. Let UUU = (−SSS)−1, then the (i, j)th element ui j is the expected time spent in state j given initiation
in state i prior to absorption.

Proof. Let Z j denote the time spent in state j prior to absorption. Then

E(Z j|J(0) = i) = E

(∫
τ

0
δX(t)= jdt|J(0) = i

)
=
∫

∞

0
E
(
δX(t)= jδτ≥t|J(0)=i

)
dt

=
∫

∞

0
P
(
δX(t)= jδτ≥t |J(0) = i

)
dt

=
∫

∞

0

(
eSSSt
)

i j
dt

= (−SSS)−1

1.4.3 Moments

We now have

Corollary 1. The mean of a PH(ααα,SSS) distributed random variable is αααUUU111.

Proof. Just notice that UUU111 is the vector which i’th element is the expected time the process spends in any state
prior to absorption given initiation in state i.

We can alternatively get the mean and the all non–central moments by successive differentiation of the Laplace
transform. Doing this yields

µi = i!ααα(−SSS)−i111 (1.34)
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1.4.4 Evaluation of continuous phase–type distributions

Phase–type distributions have a rational Laplace transform. The cumulative distribution function and the prob-
ability density function will thus consist of terms of the form

t icos(ωt +φ)e−λ t ,

where i, ω , or φ could be 0 leading to simpler expressions.

In order to get such explicit (scalar) expressions one can use the following approach.

• Calculate eSSSt by deriving the first terms in the series ∑
∞
i=0

(SSSt)i

i! and then prove a general result by induction.
However, this approach is usually quite cumbersome and difficult. Generally the SSS matrix should be upper
or lower diagonal for this approach to be viable.

• Alternatively one can determine the Laplace transform, find the roots of the denominator, and then use a
partial fraction expansion. Inversion of each term in the fractional expansion is now straightforward. How-
ever, to find the roots of the denominator is equivalent to finding the root of an m’th order polynomial which
is non–trivial in general.

The numerical evaluation is straightforward if one of the two above mentioned methods works. In general one
must resort to numerical solution of the linear equation system governing the probabilities ppp(t), i.e. solving
the Chapman Kolmogorov equations numerically. There is a very efficient method called uniformization for
calculating this solution. Introducing the quantity η =−min(Tii) one rewrites SSS = η(KKK− III). The matrix KKK is
a sub-stochastic matrix such that KKK = III +η−1SSS. Now

αααeSSSt111 = e−ηt
∞

∑
i=0

ααα(ηt)iKKKi111
i!

=
∞

∑
i=0

αααKKKi111
(ηt)i

i!
e−ηt .

This formula is very well suited for numerical evaluation as all terms in the series are non–negative and since
an appropriate level for truncation of the sum can be derived from the Poisson distribution.

1.4.5 Properties of continuous phase–type distributions

As for discrete phase–type distributions the class of continuous phase–type distributions is closed under a
number of standard operations occurring frequently in probability theory.

1.4.5.1 Addition of two random variables

Theorem 3. For X ∈ PH(ααα,SSS) and Y ∈ PH(βββ ,TTT ) and independent Z = X +Y ∈ PH(γγγ,LLL) with γγγ = (ααα,αm+1βββ )
and [

LLL lll
000 0

]
=

SSS sssβββ βk+1sss
0 TTT ttt

000 0

 (1.35)
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[
LLL lll
000 0

]
=



S11 S12 . . . S1m s1β1 s1β2 . . . s1βk s1βk+1
S21 S22 . . . S2m s2β1 s2β2 . . . s2βk s2βk+1

...
...

...
...

...
...

...
...

...
Sm1 Sm2 . . . Smm smβ1 smβ2 . . . smβk smβk+1
0 0 . . . 0 T11 T12 . . . T1k t1
0 0 . . . 0 T21 T22 . . . T2k t2
...

...
...

...
...

...
...

...
...

0 0 . . . 0 Tk1 Tk2 . . . Tkk tk
0 0 . . . 0 0 0 . . . 0 0


(1.36)

γγγ = (α1,α2, . . . ,αm,αm+1β1,αm+1β2, . . . ,αm+1βk). In matrix notation γγγ = (ααα,αm+1βββ ).

Example 9. Consider the sum Z = ∑
k
i=1 Xi with Xi ∈ exp(λi). Using 1.35 we get

SSS =



−λ1 λ1 0 0 . . . 0 0 0
0 −λ2 λ2 0 . . . 0 0 0
0 0 −λ3 λ3 . . . 0 0 0
0 0 0 −λ4 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . −λk−2 λk−2 0
0 0 0 0 . . . 0 −λk−1 λk−1
0 0 0 0 . . . 0 0 −λk


ααα = (1,0, . . . ,0). With λi = λ we get a sum of identically distributed exponential random variables, referred
to as an Erlang–distribution. These distributions are special cases of the gamma distribution with integer shape
parameter. We have

f (x) = λ
(λx)k−1

(k−1)! e−λx (1.37)

F(x) = ∑
∞
i=k

(λx)i

i! e−λx = 1−
k−1

∑
i=0

(λx)i

i!
e−λx (1.38)

H(θ) =
(

λ

θ+λ

)k
(1.39)

µi =
(i+k−1)!
(k−1)!λ i (1.40)

1.4.5.2 Finite mixtures

We restate a result which is identical to the discrete case even in formulation

Theorem 4. Any finite convex mixture of phase–type distributions is a phase type distribution. Let Xi ∈
PH(ααα i,SSSi) i= 1, . . . ,k such that Z =Xi with probability pi Then Z ∈PH(γγγ,LLL) where γγγ =(p1α1α1α1, p2α2α2α2, . . . , pkαkαkαk)
and
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LLL =


SSS1 0 . . . 0
0 SSS2 . . . 0
...

...
...

...
0 0 . . . SSSk

 (1.41)

Proof. Directly using the probabilistic interpretation of (γγγ,LLL).

Example 10. Consider the k random variables Xi ∈ exp(λi) and assume that Z takes the value of Xi with prob-
ability pi. The distribution of Z can be expressed as a proper mixture of the Xi’s. fz(x) = ∑

k
i=1 piλie−λix. The

distribution of Z is called a hyper exponential distribution. Using 1.41 we find a phase–type representation
(γγγ,LLL) for Z. γγγ = (p1, p2, . . . , pk).

LLL =


−λ1 0 . . . 0

0 −λ2 . . . 0
...

...
...

...
0 0 . . . −λk

 (1.42)

The hyper-exponential distribution is quite important and we mention its characteristics explicitly.

f (x) = ∑
k
i=1 piλie−λix (1.43)

F(x) = 1−∑
k
i=1 pie−λix (1.44)

H(s) = ∑
k
i=1

piλi
s+λi

(1.45)

µi = i!∑
k
i=1

pi
λ i

i
(1.46)

1.4.5.3 Order statistics

The order statistic of a finite number of independent discrete phase–type distributed variables is itself phase–
type distributed. We will focus on the distribution of the smallest and the largest of two independent variables
X with representation (αααx,SSSx) and Y with representation (αααy,SSSy). We motivate the derivation with a small
example.

Example 11. Let X be generalized Erlang distributed with parameters λx,1,λx,2 and let Y be hyper-exponentially
distributed with parameters py,λy,1,λy,2. We will first investigate the distribution of min(X ,Y ). We have

SSSx =

[
−λx,1 λx,1

0 −λx,2

]
SSSy =

[
−λy,1 0

0 −λy,2

]
with αxαxαx = (1,0) and αyαyαy = (py,1− py). We can now construct a Markov jump process that simultaneously
describes the evolution of the two Markov jump processes related to X and Y respectively. As for Example 6
the Markov jump process will have 4 states corresponding to the all possible combinations of the states of the
two original processes.

We denote the four states by (1,1),(1,2),(2,1),(2,2). The transitions from (1,1) to (2,1), and from (1,2) to
(2,2) occur with intensity λx,1, while no other transitions are possible from these two states. The remaining
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transitions are found similarly. In summary we get a Markov jump process that describes the time until the
first of the two processes gets absorbed (min(X ,Y )). This time is obviously then phase–type distributed with
generator

SSSmin(X ,Y ) =


−(λx,1 +λy,1) 0 λx,1 0

0 −(λx,1 +λy,2) 0 λx,1
0 0 −(λx,2 +λy,1) 0
0 0 0 −(λx,2 +λy,2)


and with initial probability vector αmin(X ,Y )αmin(X ,Y )αmin(X ,Y ) = (py,1− py,0,0). Further we have SSSmin(X ,Y ) = SSSx⊗ III+ III⊗SSSy and
αmin(X ,Y )αmin(X ,Y )αmin(X ,Y ) =αxαxαx⊗αyαyαy.

To get the distribution of max(X ,Y ) we need additionally to consider the states (1,3),(2,3),(3,1),(3,2) cor-
responding to the event that one of the processes has reached the absorbing state. It is convenient to use the
ordering (1,1),(1,2),(2,1),(2,2),(1,3),(2,3),(3,1),(3,2). And we find SSSmax(X ,Y ) to be

SSSmax(X ,Y ) =

−(λx,1 +λy,1) 0 λx,1 0 λy,1 0 0 0
0 −(λx,1 +λy,2) 0 λx,1 λy,2 0 0 0
0 0 −(λx,2 +λy,1) 0 0 λy,1 λx,2 0
0 0 0 −(λx,2 +λy,2) 0 λy,2 0 λx,2
0 0 0 0 −λx,1 λx,1 0 0
0 0 0 0 0 −λx,2 0 0
0 0 0 0 0 0 −λy,1 0
0 0 0 0 0 0 0 −λy,2



Theorem 5. For X ∈ PH(αααx,SSSx) and Y ∈ PH(αααy,SSSy) min(X ,Y ) is phase distributed with representation (γγγ,LLL)
given by 1.47:

LLL = SSSx⊗ IIIy + IIIx⊗SSSy , (1.47)

where γγγ =αxαxαx⊗αyαyαy. and max(X ,Y ) is phase type distributed with representation (γγγ,LLL) given by 1.48:

LLL =

SSSx⊗ IIIy + IIIx⊗SSSy IIIx⊗sssy sssx⊗ IIIy
0 SSSx 0
0 0 SSSy

 (1.48)

med γγγ = (αxαxαx⊗αyαyαy,αxαxαxαy,m+1,αx,k+1αyαyαy). where the dimension of SSSx is k and the dimension of SSSy is m. We give lll
explicitly

lll =

 000
sssx
sssy

 (1.49)

1.4.6 Phase–type renewal process

A phase–type renewal process is a point process, were the distance between two points can be described by
independent and identically distributed phase–type distributed random variables. The stationary version is of
special interest. The age of the process at time t is defined to be the time since the last event - or point - while
the residual life time at time t is the time to the next event - or point. We have the following important result.
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Theorem 6. In a stationary phase–type renewal process the distribution of age and residual life time are phase–
type distributed with representation (πππ,SSS) where πππ = αααUUU

αααUUU111 .

Proof. The phase process J(t) is a finite continuous time Markov jump process with generator matrix QQQ = SSS+
sssααα of dimension m. The stationary probability vector πππ for this process satisfies πππ(SSS+sssααα) = 000 or equivalently
πππ = πππsssαααUUU . By probabilistic reasoning or by post-multiplying with 111 we see that πππsss = 1

αααUUU111 . At an arbitrary
epoch the probabilistic distribution among the states in the Markov jump process is given by πππ . From this point
the time to absorption will be phase type distributed with the representation of the theorem. The distribution of
age must be the same by symmetry.

Corollary 2. The moments of the residual life time distribution is given by

µ
?
i = i!

αααUUU i+1111
αααUUU111

. (1.50)

Proof. The corollary follows directly from Theorem 6 and the equation for the moments of a phase–type
distribution as given in Section 1.4.3.

Example 12. Let X be an Erlang-n distributed random variable, that is X ∈ PH(ααα,SSS) as in Example 9 with
λi = λ . The matrix SSS+sssααα is given by:

SSS+sssααα =



−λ λ 0 . . . 0 0 0
0 −λ λ . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . −λ λ 0
0 0 0 . . . 0 −λ λ

λ 0 0 . . . 0 0 −λ


and we get πππ = ( 1

n ,
1
n , . . . ,

1
n ).

1.4.7 Non–uniqueness of continuous phase–type distributions

In general there will be many phase type representations for the same distribution. Consider the following
example.

Example 13. With ααα = (1,0) and SSS given by

SSS =

[
−λ1 λ1−λ2

0 −λ2

]
(1.51)

where λ1 ≥ λ2 we get an exponential distribution with intensity λ2.
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