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SAMPLE SPACES

DEFINITION :

The sample space is the set of all possible outcomes of an experiment.

EXAMPLE : When we flip a coin then sample space is

S = { H , T } ,
where

H denotes that the coin lands ”Heads up”
and

T denotes that the coin lands ”Tails up”.

For a ”fair coin ” we expect H and T to have the same ”chance ” of
occurring, i.e., if we flip the coin many times then about 50 % of the
outcomes will be H .

We say that the probability of H to occur is 0.5 (or 50 %) .

The probability of T to occur is then also 0.5.
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EXAMPLE :

When we roll a fair die then the sample space is

S = { 1 , 2 , 3 , 4 , 5 , 6 } .

The probability the die lands with k up is 1
6

, (k = 1, 2, · · · , 6).

When we roll it 1200 times we expect a 5 up about 200 times.

The probability the die lands with an even number up is

1

6
+

1

6
+

1

6
=

1

2
.
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EXAMPLE :

When we toss a coin 3 times and record the results in the sequence

that they occur, then the sample space is

S = {HHH , HHT , HTH , HTT , THH , THT , TTH , TTT } .

Elements of S are ”vectors ”, ”sequences ”, or ”ordered outcomes ”.

We may expect each of the 8 outcomes to be equally likely.

Thus the probability of the sequence HTT is 1
8

.

The probability of a sequence to contain precisely two Heads is

1

8
+

1

8
+

1

8
=

3

8
.
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EXAMPLE : When we toss a coin 3 times and record the results
without paying attention to the order in which they occur, e.g., if we
only record the number of Heads, then the sample space is

S =
{

{H,H,H} , {H,H, T} , {H,T, T} , {T, T, T}
}

.

The outcomes in S are now sets ; i.e., order is not important.

Recall that the ordered outcomes are

{ HHH , HHT , HTH , HTT , THH , THT , TTH , TTT } .

Note that

{H,H,H} corresponds to one of the ordered outcomes,
{H,H, T} ,, three ,,
{H,T, T} ,, three ,,
{T, T, T} ,, one ,,

Thus {H,H,H} and {T, T, T} each occur with probability 1
8
,

while {H,H, T} and {H,T, T} each occur with probability 3
8
.
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Events

In Probability Theory subsets of the sample space are called events.

EXAMPLE : The set of basic outcomes of rolling a die once is

S = { 1 , 2 , 3 , 4 , 5 , 6 } ,

so the subset E = { 2 , 4 , 6 } is an example of an event.

If a die is rolled once and it lands with a 2 or a 4 or a 6 up then we
say that the event E has occurred.

We have already seen that the probability that E occurs is

P (E) =
1

6
+

1

6
+

1

6
=

1

2
.
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The Algebra of Events

Since events are sets, namely, subsets of the sample space S, we can
do the usual set operations :

If E and F are events then we can form

Ec the complement of E
E ∪ F the union of E and F
EF the intersection of E and F

We write E ⊂ F if E is a subset of F .

REMARK : In Probability Theory we use

Ec instead of Ē ,

EF instead of E ∩ F ,

E ⊂ F instead of E ⊆ F .
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If the sample space S is finite then we typically allow any subset of
S to be an event.

EXAMPLE : If we randomly draw one character from a box con-
taining the characters a, b, and c, then the sample space is

S = {a , b , c} ,

and there are 8 possible events, namely, those in the set of events

E =
{

{ } , {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}
}

.

If the outcomes a, b, and c, are equally likely to occur, then

P ({ }) = 0 , P ({a}) =
1

3
, P ({b}) =

1

3
, P ({c}) =

1

3
,

P ({a, b}) =
2

3
, P ({a, c}) =

2

3
, P ({b, c}) =

2

3
, P ({a, b, c}) = 1 .

For example, P ({a, b}) is the probability the character is an a or a b.
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We always assume that the set E of allowable events includes the

complements, unions, and intersections of its events.

EXAMPLE : If the sample space is

S = {a , b , c , d} ,

and we start with the events

E0 =
{

{a} , {c, d}
}

,

then this set of events needs to be extended to (at least)

E =
{

{ } , {a} , {c, d} , {b, c, d} , {a, b} , {a, c, d} , {b} , {a, b, c, d}
}

.

EXERCISE : Verify E includes complements, unions, intersections.
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Axioms of Probability

A probability function P assigns a real number (the probability of E)
to every event E in a sample space S.

P (·) must satisfy the following basic properties :

• 0 ≤ P (E) ≤ 1 ,

• P (S) = 1 ,

• For any disjoint events Ei , i = 1, 2, · · · , n, we have

P (E1 ∪ E2 ∪ · · · ∪ En) = P (E1) + P (E2) + · · ·P (En) .
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Further Properties

PROPERTY 1 :

P (E ∪ Ec) = P (E) + P (Ec) = 1 . ( Why ? )

Thus
P (Ec) = 1 − P (E) .

EXAMPLE :

What is the probability of at least one ”H” in four tosses of a coin?

SOLUTION : The sample space S will have 16 outcomes. (Which?)

P (at least one H) = 1 − P (no H) = 1 − 1

16
=

15

16
.
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PROPERTY 2 :

P (E ∪ F ) = P (E) + P (F ) − P (EF ) .

PROOF (using the third axiom) :

P (E ∪ F ) = P (EF ) + P (EF c) + P (EcF )

= [P (EF ) + P (EF c)] + [P (EF ) + P (EcF )] − P (EF )

= P(E) + P(F) - P(EF) . ( Why ? )

NOTE :

• Draw a Venn diagram with E and F to see this !

• The formula is similar to the one for the number of elements :

n(E ∪ F ) = n(E) + n(F ) − n(EF ) .
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So far our sample spaces S have been finite.

S can also be countably infinite, e.g., the set Z of all integers.

S can also be uncountable, e.g., the set R of all real numbers.

EXAMPLE : Record the low temperature in Montreal on January
8 in each of a large number of years.

We can take S to be the set of all real numbers, i.e., S = R.

(Are there are other choices of S ?)

What probability would you expect for the following events to have?

(a) P ({π}) (b) P ({x : − π < x < π})

(How does this differ from finite sample spaces?)

We will encounter such infinite sample spaces many times · · ·
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Counting Outcomes

We have seen examples where the outcomes in a finite sample space
S are equally likely , i.e., they have the same probability .

Such sample spaces occur quite often.

Computing probabilities then requires counting all outcomes and
counting certain types of outcomes .

The counting has to be done carefully!

We will discuss a number of representative examples in detail.

Concepts that arise include permutations and combinations.
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Permutations

• Here we count of the number of ”words ” that can be formed
from a collection of items (e.g., letters).

• (Also called sequences , vectors , ordered sets .)

• The order of the items in the word is important;

e.g., the word acb is different from the word bac .

• The word length is the number of characters in the word.

NOTE :

For sets the order is not important. For example, the set {a,c,b} is
the same as the set {b,a,c} .
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EXAMPLE : Suppose that four-letter words of lower case alpha-
betic characters are generated randomly with equally likely outcomes.
(Assume that letters may appear repeatedly.)

(a) How many four-letter words are there in the sample space S ?

SOLUTION : 264 = 456, 976 .

(b) How many four-letter words are there are there in S that start
with the letter ”s ” ?

SOLUTION : 263 .

(c) What is the probability of generating a four-letter word that
starts with an ”s ” ?

SOLUTION :
263

264
=

1

26
∼= 0.038 .

Could this have been computed more easily?
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EXAMPLE : How many re-orderings (permutations) are there of
the string abc ? (Here letters may appear only once.)

SOLUTION : Six, namely, abc , acb , bac , bca , cab , cba .

If these permutations are generated randomly with equal probability
then what is the probability the word starts with the letter ”a ” ?

SOLUTION :
2

6
=

1

3
.

EXAMPLE : In general, if the word length is n and all characters

are distinct then there are n! permutations of the word. ( Why ? )

If these permutations are generated randomly with equal probability
then what is the probability the word starts with a particular letter ?

SOLUTION :

(n− 1)!

n!
=

1

n
. ( Why ? )
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EXAMPLE : How many

words of length k

can be formed from

a set of n (distinct) characters ,

(where k ≤ n ) ,

when letters can be used at most once ?

SOLUTION :

n (n− 1) (n− 2) · · · (n− (k − 1))

= n (n− 1) (n− 2) · · · (n− k + 1)

=
n!

(n− k)!
( Why ? )
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EXAMPLE : Three-letter words are generated randomly from the
five characters a , b , c , d , e , where letters can be used at most

once.

(a) How many three-letter words are there in the sample space S ?

SOLUTION : 5 · 4 · 3 = 60 .

(b) How many words containing a , b are there in S ?

SOLUTION : First place the characters

a , b

i.e., select the two indices of the locations to place them.

This can be done in

3 × 2 = 6 ways . ( Why ? )

There remains one position to be filled with a c , d or an e .

Therefore the number of words is 3 × 6 = 18 .
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(c) Suppose the 60 solutions in the sample space are equally likely .

What is the probability of generating a three-letter word that
contains the letters a and b ?

SOLUTION :
18

60
= 0.3 .
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EXERCISE :

Suppose the sample space S consists of all five-letter words

having distinct alphabetic characters .

• How many words are there in S ?

• How many ”special” words are in S for which only the second
and the fourth character are vowels, i.e., one of {a, e, i, o, u, y} ?

• Assuming the outcomes in S to be equally likely, what is the
probability of drawing such a special word?
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Combinations

Let S be a set containing n (distinct) elements.

Then

a combination of k elements from S ,

is

any selection of k elements from S ,

where order is not important .

(Thus the selection is a set .)

NOTE : By definition a set always has distinct elements .
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EXAMPLE :

There are three combinations of 2 elements chosen from the set

S = {a , b , c} ,

namely, the subsets

{a, b} , {a, c} , {b, c} ,

whereas there are six words of 2 elements from S ,

namely,

ab , ba , ac , ca , bc , cb .
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In general, given
a set S of n elements ,

the number of possible subsets of k elements from S equals
(

n
k

)

≡ n!

k! (n− k)!
.

REMARK : The notation

(

n
k

)

is referred to as

”n choose k ”.

NOTE :

(

n
n

)

=
n!

n! (n− n)!
=

n!

n! 0!
= 1 ,

since 0! ≡ 1 (by “convenient definition” !) .
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PROOF :

First recall that there are

n (n− 1) (n− 2) · · · (n− k + 1) =
n!

(n− k)!

possible sequences of k distinct elements from S .

However, every sequence of length k has k! permutations of itself,
and each of these defines the same subset of S.

Thus the total number of subsets is

n!

k! (n− k)!
≡

(

n
k

)

.
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EXAMPLE :

In the previous example, with 2 elements chosen from the set

{a , b , c} ,

we have n = 3 and k = 2 , so that there are

3!

(3 − 2)!
= 6 words ,

namely
ab , ba , ac , ca , bc , cb ,

while there are
(

3
2

)

≡ 3!

2! (3 − 2)!
=

6

2
= 3 subsets ,

namely
{a, b} , {a, c} , {b, c} .
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EXAMPLE : If we choose 3 elements from {a , b , c , d} , then

n = 4 and k = 3 ,

so there are
4!

(4 − 3)!
= 24 words, namely :

abc , abd , acd , bcd ,
acb , adb , adc , bdc ,
bac , bad , cad , cbd ,
bca , bda , cda , cdb ,
cab , dab , dac , dbc ,
cba , dba , dca , dcb ,

while there are
(

4
3

)

≡ 4!

3! (4 − 3)!
=

24

6
= 4 subsets ,

namely,
{a, b, c} , {a, b, d} , {a, c, d} , {b, c, d} .
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EXAMPLE :

(a) How many ways are there to choose a committee of 4 persons
from a group of 10 persons, if order is not important?

SOLUTION :

(

10
4

)

=
10!

4! (10 − 4)!
= 210 .

(b) If each of these 210 outcomes is equally likely then what is the
probability that a particular person is on the committee?

SOLUTION :
(

9
3

)

/

(

10
4

)

=
84

210
=

4

10
. ( Why ? )

Is this result surprising?

27



(c) What is the probability that a particular person is not on the
committee?

SOLUTION :
(

9
4

)

/

(

10
4

)

=
126

210
=

6

10
. ( Why ? )

Is this result surprising?

(d) How many ways are there to choose a committee of 4 persons
from a group of 10 persons, if one is to be the chairperson?

SOLUTION :
(

10
1

) (

9
3

)

= 10

(

9
3

)

= 10
9!

3! (9 − 3)!
= 840 .

QUESTION : Why is this four times the number in (a) ?
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EXAMPLE : Two balls are selected at random from a bag with
four white balls and three black balls, where order is not important.

What would be an appropriate sample space S ?

SOLUTION : Denote the set of balls by

B = {w1 , w2 , w3 , w4 , b1 , b2 , b3} ,
where same color balls are made “distinct” by numbering them.

Then a good choice of the sample space is

S = the set of all subsets of two balls from B ,

because the wording ”selected at random ” suggests that each such
subset has the same chance to be selected.

The number of outcomes in S (which are sets of two balls) is then
(

7
2

)

= 21 .
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EXAMPLE : ( continued · · · )

(Two balls are selected at random from a bag with four white balls
and three black balls.)

• What is the probability that both balls are white?

SOLUTION : (

4
2

)

/

(

7
2

)

=
6

21
=

2

7
.

• What is the probability that both balls are black?

SOLUTION : (

3
2

)

/

(

7
2

)

=
3

21
=

1

7
.

• What is the probability that one is white and one is black?

SOLUTION : (

4
1

) (

3
1

)

/

(

7
2

)

=
4 · 3
21

=
4

7
.

(Could this have been computed differently?)
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EXAMPLE : ( continued · · · )

In detail, the sample space S is
{

{w1, w2}, {w1, w3}, {w1, w4}, | {w1, b1}, {w1, b2}, {w1, b3},
{w2, w3}, {w2, w4}, | {w2, b1}, {w2, b2}, {w2, b3},

{w3, w4}, | {w3, b1}, {w3, b2}, {w3, b3},
| {w4, b1}, {w4, b2}, {w4, b3},

———– ———– ———–
{b1, b2}, {b1, b3},

{b2, b3}
}

• S has 21 outcomes, each of which is a set .

• We assumed each outcome of S has probability 1
21

.

• The event ”both balls are white” contains 6 outcomes.

• The event ”both balls are black” contains 3 outcomes.

• The event ”one is white and one is black” contains 12 outcomes.

• What would be different had we worked with sequences ?
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EXERCISE :

Three balls are selected at random from a bag containing

2 red , 3 green , 4 blue balls .

What would be an appropriate sample space S ?

What is the the number of outcomes in S ?

What is the probability that all three balls are red ?

What is the probability that all three balls are green ?

What is the probability that all three balls are blue ?

What is the probability of one red, one green, and one blue ball ?
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EXAMPLE : A bag contains 4 black balls and 4 white balls.

Suppose one draws two balls at the time, until the bag is empty.

What is the probability that each drawn pair is of the same color?

SOLUTION : An example of an outcome in the sample space S is
{

{w1, w3} , {w2, b3} , {w4, b1} , {b2, b4}
}

.

The number of such doubly unordered outcomes in S is

1

4!

(

8
2

) (

6
2

) (

4
2

) (

2
2

)

=
1

4!

8!

2! 6!

6!

2! 4!

4!

2! 2!

2!

2! 0!
=

1

4!

8!

(2!)4
= 105 (Why?)

The number of such outcomes with pairwise the same color is

1

2!

(

4
2

) (

2
2

)

· 1

2!

(

4
2

)(

2
2

)

= 3 · 3 = 9 . ( Why ? )

Thus the probability each pair is of the same color is 9/105 = 3/35 .
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EXAMPLE : ( continued · · · )

The 9 outcomes of pairwise the same color constitute the event
{

{

{w1, w2} , {w3, w4} , {b1, b2} , {b3, b4}
}

,

{

{w1, w3} , {w2, w4} , {b1, b2} , {b3, b4}
}

,
{

{w1, w4} , {w2, w3} , {b1, b2} , {b3, b4}
}

,

{

{w1, w2} , {w3, w4} , {b1, b3} , {b2, b4}
}

,
{

{w1, w3} , {w2, w4} , {b1, b3} , {b2, b4}
}

,
{

{w1, w4} , {w2, w3} , {b1, b3} , {b2, b4}
}

,

{

{w1, w2} , {w3, w4} , {b1, b4} , {b2, b3}
}

,
{

{w1, w3} , {w2, w4} , {b1, b4} , {b2, b3}
}

,

{

{w1, w4} , {w2, w3} , {b1, b4} , {b2, b3}
}

}

.
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EXERCISE :

• How many ways are there to choose a committee of 4 persons
from a group of 6 persons, if order is not important?

• Write down the list of all these possible committees of 4 persons.

• If each of these outcomes is equally likely then what is the
probability that two particular persons are on the committee?

EXERCISE :

Two balls are selected at random from a bag with three white balls
and two black balls.

• Show all elements of a suitable sample space.

• What is the probability that both balls are white?
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EXERCISE :

We are interested in birthdays in a class of 60 students.

• What is a good sample space S for this purpose?

• How many outcomes are there in S ?

• What is the probability of no common birthdays in this class?

• What is the probability of common birthdays in this class?

36



EXAMPLE :

How many nonnegative integer solutions are there to

x1 + x2 + x3 = 17 ?

SOLUTION :

Consider seventeen 1’s separated by bars to indicate the possible
values of x1, x2, and x3, e.g.,

111|111111111|11111 .

The total number of positions in the “display” is 17 + 2 = 19 .

The total number of nonnegative solutions is now seen to be
(

19
2

)

=
19!

(19 − 2)! 2!
=

19 × 18

2
= 171 .
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EXAMPLE :

How many nonnegative integer solutions are there to the inequality

x1 + x2 + x3 ≤ 17 ?

SOLUTION :

Introduce an auxiliary variable (or ”slack variable ” )

x4 ≡ 17 − (x1 + x2 + x3) .

Then
x1 + x2 + x3 + x4 = 17 .

Use seventeen 1’s separated by 3 bars to indicate the possible values
of x1 , x2 , x3 , and x4 , e.g.,

111|11111111|1111|11 .

38



111|11111111|1111|11 .

The total number of positions is

17 + 3 = 20 .

The total number of nonnegative solutions is therefore

(

20
3

)

=
20!

(20 − 3)! 3!
=

20 × 19 × 18

3 × 2
= 1140 .
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EXAMPLE :

How many positive integer solutions are there to the equation

x1 + x2 + x3 = 17 ?

SOLUTION : Let

x1 = x̃1 + 1 , x2 = x̃2 + 1 , x3 = x̃3 + 1 .

Then the problem becomes :

How many nonnegative integer solutions are there to the equation

x̃1 + x̃2 + x̃3 = 14 ?

111|111111111|11

The solution is
(

16
2

)

=
16!

(16 − 2)! 2!
=

16 × 15

2
= 120 .
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EXAMPLE :

What is the probability the sum is 9 in three rolls of a die ?

SOLUTION : The number of such sequences of three rolls with
sum 9 is the number of integer solutions of

x1 + x2 + x3 = 9 ,
with

1 ≤ x1 ≤ 6 , 1 ≤ x2 ≤ 6 , 1 ≤ x3 ≤ 6 .

Let

x1 = x̃1 + 1 , x2 = x̃2 + 1 , x3 = x̃3 + 1 .

Then the problem becomes :

How many nonnegative integer solutions are there to the equation

x̃1 + x̃2 + x̃3 = 6 ,
with

0 ≤ x̃1 , x̃2 , x̃3 ≤ 5 .

41



EXAMPLE : ( continued · · · )

Now the equation

x̃1 + x̃2 + x̃3 = 6 , ( 0 ≤ x̃1 , x̃2 , x̃3 ≤ 5 ) ,

1|111|11
has

(

8
2

)

= 28 solutions ,

from which we must subtract the 3 impossible solutions

(x̃1, x̃2, x̃3) = (6, 0, 0) , (0, 6, 0) , (0, 0, 6) .

111111|| , |111111| , ||111111

Thus the probability that the sum of 3 rolls equals 9 is

28 − 3

63
=

25

216
∼= 0.116 .
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EXAMPLE : ( continued · · · )

The 25 outcomes of the event ”the sum of the rolls is 9” are

{ 126 , 135 , 144 , 153 , 162 ,

216 , 225 , 234 , 243 , 252 , 261 ,

315 324 , 333 , 342 , 351 ,

414 , 423 , 432 , 441 ,

513 , 522 , 531 ,

612 , 621 } .

The ”lexicographic” ordering of the outcomes (which are sequences)
in this event is used for systematic counting.
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EXERCISE :

• How many integer solutions are there to the inequality

x1 + x2 + x3 ≤ 17 ,

if we require that

x1 ≥ 1 , x2 ≥ 2 , x3 ≥ 3 ?

EXERCISE :

What is the probability that the sum is less than or equal to 9

in three rolls of a die ?
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CONDITIONAL PROBABILITY

Giving more information can change the probability of an event.

EXAMPLE :

If a coin is tossed two times then what is the probability of two
Heads?

ANSWER : 1

4
.

EXAMPLE :

If a coin is tossed two times then what is the probability of two Heads,
given that the first toss gave Heads ?

ANSWER : 1

2
.
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NOTE :

Several examples will be about playing cards .

A standard deck of playing cards consists of 52 cards :

• Four suits :

Hearts , Diamonds (red ) , and Spades , Clubs (black) .

• Each suit has 13 cards, whose denomination is

2 , 3 , · · · , 10 , Jack , Queen , King , Ace .

• The Jack , Queen , and King are called face cards .
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EXERCISE :

Suppose we draw a card from a shuffled set of 52 playing cards.

• What is the probability of drawing a Queen ?

• What is the probability of drawing a Queen, given that the card
drawn is of suit Hearts ?

• What is the probability of drawing a Queen, given that the card
drawn is a Face card ?

What do the answers tell us?

(We’ll soon learn the events ”Queen” and ”Hearts” are independent .)
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The two preceding questions are examples of conditional probability .

Conditional probability is an important and useful concept.

If E and F are events, i.e., subsets of a sample space S , then

P (E|F ) is the conditional probability of E , given F ,

defined as

P (E|F ) ≡ P (EF )

P (F )
.

or, equivalently

P (EF ) = P (E|F ) P (F ) ,

(assuming that P (F ) is not zero).
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P (E|F ) ≡ P (EF )

P (F )

F
S

E
S E

F

Suppose that the 6 outcomes in S are equally likely.

What is P (E|F ) in each of these two cases ?
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P (E|F ) ≡ P (EF )

P (F )

S E

F

S F

E

Suppose that the 6 outcomes in S are equally likely.

What is P (E|F ) in each of these two cases ?
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EXAMPLE : Suppose a coin is tossed two times.

The sample space is

S = {HH , HT , TH , TT} .

Let E be the event ”two Heads ” , i.e.,

E = {HH} .

Let F be the event ”the first toss gives Heads ” , i.e.,

F = {HH , HT} .
Then

EF = {HH} = E ( since E ⊂ F ) .

We have

P (E|F ) =
P (EF )

P (F )
=

P (E)

P (F )
=

1
4
2
4

=
1

2
.
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EXAMPLE :

Suppose we draw a card from a shuffled set of 52 playing cards.

• What is the probability of drawing a Queen, given that the card
drawn is of suit Hearts ?

ANSWER :

P (Q|H) =
P (QH)

P (H)
=

1
52
13
52

=
1

13
.

• What is the probability of drawing a Queen, given that the card
drawn is a Face card ?

ANSWER :

P (Q|F ) =
P (QF )

P (F )
=

P (Q)

P (F )
=

4
52
12
52

=
1

3
.

(Here Q ⊂ F , so that QF = Q .)
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The probability of an event E is sometimes computed more easily

if we condition E on another event F ,

namely, from

P (E) = P ( E(F ∪ F c) ) ( Why ? )

= P ( EF ∪ EF c ) = P (EF ) + P (EF c) ( Why ? )

and

P (EF ) = P (E|F ) P (F ) , P (EF c) = P (E|F c) P (F c) ,

we obtain this basic formula

P (E) = P (E|F ) · P (F ) + P (E|F c) · P (F c) .
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EXAMPLE :

An insurance company has these data :

The probability of an insurance claim in a period of one year is

4 percent for persons under age 30

2 percent for persons over age 30

and it is known that

30 percent of the targeted population is under age 30.

What is the probability of an insurance claim in a period of one year
for a randomly chosen person from the targeted population?
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SOLUTION :

Let the sample space S be all persons under consideration.

Let C be the event (subset of S) of persons filing a claim.

Let U be the event (subset of S) of persons under age 30.

Then U c is the event (subset of S) of persons over age 30.

Thus

P (C) = P (C|U) P (U) + P (C|U c) P (U c)

=
4

100

3

10
+

2

100

7

10

=
26

1000
= 2.6% .
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EXAMPLE :

Two balls are drawn from a bag with 2 white and 3 black balls.

There are 20 outcomes (sequences) in S . ( Why ? )

What is the probability that the second ball is white ?

SOLUTION :

Let F be the event that the first ball is white.

Let S be the event that the second second ball is white.

Then

P (S) = P (S|F ) P (F ) + P (S|F c) P (F c) =
1

4
· 2
5

+
2

4
· 3
5

=
2

5
.

QUESTION : Is it surprising that P (S) = P (F ) ?
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EXAMPLE : ( continued · · · )

Is it surprising that P (S) = P (F ) ?

ANSWER : Not really, if one considers the sample space S :

{

w1w2 , w1b1 , w1b2 , w1b3 ,

w2w1 , w2b1 , w2b2 , w2b3 ,

b1w1 , b1w2 , b1b2 , b1b3 ,

b2w1 , b2w2 , b2b1 , b2b3 ,

b3w1 , b3w2 , b3b1 , b3b2

}

,

where outcomes (sequences) are assumed equally likely.
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EXAMPLE :

Suppose we draw two cards from a shuffled set of 52 playing cards.

What is the probability that the second card is a Queen ?

ANSWER :

P (2nd card Q) =

P (2nd card Q|1st card Q) · P (1st card Q)

+ P (2nd card Q|1st card not Q) · P (1st card not Q)

=
3

51
· 4

52
+

4

51
· 48

52
=

204

51 · 52
=

4

52
=

1

13
.

QUESTION : Is it surprising that P (2nd card Q) = P (1st card Q) ?
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A useful formula that ”inverts conditioning ” is derived as follows :

Since we have both

P (EF ) = P (E|F ) P (F ) ,

and
P (EF ) = P (F |E) P (E) .

If P (E) 6= 0 then it follows that

P (F |E) =
P (EF )

P (E)
=

P (E|F ) · P (F )

P (E)
,

and, using the earlier useful formula, we get

P (F |E) =
P (E|F ) · P (F )

P (E|F ) · P (F ) + P (E|F c) · P (F c)
,

which is known as Bayes’ formula .
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EXAMPLE : Suppose 1 in 1000 persons has a certain disease.

A test detects the disease in 99 % of diseased persons.

The test also ”detects” the disease in 5 % of healthly persons.

With what probability does a positive test diagnose the disease?

SOLUTION : Let

D ∼ ”diseased” , H ∼ ”healthy” , + ∼ ”positive”.

We are given that

P (D) = 0.001 , P (+|D) = 0.99 , P (+|H) = 0.05 .

By Bayes’ formula

P (D|+) =
P (+|D) · P (D)

P (+|D) · P (D) + P (+|H) · P (H)

=
0.99 · 0.001

0.99 · 0.001 + 0.05 · 0.999
∼= 0.0194 ( ! )
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EXERCISE :

Suppose 1 in 100 products has a certain defect.

A test detects the defect in 95 % of defective products.

The test also ”detects” the defect in 10 % of non-defective products.

• With what probability does a positive test diagnose a defect?

EXERCISE :

Suppose 1 in 2000 persons has a certain disease.

A test detects the disease in 90 % of diseased persons.

The test also ”detects” the disease in 5 % of healthly persons.

• With what probability does a positive test diagnose the disease?
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More generally, if the sample space S is the union of disjoint events

S = F1 ∪ F2 ∪ · · · ∪ Fn ,

then for any event E

P (Fi|E) =
P (E|Fi) · P (Fi)

P (E|F1) · P (F1) + P (E|F2) · P (F2) + · · · + P (E|Fn) · P (Fn)
.

EXERCISE :

Machines M1, M2, M3 produce these proportions of a article

Production : M1 : 10 % , M2 : 30 % , M3 : 60 % .

The probability the machines produce defective articles is

Defects : M1 : 4 % , M2 : 3 % , M3 : 2 % .

What is the probability a random article was made by machine M1,

given that it is defective?
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Independent Events

Two events E and F are independent if

P (EF ) = P (E) P (F ) .

In this case

P (E|F ) =
P (EF )

P (F )
=

P (E) P (F )

P (F )
= P (E) ,

(assuming P (F ) is not zero).

Thus

knowing F occurred doesn’t change the probability of E .
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EXAMPLE : Draw one card from a deck of 52 playing cards.

Counting outcomes we find

P (Face Card) = 12
52

= 3
13
,

P (Hearts) = 13
52

= 1
4
,

P (Face Card and Hearts) = 3
52
,

P (Face Card|Hearts) = 3
13
.

We see that

P (Face Card and Hearts) = P (Face Card) · P (Hearts) (=
3

52
) .

Thus the events ”Face Card ” and ”Hearts ” are independent.

Therefore we also have

P (Face Card|Hearts) = P (Face Card) (=
3

13
) .
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EXERCISE :

Which of the following pairs of events are independent?

(1) drawing ”Hearts” and drawing ”Black” ,

(2) drawing ”Black” and drawing ”Ace” ,

(3) the event {2, 3, · · · , 9} and drawing ”Red” .
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EXERCISE : Two numbers are drawn at random from the set

{ 1 , 2 , 3 , 4 } .

If order is not important then what is the sample space S ?

Define the following functions on S :

X( {i, j} ) = i+ j , Y ( {i, j} ) = |i− j| .

Which of the following pairs of events are independent?

(1) X = 5 and Y = 2 ,

(2) X = 5 and Y = 1 .

REMARK :

X and Y are examples of random variables . (More soon!)
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EXAMPLE : If E and F are independent then so are E and F c .

PROOF : E = E(F ∪ F c) = EF ∪ EF c , where

EF and EF c are disjoint .
Thus

P (E) = P (EF ) + P (EF c) ,
from which

P (EF c) = P (E) − P (EF )

= P (E) − P (E) · P (F ) (since E and F independent)

= P (E) · ( 1 − P (F ) )

= P (E) · P (F c) .

EXERCISE :

Prove that if E and F are independent then so are Ec and F c .
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NOTE : Independence and disjointness are different things !

F
S

E
S E

F

Independent, but not disjoint. Disjoint, but not independent.

(The six outcomes in S are assumed to have equal probability.)

If E and F are independent then P (EF ) = P (E) P (F ) .

If E and F are disjoint then P (EF ) = P ( ∅ ) = 0 .

If E and F are independent and disjoint then one has zero probability !
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Three events E , F , and G are independent if

P (EFG) = P (E) P (F ) P (G) .

and

P (EF ) = P (E) P (F ) .

P (EG) = P (E) P (G) .

P (FG) = P (F ) P (G) .

EXERCISE : Are the three events of drawing

(1) a red card ,

(2) a face card ,

(3) a Heart or Spade ,

independent ?
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EXERCISE :

A machine M consists of three independent parts, M1, M2, and M3 .

Suppose that

M1 functions properly with probability 9
10

,

M2 functions properly with probability 9
10

,

M3 functions properly with probability 8
10

,

and that

the machine M functions if and only if its three parts function.

• What is the probability for the machine M to function ?

• What is the probability for the machine M to malfunction ?
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DISCRETE RANDOM VARIABLES

DEFINITION : A discrete random variable is a functionX(s) from
a finite or countably infinite sample space S to the real numbers :

X(·) : S → R .

EXAMPLE : Toss a coin 3 times in sequence. The sample space
is

S = {HHH , HHT , HTH , HTT , THH , THT , TTH , TTT} ,
and examples of random variables are

• X(s) = the number of Heads in the sequence ; e.g., X(HTH) = 2 ,

• Y (s) = The index of the first H ; e.g., Y (TTH) = 3 ,

0 if the sequence has no H , i.e., Y (TTT ) = 0 .

NOTE : In this example X(s) and Y (s) are actually integers .
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Value-ranges of a random variable correspond to events in S .

EXAMPLE : For the sample space

S = {HHH , HHT , HTH , HTT , THH , THT , TTH , TTT} ,
with

X(s) = the number of Heads ,
the value

X(s) = 2 , corresponds to the event {HHT , HTH , THH} ,
and the values

1 < X(s) ≤ 3 , correspond to {HHH , HHT , HTH , THH} .

NOTATION : If it is clear what S is then we often just write

X instead of X(s) .
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Value-ranges of a random variable correspond to events in S ,

and
events in S have a probability .

Thus
Value-ranges of a random variable have a probability .

EXAMPLE : For the sample space

S = {HHH , HHT , HTH , HTT , THH , THT , TTH , TTT} ,
with X(s) = the number of Heads ,

we have

P (0 < X ≤ 2) =
6

8
.

QUESTION : What are the values of

P (X ≤ −1) , P (X ≤ 0) , P (X ≤ 1) , P (X ≤ 2) , P (X ≤ 3) , P (X ≤ 4) ?
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NOTATION : We will also write pX(x) to denote P (X = x) .

EXAMPLE : For the sample space

S = {HHH , HHT , HTH , HTT , THH , THT , TTH , TTT} ,
with

X(s) = the number of Heads ,
we have

pX(0) ≡ P ( {TTT} ) = 1
8

pX(1) ≡ P ( {HTT , THT , TTH} ) = 3
8

pX(2) ≡ P ( {HHT , HTH , THH} ) = 3
8

pX(3) ≡ P ( {HHH} ) = 1
8

where

pX(0) + pX(1) + pX(2) + pX(3) = 1 . ( Why ? )
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2
HTH

THH

HHT

TTH

THT

TTT

1

0

3

HHH

HTT

S
X(s)E

E

E2

E1

0

3

Graphical representation of X .

The events E0, E1, E2, E3 are disjoint since X(s) is a function !

(X : S → R must be defined for all s ∈ S and must be single-valued.)

75



The graph of pX .
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DEFINITION :
pX(x) ≡ P (X = x) ,

is called the probability mass function .

DEFINITION :
FX(x) ≡ P (X ≤ x) ,

is called the (cumulative) probability distribution function .

PROPERTIES :

• FX(x) is a non-decreasing function of x . ( Why ? )

• FX(−∞) = 0 and FX(∞) = 1 . ( Why ? )

• P (a < X ≤ b) = FX(b) − FX(a) . ( Why ? )

NOTATION : When it is clear what X is then we also write

p(x) for pX(x) and F (x) for FX(x) .
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EXAMPLE : With X(s) = the number of Heads , and

S = {HHH , HHT , HTH , HTT , THH , THT , TTH , TTT} ,
p(0) = 1

8
, p(1) = 3

8
, p(2) = 3

8
, p(3) = 1

8
,

we have the probability distribution function

F (−1) ≡ P (X ≤ −1) = 0

F ( 0) ≡ P (X ≤ 0) = 1

8

F ( 1) ≡ P (X ≤ 1) = 4
8

F ( 2) ≡ P (X ≤ 2) = 7

8

F ( 3) ≡ P (X ≤ 3) = 1

F ( 4) ≡ P (X ≤ 4) = 1

We see, for example, that

P (0 < X ≤ 2) = P (X = 1) + P (X = 2)

= F (2) − F (0) = 7
8
− 1

8
= 6

8
.
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The graph of the probability distribution function FX .
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EXAMPLE : Toss a coin until ”Heads” occurs.

Then the sample space is countably infinite , namely,

S = {H , TH , TTH , TTTH , · · · } .

The random variable X is the number of rolls until ”Heads” occurs :

X(H) = 1 , X(TH) = 2 , X(TTH) = 3 , · · ·
Then

p(1) = 1
2

, p(2) = 1
4

, p(3) = 1
8

, · · · ( Why ? )
and

F (n) = P (X ≤ n) =

n
∑

k=1

p(k) =

n
∑

k=1

1

2k
= 1 − 1

2n
,

and, as should be the case,
∞

∑

k=1

p(k) = lim
n→∞

n
∑

k=1

p(k) = lim
n→∞

(1 − 1

2n
) = 1 .

NOTE : The outcomes in S do not have equal probability !

EXERCISE : Draw the probability mass and distribution functions.
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X(s) is the number of tosses until ”Heads” occurs · · ·

REMARK : We can also take S ≡ Sn as all ordered outcomes of

length n. For example, for n = 4,

S4 = { H̃HHH , H̃HHT , H̃HTH , H̃HTT ,

H̃THH , H̃THT , H̃TTH , H̃TTT ,

T H̃HH , TH̃HT , T H̃TH , T H̃TT ,

TTH̃H , TTH̃T , TTTH̃ , TTTT } .

where for each outcome the first ”Heads” is marked as H̃ .

Each outcome in S4 has equal probability 2−n (here 2−4 = 1
16

) , and

pX(1) = 1
2

, pX(2) = 1
4

, pX(3) = 1
8

, pX(4) = 1
16

· · · ,

independent of n .
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Joint distributions

The probability mass function and the probability distribution function

can also be functions of more than one variable.

EXAMPLE : Toss a coin 3 times in sequence. For the sample space

S = {HHH , HHT , HTH , HTT , THH , THT , TTH , TTT} ,
we let

X(s) = # Heads , Y (s) = index of the first H (0 for TTT ) .

Then we have the joint probability mass function

pX,Y (x, y) = P (X = x , Y = y) .
For example,

pX,Y (2, 1) = P (X = 2 , Y = 1)

= P ( 2 Heads , 1st toss is Heads)

= 2
8

= 1
4

.
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EXAMPLE : ( continued · · · ) For

S = {HHH , HHT , HTH , HTT , THH , THT , TTH , TTT} ,
X(s) = number of Heads, and Y (s) = index of the first H ,

we can list the values of pX,Y (x, y) :

Joint probability mass function pX,Y (x, y)

y = 0 y = 1 y = 2 y = 3 pX(x)

x = 0 1

8
0 0 0 1

8

x = 1 0 1

8

1

8

1

8

3

8

x = 2 0 2

8

1

8
0 3

8

x = 3 0 1

8
0 0 1

8

pY (y) 1

8

4

8

2

8

1

8
1

NOTE :

• The marginal probability pX is the probability mass function of X.

• The marginal probability pY is the probability mass function of Y .

83



EXAMPLE : ( continued · · · )

X(s) = number of Heads, and Y (s) = index of the first H .

y = 0 y = 1 y = 2 y = 3 pX(x)

x = 0 1

8
0 0 0 1

8

x = 1 0 1

8

1

8

1

8

3

8

x = 2 0 2

8

1

8
0 3

8

x = 3 0 1

8
0 0 1

8

pY (y) 1

8

4

8

2

8

1

8
1

For example,

• X = 2 corresponds to the event {HHT , HTH , THH} .

• Y = 1 corresponds to the event {HHH , HHT , HTH , HTT} .

• (X = 2 and Y = 1) corresponds to the event {HHT , HTH} .

QUESTION : Are the events X = 2 and Y = 1 independent ?
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TTT

0

3

HHH
S

THH

1

2

THT

HTT

TTH

HTH

HHT

22E

X(s)
 Y(s)

E31

E00

E13

11E

12E

21E

The events Ei,j ≡ { s ∈ S : X(s) = i , Y (s) = j } are disjoint .

QUESTION : Are the events X = 2 and Y = 1 independent ?
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DEFINITION :

pX,Y (x, y) ≡ P (X = x , Y = y) ,

is called the joint probability mass function .

DEFINITION :

FX,Y (x, y) ≡ P (X ≤ x , Y ≤ y) ,

is called the joint (cumulative) probability distribution function .

NOTATION : When it is clear what X and Y are then we also
write

p(x, y) for pX,Y (x, y) ,

and
F (x, y) for FX,Y (x, y) .
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EXAMPLE : Three tosses : X(s) = # Heads, Y (s) = index 1st H .

Joint probability mass function pX,Y (x, y)
y = 0 y = 1 y = 2 y = 3 pX(x)

x = 0 1

8
0 0 0 1

8

x = 1 0 1

8

1

8

1

8

3

8

x = 2 0 2

8

1

8
0 3

8

x = 3 0 1

8
0 0 1

8

pY (y) 1

8

4

8

2

8

1

8
1

Joint distribution function FX,Y (x, y) ≡ P (X ≤ x, Y ≤ y)
y = 0 y = 1 y = 2 y = 3 FX(·)

x = 0 1

8

1

8

1

8

1

8

1

8

x = 1 1

8

2

8

3

8

4

8

4

8

x = 2 1

8

4

8

6

8

7

8

7

8

x = 3 1

8

5

8

7

8
1 1

FY (·) 1

8

5

8

7

8
1 1

Note that the distribution function FX is a copy of the 4th column,
and the distribution function FY is a copy of the 4th row. ( Why ? )
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In the preceding example :

Joint probability mass function pX,Y (x, y)
y = 0 y = 1 y = 2 y = 3 pX(x)

x = 0 1

8
0 0 0 1

8

x = 1 0 1

8

1

8

1

8

3

8

x = 2 0 2

8

1

8
0 3

8

x = 3 0 1

8
0 0 1

8

pY (y) 1

8

4

8

2

8

1

8
1

Joint distribution function FX,Y (x, y) ≡ P (X ≤ x, Y ≤ y)
y = 0 y = 1 y = 2 y = 3 FX(·)

x = 0 1

8

1

8

1

8

1

8

1

8

x = 1 1

8

2

8

3

8

4

8

4

8

x = 2 1

8

4

8

6

8

7

8

7

8

x = 3 1

8

5

8

7

8
1 1

FY (·) 1

8

5

8

7

8
1 1

QUESTION : Why is

P (1 < X ≤ 3 , 1 < Y ≤ 3) = F (3, 3) − F (1, 3) − F (3, 1) + F (1, 1) ?
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EXERCISE :

Roll a four-sided die (tetrahedron) two times.

(The sides are marked 1 , 2 , 3 , 4 .)

Suppose each of the four sides is equally likely to end facing down.

Suppose the outcome of a single roll is the side that faces down ( ! ).

Define the random variables X and Y as

X = result of the first roll , Y = sum of the two rolls.

• What is a good choice of the sample space S ?

• How many outcomes are there in S ?

• List the values of the joint probability mass function pX,Y (x, y) .

• List the values of the joint cumulative distribution function FX,Y (x, y) .
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EXERCISE :

Three balls are selected at random from a bag containing

2 red , 3 green , 4 blue balls .

Define the random variables

R(s) = the number of red balls drawn,

and

G(s) = the number of green balls drawn .

List the values of

• the joint probability mass function pR,G(r, g) .

• the marginal probability mass functions pR(r) and pG(g) .

• the joint distribution function FR,G(r, g) .

• the marginal distribution functions FR(r) and FG(g) .
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Independent random variables

Two discrete random variables X(s) and Y (s) are independent if

P (X = x , Y = y) = P (X = x) · P (Y = y) , for all x and y ,

or, equivalently, if their probability mass functions satisfy

pX,Y (x, y) = pX(x) · pY (y) , for all x and y ,

or, equivalently, if the events

Ex ≡ X−1({x}) and Ey ≡ Y −1({y}) ,
are independent in the sample space S , i.e.,

P (ExEy) = P (Ex) · P (Ey) , for all x and y .

NOTE :

• In the current discrete case, x and y are typically integers .

• X−1({x}) ≡ { s ∈ S : X(s) = x } .
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TTT

0

3

HHH
S

THH

1

2

THT

HTT

TTH

HTH

HHT

22E

X(s)
 Y(s)

E31

E00

E13

11E

12E

21E

Three tosses : X(s) = # Heads, Y (s) = index 1st H .

• What are the values of pX(2) , pY (1) , pX,Y (2, 1) ?

• Are X and Y independent ?
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RECALL :

X(s) and Y (s) are independent if for all x and y :

pX,Y (x, y) = pX(x) · pY (y) .

EXERCISE :

Roll a die two times in a row.

Let

X be the result of the 1st roll ,

and

Y the result of the 2nd roll .

Are X and Y independent , i.e., is

pX,Y (k, ℓ) = pX(k) · pY (ℓ), for all 1 ≤ k, ℓ ≤ 6 ?
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EXERCISE :

Are these random variables X and Y independent ?

Joint probability mass function pX,Y (x, y)

y = 0 y = 1 y = 2 y = 3 pX(x)

x = 0 1

8
0 0 0 1

8

x = 1 0 1

8

1

8

1

8

3

8

x = 2 0 2

8

1

8
0 3

8

x = 3 0 1

8
0 0 1

8

pY (y) 1

8

4

8

2

8

1

8
1
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EXERCISE : Are these random variables X and Y independent ?

Joint probability mass function pX,Y (x, y)
y = 1 y = 2 y = 3 pX(x)

x = 1 1

3

1

12

1

12

1

2

x = 2 2

9

1

18

1

18

1

3

x = 3 1

9

1

36

1

36

1

6

pY (y) 2

3

1

6

1

6
1

Joint distribution function FX,Y (x, y) ≡ P (X ≤ x, Y ≤ y)
y = 1 y = 2 y = 3 FX(x)

x = 1 1

3

5

12

1

2

1

2

x = 2 5

9

25

36

5

6

5

6

x = 3 2

3

5

6
1 1

FY (y) 2

3

5

6
1 1

QUESTION : Is FX,Y (x, y) = FX(x) · FY (y) ?
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PROPERTY :

The joint distribution function of independent random variables
X and Y satisfies

FX,Y (x, y) = FX(x) · FY (y) , for all x, y .

PROOF :

FX,Y (xk, yℓ) = P (X ≤ xk , Y ≤ yℓ)

=
∑

i≤k

∑

j≤ℓ pX,Y (xi, yj)

=
∑

i≤k

∑

j≤ℓ pX(xi) · pY (yj) (by independence)

=
∑

i≤k { pX(xi) ·
∑

j≤ℓ pY (yj) }

= {∑i≤k pX(xi) } · {∑j≤ℓ pY (yj) }

= FX(xk) · FY (yℓ) .
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Conditional distributions

Let X and Y be discrete random variables with joint probability

mass function

pX,Y (x, y) .

For given x and y , let

Ex = X−1({x}) and Ey = Y −1({y}) ,
be their corresponding events in the sample space S.

Then

P (Ex|Ey) ≡ P (ExEy)

P (Ey)
=

pX,Y (x, y)

pY (y)
.

Thus it is natural to define the conditional probability mass function

pX|Y (x|y) ≡ P (X = x | Y = y) =
pX,Y (x, y)

pY (y)
.
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TTT

0

3

HHH
S

THH

1

2

THT

HTT

TTH

HTH

HHT

22E

X(s)
 Y(s)

E31

E00

E13

11E

12E

21E

Three tosses : X(s) = # Heads, Y (s) = index 1st H .

• What are the values of P (X = 2 | Y = 1) and P (Y = 1 |X = 2) ?
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EXAMPLE : (3 tosses : X(s) = # Heads, Y (s) = index 1st H .)

Joint probability mass function pX,Y (x, y)
y = 0 y = 1 y = 2 y = 3 pX(x)

x = 0 1

8
0 0 0 1

8

x = 1 0 1

8

1

8

1

8

3

8

x = 2 0 2

8

1

8
0 3

8

x = 3 0 1

8
0 0 1

8

pY (y) 1

8

4

8

2

8

1

8
1

Conditional probability mass function pX|Y (x|y) =
pX,Y (x,y)

pY (y)
.

y = 0 y = 1 y = 2 y = 3

x = 0 1 0 0 0

x = 1 0 2

8

4

8
1

x = 2 0 4

8

4

8
0

x = 3 0 2

8
0 0

1 1 1 1

EXERCISE : Also construct the Table for pY |X(y|x) =
pX,Y (x,y)

pX (x)
.
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EXAMPLE :
Joint probability mass function pX,Y (x, y)

y = 1 y = 2 y = 3 pX(x)

x = 1 1

3

1

12

1

12

1

2

x = 2 2

9

1

18

1

18

1

3

x = 3 1

9

1

36

1

36

1

6

pY (y) 2

3

1

6

1

6
1

Conditional probability mass function pX|Y (x|y) =
pX,Y (x,y)

pY (y)
.

y = 1 y = 2 y = 3

x = 1 1

2

1

2

1

2

x = 2 1

3

1

3

1

3

x = 3 1

6

1

6

1

6

1 1 1

QUESTION : What does the last Table tell us?

EXERCISE : Also construct the Table for P (Y = y|X = x) .

100



Expectation

The expected value of a discrete random variable X is

E[X] ≡
∑

k

xk · P (X = xk) =
∑

k

xk · pX(xk) .

Thus E[X] represents the weighted average value of X .

( E[X] is also called the mean of X .)

EXAMPLE : The expected value of rolling a die is

E[X] = 1 · 1
6

+ 2 · 1
6

+ · · · + 6 · 1
6

= 1
6
· ∑6

k=1 k = 7
2
.

EXERCISE : Prove the following :

• E[aX] = a E[X] ,

• E[aX + b] = a E[X] + b .
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EXAMPLE : Toss a coin until ”Heads” occurs. Then

S = {H , TH , TTH , TTTH , · · · } .

The random variableX is the number of tosses until ”Heads” occurs :

X(H) = 1 , X(TH) = 2 , X(TTH) = 3 .
Then

E[X] = 1 · 1

2
+ 2 · 1

4
+ 3 · 1

8
+ · · · = lim

n→∞

n
∑

k=1

k

2k
= 2 .

n
∑n

k=1 k/2k

1 0.50000000
2 1.00000000
3 1.37500000

10 1.98828125
40 1.99999999

REMARK :

Perhaps using Sn = {all sequences of n tosses} is better · · ·
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The expected value of a function of a random variable is

E[g(X)] ≡
∑

k

g(xk) p(xk) .

EXAMPLE :

The pay-off of rolling a die is $k2 , where k is the side facing up.

What should the entry fee be for the betting to break even?

SOLUTION : Here g(X) = X2 , and

E[g(X)] =
6

∑

k=1

k2 1

6
=

1

6

6(6 + 1)(2 · 6 + 1)

6
=

91

6
∼= $15.17 .
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The expected value of a function of two random variables is

E[g(X,Y )] ≡
∑

k

∑

ℓ

g(xk, yℓ) p(xk, yℓ) .

EXAMPLE : y = 1 y = 2 y = 3 pX(x)

x = 1 1

3

1

12

1

12

1

2

x = 2 2

9

1

18

1

18

1

3

x = 3 1

9

1

36

1

36

1

6

pY (y) 2

3

1

6

1

6
1

E[X] = 1 · 1
2

+ 2 · 1
3

+ 3 · 1
6

= 5

3
,

E[Y ] = 1 · 2
3

+ 2 · 1
6

+ 3 · 1
6

= 3

2
,

E[XY ] = 1 · 1
3

+ 2 · 1
12

+ 3 · 1
12

+ 2 · 2
9

+ 4 · 1
18

+ 6 · 1
18

+ 3 · 1
9

+ 6 · 1
36

+ 9 · 1
36

= 5

2
. ( So ? )
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PROPERTY :

• If X and Y are independent then E[XY ] = E[X] E[Y ] .

PROOF :

E[XY ] =
∑

k

∑

ℓ xk yℓ pX,Y (xk, yℓ)

=
∑

k

∑

ℓ xk yℓ pX(xk) pY (yℓ) (by independence)

=
∑

k{ xk pX(xk)
∑

ℓ yℓ pY (yℓ)}

= {∑k xk pX(xk)} · {
∑

ℓ yℓ pY (yℓ)}

= E[X] · E[Y ] .

EXAMPLE : See the preceding example !
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PROPERTY : E[X + Y ] = E[X] + E[Y ] . ( Always ! )

PROOF :

E[X + Y ] =
∑

k

∑

ℓ (xk + yℓ) pX,Y (xk, yℓ)

=
∑

k

∑

ℓ xk pX,Y (xk, yℓ) +
∑

k

∑

ℓ yℓ pX,Y (xk, yℓ)

=
∑

k

∑

ℓ xk pX,Y (xk, yℓ) +
∑

ℓ

∑

k yℓ pX,Y (xk, yℓ)

=
∑

k{xk

∑

ℓ pX,Y (xk, yℓ)} +
∑

ℓ{ yℓ

∑

k pX,Y (xk, yℓ)}

=
∑

k{xk pX(xk)} +
∑

ℓ{yℓ pY (yℓ)}

= E[X] + E[Y ] .

NOTE : X and Y need not be independent !
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EXERCISE :
Probability mass function pX,Y (x, y)

y = 6 y = 8 y = 10 pX(x)

x = 1 1

5
0 1

5

2

5

x = 2 0 1

5
0 1

5

x = 3 1

5
0 1

5

2

5

pY (y) 2

5

1

5

2

5
1

Show that

• E[X] = 2 , E[Y ] = 8 , E[XY ] = 16

• X and Y are not independent

Thus if
E[XY ] = E[X] E[Y ] ,

then it does not necessarily follow that X and Y are independent !
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Variance and Standard Deviation

Let X have mean

µ = E[X] .

Then the variance of X is

V ar(X) ≡ E[ (X − µ)2] ≡
∑

k

(xk − µ)2 p(xk) ,

which is the average weighted square distance from the mean.

We have

V ar(X) = E[X2 − 2µX + µ2]

= E[X2] − 2µE[X] + µ2

= E[X2] − 2µ2 + µ2

= E[X2] − µ2 .
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The standard deviation of X is

σ(X) ≡
√

V ar(X) =
√

E[ (X − µ)2] =
√

E[X2] − µ2 .

which is the average weighted distance from the mean.

EXAMPLE : The variance of rolling a die is

V ar(X) =

6
∑

k=1

[k2 · 1

6
] − µ2

=
1

6

6(6 + 1)(2 · 6 + 1)

6
− (

7

2
)2 =

35

12
.

The standard deviation is

σ =

√

35

12
∼= 1.70 .
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Covariance

Let X and Y be random variables with mean

E[X] = µX , E[Y ] = µY .

Then the covariance of X and Y is defined as

Cov(X,Y ) ≡ E[ (X−µX) (Y−µY ) ] =
∑

k,ℓ

(xk−µX) (yℓ−µY ) p(xk, yℓ) .

We have

Cov(X,Y ) = E[ (X − µX) (Y − µY ) ]

= E[XY − µXY − µYX + µXµY ]

= E[XY ] − µXµY − µY µX + µXµY

= E[XY ] − E[X] E[Y ] .
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We defined

Cov(X,Y ) ≡ E[ (X − µX) (Y − µY ) ]

=
∑

k,ℓ

(xk − µX) (yℓ − µY ) p(xk, yℓ)

= E[XY ] − E[X] E[Y ] .

NOTE :

Cov(X,Y ) measures ”concordance ” or ”coherence ” of X and Y :

• If X > µX when Y > µY and X < µX when Y < µY then

Cov(X,Y ) > 0 .

• If X > µX when Y < µY and X < µX when Y > µY then

Cov(X,Y ) < 0 .
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EXERCISE : Prove the following :

• V ar(aX + b) = a2 V ar(X) ,

• Cov(X,Y ) = Cov(Y,X) ,

• Cov(cX, Y ) = c Cov(X,Y ) ,

• Cov(X, cY ) = c Cov(X,Y ) ,

• Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z) ,

• V ar(X + Y ) = V ar(X) + V ar(Y ) + 2 Cov(X,Y ) .
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PROPERTY :

If X and Y are independent then Cov(X,Y ) = 0 .

PROOF :

We have already shown ( with µX ≡ E[X] and µY ≡ E[Y ] ) that

Cov(X,Y ) ≡ E[ (X−µX) (Y −µY ) ] = E[XY ] − E[X] E[Y ] ,

and that if X and Y are independent then

E[XY ] = E[X] E[Y ] .

from which the result follows.
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EXERCISE : ( already used earlier · · · )

Probability mass function pX,Y (x, y)

y = 6 y = 8 y = 10 pX(x)

x = 1 1

5
0 1

5

2

5

x = 2 0 1

5
0 1

5

x = 3 1

5
0 1

5

2

5

pY (y) 2

5

1

5

2

5
1

Show that

• E[X] = 2 , E[Y ] = 8 , E[XY ] = 16

• Cov(X,Y ) = E[XY ] − E[X] E[Y ] = 0

• X and Y are not independent

Thus if
Cov(X,Y ) = 0 ,

then it does not necessarily follow that X and Y are independent !
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PROPERTY :

If X and Y are independent then

V ar(X + Y ) = V ar(X) + V ar(Y ) .

PROOF :

We have already shown (in an exercise !) that

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2 Cov(X,Y ) ,

and that if X and Y are independent then

Cov(X,Y ) = 0 ,

from which the result follows.
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EXERCISE :

Compute
E[X] , E[Y ] , E[X2] , E[Y 2]

E[XY ] , V ar(X) , V ar(Y )

Cov(X,Y )
for

Joint probability mass function pX,Y (x, y)

y = 0 y = 1 y = 2 y = 3 pX(x)

x = 0 1

8
0 0 0 1

8

x = 1 0 1

8

1

8

1

8

3

8

x = 2 0 2

8

1

8
0 3

8

x = 3 0 1

8
0 0 1

8

pY (y) 1

8

4

8

2

8

1

8
1
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EXERCISE :

Compute
E[X] , E[Y ] , E[X2] , E[Y 2]

E[XY ] , V ar(X) , V ar(Y )

Cov(X,Y )
for

Joint probability mass function pX,Y (x, y)

y = 1 y = 2 y = 3 pX(x)

x = 1 1

3

1

12

1

12

1

2

x = 2 2

9

1

18

1

18

1

3

x = 3 1

9

1

36

1

36

1

6

pY (y) 2

3

1

6

1

6
1
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SPECIAL DISCRETE RANDOM VARIABLES

The Bernoulli Random Variable

A Bernoulli trial has only two outcomes , with probability

P (X = 1) = p ,

P (X = 0) = 1 − p ,

e.g., tossing a coin, winning or losing a game, · · · .

We have
E[X] = 1 · p + 0 · (1 − p) = p ,

E[X2] = 12 · p + 02 · (1 − p) = p ,

V ar(X) = E[X2] − E[X]2 = p− p2 = p(1 − p) .

NOTE : If p is small then V ar(X) ∼= p .
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EXAMPLES :

• When p = 1
2

(e.g., for tossing a coin), we have

E[X] = p = 1
2

, V ar(X) = p(1 − p) = 1
4

.

• When rolling a die , with outcome k , (1 ≤ k ≤ 6) , let

X(k) = 1 if the roll resulted in a six ,
and

X(k) = 0 if the roll did not result in a six .
Then

E[X] = p = 1
6

, V ar(X) = p(1 − p) = 5
36

.

• When p = 0.01 , then

E[X] = 0.01 , V ar(X) = 0.0099 ∼= 0.01 .
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The Binomial Random Variable

Perform a Bernoulli trial n times in sequence .

Assume the individual trials are independent .

An outcome could be

100011001010 (n = 12) ,

with probability

P (100011001010) = p5 · (1 − p)7 . ( Why ? )

Let the X be the number of ”successes ” (i.e. 1’s) .

For example,
X(100011001010) = 5 .

We have

P (X = 5) =

(

12
5

)

· p5 · (1 − p)7 . ( Why ? )
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In general, for k successes in a sequence of n trials, we have

P (X = k) =

(

n
k

)

· pk · (1 − p)n−k , (0 ≤ k ≤ n) .

EXAMPLE : Tossing a coin 12 times:

n = 12 , p = 1

2

k pX(k) FX(k)
0 1 / 4096 1 / 4096
1 12 / 4096 13 / 4096
2 66 / 4096 79 / 4096
3 220 / 4096 299 / 4096
4 495 / 4096 794 / 4096
5 792 / 4096 1586 / 4096
6 924 / 4096 2510 / 4096
7 792 / 4096 3302 / 4096
8 495 / 4096 3797 / 4096
9 220 / 4096 4017 / 4096
10 66 / 4096 4083 / 4096
11 12 / 4096 4095 / 4096
12 1 / 4096 4096 / 4096
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The Binomial mass and distribution functions for n = 12 , p = 1
2
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For k successes in a sequence of n trials :

P (X = k) =

(

n
k

)

· pk · (1 − p)n−k , (0 ≤ k ≤ n) .

EXAMPLE : Rolling a die 12 times:

n = 12 , p = 1

6

k pX(k) FX(k)
0 0.1121566221 0.112156
1 0.2691758871 0.381332
2 0.2960935235 0.677426
3 0.1973956972 0.874821
4 0.0888280571 0.963649
5 0.0284249838 0.992074
6 0.0066324966 0.998707
7 0.0011369995 0.999844
8 0.0001421249 0.999986
9 0.0000126333 0.999998
10 0.0000007580 0.999999
11 0.0000000276 0.999999
12 0.0000000005 1.000000
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The Binomial mass and distribution functions for n = 12 , p = 1
6
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EXAMPLE :

In 12 rolls of a die write the outcome as, for example,

100011001010
where

1 denotes the roll resulted in a six ,
and

0 denotes the roll did not result in a six .

As before, let X be the number of 1’s in the outcome.

Then X represents the number of sixes in the 12 rolls.

Then, for example, using the preceding Table :

P (X = 5) ∼= 2.8 % , P (X ≤ 5) ∼= 99.2 % .
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EXERCISE : Show that from

P (X = k) =

(

n
k

)

· pk · (1 − p)n−k ,

and

P (X = k + 1) =

(

n
k + 1

)

· pk+1 · (1 − p)n−k−1 ,

it follows that

P (X = k + 1) = ck · P (X = k) ,

where
ck =

n− k

k + 1
· p

1 − p
.

NOTE : This recurrence formula is an efficient and stable algorithm

to compute the binomial probabilities :

P (X = 0) = (1 − p)n ,

P (X = k + 1) = ck · P (X = k) , k = 0, 1, · · · , n− 1 .
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Mean and variance of the Binomial random variable :

By definition, the mean of a Binomial random variable X is

E[X] =

n
∑

k=0

k · P (X = k) =

n
∑

k=0

k ·
(

n
k

)

pk (1 − p)n−k ,

which can be shown to equal np .

An easy way to see this is as follows :

If in a sequence of n independent Bernoulli trials we let

Xk = the outcome of the kth Bernoulli trial , (Xk = 0 or 1 ) ,

then
X ≡ X1 + X2 + · · · + Xn ,

is the Binomial random variable that counts the successes ” .
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X ≡ X1 + X2 + · · · + Xn

We know that
E[Xk] = p ,

so

E[X] = E[X1] + E[X2] + · · · + E[Xn] = np .

We already know that

V ar(Xk) = E[X2
k ] − (E[Xk])

2 = p− p2 = p(1 − p) ,

so, since the Xk are independent , we have

V ar(X) = V ar(X1) + V ar(X2) + · · · + V ar(Xn) = np(1 − p) .

NOTE : If p is small then V ar(X) ∼= np .
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EXAMPLES :

• For 12 tosses of a coin , with Heads is success, we have

n = 12 , p =
1

2so

E[X] = np = 6 , V ar(X) = np(1 − p) = 3 .

• For 12 rolls of a die , with six is success , we have

n = 12 , p =
1

6so

E[X] = np = 2 , V ar(X) = np(1 − p) = 5/3 .

• If n = 500 and p = 0.01 , then

E[X] = np = 5 , V ar(X) = np(1 − p) = 4.95 ∼= 5 .
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The Poisson Random Variable

The Poisson variable approximates the Binomial random variable :

P (X = k) =

(

n
k

)

· pk · (1 − p)n−k ∼= e−λ · λk

k!
,

when we take

λ = n p ( the average number of successes ) .

This approximation is accurate if n is large and p small .

Recall that for the Binomial random variable

E[X] = n p , and V ar(X) = np(1 − p) ∼= np when p is small.

Indeed, for the Poisson random variable we will show that

E[X] = λ and V ar(X) = λ .
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A stable and efficient way to compute the Poisson probability

P (X = k) = e−λ · λk

k!
, k = 0, 1, 2, · · · ,

P (X = k + 1) = e−λ · λk+1

(k + 1)!
,

is to use the recurrence relation

P (X = 0) = e−λ ,

P (X = k + 1) =
λ

k + 1
· P (X = k) , k = 0, 1, 2, · · · .

NOTE : Unlike the Binomial random variable, the Poisson random
variable can have an arbitrarily large integer value k.
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The Poisson random variable

P (X = k) = e−λ · λk

k!
, k = 0, 1, 2, · · · ,

has (as shown later) : E[X] = λ and V ar(X) = λ .

The Poisson distribution function is

F (k) = P (X ≤ k) =

k
∑

ℓ=0

e−λ λℓ

ℓ!
= e−λ

k
∑

ℓ=0

λℓ

ℓ!
,

with, as should be the case,

lim
k→∞

F (k) = e−λ

∞
∑

ℓ=0

λℓ

ℓ!
= e−λ eλ = 1 .

( using the Taylor series from Calculus for eλ ) .
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The Poisson random variable

P (X = k) = e−λ · λk

k!
, k = 0, 1, 2, · · · ,

models the probability of k ”successes ” in a given ”time” interval,

when the average number of successes is λ .

EXAMPLE : Suppose customers arrive at the rate of six per hour.
The probability that k customers arrive in a one-hour period is

P (k = 0) = e−6 · 60

0!
∼= 0.0024 ,

P (k = 1) = e−6 · 61

1!
∼= 0.0148 ,

P (k = 2) = e−6 · 62

2!
∼= 0.0446 .

The probability that more than 2 customers arrive is

1 − (0.0024 + 0.0148 + 0.0446) ∼= 0.938 .
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pBinomial(k) =

(

n
k

)

pk (1 − p)n−k ∼= pPoisson(k) = e−λ λk

k!

EXAMPLE : λ = 6 customers/hour.

For the Binomial take n = 12 , p = 0.5 (0.5 customers/5 minutes) ,

so that indeed np = λ .

k pBinomial pPoisson FBinomial FPoisson

0 0.0002 0.0024 0.0002 0.0024
1 0.0029 0.0148 0.0031 0.0173
2 0.0161 0.0446 0.0192 0.0619
3 0.0537 0.0892 0.0729 0.1512
4 0.1208 0.1338 0.1938 0.2850
5 0.1933 0.1606 0.3872 0.4456
6 0.2255 0.1606 0.6127 0.6063
7 0.1933 0.1376 0.8061 0.7439
8 0.1208 0.1032 0.9270 0.8472
9 0.0537 0.0688 0.9807 0.9160

10 0.0161 0.0413 0.9968 0.9573
11 0.0029 0.0225 0.9997 0.9799
12 0.0002 0.0112 1.0000 0.9911⋆ Why not 1.0000 ?

Here the approximation is not so good · · ·
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pBinomial(k) =

(

n
k

)

pk (1 − p)n−k ∼= pPoisson(k) = e−λ λk

k!

EXAMPLE : λ = 6 customers/hour.

For the Binomial take n = 60 , p = 0.1 (0.1 customers/minute) ,

so that indeed np = λ .

k pBinomial pPoisson FBinomial FPoisson

0 0.0017 0.0024 0.0017 0.0024
1 0.0119 0.0148 0.0137 0.0173
2 0.0392 0.0446 0.0530 0.0619
3 0.0843 0.0892 0.1373 0.1512
4 0.1335 0.1338 0.2709 0.2850
5 0.1662 0.1606 0.4371 0.4456
6 0.1692 0.1606 0.6064 0.6063
7 0.1451 0.1376 0.7515 0.7439
8 0.1068 0.1032 0.8583 0.8472
9 0.0685 0.0688 0.9269 0.9160

10 0.0388 0.0413 0.9657 0.9573
11 0.0196 0.0225 0.9854 0.9799
12 0.0089 0.0112 0.9943 0.9911
13 · · · · · · · · · · · ·

Here the approximation is better · · ·
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n = 12 , p = 1
2

, λ = 6 n = 200 , p = 0.01 , λ = 2

The Binomial (blue) and Poisson (red) probability mass functions.

For the case n = 200, p = 0.01, the approximation is very good !
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For the Binomial random variable we found

E[X] = np and V ar(X) = np(1 − p) ,

while for the Poisson random variable, with λ = np we will show

E[X] = np and V ar(X) = np .

Note again that

np(1 − p) ∼= np , when p is small .

EXAMPLE : In the preceding two Tables we have

n=12 , p=0.5 n=60 , p=0.1

Binomial Poisson

E[X] 6.0000 6.0000

V ar[X] 3.0000 6.0000

σ[X] 1.7321 2.4495

Binomial Poisson

E[X] 6.0000 6.0000

V ar[X] 5.4000 6.0000

σ[X] 2.3238 2.4495
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FACT : (The Method of Moments)

By Taylor expansion of etX about t = 0 , we have

ψ(t) ≡ E[etX ] = E
[

1 + tX +
t2 X2

2!
+

t3 X3

3!
+ · · ·

]

= 1 + t E[X] +
t2

2!
E[X2] +

t3

3!
E[X3] + · · · .

It follows that

ψ′(0) = E[X] , ψ′′(0) = E[X2] . ( Why ? )

This sometimes facilitates computing the mean

µ = E[X] ,
and the variance

V ar(X) = E[X2] − µ2 .
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APPLICATION : The Poisson mean and variance :

ψ(t) ≡ E[etX ] =
∞

∑

k=0

etk P (X = k) =
∞

∑

k=0

etk e−λ λk

k!

= e−λ

∞
∑

k=0

(λet)k

k!
= e−λ eλ et

= eλ(et−1) .

Here ψ′(t) = λ et eλ(et−1)

ψ′′(t) = λ
[

λ (et)2 + et
]

eλ(et−1) ( Check ! )

so that E[X] = ψ′(0) = λ

E[X2] = ψ′′(0) = λ(λ+ 1) = λ2 + λ

V ar(X) = E[X2] − E[X]2 = λ .
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EXAMPLE : Defects in a wire occur at the rate of one per 10 meter,

with a Poisson distribution :

P (X = k) = e−λ · λk

k!
, k = 0, 1, 2, · · · .

What is the probability that :

• A 12-meter roll has at no defects?

ANSWER : Here λ = 1.2 , and P (X = 0) = e−λ = 0.3012 .

• A 12-meter roll of wire has one defect?

ANSWER : With λ = 1.2 , P (X = 1) = e−λ · λ = 0.3614 .

• Of five 12-meter rolls two have one defect and three have none?

ANSWER :

(

5
3

)

·0.30123 ·0.36142 = 0.0357 . ( Why ? )
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EXERCISE :

Defects in a certain wire occur at the rate of one per 10 meter.

Assume the defects have a Poisson distribution.

What is the probability that :

• a 20-meter wire has no defects?

• a 20-meter wire has at most 2 defects?

EXERCISE :

Customers arrive at a counter at the rate of 8 per hour.

Assume the arrivals have a Poisson distribution.

What is the probability that :

• no customer arrives in 15 minutes?

• two customers arrive in a period of 30 minutes?
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CONTINUOUS RANDOM VARIABLES

DEFINITION : A continuous random variable is a function X(s)
from an uncountably infinite sample space S to the real numbers R ,

X(·) : S → R .

EXAMPLE :

Rotate a pointer about a pivot in a plane (like a hand of a clock).

The outcome is the angle where it stops : 2πθ , where θ ∈ (0, 1] .

A good sample space is all values of θ , i.e. S = (0, 1] .

A very simple example of a continuous random variable is X(θ) = θ .

Suppose any outcome, i.e., any value of θ is ”equally likely”.

What are the values of

P (0 < θ ≤ 1
2
) , P (1

3
< θ ≤ 1

2
) , P (θ = 1√

2
) ?
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The (cumulative) probability distribution function is defined as

FX(x) ≡ P (X ≤ x) .

Thus
FX(b) − FX(a) ≡ P (a < X ≤ b) .

We must have

FX(−∞) = 0 and FX(∞) = 1 ,

i.e.,
lim

x→−∞
FX(x) = 0 ,

and
lim

x→∞
FX(x) = 1 .

Also, FX(x) is a non-decreasing function of x . ( Why ? )

NOTE : All the above is the same as for discrete random variables !
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EXAMPLE : In the ”pointer example ”, where X(θ) = θ , we have

the probability distribution function

theta

0 1/2 1

1

1/3

1/3

1/2

F(theta)

Note that

F (1
3
) ≡ P (X ≤ 1

3
) = 1

3
, F (1

2
) ≡ P (X ≤ 1

2
) = 1

2
,

P (1
3
< X ≤ 1

2
) = F (1

2
) − F (1

3
) = 1

2
− 1

3
= 1

6
.

QUESTION : What is P (1
3

≤ X ≤ 1
2
) ?
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The probability density function is the derivative of the probability
distribution function :

fX(x) ≡ F ′
X(x) ≡ d

dx
FX(x) .

EXAMPLE : In the ”pointer example ”

FX(x) =







0 , x ≤ 0
x , 0 < x ≤ 1
1 , 1 < x

Thus

fX(x) = F ′
X(x) =







0 , x ≤ 0
1 , 0 < x ≤ 1
0 , 1 < x

NOTATION : When it is clear what X is then we also write

f(x) for fX(x) , and F (x) for FX(x) .
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EXAMPLE : ( continued · · · )

F (x) =







0 , x ≤ 0
x , 0 < x ≤ 1
1 , 1 < x

, f(x) =







0 , x ≤ 0
1 , 0 < x ≤ 1
0 , 1 < x

theta

0 1/2 1

1

1/3

1/3

1/2

F(theta) f(theta)

theta

0 1/3 1/2 1

1

Distribution function Density function

NOTE :

P (
1

3
< X ≤ 1

2
) =

∫ 1

2

1

3

f(x) dx =
1

6
= the shaded area .
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In general, from
f(x) ≡ F ′(x) ,

with
F (−∞) = 0 and F (∞) = 1 ,

we have from Calculus the following basic identities :

∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
F ′(x) dx = F (∞) − F (−∞) = 1 ,

∫ x

−∞
f(x) dx = F (x) − F (−∞) = F (x) = P (X ≤ x) ,

∫ b

a

f(x) dx = F (b) − F (a) = P (a < X ≤ b) ,

∫ a

a

f(x) dx = F (a) − F (a) = 0 = P (X = a) .
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EXERCISE : Draw graphs of the distribution and density functions

F (x) =

{

0 , x ≤ 0
1 − e−x , x > 0

, f(x) =

{

0 , x ≤ 0
e−x , x > 0

,

and verify that

• F (−∞) = 0 , F (∞) = 1 ,

• f(x) = F ′(x) ,

• F (x) =
∫ x

0
f(x) dx , ( Why is zero as lower limit OK ? )

•
∫ ∞
0
f(x) dx = 1 ,

• P (0 < X ≤ 1) = F (1) − F (0) = F (1) = 1 − e−1 ∼= 0.63 ,

• P (X > 1) = 1 − F (1) = e−1 ∼= 0.37 ,

• P (1 < X ≤ 2) = F (2) − F (1) = e−1 − e−2 ∼= 0.23 .
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EXERCISE : For positive integer n, consider the density functions

fn(x) =







cxn(1 − xn) , 0 ≤ x ≤ 1

0 , otherwise

• Determine the value of c in terms of n .

• Draw the graph of fn(x) for n = 1, 2, 4, 8, 16 .

• Determine the distribution function Fn(x) .

• Draw the graph of Fn(x) for n = 1, 2, 3, 4, 8, 16 .

• Determine P (0 ≤ X ≤ 1
2
) in terms of n .

• What happens to P (0 ≤ X ≤ 1
2
) when n becomes large?

• Determine P ( 9
10

≤ X ≤ 1) in terms of n .

• What happens to P ( 9
10

≤ X ≤ 1) when n becomes large?
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Joint distributions

A joint probability density function fX,Y (x, y) must satisfy
∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy = 1 ( “Volume” = 1 ).

The corresponding joint probability distribution function is

FX,Y (x, y) = P (X ≤ x , Y ≤ y) =

∫ y

−∞

∫ x

−∞
fX,Y (x, y) dx dy .

By Calculus we have
∂2FX,Y (x, y)

∂x∂y
= fX,Y (x, y) .

Also,

P (a < X ≤ b , c < Y ≤ d) =

∫ d

c

∫ b

a

fX,Y (x, y) dx dy .
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EXAMPLE :

If

fX,Y (x, y) =







1 for x ∈ (0, 1] and y ∈ (0, 1] ,

0 otherwise ,

then, for x ∈ (0, 1] and y ∈ (0, 1] ,

FX,Y (x, y) = P (X ≤ x , Y ≤ y) =

∫ y

0

∫ x

0

1 dx dy = xy .

Thus

FX,Y (x, y) = xy , for x ∈ (0, 1] and y ∈ (0, 1] .

For example

P ( X ≤ 1

3
, Y ≤ 1

2
) = FX,Y (

1

3
,

1

2
) =

1

6
.
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x

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

y

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

f

0.5

1.0

1.5

x

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9y
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Also,

P (
1

3
≤ X ≤ 1

2
,

1

4
≤ Y ≤ 3

4
) =

∫ 3

4

1

4

∫ 1

2

1

3

f(x, y) dx dy =
1

12
.

EXERCISE : Show that we can also compute this as follows :

F (1
2
, 3

4
) − F (1

3
, 3

4
) − F (1

2
, 1

4
) + F (1

3
, 1

4
) = 1

12
.

and explain why !
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Marginal density functions

The marginal density functions are

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy , fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx .

with corresponding marginal distribution functions

FX(x) ≡ P (X ≤ x) =

∫ x

−∞
fX(x) dx =

∫ x

−∞

∫ ∞

−∞
fX,Y (x, y) dy dx ,

FY (y) ≡ P (Y ≤ y) =

∫ y

−∞
fY (y) dy =

∫ y

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy .

By Calculus we have

dFX(x)

dx
= fX(x) ,

dFY (y)

dy
= fY (y) .
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EXAMPLE : If

fX,Y (x, y) =







1 for x ∈ (0, 1] and y ∈ (0, 1] ,

0 otherwise ,

then, for x ∈ (0, 1] and y ∈ (0, 1] ,

fX(x) =

∫ 1

0

fX,Y (x, y) dy =

∫ 1

0

1 dy = 1 ,

fY (y) =

∫ 1

0

fX,Y (x, y) dx =

∫ 1

0

1 dx = 1 ,

FX(x) = P (X ≤ x) =

∫ x

0

fX(x) dx = x ,

FY (y) = P (Y ≤ y) =

∫ y

0

fY (y) dy = y .

For example

P ( X ≤ 1
3

) = FX(1
3
) = 1

3
, P ( Y ≤ 1

2
) = FY (1

2
) = 1

2
.
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EXERCISE :
Let FX,Y (x, y) =

{

(1 − e−x)(1 − e−y) for x ≥ 0 and y ≥ 0 ,
0 otherwise .

• Verify that

fX,Y (x, y) =
∂2F

∂x∂y
=

{

e−x−y for x ≥ 0 and y ≥ 0 ,
0 otherwise .

x

1

2

3

4

y

1

2

3

4

f

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

1

2

3

4
y

1

2

3

4

F

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Density function fX,Y (x, y) Distribution function FX,Y (x, y)
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EXERCISE : ( continued · · · )

FX,Y (x, y) = (1−e−x)(1−e−y) , fX,Y (x, y) = e−x−y , for x, y ≥ 0 .

Also verify the following :

• F (0, 0) = 0 , F (∞,∞) = 1 ,

•
∫ ∞

0

∫ ∞
0

fX,Y (x, y) dx dy = 1 , ( Why zero lower limits ? )

• fX(x) =
∫ ∞

0
e−x−y dy = e−x ,

• fY (y) =
∫ ∞
0
e−x−y dx = e−y .

• fX,Y (x, y) = fX(x) · fY (y) . ( So ? )
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EXERCISE : ( continued · · · )

FX,Y (x, y) = (1−e−x)(1−e−y) , fX,Y (x, y) = e−x−y , for x, y ≥ 0 .

Also verify the following :

• FX(x) =
∫ x

0
fX(x) dx =

∫ x

0
e−x dx = 1 − e−x ,

• FY (y) =
∫ y

0
fY (y) dy =

∫ y

0
e−y dy = 1 − e−y ,

• FX,Y (x, y) = FX(x) · FY (y) . ( So ? )

• P (1 < x <∞) = FX(∞)−FX(1) = 1−(1−e−1) = e−1 ∼= 0.37 ,

• P ( 1 < x ≤ 2 , 0 < y ≤ 1 ) =
∫ 1

0

∫ 2

1
e−x−y dx dy

= (e−1 − e−2)(1 − e−1) ∼= 0.15 ,
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Independent continuous random variables

Recall that two events E and F are independent if

P (EF ) = P (E) P (F ) .

Continuous random variables X(s) and Y (s) are independent if

P (X ∈ IX , Y ∈ IY ) = P (X ∈ IX) · P (Y ∈ IY ) ,

for all allowable sets IX and IY (typically intervals) of real numbers.

Equivalently, X(s) and Y (s) are independent if for all such sets
IX and IY the events

X−1(IX) and Y −1(IY ) ,

are independent in the sample space S.

NOTE : X−1(IX) ≡ {s ∈ S : X(s) ∈ IX} ,
Y −1(IY ) ≡ {s ∈ S : Y (s) ∈ IY } .
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FACT : X(s) and Y (s) are independent if for all x and y

fX,Y (x, y) = fX(x) · fY (y) .

EXAMPLE : The random variables with density function

fX,Y (x, y) =

{

e−x−y for x ≥ 0 and y ≥ 0 ,
0 otherwise ,

are independent because (by the preceding exercise)

fX,Y (x, y) = e−x−y = e−x · e−y = fX(x) · fY (y) .

NOTE :

FX,Y (x, y) =

{

(1 − e−x)(1 − e−y) for x ≥ 0 and y ≥ 0 ,
0 otherwise ,

also satisfies (by the preceding exercise)

FX,Y (x, y) = FX(x) · FY (y) .
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PROPERTY :

For independent continuous random variables X and Y we have

FX,Y (x, y) = FX(x) · FY (y) , for all x, y .
PROOF :

FX,Y (x, y) = P (X ≤ x , Y ≤ y)

=
∫ x

−∞
∫ y

−∞ fX,Y (x, y) dy dx

=
∫ x

−∞
∫ y

−∞ fX(x) · fY (y) dy dx (by independence)

=
∫ x

−∞ [ fX(x) ·
∫ y

−∞ fY (y) dy ] dx

= [
∫ x

−∞ fX(x) dx ] · [
∫ y

−∞ fY (y) dy ]

= FX(x) · FY (y) .

REMARK : Note how the proof parallels that for the discrete case !

160



Conditional distributions

Let X and Y be continuous random variables.

For given allowable sets IX and IY (typically intervals), let

Ex = X−1(IX) and Ey = Y −1(IY ) ,

be their corresponding events in the sample space S .

We have P (Ex|Ey) ≡ P (ExEy)

P (Ey)
.

The conditional probability density function is defined as

fX|Y (x|y) ≡ fX,Y (x, y)

fY (y)
.

When X and Y are independent then

fX|Y (x|y) ≡ fX,Y (x, y)

fY (y)
=

fX(x) fY (y)

fY (y)
= fX(x) ,

(assuming fY (y) 6= 0 ).
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EXAMPLE : The random variables with density function

fX,Y (x, y) =







e−x−y for x ≥ 0 and y ≥ 0 ,

0 otherwise ,

have (by previous exercise) the marginal density functions

fX(x) = e−x , fY (y) = e−y ,

for x ≥ 0 and y ≥ 0 , and zero otherwise.

Thus for such x, y we have

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

e−x−y

e−y
= e−x = fX(x) ,

i.e., information about Y does not alter the density function of X .

Indeed, we have already seen that X and Y are independent .
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Expectation

The expected value of a continuous random variable X is

E[X] =

∫ ∞

−∞
x fX(x) dx ,

which represents the average value of X over many trials.

The expected value of a function of a random variable is

E[g(X)] =

∫ ∞

−∞
g(x) fX(x) dx .

The expected value of a function of two random variables is

E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y) fX,Y (x, y) dy dx .
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EXAMPLE :

For the pointer experiment

fX(x) =























0 , x ≤ 0

1 , 0 < x ≤ 1

0 , 1 < x

we have

E[X] =

∫ ∞

−∞
x fX(x) dx =

∫ 1

0

x dx =
x2

2

∣

∣

∣

1

0
=

1

2
,

and

E[X2] =

∫ ∞

−∞
x2 fX(x) dx =

∫ 1

0

x2 dx =
x3

3

∣

∣

∣

1

0
=

1

3
.
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EXAMPLE : For the joint density function

fX,Y (x, y) =







e−x−y for x > 0 and y > 0 ,

0 otherwise .

we have (by previous exercise) the marginal density functions

fX(x) =







e−x for x > 0 ,

0 otherwise ,
and fY (y) =







e−y for y > 0 ,

0 otherwise .

Thus E[X] =

∫ ∞

0

x e−x dx = −[(x+1)e−x]
∣

∣

∣

∞

0
= 1 . ( Check ! )

Similarly E[Y ] =

∫ ∞

0

y e−y dy = 1 ,

and

E[XY ] =

∫ ∞

0

∫ ∞

0

xy e−x−y dy dx = 1 . ( Check ! )
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EXERCISE :

Prove the following for continuous random variables :

• E[aX] = a E[X] ,

• E[aX + b] = a E[X] + b ,

• E[X + Y ] = E[X] + E[Y ] ,

and compare the proofs to those for discrete random variables.

EXERCISE :

A stick of length 1 is split at a randomly selected point X.

( Thus X is uniformly distributed in the interval [0, 1]. )

Determine the expected length of the piece containing the point 1/3.
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PROPERTY : If X and Y are independent then

E[XY ] = E[X] · E[Y ] .

PROOF :

E[XY ] =
∫

R

∫

R
x y fX,Y (x, y) dy dx

=
∫

R

∫

R
x y fX(x) fY (y) dy dx (by independence)

=
∫

R
[ x fX(x)

∫

R
y fY (y) dy ] dx

= [
∫

R
x fX(x) dx ] · [

∫

R
y fY (y) dy ]

= E[X] · E[Y ] .

REMARK : Note how the proof parallels that for the discrete case !
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EXAMPLE : For

fX,Y (x, y) =







e−x−y for x > 0 and y > 0 ,

0 otherwise ,

we already found

fX(x) = e−x , fY (y) = e−y ,

so that
fX,Y (x, y) = fX(x) · fY (y) ,

i.e., X and Y are independent .

Indeed, we also already found that

E[X] = E[Y ] = E[XY ] = 1 ,

so that
E[XY ] = E[X] · E[Y ] .
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Variance

Let µ = E[X] =

∫ ∞

−∞
x fX(x) dx

Then the variance of the continuous random variable X is

V ar(X) ≡ E[ (X − µ)2] ≡
∫ ∞

−∞
(x− µ)2 fX(x) dx ,

which is the average weighted square distance from the mean.

As in the discrete case, we have

V ar(X) = E[X2 − 2µX + µ2]

= E[X2] − 2µE[X] + µ2 = E[X2] − µ2 .

The standard deviation of X is

σ(X) ≡
√

V ar(X) =
√

E[X2] − µ2 .

which is the average weighted distance from the mean.
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EXAMPLE : For f(x) =

{

e−x , x > 0 ,
0 , x ≤ 0 ,

we have

E[X] = µ =
∫ ∞
0

x e−x dx = 1 ( already done ! ) ,

E[X2] =
∫ ∞
0

x2 e−x dx = − [(x2 + 2x+ 2)e−x]
∣

∣

∣

∞

0
= 2 ,

V ar(X) = E[X2] − µ2 = 2 − 12 = 1 ,

σ(X) =
√

V ar(X) = 1 .

NOTE : The two integrals can be done by “integration by parts ”.

EXERCISE :

Also use the Method of Moments to compute E[X] and E[X2] .
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EXERCISE : For the random variable X with density function

f(x) =







0 , x ≤ −1
c , −1 < x ≤ 1
0 , x > 1

• Determine the value of c

• Draw the graph of f(x)

• Determine the distribution function F (x)

• Draw the graph of F (x)

• Determine E[X]

• Compute V ar(X) and σ(X)

• Determine P (X ≤ −1
2
)

• Determine P (| X |≥ 1
2
)
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EXERCISE : For the random variable X with density function

f(x) =







x+ 1 , −1 < x ≤ 0
1 − x , 0 < x ≤ 1

0 , otherwise

• Draw the graph of f(x)

• Verify that
∫ ∞
−∞ f(x) dx = 1

• Determine the distribution function F (x)

• Draw the graph of F (x)

• Determine E[X]

• Compute V ar(X) and σ(X)

• Determine P (X ≥ 1
3
)

• Determine P (| X |≤ 1
3
)
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EXERCISE : For the random variable X with density function

f(x) =

{

3
4

(1 − x2) , −1 < x ≤ 1
0 , otherwise

• Draw the graph of f(x)

• Verify that
∫ ∞
−∞ f(x) dx = 1

• Determine the distribution function F (x)

• Draw the graph of F (x)

• Determine E[X]

• Compute V ar(X) and σ(X)

• Determine P (X ≤ 0)

• Compute P (X ≥ 2
3
)

• Compute P (| X |≥ 2
3
)
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EXERCISE : Recall the density function

fn(x) =







cxn(1 − xn) , 0 ≤ x ≤ 1

0 , otherwise

considered earlier, where n is a positive integer, and where

c = (n+1)(2n+1)
n

.

• Determine E[X] .

• What happens to E[X] for large n ?

• Determine E[X2]

• What happens to E[X2] for large n ?

• What happens to V ar(X) for large n ?
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Covariance

Let X and Y be continuous random variables with mean

E[X] = µX , E[Y ] = µY .

Then the covariance of X and Y is

Cov(X,Y ) ≡ E[ (X − µX) (Y − µY ) ]

=

∫ ∞

−∞

∫ ∞

−∞
(x− µX) (y − µY ) fX,Y (x, y) dy dx .

As in the discrete case, we have

Cov(X,Y ) = E[ (X − µX) (Y − µY ) ]

= E[XY − µXY − µYX + µXµY ]

= E[XY ] − E[X] E[Y ] .

175



As in the discrete case, we also have

PROPERTY 1 :

• V ar(X + Y ) = V ar(X) + V ar(Y ) + 2 Cov(X,Y ) ,

and

PROPERTY 2 : If X and Y are independent then

• Cov(X,Y ) = 0 ,

• V ar(X + Y ) = V ar(X) + V ar(Y ) .

NOTE :

• The proofs are identical to those for the discrete case !

• As in the discrete case, if Cov(X,Y ) = 0 then X and Y are
not necessarily independent!
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EXAMPLE : For

fX,Y (x, y) =







e−x−y for x > 0 and y > 0 ,

0 otherwise ,

we already found

fX(x) = e−x , fY (y) = e−y ,

so that
fX,Y (x, y) = fX(x) · fY (y) ,

i.e., X and Y are independent .

Indeed, we also already found

E[X] = E[Y ] = E[XY ] = 1 ,
so that

Cov(X,Y ) = E[XY ] − E[X] E[Y ] = 0 .
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EXERCISE :

Verify the following properties :

• V ar(cX + d) = c2 V ar(X) ,

• Cov(X,Y ) = Cov(Y,X) ,

• Cov(cX, Y ) = c Cov(X,Y ) ,

• Cov(X, cY ) = c Cov(X,Y ) ,

• Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z) ,

• V ar(X + Y ) = V ar(X) + V ar(Y ) + 2 Cov(X,Y ) .
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EXERCISE :

For the random variables X , Y with joint density function

f(x, y) =







45xy2(1 − x)(1 − y2) , 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1

0 , otherwise

• Verify that
∫ 1

0

∫ 1

0
f(x, y) dy dx = 1 .

• Determine the marginal density functions fX(x) and fY (y) .

• Are X and Y independent ?

• What is the value of Cov(X,Y ) ?
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The joint probability density function fXY (x, y) .

180



Markov’s inequality.

For a continuous nonnegative random variable X , and c > 0 ,
we have

P (X ≥ c) ≤ E[X]

c
.

PROOF :

E[X] =

∫ ∞

0

xf(x) dx =

∫ c

0

xf(x) dx +

∫ ∞

c

xf(x) dx

≥
∫ ∞

c

xf(x) dx

≥ c

∫ ∞

c

f(x) dx ( Why ? )

= c P (X ≥ c) .

EXERCISE :

Show Markov’s inequality also holds for discrete random variables.
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Markov’s inequality : For continuous nonnegative X , c > 0 :

P (X ≥ c) ≤ E[X]

c
.

EXAMPLE : For
f(x) =







e−x for x > 0 ,

0 otherwise ,we have

E[X] =

∫ ∞

0

x e−x dx = 1 ( already done ! )

Markov’s inequality gives

c = 1 : P (X ≥ 1) ≤ E[X]

1
=

1

1
= 1 ( ! )

c = 10 : P (X ≥ 10) ≤ E[X]

10
=

1

10
= 0.1

QUESTION : Are these estimates ”sharp ” ?
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QUESTION : Are these estimates ”sharp ” ?

Markov’s inequality gives

c = 1 : P (X ≥ 1) ≤ E[X]

1
=

1

1
= 1 ( ! )

c = 10 : P (X ≥ 10) ≤ E[X]

10
=

1

10
= 0.1

The actual values are

P (X ≥ 1) =

∫ ∞

1

e−x dx = e−1 ∼= 0.37

P (X ≥ 10) =

∫ ∞

10

e−x dx = e−10 ∼= 0.000045

EXERCISE : Suppose the score of students taking an examination
is a random variable with mean 65 .

Give an upper bound on the probability that a student’s score is
greater than 75 .
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Chebyshev’s inequality: For (practically) any random variable X:

P ( | X − µ | ≥ k σ ) ≤ 1

k2
,

where µ = E[X] is the mean, σ =
√

V ar(X) the standard deviation.

PROOF : Let Y ≡ (X − µ)2 , which is nonnegative.

By Markov’s inequality

P (Y ≥ c) ≤ E[Y ]

c
.

Taking c = k2σ2 we have

P ( | X−µ | ≥ kσ ) = P ( (X−µ)2 ≥ k2σ2 ) = P ( Y ≥ k2σ2 )

≤ E[ Y ]

k2σ2
=

V ar(X)

k2σ2
=

σ2

k2σ2
=

1

k2
. QED !

NOTE : This inequality also holds for discrete random variables.
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EXAMPLE : Suppose the value of the Canadian dollar in terms of
the US dollar over a certain period is a random variable X with

mean µ = 0.98 and standard deviation σ = 0.05 .

What can be said of the probability that the Canadian dollar is valued

between $0.88US and $1.08US ,
that is,

between µ− 2σ and µ+ 2σ ?

SOLUTION : By Chebyshev’s inequality we have

P ( | X − µ | ≥ 2 σ ) ≤ 1

22
= 0.25 .

Thus
P ( | X − µ | < 2 σ ) > 1 − 0.25 = 0.75 ,

that is,
P ( $0.88US < Can$ < $1.08US ) > 75 % .
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EXERCISE :

The score of students taking an examination is a random variable
with mean µ = 65 and standard deviation σ = 5 .

• What is the probability a student scores between 55 and 75 ?

• How many students would have to take the examination so that
the probability that their average grade is between 60 and 70
is at least 80% ?

HINT : Defining

X̄ =
1

n
(X1 +X2 + · · · +Xn) , ( the average grade )

we have
µX̄ = E[X̄] =

1

n
n µ = µ = 65 ,

and, assuming independence,

V ar(X̄) = n
σ2

n2
=

σ2

n
=

25

n
, and σX̄ =

5√
n
.
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SPECIAL CONTINUOUS RANDOM VARIABLES

The Uniform Random Variable

f(x) =







1
b−a

, a < x ≤ b

0 , otherwise
, F (x) =







0 , x ≤ a
x−a
b−a

, a < x ≤ b

1 , x > b

a b

1___
b−a

x

f(x)

x x21

1

a b

F(x)

x

x x1 2

F(x )1

F(x )2

(Already introduced earlier for the special case a = 0, b = 1 .)
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EXERCISE :

Show that the uniform density function

f(x) =







1
b−a

, a < x ≤ b

0 , otherwise

has mean

µ =
a+ b

2
,

and standard deviation

σ =
b− a

2
√

3
.
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A joint uniform random variable :

f(x, y) =
1

(b− a)(d− c)
, F (x, y) =

(x− a)(y − c)

(b− a)(d− c)
,

for x ∈ (a, b], y ∈ (c, d].

x

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

y

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

f

0.5

1.0

1.5

x

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9y
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Here x ∈ [0, 1], y ∈ [0, 1] .
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EXERCISE :

Consider the joint uniform density function

f(x, y) =







c for x2 + y2 ≤ 4 ,

0 otherwise .

• What is the value of c ?

• What is P (X < 0) ?

• What is P (X < 0 , Y < 0) ?

• What is f( x | y = 1 ) ?

HINT : No complicated calculations are needed !
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The Exponential Random Variable

f(x) =







λe−λx , x > 0

0 , x ≤ 0
, F (x) =







1 − e−λx , x > 0

0 , x ≤ 0
with

E[X] = µ =
∫ ∞

0
x λe−λx dx = 1

λ
( Check ! ) ,

E[X2] =
∫ ∞

0
x2 λe−λx dx = 2

λ2 ( Check ! ) ,

V ar(X) = E[X2] − µ2 = 1
λ2 ,

σ(X) =
√

V ar(X) = 1
λ

.

NOTE : The two integrals can be done by “integration by parts ”.

EXERCISE : (Done earlier for λ = 1) :

Also use the Method of Moments to compute E[X] and E[X2] .
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

x
0.0

0.5

1.0

1.5

2.0

f
(x

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

x

0.0

0.2

0.4

0.6

0.8

1.0

F
(x

)

The Exponential density and distribution functions

f(x) = λe−λx , F (x) = 1 − e−λx ,

for λ = 0.25, 0.50, 0.75, 1.00 (blue), 1.25, 1.50, 1.75, 2.00 (red ).
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PROPERTY : From

F (x) ≡ P (X ≤ x) = 1 − e−λx , ( for x > 0 ) ,

we have
P (X > x) = 1 − (1 − e−λx) = e−λx .

Also, for ∆x > 0 ,

P (X > x+ ∆x | X > x) =
P (X > x+ ∆x , X > x)

P (X > x)

=
P (X > x+ ∆x)

P (X > x)
=

e−λ(x+∆x)

e−λx
= e−λ∆x .

CONCLUSION : P ( X > x+ ∆x | X > x )

only depends on ∆x (and λ), and not on x !

We say that the exponential random variable is ”memoryless ” .
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EXAMPLE :

Let the density function f(t) model failure of a device,

f(t) = e−t , (taking λ = 1 ) ,

i.e., the probability of failure in the time-interval (0, t] is

F (t) =

∫ t

0

f(t) dt =

∫ t

0

e−t dt = 1 − e−t ,

with

F (0) = 0 , ( the device works at time 0 ).

and

F (∞) = 1 , ( the device must fail at some time ).
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EXAMPLE : ( continued · · · ) F (t) = 1 − e−t .

Let Et be the event that the device still works at time t :

P (Et) = 1 − F (t) = e−t .

The probability it still works at time t+ 1 is

P (Et+1) = 1 − F (t+ 1) = e−(t+1) .

The probability it still works at time t+1, given it works at time t is

P (Et+1|Et) =
P (Et+1Et)

P (Et)
=

P (Et+1)

P (Et)
=

e−(t+1)

e−t
=

1

e
,

which is independent of t !

QUESTION : Is such an exponential distribution realistic if

the “device” is your heart, and time t is measured in decades ?
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The Standard Normal Random Variable

The standard normal random variable has density function

f(x) =
1√
2π

e−
1

2
x2

, −∞ < x <∞ ,

with mean

µ =

∫ ∞

−∞
x f(x) dx = 0 , ( Check ! )

Since

E[X2] =

∫ ∞

−∞
x2 f(x) dx = 1 , ( more difficult · · · )

we have

V ar(X) = E[X2] − µ2 = 1 , and σ(X) = 1 .
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f(x) =
1√
2π

e−
1

2
x2

−4 −3 −2 −1 0 1 2 3 4

x
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f
(x

)

The standard normal density function f(x) .
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Φ(x) = F (x) =
1√
2π

∫ x

−∞
e−

1

2
x2

dx

−4 −3 −2 −1 0 1 2 3 4

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
(x

)

The standard normal distribution function F (x)

( often denoted by Φ(x) ) .
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The Standard Normal Distribution Φ(z)

z Φ(z) z Φ(z)

0.0 .5000 -1.2 .1151
-0.1 .4602 -1.4 .0808
-0.2 .4207 -1.6 .0548
-0.3 .3821 -1.8 .0359
-0.4 .3446 -2.0 .0228

-0.5 .3085 -2.2 .0139
-0.6 .2743 -2.4 .0082
-0.7 .2420 -2.6 .0047
-0.8 .2119 -2.8 .0026
-0.9 .1841 -3.0 .0013
-1.0 .1587 -3.2 .0007

( For example, P (Z ≤ −2.0) = Φ(−2.0) = 2.28% )

QUESTION : How to get the values of Φ(z) for positive z ?
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EXERCISE :

Suppose the random variableX has the standard normal distribution.

What are the values of

• P ( X ≤ −0.5 )

• P ( X ≤ 0.5 )

• P ( | X | ≥ 0.5 )

• P ( | X | ≤ 0.5 )

• P ( − 1 ≤ X ≤ 1 )

• P ( − 1 ≤ X ≤ 0.5 )
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The General Normal Random Variable

The general normal density function is

f(x) =
1√

2π σ
e−

1

2
(x−µ)2/σ2

where, not surprisingly,

E[X] = µ ( Why ? )

One can also show that

V ar(X) ≡ E[(X − µ)2] = σ2 ,

so that σ is in fact the standard deviation .
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The standard normal (black) and the normal density functions

with µ = −1, σ = 0.5 (red ) and µ = 1.5, σ = 2.5 (blue).
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To compute the mean of the general normal density function

f(x) =
1√

2π σ
e−

1

2
(x−µ)2/σ2

consider

E[X − µ] =

∫ ∞

−∞
(x− µ) f(x) dx

=
1√

2π σ

∫ ∞

−∞
(x− µ) e−

1

2
(x−µ)2/σ2

dx

=
−σ2

√
2π σ

e−
1

2
(x−µ)2/σ2

∣

∣

∣

∞

−∞
= 0 .

Thus the mean is indeed

E[X] = µ .
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NOTE : If X is general normal we have the very useful formula :

P (
X − µ

σ
≤ c ) = Φ(c) ,

i.e., we can use the Table of the standard normal distribution !

PROOF : For any constant c we have

P (
X − µ

σ
≤ c) = P (X ≤ µ+cσ) =

1√
2π σ

∫ µ+cσ

−∞
e−

1

2
(x−µ)2/σ2

dx .

Let y ≡ (x− µ)/σ , so that x = µ+ yσ .

Then the new variable y ranges from −∞ to c , and

(x− µ)2/σ2 = y2 , dx = σ dy ,

so that

P (
X − µ

σ
≤ c) =

1√
2π

∫ c

−∞
e−

1

2
y2

dy = Φ(c) .

( the standard normal distribution )
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EXERCISE : Suppose X is normally distributed with

mean µ = 1.5 and standard deviation σ = 2.5 .

Use the standard normal Table to determine :

• P ( X ≤ −0.5 )

• P ( X ≥ 0.5 )

• P ( | X − µ | ≥ 0.5 )

• P ( | X − µ | ≤ 0.5 )
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The Chi-Square Random Variable

Suppose X1 , X2 , · · · , Xn ,

are independent standard normal random variables.

Then χ2

n
≡ X2

1 + X2
2 + · · · + X2

n ,

is called the chi-square random variable with n degrees of freedom.

We will show that

E[χ2
n] = n , V ar(χ2

n) = 2n , σ(χ2
n) =

√
2n .

NOTE :

The 2 in χ2
n is part of its name , while 2 in X2

1 , etc. is “power 2 ” !
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0 2 4 6 8 10

x
0.0

0.1

0.2

0.3

0.4

0.5

f
(x

)

0 2 4 6 8 10

x

0.0

0.2

0.4

0.6

0.8

1.0

F
(x

)

The Chi-Square density and distribution functions for n = 1, 2, · · · , 10.

( In the Figure for F , the value of n increases from left to right. )
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If n = 1 then

χ2
1 ≡ X2

1 , where X ≡ X1 is standard normal .

We can compute the moment generating function of χ2
1 :

E[etχ2

1 ] = E[etX2

] =
1√
2π

∫ ∞

−∞
etx2

e−
1

2
x2

dx

=
1√
2π

∫ ∞

−∞
e−

1

2
x2(1−2t) dx

Let

1 − 2t =
1

σ̂2
, or equivalently , σ̂ ≡ 1√

1 − 2t
.

Then

E[etχ2

1 ] = σ̂ · 1√
2π σ̂

∫ ∞

−∞
e−

1

2
x2/σ̂2

dx = σ̂ =
1√

1 − 2t
.

(integral of a normal density function)
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Thus we have found that :

The moment generating function of χ2
1 is

ψ(t) ≡ E[etχ2
1 ] =

1√
1 − 2t

,

with which we can compute

E[χ2
1] = ψ′(0) = 1 , ( Check ! )

E[(χ2
1)

2] = ψ′′(0) = 3 , ( Check ! )

V ar(χ2
1) = E[(χ2

1)
2] − E[χ2

1]
2 = 2 .
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We found that

E[χ2
1] = 1 , V ar(χ2

1) = 2 .

In the general case where

χ2
n ≡ X2

1 + X2
2 + · · · + X2

n ,

we have

E[χ2
n] = E[X2

1 ] + E[X2
2 ] + · · · + E[X2

n] = n ,

and since the Xi are assumed independent ,

V ar[χ2
n] = V ar[X2

1 ] + V ar[X2
2 ] + · · · + V ar[X2

n] = 2n ,

and
σ(χ2

n) =
√

2n .
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0 5 10 15 20 25

x
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

f
(x

)

The Chi-Square density functions for n = 5, 6, · · · , 15 .

( For large n they look like normal density functions ! )
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The χ2
n - Table

n α = 0.975 α = 0.95 α = 0.05 α = 0.025

5 0.83 1.15 11.07 12.83
6 1.24 1.64 12.59 14.45
7 1.69 2.17 14.07 16.01
8 2.18 2.73 15.51 17.54
9 2.70 3.33 16.92 19.02
10 3.25 3.94 18.31 20.48
11 3.82 4.58 19.68 21.92
12 4.40 5.23 21.03 23.34
13 5.01 5.89 22.36 24.74
14 5.63 6.57 23.69 26.12
15 6.26 7.26 25.00 27.49

This Table shows zα,n values such that P (χ2
n ≥ zα,n) = α .

( For example, P (χ2
10

≥ 3.94) = 95% )



THE CENTRAL LIMIT THEOREM

The density function of the Chi-Square random variable

χ2
n ≡ X̃1 + X̃2 + · · · + X̃n ,

where

X̃i = X2
i , and Xi is standard normal, i = 1, 2, · · · , n ,

starts looking like a normal density function when n gets large.

• This remarkable fact holds much more generally !

• It is known as the Central Limit Theorem (CLT).
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RECALL :

If X1 , X2 , · · · , Xn are independent, identically distributed ,

each having

mean µ , variance σ2 , standard deviation σ ,

then

S ≡ X1 + X2 + · · · + Xn ,
has

mean : µS ≡ E[S] = nµ ( Why ? )

variance : V ar(S) = nσ2 ( Why ? )

Standard deviation : σS =
√
n σ

NOTE : σS gets bigger as n increases ( and so does | µS | ).
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THEOREM (The Central Limit Theorem) (CLT) :

Let X1 , X2 , · · · , Xn be identical, independent random variables,

each having

mean µ , variance σ2 , standard deviation σ .

Then for large n the random variable

S ≡ X1 + X2 + · · · + Xn ,

( which has mean nµ , variance n σ2 , standard deviation
√
n σ )

is approximately normal .

NOTE : Thus
S − nµ√
n σ

is approximately standard normal .
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EXAMPLE : Recall that

χ2
n ≡ X2

1 + X2
2 + · · · + X2

n ,

where each Xi is standard normal, and (using moments) we found

χ2
n has mean n and standard deviation

√
2n .

The Table below illustrates the accuracy of the approximation

P ( χ2
n ≤ 0 ) ∼= Φ(

0 − n√
2n

) = Φ(−
√

n

2
) .

n −√

n
2

Φ(−√

n
2

)

2 −1 0.1587
8 −2 0.0228
18 −3 0.0013

QUESTION : What is the exact value of P (χ2
n ≤ 0) ? ( ! )
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EXERCISE :

Use the approximation

P ( χ2
n ≤ x ) ∼= Φ(

x− n√
2n

) ,

to compute approximate values of

• P ( χ2
32 ≤ 24 )

• P ( χ2
32 ≥ 40 )

• P ( | χ2
32 − 32 | ≤ 8 )
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RECALL :

If X1 , X2 , · · · , Xn are independent, identically distributed ,

each having

mean µ , variance σ2 , standard deviation σ ,

then

X̄ ≡ 1

n
(X1 + X2 + · · · + Xn) ,

has
mean : µX̄ = E[X̄ ] = µ ( Why ? )

variance : σ2
X̄

= 1
n2 nσ

2 = σ2/n ( Why ? )

Standard deviation : σX̄ = σ/
√
n

NOTE : σX̄ gets smaller as n increases.
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COROLLARY (to the Central Limit Theorem) :

If X1 , X2 , · · · , Xn be identical, independent random variables,

each having

mean µ , variance σ2 , standard deviation σ ,

then for large n the random variable

X̄ ≡ 1

n
(X1 + X2 + · · · + Xn) ,

( which has mean µ , variance
σ2

n
, standard deviation

σ√
n

)

is approximately normal .

NOTE : Thus
X̄ − µ

σ/
√
n

is approximately standard normal .
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EXAMPLE : Suppose X1 , X2 , · · · , Xn are

identical , independent , uniform random variables ,

each having density function

f(x) =
1

2
, for x ∈ [−1, 1] , ( 0 otherwise ) ,

with
mean µ = 0 , standard deviation σ =

1√
3

( Check ! )

Then for large n the random variable

X̄ ≡ 1

n
(X1 + X2 + · · · + Xn) ,

with

mean µ = 0 , standard deviation σ =
1√
3n

,

is approximately normal , so that

P (X̄ ≤ x) ∼= Φ(
x− 0

1/
√

3n
) ∼= Φ(

√
3n x ) .
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EXERCISE : In the preceding example

P (X̄ ≤ x) ∼= Φ(
x− 0

1/
√

3n
) ≡ Φ(

√
3n x ) .

• Fill in the Table to illustrate the accuracy of this approximation :

n P (X̄ ≤ −1) ∼= Φ(−
√

3n )

3
12

( What is the exact value of P ( X̄ ≤ −1 ) ? ! )

• For n = 12 find the approximate value of P ( X̄ ≤ −0.1 ) .

• For n = 12 find the approximate value of P ( X̄ ≤ −0.5 ) .
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EXPERIMENT : ( a lengthy one · · · ! )

We give a detailed computational example to illustrate :

• The concept of density function .

• The numerical construction of a density function

and (most importantly)

• The Central Limit Theorem .
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EXPERIMENT : ( continued · · · )

• Generate N uniformly distributed random numbers in [0, 1] .

• Many programming languages have a function for this.

• Call the random number values generated x̃i , i = 1, 2, · · · , N .

• Letting xi = 2x̃i − 1 gives uniform random values in [−1, 1] .
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EXPERIMENT : ( continued · · · )

-0.737 0.511 -0.083 0.066 -0.562 -0.906 0.358 0.359
0.869 -0.233 0.039 0.662 -0.931 -0.893 0.059 0.342

-0.985 -0.233 -0.866 -0.165 0.374 0.178 0.861 0.692
0.054 -0.816 0.308 -0.168 0.402 0.821 0.524 -0.475

-0.905 0.472 -0.344 0.265 0.513 0.982 -0.269 -0.506
0.965 0.445 0.507 0.303 -0.855 0.263 0.769 -0.455

-0.127 0.533 -0.045 -0.524 -0.450 -0.281 -0.667 -0.027
0.795 0.818 -0.879 0.809 0.009 0.033 -0.362 0.973

-0.012 -0.468 -0.819 0.896 -0.853 0.001 -0.232 -0.446
0.828 0.059 -0.071 0.882 -0.900 0.523 0.540 0.656

-0.749 -0.968 0.377 0.736 0.259 0.472 0.451 0.999
0.777 -0.534 -0.387 -0.298 0.027 0.182 0.692 -0.176
0.683 -0.461 -0.169 0.075 -0.064 -0.426 -0.643 -0.693
0.143 0.605 -0.934 0.069 -0.003 0.911 0.497 0.109
0.781 0.250 0.684 -0.680 -0.574 0.429 -0.739 -0.818

120 values of a uniform random variable in [−1, 1] .
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EXPERIMENT : ( continued · · · )

• Divide [−1, 1] into M subintervals of equal size ∆x = 2
M

.

• Let Ik denote the kth interval, with midpoint xk .

• Let mk be the frequency count (# of random numbers in Ik) .

• Let f(xk) = mk

N ∆x
, (N is the total # of random numbers) .

• Then
∫ 1

−1
f(x) dx ∼=

∑M
k=1 f(xk) ∆x =

∑M
k=1

mk

N ∆x
∆x = 1 ,

and f(xk) approximates the value of the density function .

• The corresponding distribution function is

F (xℓ) =

∫ xℓ

−1

f(x) dx ∼=
ℓ

∑

k=1

f(xk) ∆x .
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EXPERIMENT : ( continued · · · )

Interval Frequency Sum f(x) F (x)

1 50013 50013 0.500 0.067
2 50033 100046 0.500 0.133
3 50104 150150 0.501 0.200
4 49894 200044 0.499 0.267
5 50242 250286 0.502 0.334
6 49483 299769 0.495 0.400
7 50016 349785 0.500 0.466
8 50241 400026 0.502 0.533
9 50261 450287 0.503 0.600
10 49818 500105 0.498 0.667
11 49814 549919 0.498 0.733
12 50224 600143 0.502 0.800
13 49971 650114 0.500 0.867
14 49873 699987 0.499 0.933
15 50013 750000 0.500 1.000

Frequency Table, showing the count per interval .

(N = 750, 000 random numbers, M = 15 intervals)
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EXPERIMENT : ( continued · · · )

−1.0 −0.5 0.0 0.5 1.0

x
0.0

0.2

0.4

0.6

0.8

1.0

f
(x

)

The approximate density function , f(xk) = mk

N ∆x
for

N = 5, 000, 000 random numbers, and M = 200 intervals.
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EXPERIMENT : ( continued · · · )

−1.0 −0.5 0.0 0.5 1.0

x
0.0

0.2

0.4

0.6

0.8

1.0

f
(x

)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
(x

)
Approximate density function f(x) and distribution function F (x) ,

for the case N = 5, 000, 000 random numbers, and M = 200 intervals.

NOTE : F (x) appears smoother than f(x) . ( Why ? )
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EXPERIMENT : ( continued · · · )

Next · · · ( still for the uniform random variable in [−1, 1] ) :

• Generate n random numbers ( n relatively small ) .

• Take the average of the n random numbers.

• Do the above N times, where (as before) N is very large .

• Thus we deal with a random variable

X̄ ≡ 1

n
(X1 + X2 + · · · + Xn) .
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EXPERIMENT : ( continued · · · )

-0.047 0.126 -0.037 0.148 -0.130 -0.004 -0.174 0.191
0.198 0.073 -0.025 -0.070 -0.018 -0.031 0.063 -0.064

-0.197 -0.026 -0.062 -0.004 -0.083 -0.031 -0.102 -0.033
-0.164 0.265 -0.274 0.188 -0.067 0.049 -0.090 0.002
0.118 0.088 -0.071 0.067 -0.134 -0.100 0.132 0.242

-0.005 -0.011 -0.018 -0.048 -0.153 0.016 0.086 -0.179
-0.011 -0.058 0.198 -0.002 0.138 -0.044 -0.094 0.078
-0.011 -0.093 0.117 -0.156 -0.246 0.071 0.166 0.142
0.103 -0.045 -0.131 -0.100 0.072 0.034 0.176 0.108
0.108 0.141 -0.009 0.140 0.025 -0.149 0.121 -0.120
0.012 0.002 -0.015 0.106 0.030 -0.096 -0.024 -0.111

-0.147 0.004 0.084 0.047 -0.048 0.018 -0.183 0.069
-0.236 -0.217 0.061 0.092 -0.003 0.005 -0.054 0.025
-0.110 -0.094 -0.115 0.052 0.135 -0.076 -0.018 -0.121
-0.030 -0.146 -0.155 0.089 -0.177 0.027 -0.025 0.020

Values of X̄ for the case N = 120 and n = 25 .
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EXPERIMENT : ( continued · · · )

For sample size n, (n = 1, 2, 5, 10, 25) , and M = 200 intervals :

• Generate N values of X̄ , where N is very large .

• Let mk be the number of values of X̄ in Ik .

• As before, let fn(xk) = mk

N ∆x
.

• Now fn(xk) approximates the density function of X̄ .
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EXPERIMENT : ( continued · · · )

Interval Frequency Sum f(x) F (x)

1 0 0 0.00000 0.00000
2 0 0 0.00000 0.00000
3 0 0 0.00000 0.00000
4 11 11 0.00011 0.00001
5 1283 1294 0.01283 0.00173
6 29982 31276 0.29982 0.04170
7 181209 212485 1.81209 0.28331
8 325314 537799 3.25314 0.71707
9 181273 719072 1.81273 0.95876
10 29620 748692 0.29620 0.99826
11 1294 749986 0.01294 0.99998
12 14 750000 0.00014 1.00000
13 0 750000 0.00000 1.00000
14 0 750000 0.00000 1.00000
15 0 750000 0.00000 1.00000

Frequency Table for X̄, showing the count per interval .
(N = 750, 000 values of X̄, M = 15 intervals, sample size n = 25)
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EXPERIMENT : ( continued · · · )

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

f
(x

)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.0

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
(x

)
The approximate density functions fn(x) , n = 1, 2, 5, 10, 25 ,

and the corresponding distribution functions Fn(x) .

( N = 5, 000, 000 values of X̄ , M = 200 intervals )
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EXPERIMENT : ( continued · · · )

Recall that for uniform random variables Xi on [−1, 1]

X̄ ≡ 1

n
(X1 + X2 + · · · + Xn) ,

is approximately normal , with

mean µ = 0 , standard deviation σ =
1√
3n

.

Thus for each n we can normalize x and fn(x) :

x̂ =
x− µ

σ
=

x− 0
1√
3n

=
√

3n x , f̂n(x̂) =
fn(x)√

3n
.

The next Figure shows :

• The normalized f̂n(x̂) approach a limit as n get large.

• This limit is the standard normal density function.

• Thus our computations agree with the Central Limit Theorem !
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−4 −3 −2 −1 0 1 2 3 4

x̂

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f̂
m

(x
)

The normalized density functions f̂n(x) , for n = 1, 2, 5, 10, 25 .

( N = 5, 000, 000 values of X̄ , M = 200 intervals )
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EXERCISE : Suppose

X1 , X2 , · · · , X12 , (n = 12) ,

are identical, independent, uniform random variables on [0, 1] .

We already know that each Xi has

mean µ = 1
2

, standard deviation 1
2
√

3
.

Let

X̄ ≡ 1

12
(X1 + X2 + · · · + X12) .

Use the CLT to compute approximate values of

• P (X̄ ≤ 1
3
)

• P (X̄ ≥ 2
3
)

• P (| X̄ − 1
2
| ≤ 1

3
)

235



EXERCISE : Suppose

X1 , X2 , · · · , X9 , (n = 9) ,

are identical, independent, exponential random variables, with

f(x) = λe−λx , where λ = 1 .

We already know that each Xi has

mean µ = 1
λ

= 1 , and standard deviation 1
λ

= 1 .
Let

X̄ ≡ 1

9
(X1 + X2 + · · · + X9) .

Use the CLT to compute approximate values of

• P (X̄ ≤ 0.4)

• P (X̄ ≥ 1.6)

• P (| X̄ − 1 | ≤ 0.6)
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EXERCISE : Suppose

X1 , X2 , · · · , Xn ,

are identical, independent, normal random variables, with

mean µ = 7 , standard deviation 4 .

Let

X̄ ≡ 1

n
(X1 + X2 + · · · + Xn) .

Use the CLT to determine at least how big n must be so that

• P (| X̄ − µ | ≤ 1) ≥ 90 % .

237



EXAMPLE : The CLT also applies to discrete random variables .

The Binomial random variable , with

P (X = k) =

(

n
k

)

· pk · (1 − p)n−k , (0 ≤ k ≤ n) ,

is already a sum (namely, of Bernoulli random variables).

Thus its binomial probability mass function already ”looks normal ” :

0 2 4 6 8 10

x

0.00

0.05

0.10

0.15

0.20

0.25

p
(x

)

0 10 20 30 40 50 60 70 80 90 100

x

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

p
(x

)

Binomial : n = 10 , p = 0.3 Binomial : n = 100 , p = 0.3
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EXAMPLE : ( continued · · · )

We already know that if X is binomial then

µ(X) = np and σ(X) =
√

np(1 − p) .

Thus, for n = 100 , p = 0.3 , we have

µ(X) = 30 and σ(X) =
√

21 ∼= 4.58 .

Using the CLT we can approximate

P (X ≤ 26) ∼= Φ(
26 − 30

4.58
) = Φ(−0.87) ∼= 19.2 % .

The exact binomial value is

P (X ≤ 26) =

26
∑

k=0

(

n
k

)

· pk · (1 − p)n−k = 22.4 % ,

QUESTION : What do you say ?
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EXAMPLE : ( continued · · · )

We found the exact binomial value

P (X ≤ 26) = 22.4 % ,

and the CLT approximation

P (X ≤ 26) ∼= Φ(
26 − 30

4.58
) = Φ(−0.87) ∼= 19.2 % .

It is better to

”spread ” P (X = 26) over the interval [25.5 , 26.5] . ( Why ? )

Thus it is better to adjust the approximation to P (X ≤ 26) by

P (X ≤ 26) ∼= Φ(
26.5 − 30

4.58
) = Φ(−0.764) ∼= 22.2 % .

QUESTION : What do you say now ?
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EXERCISE :

Consider the Binomial distribution with n = 676 and p = 1
26

:

0 10 20 30 40 50

x

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
p
(x

)

The Binomial (n = 676, p = 1
26

), shown in [0, 50] .
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EXERCISE : (continued · · · ) (Binomial : n = 676 , p = 1
26

)

• Write down the Binomial formula for P (X = 24) .

• Evaluate P (X = 24) using the Binomial recurrence formula .

• Compute E[X] = np and σ(X) =
√

np(1 − p) .

The Poisson probability mass function

P (X = k) = e−λ λk

k!
, (with λ = np ) ,

approximates the Binomial when p is small and n large.

• Evaluate P (X = 24) using the Poisson recurrence formula .

• Compute the standard normal approximation to P (X = 24).

ANSWERS : 7.61 % , 7.50 % , 7.36 % .
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EXPERIMENT :

Compare the accuracy of the Poisson and the adjusted Normal
approximations to the Binomial, for different values of n .

k n Binomial Poisson Normal

2 4 0.6875 0.6767 0.6915
4 8 0.6367 0.6288 0.6382
8 16 0.5982 0.5925 0.5987

16 32 0.5700 0.5660 0.5702
32 64 0.5497 0.5468 0.5497
64 128 0.5352 0.5332 0.5352

P (X ≤ k) , where k = ⌊np⌋, with p = 0.5 .

• Any conclusions ?
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EXPERIMENT : ( continued · · · )

Compare the accuracy of the Poisson and the adjusted Normal
approximations to the Binomial, for different values of n .

k n Binomial Poisson Normal

0 4 0.6561 0.6703 0.5662
0 8 0.4305 0.4493 0.3618
1 16 0.5147 0.5249 0.4668
3 32 0.6003 0.6025 0.5702
6 64 0.5390 0.5423 0.5166

12 128 0.4805 0.4853 0.4648
25 256 0.5028 0.5053 0.4917
51 512 0.5254 0.5260 0.5176

P (X ≤ k) , where k = ⌊np⌋, with p = 0.1 .

• Any conclusions ?
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EXPERIMENT : ( continued · · · )

Compare the accuracy of the Poisson and the adjusted Normal
approximations to the Binomial, for different values of n .

k n Binomial Poisson Normal

0 4 0.9606 0.9608 0.9896
0 8 0.9227 0.9231 0.9322
0 16 0.8515 0.8521 0.8035
0 32 0.7250 0.7261 0.6254
0 64 0.5256 0.5273 0.4302
1 128 0.6334 0.6339 0.5775
2 256 0.5278 0.5285 0.4850
5 512 0.5948 0.5949 0.5670

10 1024 0.5529 0.5530 0.5325
20 2048 0.5163 0.5165 0.5018
40 4096 0.4814 0.4817 0.4712

P (X ≤ k) , where k = ⌊np⌋, with p = 0.01 .

• Any conclusions ?
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SAMPLE STATISTICS

Sampling can consist of

• Gathering random data from a large population, for example,

− measuring the height of randomly selected adults

− measuring the starting salary of random CS graduates

• Recording the results of experiments , for example,

− measuring the breaking strength of randomly selected bolts

− measuring the lifetime of randomly selected light bulbs

• We shall generally assume the population is infinite (or large) .

• We shall also generally assume the observations are independent .

• The outcome of any experiment does not affect other experiments.
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DEFINITIONS :

• A random sample from a population consists of

independent , identically distributed random variables,

X1 , X2 , · · · , Xn .

• The values of the Xi are called the outcomes of the experiment.

• A statistic is a function of X1, X2, · · · , Xn .

• Thus a statistic itself is a random variable .
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EXAMPLES :

The most important statistics are

• The sample mean

X̄ ≡ 1

n
(X1 + X2 + · · · + Xn) .

• The sample variance

S2 ≡ 1

n

n
∑

k=1

(Xk − X̄)2 .

( to be discussed in detail · · · )

• The sample standard deviation S =
√
S2 .
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For a random sample

X1 , X2 , · · · , Xn ,

one can think of many other statistics such as :

• The order statistic in which the observation are ordered in size .

• The sample median , which is

− the midvalue of the order statistic (if n is odd),

− the average of the two middle values (if n is even).

• The sample range : the difference between the largest and the
smallest observation.
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EXAMPLE : For the 8 observations

−0.737 , 0.511 ,−0.083 , 0.066 ,−0.562 ,−0.906 , 0.358 , 0.359 ,

from the first row of the Table given earlier, we have

Sample mean :

X̄ =
1

8
( − 0.737 + 0.511 − 0.083 + 0.066

− 0.562 − 0.906 + 0.358 + 0.359 ) = − 0.124 .

Sample variance :
1

8
{ (−0.737 − X̄)2 + (0.511 − X̄)2 + (−0.083 − X̄)2

+ (0.066 − X̄)2 + (−0.562 − X̄)2 + (−0.906 − X̄)2

+ (0.358 − X̄)2 + (0.359 − X̄)2 } = 0.26 .

Sample standard deviation :
√

0.26 = 0.51 .
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EXAMPLE : ( continued · · · )

For the 8 observations

−0.737 , 0.511 ,−0.083 , 0.066 ,−0.562 ,−0.906 , 0.358 , 0.359 ,

we also have

The order statistic :

−0.906 ,−0.737 ,−0.562 ,−0.083 , 0.066 , 0.358 , 0.359 , 0.511 .

The sample median : (−0.083 + 0.066)/2 = − 0.0085 .

The sample range : 0.511 − (−0.906) = 1.417 .
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The Sample Mean

Suppose the population mean and standard deviation are µ and σ .

As before, the sample mean

X̄ ≡ 1

n
(X1 + X2 + · · · + Xn) ,

is also a random variable , with expected value

µX̄ ≡ E[X̄ ] = E[
1

n
(X1 + X2 + · · · + Xn) ] = µ ,

and variance

σ2
X̄ ≡ V ar(X̄) =

σ2

n
,

Standard deviation of X̄ : σX̄ =
σ√
n
.

NOTE : The sample mean approximates the population mean µ .
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How well does the sample mean approximate the population mean ?

From the Corollary to the CLT we know

X̄ − µ

σ/
√
n
,

is approximately standard normal when n is large.

Thus, for given n and z , (z > 0) , we can, for example, estimate

P ( | X̄ − µ

σ/
√
n

| ≤ z ) ∼= 1 − 2 Φ(−z) .

(A problem is that we often don’t know the value of σ · · · )
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It follows that

P
(

| X̄ − µ

σ/
√
n

| ≤ z
)

= P
(

| X̄ − µ | ≤ σz√
n

)

= P
(

µ ∈ [ X̄ − σz√
n
, X̄ +

σz√
n

]
)

∼= 1 − 2 Φ(−z) ,

which gives us a confidence interval estimate of µ .
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We found : P ( µ ∈ [X̄ − σz√
n
, X̄ +

σz√
n

] ) ∼= 1 − 2 Φ(−z) .

EXAMPLE : We take samples from a given population :

• The population mean µ is unknown .

• The population standard deviation is σ = 3

• The sample size is n = 25 .

• The sample mean is X̄ = 4.5 .

Taking z=2 , we have

P ( µ ∈ [ 4.5 − 3 · 2√
25

, 4.5 +
3 · 2√

25
] ) = P ( µ ∈ [ 3.3 , 5.7 ] )

∼= 1 − 2 Φ(−2) ∼= 95 % .

We call [ 3.3 , 5.7 ] the 95 % confidence interval estimate of µ .
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EXERCISE :

As in the preceding example, µ is unknown, σ = 3 , X̄ = 4.5 .

Use the formula

P ( µ ∈ [X̄ − σz√
n
, X̄ +

σz√
n

] ) ∼= 1 − 2 Φ(−z) ,

to determine

• The 50 % confidence interval estimate of µ when n = 25 .

• The 50 % confidence interval estimate of µ when n = 100 .

• The 95 % confidence interval estimate of µ when n = 100 .

NOTE : In the Standard Normal Table , check that

• The 50 % confidence interval corresponds to z = 0.68 ∼= 0.7 .

• The 95 % confidence interval corresponds to z = 1.96 ∼= 2.0 .
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The Sample Variance We defined the sample variance as

S2 ≡ 1

n

n
∑

k=1

(Xk − X̄)2 =

n
∑

k=1

[ (Xk − X̄)2 · 1

n
] .

Earlier, for discrete random variables X, we defined the variance as

σ2 ≡ E[ (X − µ)2] ≡
∑

k

[ (Xk − µ)2 · p(Xk) ] .

• These two formulas look deceptively similar !

• In fact, they are quite different !

• The 1st sum for S2 is only over the sampled X-values.

• The 2nd sum for σ2 is over all X-values.

• The 1st sum for S2 has constant weights .

• The 2nd sum for σ2 uses the probabilities as weights .
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We have just argued that the sample variance

S2 ≡ 1

n

n
∑

k=1

(Xk − X̄)2 ,

and the population variance (for discrete random variables)

σ2 ≡ E[ (X − µ)2] ≡
∑

k

[ (Xk − µ)2 · p(Xk) ] ,

are quite different.

Nevertheless, we will show that for large n their values are close !

Thus for large n we have the approximation

S2 ∼= σ2 .
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FACT 1 : We (obviously) have that

X̄ =
1

n

n
∑

k=1

Xk implies
n

∑

k=1

Xk = nX̄ .

FACT 2 : From

σ2 ≡ V ar(X) ≡ E[(X − µ)2] = E[X2] − µ2 ,

we (obviously) have
E[X2] = σ2 + µ2 .

FACT 3 : Recall that for independent, identically distributed Xk ,

where each Xk has mean µ and variance σ2 , we have

µX̄ ≡ E[X̄ ] = µ , σ2
X̄ ≡ E[(X̄ − µ)2] =

σ2

n
.
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FACT 4 : ( Useful for computing S2 efficiently ) :

S2 ≡ 1

n

n
∑

k=1

(Xk − X̄)2 =
1

n
[

n
∑

k=1

X2
k ] − X̄2 .

PROOF :

S2 =
1

n

n
∑

k=1

(Xk − X̄)2

=
1

n

n
∑

k=1

(X2
k − 2XkX̄ + X̄2)

=
1

n
[

n
∑

k=1

X2
k − 2X̄

n
∑

k=1

Xk + nX̄2] ( now use Fact 1 )

=
1

n
[

n
∑

k=1

X2
k − 2nX̄2 + nX̄2] =

1

n
[

n
∑

k=1

X2
k ] − X̄2 QED !
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THEOREM : The sample variance

S2 ≡ 1

n

n
∑

k=1

(Xk − X̄)2

has expected value

E[S2] = (1 − 1

n
) · σ2 .

PROOF :

E[S2] = E[
1

n

n
∑

k=1

(Xk − X̄)2 ]

= E
[ 1

n

n
∑

k=1

[X2
k ] − X̄2

]

( using Fact 4 )

=
1

n

n
∑

k=1

E[X2
k ] − E[X̄2]

= σ2 + µ2 − (σ2
X̄ + µ2

X̄) ( using Fact 2 n+ 1 times ! )

= σ2 + µ2 − (
σ2

n
+ µ2) = (1 − 1

n
) σ2 . ( Fact 3 ) QED !

REMARK : Thus limn→∞ E[S2] = σ2 .
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Most authors instead define the sample variance as

Ŝ2 ≡ 1

n− 1

n
∑

k=1

(Xk − X̄)2 .

In this case the Theorem becomes :

THEOREM : The sample variance

Ŝ2 ≡ 1

n− 1

n
∑

k=1

(Xk − X̄)2

has expected value

E[Ŝ2] = σ2 .

EXERCISE : Check this !
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EXAMPLE : The random sample of 120 values of a uniform

random variable on [−1, 1] in an earlier Table has

X̄ =
1

120

120
∑

k=1

Xk = 0.030 ,

S2 =
1

120

120
∑

k=1

(Xk − X̄)2 = 0.335 ,

S =
√
S2 = 0.579 ,

while
µ = 0 ,

σ2 =

∫ 1

−1

(x− µ)2 1

2
dx =

1

3
,

σ =
√
σ2 =

1√
3

= 0.577 .

• What do you say ?
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EXAMPLE :

• Generate 50 uniform random numbers in [−1, 1] .

• Compute their average.

• Do the above 500 times.

• Call the results X̄k , k = 1, 2, · · · , 500 .

• Thus each X̄k is the average of 50 random numbers.

• Compute the sample statistics X̄ and S of these 500 values.

• Can you predict the values of X̄ and S ?
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EXAMPLE : ( continued · · · )

Results : X̄ =
1

500

500
∑

k=1

X̄k = − 0.00136 ,

S2 =
1

500

500
∑

k=1

(X̄k − X̄)2 = 0.00664 ,

S =
√
S2 = 0.08152 .

EXERCISE :

• What is the value of E[X̄ ] ?

• Compare X̄ to E[X̄] .

• What is the value of V ar(X̄) ?

• Compare S2 to V ar(X̄) .
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Estimating the variance of a normal distribution

We have shown that

S2 ≡ 1

n

n
∑

k=1

(Xk − X̄)2 ∼= σ2 .

How good is this approximation for normal random variables Xk ?

To answer this we need :

FACT 5 :
n

∑

k=1

(Xk − µ)2 −
n

∑

k=1

(Xk − X̄)2 = n(X̄ − µ)2 .

PROOF :

LHS =
∑n

k=1{ X2
k − 2Xkµ + µ2 − X2

k + 2XkX̄ − X̄2 }

= −2nX̄µ + nµ2 + 2nX̄2 − nX̄2

= nX̄2 − 2nX̄µ + nµ2 = RHS . QED !
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Rewrite Fact 5
n

∑

k=1

(Xk − µ)2 −
n

∑

k=1

(Xk − X̄)2 = n(X̄ − µ)2 ,

as
n

∑

k=1

(Xk − µ

σ

)2

− n

σ2

1

n

n
∑

k=1

(Xk − X̄)2 =
(X̄ − µ

σ/
√
n

)2

,

and then as n
∑

k=1

Z2
k − n

σ2
S2 = Z2 ,

where
S2 is the sample variance ,

and

Z and Zk are standard normal because the Xk are normal .

Finally, we can write the above as

n

σ2
S2 = χ2

n − χ2
1 . ( Why ? )
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We have found that
n

σ2
S2 = χ2

n − χ2
1 .

THEOREM : For samples from a normal distribution :

n

σ2
S2 has the χ2

n−1 distribution !

PROOF : Omitted (and not as obvious as it might appear !) .

REMARK : If we use the alternate definition

Ŝ2 ≡ 1

n− 1

n
∑

k=1

(Xk − X̄)2 ,

then the Theorem becomes

n− 1

σ2
Ŝ2 has the χ2

n−1 distribution .
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For normal random variables :
n− 1

σ2
Ŝ2 has the χ2

n−1 distribution

EXAMPLE : For a large shipment of light bulbs we know that :

• The lifetime of the bulbs has a normal distribution .

• The standard deviation is claimed to be σ = 100 hours.

( The mean lifetime µ is not given. )

Suppose we test the lifetime of 16 bulbs. What is the probability
that the sample standard deviation Ŝ satisfies Ŝ ≥ 129 hours ?

SOLUTION :

P (Ŝ ≥ 129) = P (Ŝ2 ≥ 1292) = P
(n− 1

σ2
Ŝ2 ≥ 15

1002
1292

)

∼= P (χ2
15 ≥ 24.96) ∼= 5 % ( from the χ2 Table ) .

QUESTION : If Ŝ = 129 then would you believe that σ = 100 ?
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(x

)

The Chi-Square density functions for n = 5, 6, · · · , 15 .

(For large n they look like normal density functions .)
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EXERCISE :

In the preceding example, also compute

P ( χ2
15 ≥ 24.96 )

using the standard normal approximation .

EXERCISE :

Consider the same shipment of light bulbs :

• The lifetime of the bulbs has a normal distribution .

• The mean lifetime is not given.

• The standard deviation is claimed to be σ = 100 hours.

Suppose we test the lifetime of only 6 bulbs .

• For what value of s is P (Ŝ ≤ s) = 5 % ?
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EXAMPLE : For the data below from a normal population :

• Estimate the population standard deviation.

• Determine a 95 percent confidence interval for σ.

-0.047 0.126 -0.037 0.148
0.198 0.073 -0.025 -0.070

-0.197 -0.026 -0.062 -0.004
-0.164 0.265 -0.274 0.188

SOLUTION : We find ( with n = 16 ) that

X̄ =
1

n

n
∑

1

Xi = 0.00575 ,

and

Ŝ2 =
1

n− 1

n
∑

k=1

(Xk − X̄)2 = 0.02278 .
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SOLUTION : We have n = 16 , X̄ = 0.00575 , Ŝ2 = 0.02278 .

• Estimate the population standard deviation :

ANSWER : σ ∼= Ŝ =
√

0.02278 = 0.15095 .

• Compute a 95 percent confidence interval for σ :

ANSWER : From the Chi-Square Table :

P (χ2
15 ≤ 6.26) = 0.025 , P (χ2

15 > 27.49) = 0.025 .

(n− 1) Ŝ2

σ2
= 6.26 ⇒ σ2 =

(n− 1)Ŝ2

6.26
=

15 · 0.02278
6.26

= 0.05458

(n− 1) Ŝ2

σ2
= 27.49 ⇒ σ2 =

(n− 1)Ŝ2

27.49
=

15 · 0.02278
27.49

= 0.01223

Thus the 95 % confidence interval for σ is

[
√

0.01223 ,
√

0.05458 ] = [ 0.106 , 0.234 ] .
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Samples from Finite Populations

Samples from a finite population can be taken

(1) with replacement

(2) without replacement

• In Case 1 the sample

X1 , X2 , · · · , Xn ,

may contain the same outcome more than once.

• In Case 2 the outcomes are distinct .

• Case 2 arises, e.g., when the experiment destroys the sample.
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EXAMPLE :

Suppose a bag contains three balls, numbered 1, 2, and 3.

A sample of two balls is drawn at random from the bag.

Recall that ( here with n = 2 ) :

X̄ ≡ 1

n
(X1 + X2 + · · · + Xn) .

S2 ≡ 1

n

n
∑

k=1

(Xk − X̄)2 .

For both, sampling with and without replacement , compute

E[X̄ ] and E[S2] .
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• With replacement : The possible samples are

(1, 1) , (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3) , (3, 1) , (3, 2) , (3, 3) ,

each with equal probability 1
9

.

The sample means X̄ are

1 ,
3

2
, 2 ,

3

2
, 2 ,

5

2
, 2 ,

5

2
, 3 ,

with

E[X̄] =
1

9
(1 +

3

2
+ 2 +

3

2
+ 2 +

5

2
+ 2 +

5

2
+ 3) = 2 .

The sample variances S2 are

0 ,
1

4
, 1 ,

1

4
, 0 ,

1

4
, 1 ,

1

4
, 0 . ( Check ! )

with

E[S2] =
1

9
(0 +

1

4
+ 1 +

1

4
+ 0 +

1

4
+ 1 +

1

4
+ 0) =

1

3
.
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• Without replacement : The possible samples are

(1, 2) , (1, 3) , (2, 1) , (2, 3) , (3, 1) , (3, 2) ,

each with equal probability 1
6

.

The sample means X̄ are

3

2
, 2 ,

3

2
,

5

2
, 2 ,

5

2
,

with expected value

E[X̄] =
1

6
(
3

2
+ 2 +

3

2
+

5

2
+ 2 +

5

2
) = 2 .

The sample variances S2 are

1

4
, 1 ,

1

4
,

1

4
, 1 ,

1

4
. ( Check ! )

with expected value

E[S2] =
1

6
(
1

4
+ 1 +

1

4
+

1

4
+ 1 +

1

4
) =

1

2
.
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EXAMPLE : ( continued · · · )

A bag contains three balls, numbered 1, 2, and 3.

A sample of two balls is drawn at random from the bag.

We have computed E[X̄] and E[S2] :

• With replacement : E[X̄ ] = 2 , E[S2] = 1
3
,

• Without replacement : E[X̄] = 2 , E[S2] = 1
2
.

We also know the population mean and variance :

µ = 1 · 1

3
+ 2 · 1

3
+ 3 · 1

3
= 2 ,

σ2 = (1 − 2)2 · 1

3
+ (2 − 2)2 · 1

3
+ (3 − 2)2 · 1

3
=

2

3
.

278



EXAMPLE : ( continued · · · )

We have computed :

• Population statistics : µ = 2 , σ2 = 2
3

,

• Sampling with replacement : E[X̄ ] = 2 , E[S2] = 1

3
,

• Sampling without replacement : E[X̄] = 2 , E[S2] = 1
2

.

According to the earlier Theorem

E[S2] = (1 − 1

n
) σ2 .

In this example the sample size is n = 2 , thus

E[S2] = (1 − 1

2
) σ2 =

1

3
.

NOTE : E[S2] is wrong for sampling without replacement !
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QUESTION :

Why is E[S2] wrong for sampling without replacement ?

ANSWER : Without replacement the outcomes Xk of a sample

X1 , X2 , · · · , Xn,

are not independent !

In our example , where n = 2 , and where the possible samples are

(1, 2) , (1, 3) , (2, 1) , (2, 3) , (3, 1) , (3, 2) ,

we have, e.g.,

P (X2 = 1 | X1 = 1) = 0 , P (X2 = 1 | X1 = 2) =
1

2
.

Thus X1 and X2 are not independent . ( Why not ? )
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NOTE :

Let N be the population size and n the sample size .

Suppose N is very large compared to n .

For example, n = 2 , and the population is

{ 1 , 2 , 3 , · · · , N } .

Then we still have

P (X2 = 1 | X1 = 1) = 0 ,

but for k 6= 1 we have

P (X2 = k | X1 = 1) =
1

N − 1
.

One could say that X1 and X2 are ”almost independent ” . ( Why ? )
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The Sample Correlation Coefficient

Recall the covariance of random variables X and Y :

σX,Y ≡ Cov(X,Y ) ≡ E[ (X−µX) (Y−µY ) ] = E[XY ] −E[X] E[Y ] .

It is often better to use a scaled version, the correlation coefficient

ρX,Y ≡ σX,Y

σX σY

,

where σX and σY are the standard deviation of X and Y .

We have

• | σX,Y | ≤ σX σY , (the Cauchy-Schwartz inequality )

• Thus | ρX,Y | ≤ 1 , ( Why ? )

• If X and Y are independent then ρX,Y = 0 . ( Why ? )
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Similarly, the sample correlation coefficient of a data set

{ (Xi, Yi) }N
i=1 ,

is defined as

RX,Y ≡
∑N

i=1(Xi − X̄)(Yi − Ȳ )
√

∑N
i=1(Xi − X̄)2

√

∑N
i=1(Yi − Ȳ )2

;

for which we have another version of the Cauchy-Schwartz inequality :

| RX,Y | ≤ 1 .

Like the covariance, RX,Y measures ”concordance ” of X and Y :

• If Xi > X̄ when Yi > Ȳ and Xi < X̄ when Yi < Ȳ then

RX,Y > 0 .

• If Xi > X̄ when Yi < Ȳ and Xi < X̄ when Yi > Ȳ then

RX,Y < 0 .
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The sample correlation coefficient

RX,Y ≡
∑N

i=1(Xi − X̄)(Yi − Ȳ )
√

∑N
i=1(Xi − X̄)2

√

∑N
i=1(Yi − Ȳ )2

.

can also be used to test for linearity of the data.

In fact,

• If | RX,Y | = 1 then X and Y are related linearly .

Specifically,

• If RX,Y = 1 then Yi = cXi + d, for constants c, d, with c > 0 .

• If RX,Y = −1 then Yi = cXi + d, for constants c, d, with c < 0 .

Also,

• If | RX,Y | ∼= 1 then X and Y are almost linear .
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EXAMPLE :

• Consider the average daily high temperature in Montreal in March.

• The Table shows these averages, taken over a number of years :

1 -1.52 8 -0.52 15 2.08 22 3.39 29 6.95
2 -1.55 9 -0.67 16 1.22 23 3.69 30 6.83
3 -1.72 10 0.01 17 1.73 24 4.45 31 6.93
4 -0.94 11 0.96 18 1.93 25 4.74
5 -0.51 12 0.49 19 3.10 26 5.01
6 -0.29 13 1.26 20 3.05 27 4.66
7 0.02 14 1.99 21 3.32 28 6.45

Average daily high temperature in Montreal in March : 1943-2014 .

( Source : http://climate.weather.gc.ca/ )

These data have sample correlation coefficient RX,Y = 0.98 .
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A scatter diagram showing the average daily high temperature.

The sample correlation coefficient is RX,Y = 0.98
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EXERCISE :

• The Table below shows class attendance and course grade/100.

• The attendance was sampled in 18 sessions.

11 47 13 43 15 70 17 72 18 96 14 61 5 25 17 74
16 85 13 82 16 67 17 91 16 71 16 50 14 77 12 68
8 62 13 71 12 56 15 81 16 69 18 93 18 77 17 48

14 82 17 66 16 91 17 67 7 43 15 86 18 85 17 84
11 43 17 66 18 57 18 74 13 73 15 74 18 73 17 71
14 69 15 85 17 79 18 84 17 70 15 55 14 75 15 61
16 61 4 46 18 70 0 29 17 82 18 82 16 82 14 68
9 84 15 91 15 77 16 75

Class attendance - Course grade

• Draw a scatter diagram showing the data.

• Determine the sample correlation coefficient .

• Any conclusions ?
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Maximum Likelihood Estimators

EXAMPLE :

Suppose a random variable has a normal distribution with mean 0 .

Thus the density function is

f(x) =
1√

2π σ
e−

1

2
x2/σ2

.

• Suppose we don’t know σ (the population standard deviation).

• How can we estimate σ from observed data ?

• ( We want a formula for estimating σ . )

• Don’t we already have such a formula ?
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EXAMPLE : ( continued · · · )

We know we can estimate σ2 by the sample variance

S2 ≡ 1

n

n
∑

k=1

(Xk − X̄)2 .

In fact, we have proved that

E[S2] = (1 − 1

n
) σ2 .

• Thus, we can call S2 an estimator of σ2 .

• The ”maximum likelihood procedure” derives such estimators.
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The maximum likelihood procedure is the following :

Let
X1 , X2 , · · · , Xn ,

be
independent, identically distributed ,

each having
density function f(x ; σ) ,

with unknown parameter σ .

By independence , the joint density function is

f(x1, x2, · · · , xn ; σ) = f(x1;σ) f(x2;σ) · · · f(xn;σ) ,

DEFINITION : The maximum likelihood estimate σ̂ is

the value of σ that maximizes f(x1, x2, · · · , xn ; σ) .

NOTE : σ̂ will be a function of x1, x2, · · · , xn .
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EXAMPLE : For our normal distribution with mean 0 we have

f(x1, x2, · · · , xn ; σ) =
e−

1

2σ2

Pn
k=1

x2

k

(
√

2π σ)n
. ( Why ? )

To find the maximum (with respect to σ ) we set

d

dσ
f(x1, x2, · · · , xn ; σ) = 0 , ( by Calculus ! )

or, equivalently , we set

d

dσ
log

(e−
1

2σ2

Pn
k=1

x2

k

σn

)

= 0 . ( Why equivalent ? )

Taking the (natural) logarithm gives

d

dσ

(

− 1

2σ2

n
∑

k=1

x2
k − n log σ

)

= 0 .
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EXAMPLE : ( continued · · · )

We had
d

dσ

(

− 1

2σ2

n
∑

k=1

x2
k − n log σ

)

= 0 .

Taking the derivative gives
∑n

k=1 x
2
k

σ3
− n

σ
= 0 ,

from which

σ̂2 =
1

n

n
∑

k=1

x2
k .

Thus we have derived the maximum likelihood estimate

σ̂ =
1√
n

(

n
∑

k=1

X2
k

)
1

2

. ( Surprise ? )
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EXERCISE :

Suppose a random variable has the general normal density function

f(x ; µ, σ) =
1√

2π σ
e−

1

2
(x−µ)2/σ2

,

with unknown mean µ and unknown standard deviation σ .

Derive maximum likelihood estimators for both µ and σ as follows :

For the joint density function

f(x1, x2, · · · , xn;µ, σ) = f(x1;µ, σ) f(x2;µ, σ) · · · f(xn;µ, σ) ,

• Take the log of f(x1, x2, · · · , xn ; µ, σ) .

• Set the partial derivative w.r.t. µ equal to zero.

• Set the partial derivative w.r.t. σ equal to zero.

• Solve these two equations for µ̂ and σ̂ .
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EXERCISE : ( continued · · · )

The maximum likelihood estimators turn out to be

µ̂ =
1

n

n
∑

k=1

Xk ,

σ̂ =
1√
n

(

n
∑

k=1

(Xk − X̄)2
) 1

2

,

that is,

µ̂ = X̄ , ( the sample mean ) ,

σ̂ = S ( the sample standard deviation ) .
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NOTE :

• Earlier we defined the sample variance as

S2 =
1

n

n
∑

k=1

(Xk − X̄)2 .

• Then we proved that, in general,

E[S2] = (1 − 1

n
) σ2 ∼= σ2.

• In the preceding exercise we derived the estimator for σ !

• ( But we did so specifically for the general normal distribution. )
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EXERCISE :

A random variable has the standard exponential distribution

with density function

f(x ; λ) =







λe−λx , x > 0

0 , x ≤ 0

• Suppose we don’t know λ .

• Derive the maximum likelihood estimator of λ .

• ( Can you guess what the formula will be ? )
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EXAMPLE : Consider the special exponential density function

f(x ; λ) =







λ2xe−λx , x > 0

0 , x ≤ 0

0 1 2 3 4 5

x
0.00

0.25

0.50

0.75

1.00

1.25

1.50

f
(x

)

0 1 2 3 4 5

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
(x

)

Density and distribution functions for λ = 1 , 2 , 3 , 4 .
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EXAMPLE : ( continued · · · )

For the maximum likelihood estimator of λ , we have

f(x ; λ) = λ2 x e−λx , for x > 0 ,

so, assuming independence, the joint density function is

f(x1, x2, · · · , xn ; λ) = λ2n x1x2 · · · xn e
−λ(x1+x2+ ··· +xn) .

To find the maximum (with respect to λ ) we set

d

dλ
log

(

λ2n x1x2 · · · xn e−λ(x1+x2+ ··· +xn)
)

= 0 .

Taking the logarithm gives

d

dλ

(

2n log λ +

n
∑

k=1

log xk − λ

n
∑

k=1

xk

)

= 0 .
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EXAMPLE : ( continued · · · )

We had

d

dλ

(

2n log λ +

n
∑

k=1

log xk − λ

n
∑

k=1

xk

)

= 0 .

Differentiating gives

2n

λ
−

n
∑

k=1

xk = 0 ,

from which

λ̂ =
2n

∑n
k=1 xk

.

Thus we have derived the maximum likelihood estimate

λ̂ =
2n

∑n
k=1Xk

=
2

X̄
.

NOTE : This result suggests that perhaps E[X] = 2/λ . ( Why ? )
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EXERCISE :

For the special exponential density function in the preceding example,

f(x ; λ) =







λ2xe−λx , x > 0

0 , x ≤ 0

• Verify that
∫ ∞

0

f(x ; λ) dx = 1 .

• Also compute

E[X] =

∫ ∞

0

x f(x ; λ) dx

• Is it indeed true that

E[X] =
2

λ
?
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NOTE :

• Maximum likelihood estimates also work in the discrete case .

• In such case we maximize the probability mass function .

EXAMPLE :

Find the maximum likelihood estimator of p in the Bernoulli trial

P (X = 1) = p ,

P (X = 0) = 1 − p .

SOLUTION : We can write

P (x ; p) ≡ P (X = x) = px (1 − p)1−x , ( x = 0, 1 ) ( ! )

so, assuming independence , the joint probability mass function is

P (x1, x2, · · · , xn; p) = px1(1−p)1−x1 px2(1−p)1−x2 · · · pxn(1−p)1−xn

= p
Pn

k=1
xk · (1 − p)n · (1 − p)−

Pn
k=1

xk .
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EXAMPLE : ( continued · · · )

We found

P (x1, x2, · · · , xn; p) = p
Pn

k=1
xk · (1 − p)n · (1 − p)−

Pn
k=1

xk .

To find the maximum (with respect to p ) we set

d

dp
log

(

p
Pn

k=1
xk · (1 − p)n · (1 − p)−

Pn
k=1

xk

)

= 0 .

Taking the logarithm gives

d

dp

(

log p
n

∑

k=1

xk + n log(1 − p) − log (1 − p)
n

∑

k=1

xk

)

= 0 .

Differentiating gives

1

p

n
∑

k=1

xk − n

1 − p
+

1

1 − p

n
∑

k=1

xk = 0 .
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EXAMPLE : ( continued · · · )

We found

1

p

n
∑

k=1

xk − n

1 − p
+

1

1 − p

n
∑

k=1

xk = 0 ,

from which
( 1

p
+

1

1 − p

)

n
∑

k=1

xk =
n

1 − p
.

Multiplying by 1 − p gives

(1 − p

p
+ 1

)

n
∑

k=1

xk =
1

p

n
∑

k=1

xk = n ,

from which we obtain the maximum likelihood estimator

p̂ =

∑n
k=1Xk

n
≡ X̄ . ( Surprise ? )
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EXERCISE :

Consider the Binomial probability mass function

P (x ; p) ≡ P (X = x) =

(

N
x

)

· px · (1 − p)N−x ,

where x is an integer, (0 ≤ x ≤ N) .

• What is the joint probability mass function P (x1, x2, · · · , xn; p) ?

• ( Be sure to distinguish between N and n ! )

• Determine the maximum likelihood estimator p̂ of p .

• ( Can you guess what p̂ will be ? )
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Hypothesis Testing

• Often we want to decide whether a hypothesis is True or False.

• To do so we gather data, i.e., a sample .

• A typical hypothesis is that a random variable has a given mean .

• Based on the data we want to accept or reject the hypothesis.

• To illustrate concepts we consider an example in detail.

305



EXAMPLE :

We consider ordering a large shipment of 50 watt light bulbs.

The manufacturer claims that :

• The lifetime of the bulbs has a normal distribution .

• The mean lifetime is µ = 1000 hours.

• The standard deviation is σ = 100 hours.

We want to test the hypothesis that µ = 1000 .

We assume that :

• The lifetime of the bulbs has indeed a normal distribution .

• The standard deviation is indeed σ = 100 hours.

• We test the lifetime of a sample of 25 bulbs .
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Density function of X , Density function of X̄ (n = 25) ,

also indicating µ± σX , also indicating µX̄ ± σX̄ ,

(µX = 1000 , σX = 100) . (µX̄ = 1000 , σX̄ = 20 ).
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EXAMPLE : ( continued · · · )

We test a sample of 25 light bulbs :

• We find the sample average lifetime is X̄ = 960 hours.

• Do we accept the hypothesis that µ = 1000 hours ?

Using the standard normal Table we have the one-sided probability

P (X̄ ≤ 960) = Φ
(960 − 1000

100/
√

25

)

= Φ(−2.0) = 2.28 % ,

(assuming that the average lifetime is indeed 1000 hours).

• Would you accept the hypothesis that µ = 1000 ?

• Would you accept (and pay for !) the shipment ?
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EXAMPLE : ( continued · · · )

We test a sample of 25 light bulbs :

• Suppose instead the sample average lifetime is X̄ = 1040 hours.

• Do we accept that µ = 1000 hours ?

Using the standard normal Table we have one-sided probability

P (X̄ ≥ 1040) = 1 − Φ
(1040 − 1000

100/
√

25

)

= 1 − Φ(2) = Φ(−2) = 2.28 % ,

(assuming again that the average lifetime is indeed 1000 hours).

• Would you accept the hypothesis that that the mean is 1000 hours ?

• Would you accept the shipment ? ( ! )
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EXAMPLE : ( continued · · · )

Suppose that we accept the hypothesis that µ = 1000 if

960 ≤ X̄ ≤ 1040 .

Thus, if indeed µ = 1000 , we accept the hypothesis with probability

P ( | X̄−1000 |≤ 40 ) = 1 − 2Φ
(960 − 1000

100/
√

25

)

= 1−2Φ(−2) ∼= 95 % ,

and we reject the hypothesis with probability

P ( | X̄ − 1000 | ≥ 40 ) = 100 % − 95 % = 5 % .
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Density function of X̄ (n = 25) , with µ = µX̄ = 1000 , σX̄ = 20 ,

P (960 ≤ X̄ ≤ 1040) ∼= 95%
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EXAMPLE : ( continued · · · )

What is the probability of

acceptance of the hypothesis if µ is different from 1000 ?

• If the actual mean is µ = 980 , then acceptance has probability

P (960 ≤ X̄ ≤ 1040) = Φ(
1040 − 980

100/
√

25
) − Φ(

960 − 980

100/
√

25
)

= Φ(3) − Φ(−1) = 1 − Φ(−3) − Φ(−1)

(1 − 0.0013) − 0.1587 = 84 % .

• If the actual mean is µ = 1040 , then acceptance has probability

P (960 ≤ X̄ ≤ 1040) = Φ(
1040 − 1040

100/
√

25
) − Φ(

960 − 1040

100/
√

25
)

= Φ(0) − Φ(−4) ∼= 50 % .

312



µ = µX̄ = 980 µ = µX̄ = 1000 µ = µX̄ = 1040

P (accept) = 84% P (accept) = 95% P (accept) = 50%

Density functions of X̄ : n = 25 , σX̄ = 20

QUESTION 1 : How does P (accept) change when we “slide” the
density function of X̄ along the X̄-axis , i.e., when µ changes ?

QUESTION 2 : What is the effect of increasing the sample size n ?
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EXAMPLE :

Now suppose there are two lots of light bulbs :

• Lot 1 : Light bulbs with mean life time µ1 = 1000 hours,

• Lot 2 : Light bulbs with mean life time µ2 = 1100 hours.

We want to decide which lot our sample of 25 bulbs is from.

Consider the decision criterion x̂ , where 1000 ≤ x̂ ≤ 1100 :

• If X̄ ≤ x̂ then the sample is from Lot 1 .

• If X̄ > x̂ then the sample is from Lot 2 .
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There are two hypotheses :

• H1 : The sample is from Lot 1 (µ1 = 1000) .

• H2 : The sample is from Lot 2 (µ2 = 1100) .

We can make two types of errors :

• Type 1 error : Accept H2 when H1 is True ,

• Type 2 error : Accept H1 when H2 is True ,

which happen when, for given decision criterion x̂ ,

• Type 1 error : If X̄ > x̂ and the sample is from Lot 1 .

• Type 2 error : If X̄ ≤ x̂ and the sample is from Lot 2 .
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The density functions of X̄ (n = 25) , also indicating x̂ .

blue : (µ1, σ1) = (1000, 100) , red : (µ2, σ2) = (1100, 200) .

Type 1 error : area under the blue curve, to the right of x̂ .

Type 2 error : area under the red curve, to the left of x̂ .

QUESTION : What is the effect of moving x̂ on these errors ?
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RECALL :

• Type 1 error : If X̄ > x̂ and the sample is from Lot 1 .

• Type 2 error : If X̄ ≤ x̂ and the sample is from Lot 2 .

These errors occur with probability

• Type 1 error : P (X̄ ≥ x̂ | µ = µ1 ≡ 1000) .

• Type 2 error : P (X̄ ≤ x̂ | µ = µ2 ≡ 1100) .

We should have, for the (rather bad) choice x̂ = 1000 ,

• Type 1 error : P (X̄ ≥ 1000 | µ = µ1 ≡ 1000) = 0.5 .

and for the (equally bad) choice x̂ = 1100 ,

• Type 2 error : P (X̄ ≤ 1100 | µ = µ2 ≡ 1100) = 0.5 .
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Probability of Type 1 error vs. x̂ Probability of Type 2 error vs. x̂

(µ1, σ1) = (1000, 100) (µ2, σ2) = (1100, 100) .

Sample sizes : 2 (red) , 8 (blue) , 32 (black) .
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The probability of Type 1 and Type 2 errors versus x̂ .

Left : (µ1,σ1) = (1000,100), (µ2,σ2) = (1100,100).

Right : (µ1,σ1) = (1000,100), (µ2,σ2) = (1100,200).

Colors indicate sample size : 2 (red), 8 (blue), 32 (black) .

Curves of a given color intersect at the minimax x̂-value.
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The probability of Type 1 and Type 2 errors versus x̂ .

Left : (µ1,σ1) = (1000,100), (µ2,σ2) = (1100,300).

Right : (µ1,σ1) = (1000,100), (µ2,σ2) = (1100,400).

Colors indicate sample size : 2 (red), 8 (blue), 32 (black) .

Curves of a given color intersect at the minimax x̂-value.
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NOTE :

• There is an optimal value x̂∗ of x̂ .

• At x̂∗ the value of

max { P (Type 1 Error) , P (Type 2 Error) }

is minimized .

• We call x̂∗ the minimax value.

• The value of x̂∗ depends on σ1 and σ2 .

• The value of x̂∗ is independent of the sample size.

• (We will prove this!)
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The population density functions. The density functions of X̄ (n = 25) .

(µ1 , σ1) = (1000 , 100) (blue)

(µ2 , σ2) = (1100 , 200) (red)
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The density functions of X̄ (n = 25) , with minimax value of x̂ .

(µ1, σ1) = (1000, 100) (blue) , (µ2, σ2) = (1100, 200) (red) .
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The minimax value x̂∗ of x̂ is easily computed : At x̂∗ we have

P ( Type 1 Error ) = P ( Type 2 Error ) ,

⇐⇒
P (X̄ ≥ x̂∗ | µ = µ1) = P (X̄ ≤ x̂∗ | µ = µ2) ,

⇐⇒
Φ

( µ1 − x̂∗

σ1/
√
n

)

= Φ
( x̂∗ − µ2

σ2/
√
n

)

,

⇐⇒ µ1 − x̂∗

σ1/
√
n

=
x̂∗ − µ2

σ2/
√
n
, ( by monotonicity of Φ ) .

from which

x̂∗ =
µ1 · σ2 + µ2 · σ1

σ1 + σ2

. ( Check ! )

With µ1 = 1000 , σ1 = 100 , µ2 = 1100 , σ2 = 200 , we have

x̂∗ =
1000 · 200 + 1100 · 100

100 + 200
= 1033 .
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Thus we have proved the following :

FACT : Suppose Lot 1 and Lot 2 are normally distributed ,

with mean and standard deviation

(µ1 , σ1) and (µ2 , σ2) , where (µ1 < µ2) ,

and sample size n .

Then the value of decision criterion x̂ that minimizes

max { P (Type 1 Error) , P (Type 2 Error) } ,

i.e., the value of x̂ that minimizes

max { P (X̄ ≥ x̂ | µ = µ1, σ = σ1) , P (X̄ ≤ x̂ | µ = µ2, σ = σ2 } ,

is given by

x̂∗ =
σ1µ2 + σ2µ1

σ1 + σ2

.
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EXERCISE :

Determine the optimal decision criterion x̂∗ that minimizes

max { P (Type 1 Error) , P (Type 2 Error) } ,
when

(µ1, σ1) = (1000, 200) , (µ2, σ2) = (1100, 300) .

For this x̂∗ find the probability of a Type 1 and a Type 2 Error ,

when

n = 1 , n = 25 , n = 100 .
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EXAMPLE ( Known standard deviation ) :

Given : A sample of size 9 from a normal population with σ = 0.2

has sample mean
X̄ = 4.88 ,

Claim : The population mean is

µ = 5.00 , ( the ”null hypothesis ” H0 )

We see that | X̄ − µ | = | 4.88 − 5.00 | = 0.12 .

We reject H0 if P ( | X̄ − µ | ≥ 0.12 ) is rather small , say, if

P ( | X̄ − µ | ≥ 0.12 ) < 10 % ( ”level of significance ” 10 % )

Do we accept H0 ?
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SOLUTION ( Known standard deviation ) :

Given: n = 9 , σ = 0.2 , X̄ = 4.88, µ = 5.0, | X̄−µ |= 0.12 .

Since

Z ≡ X̄ − µ

σ/
√
n

is standard normal ,

the ”p-value ” ( from the standard normal Table ) is

P ( | X̄ − µ | ≥ 0.12 ) = P
(

| Z | ≥ 0.12

0.2/
√

9

)

= P ( | Z | ≥ 1.8 ) = 2 Φ(−1.8) ∼= 7.18 % .

Thus we reject the hypothesis that µ = 5.00 significance level 10 % .

NOTE : We would accept H0 if the level of significance were 5 % .

( We are “more tolerant” when the level of significance is smaller. )
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EXAMPLE ( Unknown standard deviation, large sample ) :

Given : A sample of size n = 64 from a normal population has

sample mean X̄ = 4.847 ,
and

sample standard deviation Ŝ = 0.234 .

Test the hypothesis that µ ≤ 4.8 ,

and reject it if P (X̄ ≥ 4.847) is small, say if

P ( X̄ ≥ 4.847 ) < 5 % .

NOTE : Since the sample size n = 64 is large, we can assume that

σ ∼= Ŝ = 0.234 .

329



SOLUTION ( Unknown standard deviation, large sample ) :

Given X̄ = 4.847 , µ = 4.8 , n = 64 , and σ ∼= Ŝ = 0.234 .

Using the standard normal approximation we have that

X̄ ≥ 4.847 ,
if and only if

Z ≡ X̄ − µ

σ/
√
n

≥ 4.847 − 4.8

0.234/8
= 1.6 .

From the standard normal Table we have the p-value

P (Z ≥ 1.6) = 1 − Φ(1.6) = Φ(−1.6) = 5.48 % .

CONCLUSION:

We (barely) accept H0 at level of significance 5 % .

( We would reject H0 at level of significance 10 % .)
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EXAMPLE ( Unknown standard deviation, small sample ) :

A sample of size n = 16 from a normal population has

sample mean X̄ = 4.88 ,
and

sample standard deviation Ŝ = 0.234 .

Test the null hypothesis

H0 : µ ≤ 4.8 ,

and reject it if
P (X̄ ≥ 4.88) < 5 % .

NOTE :

If n ≤ 30 then the approximation σ ∼= Ŝ is not so accurate.

In this case better use the ”student t-distribution ” Tn−1 .
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The T - distribution Table

n α = 0.1 α = 0.05 α =0.01 α = 0.005

5 -1.476 -2.015 -3.365 -4.032
6 -1.440 -1.943 -3.143 -3.707
7 -1.415 -1.895 -2.998 -3.499
8 -1.397 -1.860 -2.896 -3.355
9 -1.383 -1.833 -2.821 -3.250
10 -1.372 -1.812 -2.764 -3.169
11 -1.363 -1.796 -2.718 -3.106
12 -1.356 -1.782 -2.681 -3.055
13 -1.350 -1.771 -2.650 -3.012
14 -1.345 -1.761 -2.624 -2.977
15 -1.341 -1.753 -2.602 -2.947

This Table shows tα,n values such that P (Tn ≤ tα,n) = α .

( For example, P (T10 ≤ −2.764) = 1% )



SOLUTION ( Unknown standard deviation, small sample ) :

With n = 16 we have X̄ ≥ 4.88 if and only if

Tn−1 = T15 =
X̄ − µ

Ŝ/
√
n

≥ 4.88 − 4.8

0.234/4
∼= 1.37 .

The t-distribution Table shows that

P ( T15 ≥ 1.341 ) = P ( T15 ≤ −1.341 ) = 10 % ,

P ( T15 ≥ 1.753 ) = P ( T15 ≤ −1.753 ) = 5 % .

Thus we reject H0 at level of significance 10 % ,

but we accept H0 at level of significance 5 % .

( We are “more tolerant” when the level of significance is smaller. )
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EXAMPLE ( Testing a hypothesis on the standard deviation ) :

A sample of 16 items from a normal population has sample
standard deviation Ŝ = 2.58 .

Do you believe the population standard deviation satisfies σ ≤ 2.0 ?

SOLUTION : We know that
n− 1

σ2
Ŝ2 has the χ2

n−1 distribution .

For our data :

Ŝ ≥ 2.58 if and only if
n− 1

σ2
Ŝ2 ≥ 15

4
2.582 = 24.96 ,

and from the χ2 Table

P ( χ2
15 ≥ 25.0 ) ∼= 5.0 % .

Thus we (barely) accept the hypothesis at significance level 5 % .

( We would reject the hypothesis at significance level 10 % . )
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EXERCISE :

A sample of 16 items from a normal population has sample
standard deviation

Ŝ = 0.83 .

Do you believe the hypothesis that σ satisfies

σ ≤ 1.2 ?

( Probably Yes ! )
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LEAST SQUARES APPROXIMATION

Linear Least Squares

Recall the following data :

1 -1.52 8 -0.52 15 2.08 22 3.39 29 6.95
2 -1.55 9 -0.67 16 1.22 23 3.69 30 6.83
3 -1.72 10 0.01 17 1.73 24 4.45 31 6.93
4 -0.94 11 0.96 18 1.93 25 4.74
5 -0.51 12 0.49 19 3.10 26 5.01
6 -0.29 13 1.26 20 3.05 27 4.66
7 0.02 14 1.99 21 3.32 28 6.45

Average daily high temperature in Montreal in March : 1943-2014 .

( Source : http://climate.weather.gc.ca/ )

These data have sample correlation coefficient RX,Y = 0.98 .
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Average daily high temperature in Montreal in March
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Suppose that :

• We believe that these temperatures basically increase linearly .

• In fact we found the sample correlation coefficient Rxy = 0.98 .

• Thus we believe in a relation

Tk = c1 + c2 k , k = 1, 2, · · · , 31 .

• The deviations from linearity come from random influences .

• These random influences can be due to many factors .

• The deviations may have a normal distribution .

• We want to determine ”the best ” linear approximation.
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Average daily high temperatures, with a linear approximation .

QUESTION : Guess how this linear approximation was obtained !
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• There are many ways to determine such a linear approximation.

• Often used is the least squares method .

• This method determines the values of c1 and c2 that minimize

the least squares error :

N
∑

k=1

( Tk − (c1 + c2xk) )2 ,

where, in our example, N = 31 and xk = k .

• To do so set the partial derivatives w.r.t. c1 and c2 to zero :

w.r.t. c1 : − 2
N

∑

k=1

( Tk − (c1 + c2xk) ) = 0 ,

w.r.t. c2 : − 2

N
∑

k=1

xk ( Tk − (c1 + c2xk) ) = 0 .
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The least squares error versus c1 and c2 .
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From setting the partial derivatives to zero, we have

N
∑

k=1

( Tk − (c1 + c2xk) ) = 0 ,
N

∑

k=1

xk ( Tk − (c1 + c2xk) ) = 0 .

Solving these two equations for c1 and c2 gives

c2 =

∑N
k=1 xkTk − x̄

∑N
k=1 Tk

∑N
k=1 x

2
k − Nx̄2

,

and
c1 = T̄ − c2 x̄ ,

where

x̄ =
1

N

N
∑

k=1

xk , T̄ =
1

N

N
∑

k=1

Tk .

EXERCISE : Check these formulas !
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EXAMPLE : For our ”March temperatures ” example, we find

c1 = − 2.47 and c2 = 0.289 .

Average daily high temperatures, with linear least squares approximation .
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General Least Squares

Given discrete data points

{ (xi, yi) }N
i=1 ,

find the coefficients ck of the function

p(x) ≡
n

∑

k=1

ck φk(x) ,

that minimize the least squares error

EL ≡
N

∑

i=1

(p(xi) − yi)
2

EXAMPLES :

• p(x) = c1 + c2 x . (Already done !)

• p(x) = c1 + c2 x + c3 x
2 . (Quadratic approximation)
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For any vector x ∈ R
N let

‖ x ‖2 ≡ xTx ≡
N

∑

i=1

x2
k . (T denotes transpose).

Then

EL ≡
N

∑

i=1

[ p(xi) − yi ]2 = ‖









p(x1)
·
·

p(xN)









−









y1

·
·
yN









‖2

= ‖









∑n
i=1 ciφi(x1)

·
·

∑n
i=1 ciφi(xN)









−









y1

·
·
yN









‖2

= ‖









φ1(x1) · φn(x1)
· ·
· ·

φ1(xN) · φn(xN)













c1
·
cn



 −









y1

·
·
yN









‖2 ≡ ‖ Ac − y ‖2 .
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THEOREM :

For the least squares error EL to be minimized we must have

AT A c = AT y .

PROOF :

EL = ‖ Ac− y ‖2

= (Ac− y)T (Ac − y)

= (Ac)TAc − (Ac)Ty − yTAc + yTy

= cTATAc − cTATy − yTAc + yTy .
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PROOF : ( continued · · · )

We had
EL = cTATAc − cTATy − yTAc + yTy .

For a minimum we need

∂EL

∂c
= 0, i .e.,

∂EL

∂ci
= 0 , i = 0, 1, · · · , n ,

which gives

cTATA + (ATAc)T − (ATy)T − yTA = 0 , ( Check ! )

i.e.,
2cTATA − 2yTA = 0 ,

or
cTATA = yTA .

Transposing gives
ATAc = ATy . QED !
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EXAMPLE : Given the data points

{ (xi, yi) }4
i=1 = { (0, 1) , (1, 3) , (2, 2) , (4, 3) } ,

find the coefficients c1 and c2 of p(x) = c1 + c2x ,
that minimize

EL ≡
4

∑

i=1

[ (c1 + c2xi) − yi]
2 .

SOLUTION : Here N = 4 , n = 2 , φ1(x) = 1 , φ2(x) = x .

Use the Theorem :

(

1 1 1 1
0 1 2 4

)









1 0
1 1
1 2
1 4









(

c1
c2

)

=

(

1 1 1 1
0 1 2 4

)









1
3
2
3









,

or
(

4 7
7 21

)(

c1
c2

)

=

(

9
19

)

,

with solution c1 = 1.6 and c2 = 0.371429 .
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EXAMPLE : Given the same data points, find the coefficients of

p(x) = c1 + c2x + c3x
2 ,

that minimize

EL ≡
4

∑

i=1

[ (c1 + c2 xi + c3 x
2
i ) − yi ]2 .

SOLUTION : Here

N = 4 , n = 3 , φ1(x) = 1 , φ2(x) = x , φ3(x) = x2 .

Use the Theorem :




1 1 1 1
0 1 2 4
0 1 4 16













1 0 0
1 1 1
1 2 4
1 4 16













c1
c2
c3



 =





1 1 1 1
0 1 2 4
0 1 4 16













1
3
2
3









,

or




4 7 21
7 21 73
21 73 273









c1
c2
c3



 =





9
19
59



 ,

with solution c1 = 1.32727 , c2 = 0.936364 , c3 = −0.136364 .

348



The least squares approximations from the preceding two examples :

0 1 2 3 4

x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y

0 1 2 3 4

x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y

p(x) = c1 + c2x p(x) = c1 + c2x + c3x
2
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EXAMPLE : From actual data :

The average daily high temperatures in Montreal (by month) are :

January -5
February -3
March 3
April 11
May 19
June 24
July 26
August 25
September 20
October 13
November 6
December -2

Source : http : //weather.uk.msn.com
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EXAMPLE : ( continued · · · )

The graph suggests using a 3-term least squares approximation

p(x) = c1 φ1(x) + c2 φ2(x) + c3 φ3(x) ,

of the form

p(x) = c1 + c2 sin(
πx

6
) + c3 cos(

πx

6
) .

QUESTIONS :

• Why include φ2(x) = sin(πx
6

) ?

• Why is the argument πx
6

?

• Why include the constant term φ1(x) = c1 ?

• Why include φ3(x) = cos(πx
6

) ?

In this example we find the least squares coefficients

c1 = 11.4 , c2 = −8.66 , c3 = −12.8 .
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EXAMPLE :

Consider the following experimental data :

0 1 2 3 4 5 6 7 8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

y
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EXAMPLE : ( continued · · · )

Suppose we are given that :

• These data contain ”noise ” .

• The underlying physical process is understood.

• The functional dependence is known to have the form

y = c1 x
c2 e−c3x .

• The values of c1 , c2 , c3 are not known.
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EXAMPLE : ( continued · · · )

The functional relationship has the form

y = c1 x
c2 e−c3x .

NOTE :

• The unknown coefficients c1 , c2 , c3 appear nonlinearly !

• This gives nonlinear equations for c1 , c2 , c3 !

• Such problems are more difficult to solve !

• What to do ?
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EXAMPLE : ( continued · · · )

Fortunately, in this example we can take the logarithm :

log y = log ( c1 x
c2 e−c3x ) = log c1 + c2 log x − c3 x .

This gives a linear relationship

log y = ĉ1 φ1(x) + c2 φ2(x) + c3 φ3(x) ,
where

ĉ1 = log c1 .

and
φ1(x) = 1 , φ2(x) = log x , φ3(x) = − x .

Thus

• We can now use regular least squares.

• We first need to take the logarithm of the data.
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EXAMPLE : ( continued · · · )

0 1 2 3 4 5 6 7 8

x

−4.5
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0.0
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g

y

The logarithm of the original y-values versus x .
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EXAMPLE : ( continued · · · )

We had
y = c1 x

c2 e−c3x ,

and
log y = ĉ1 φ1(x) + c2 φ2(x) + c3 φ3(x) ,

with

φ1(x) = 1 , φ2(x) = log x , φ3(x) = − x ,

and
ĉ1 = log c1 .

We find the following least squares values of the coefficients :

ĉ1 = − 0.00473 , c2 = 2.04 , c3 = 1.01 ,

and
c1 = eĉ1 = 0.995 .
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EXAMPLE : ( continued · · · )
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EXAMPLE : ( continued · · · )

0 1 2 3 4 5 6 7 8
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The least squares approximation shown in the original data.
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RANDOM NUMBER GENERATION

• Measured data often have random fluctuations .

• This may be due to inaccurate measurements .

• It may also be due to other external influences .

• Often we know or believe there is a deterministic model .

• (i.e., the process can be modeled by a deterministic equation .)

• However, deterministic equations can also have random behavior !

• The study of such equations is sometimes called chaos theory .

• We will look at a simple example, namely, the logistic equation .
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The Logistic Equation

A simple deterministic model of population growth is

xk+1 = λ xk , k = 1, 2, · · · ,

for given λ , (λ ≥ 0) , and for given x0 , (x0 ≥ 0) .

The solution is

xk = λk x0 , k = 1, 2, · · · .

Thus

If 0 ≤ λ < 1 then xk → 0 as k → ∞ (”extinction”) .

If λ > 1 then xk → ∞ as k → ∞ (”exponential growth”) .
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A somewhat more realistic population growth model is

xk+1 = λ xk (1 − xk) , k = 1, 2, · · · ,

• This model is known as the logistic equation .

• The maximum sustainable population is 1 .

• λ is given, (0 ≤ λ ≤ 4) .

• x0 is given, (0 ≤ x0 ≤ 1) .

• Then 0 ≤ xk ≤ 1 for all k . (Prove this !)

QUESTION : How does the sequence {xk}∞k=1 depend on λ ?
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EXERCISE :

xk+1 = λ xk (1 − xk) , k = 1, 2, · · · ,

• Divide the interval [0, 1] into 200 subintervals .

• Compute xk for k = 1, 2, · · · 50 .

• Count the xk’s in each subinterval.

• Determine the percentage of xk’s in each subinterval.

• Present the result in a diagram .

• Do this for different choices of λ (0 ≤ λ ≤ 4) .
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λ = 0.9 , x0 = 0.77 , 50 iterations , 200 subintervals .
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EXERCISE :

xk+1 = λ xk (1 − xk) , k = 1, 2, · · · ,

Do the same as in the preceding example, but now

• Compute xk for k = 1, 2, · · · 1, 000, 000 !

• Do not record the first 200 iterations.

• ( This to eliminate transient effects .)

• You will see that there is a fixed point (a cycle of period 1 ) .
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There is a fixed point (a cycle of period 1 ) .
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(The Figure on the right only shows 100 of these iterations.)

There is apparent chaotic behavior .
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(The Figure on the right only shows 100 of these iterations.)

There is apparent chaotic behavior .
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There is apparent chaotic behavior .
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(The Figure on the right only shows 100 of these iterations.)

There is apparent chaotic behavior .
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CONCLUSIONS :

• The behavior of the logistic equation depends on λ .

• For certain values of λ we see fixed points .

• For other values of λ there are cycles .

• For yet other values of λ there is seemingly random behavior .

• Many other deterministic equations have ”complex behavior ” !

• Nature is complex !
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Generating Random Numbers

The logistic equation is a recurrence relation of the form

xk+1 = f(xk) , k = 1, 2, 3, · · · .
Most random number generators also have this form.

For the logistic equation we did not see sequences {xk}N
k=1 having

• a uniform distribution,

• a normal distribution,

• another known distribution.

QUESTION :

• How to generate uniform (and other) random numbers ?

• ( These are useful in computer simulations .)
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Generating Uniformly Distributed Random Numbers

Uniformly distributed random numbers can also be generated by

a recurrence relation of the form

xk+1 = f(xk) , k = 1, 2, 3, · · · .

Unlike the logistic equation, the xk are most often integers .

The recurrence relation typically has the form

xk+1 = (n xk) mod p .

where p is a large prime number , and n a large integer , with

p 6 | n .
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The following fact is useful :

THEOREM :

Let p be a prime number, and n an integer such that

p 6 | n .

Then the function

f : { 0, 1, 2, · · · , p− 1 } → { 0, 1, 2, · · · , p− 1 } ,

given by
f(x) = (n x) mod p ,

is one-to-one (and hence onto, a bijection, and invertible).
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p prime , p 6 | n ⇒ (n x) mod p is 1 − 1

EXAMPLE :

p = 7 and n = 12 .

x 12x 12x mod 7

0 0 0

1 12 5

2 24 3

3 36 1

4 48 6

5 60 4

6 72 2

Invertible !

NOTE : The values of 12x mod 7 look somewhat random !
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p prime , p 6 | n ⇒ (n x) mod p is 1 − 1

EXAMPLE :

p = 6 and n = 2 .

x 2x 2x mod 6

0 0 0

1 2 2

2 4 4

3 6 0

4 8 2

5 10 4

Not Invertible .
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p prime , p 6 | n ⇒ (n x) mod p is 1 − 1

EXAMPLE :

p = 6 and n = 13 .

x 13x 13x mod 6

0 0 0

1 13 1

2 26 2

3 39 3

4 52 4

5 65 5

Invertible . ( So ? )

NOTE : The numbers in the right hand column don’t look random !
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p prime , p 6 | n ⇒ (n x) mod p is 1 − 1

PROOF : By contradiction : Suppose the function is not 1 − 1 .

Then there are distinct integers x1 , x2 ∈ { 0, 1, 2, · · · , p − 1 } ,
such that

(nx1) mod p = k and (nx2) mod p = k ,

where also k ∈ { 0, 1, 2, · · · , p− 1 } . It follows that

p | n(x1 − x2) , ( Why ? )

Since p is prime and p 6 | n it follows that

p | (x1 − x2) .

Thus x1−x2 = 0 ( Why ? ) , i.e. , x1 = x2 . Contradiction !
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For given x0 , an iteration of the form

xk = (n xk−1) mod p , k = 1, 2, · · · , p− 1 .

can be used to generate random numbers .

• Here p is a large prime number .

• The value of n is also large .

• The integer n must not be divisible by p .

• Do not start with x0 = 0 (because it is a fixed point !) .

• Be aware of cycles (of period less than p− 1) !

REMARK : Actually, more often used is an iteration of the form

xk = (n xk−1 +m) mod p , k = 1, 2, · · · , p− 1 .
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EXAMPLE : As a simple example, take again p = 7 and n = 12 :

x 12x 12x mod 7

0 0 0

1 12 5

2 24 3

3 36 1

4 48 6

5 60 4

6 72 2

With x1 = 1 the recurrence relation

xk+1 = f(xk) , where f(x) = 12x mod 7 ,

generates the sequence

1 → 5 → 4 → 6 → 2 → 3 → 1 → 5 → · · ·
which is a cycle of maximal period p− 1 (here 6) .
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f(x) sequence cycle period

5x mod 7 1 → 5 → 4 → 6 → 2 → 3 → 1 6

6x mod 7 1 → 6 → 1 → 6 → 1 → 6 → 1 2

8x mod 7 1 → 1 → 1 → 1 → 1 → 1 → 1 1

9x mod 7 1 → 2 → 4 → 1 → 2 → 4 → 1 3

10x mod 7 1 → 3 → 2 → 6 → 4 → 5 → 1 6

11x mod 7 1 → 4 → 2 → 1 → 4 → 2 → 1 3

12x mod 7 1 → 5 → 4 → 6 → 2 → 3 → 1 6
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EXAMPLE : With x0 = 2 , compute

xk = (137951 xk−1) mod 101 , k = 1, 2, · · · , 100 .

Result :

71 46 17 48 88 94 4 41 92 34
96 75 87 8 82 83 68 91 49 73
16 63 65 35 81 98 45 32 25 29
70 61 95 90 64 50 58 39 21 89
79 27 100 15 78 42 77 57 54 99
30 55 84 53 13 7 97 60 9 67
5 26 14 93 19 18 33 10 52 28

85 38 36 66 20 3 56 69 76 72
31 40 6 11 37 51 43 62 80 12
22 74 1 86 23 59 24 44 47 2

QUESTION : Are there repetitions (i.e., cycles) ?
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EXAMPLE : As in the preceding example, use x0 = 2 , and
compute

xk = (137951 xk−1) mod 101 , k = 1, 2, · · · , 100 ,

and set
x̂k =

xk

100
.

0.710 0.460 0.170 0.480 0.880 0.940 0.040 0.410 0.920 0.340
0.960 0.750 0.870 0.080 0.820 0.830 0.680 0.910 0.490 0.730
0.160 0.630 0.650 0.350 0.810 0.980 0.450 0.320 0.250 0.290
0.700 0.610 0.950 0.900 0.640 0.500 0.580 0.390 0.210 0.890
0.790 0.270 1.000 0.150 0.780 0.420 0.770 0.570 0.540 0.990
0.300 0.550 0.840 0.530 0.130 0.070 0.970 0.600 0.090 0.670
0.050 0.260 0.140 0.930 0.190 0.180 0.330 0.100 0.520 0.280
0.850 0.380 0.360 0.660 0.200 0.030 0.560 0.690 0.760 0.720
0.310 0.400 0.060 0.110 0.370 0.510 0.430 0.620 0.800 0.120
0.220 0.740 0.010 0.860 0.230 0.590 0.240 0.440 0.470 0.020

QUESTION : Do these numbers look uniformly distributed ?
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EXAMPLE : With x0 = 2 , compute

xk = (137953 xk−1) mod 101 , k = 1, 2, · · · , 100 .

Result :

75 35 50 57 67 38 11 59 41 73
61 15 7 10 72 74 48 83 32 89
55 93 3 62 2 75 35 50 57 67
38 11 59 41 73 61 15 7 10 72
74 48 83 32 89 55 93 3 62 2
75 35 50 57 67 38 11 59 41 73
61 15 7 10 72 74 48 83 32 89
55 93 3 62 2 75 35 50 57 67
38 11 59 41 73 61 15 7 10 72
74 48 83 32 89 55 93 3 62 2

QUESTION : Are there cycles ?
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EXAMPLE : With x0 = 4 , compute

xk = (137953 xk−1) mod 101 , k = 1, 2, · · · , 100 .

Result :
49 70 100 13 33 76 22 17 82 45
21 30 14 20 43 47 96 65 64 77
9 85 6 23 4 49 70 100 13 33

76 22 17 82 45 21 30 14 20 43
47 96 65 64 77 9 85 6 23 4
49 70 100 13 33 76 22 17 82 45
21 30 14 20 43 47 96 65 64 77
9 85 6 23 4 49 70 100 13 33

76 22 17 82 45 21 30 14 20 43
47 96 65 64 77 9 85 6 23 4

QUESTIONS :

• Are there cycles ?

• Is this the same cycle that we already found ?
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Generating Random Numbers using the Inverse Method

• There are algorithms that generate uniform random numbers.

• These can be used to generate other random numbers.

• A simple method to do this is the Inverse Transform Method .
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RECALL :

Let f(x) be a density function on an interval [a, b] .

The distribution function is

F (x) ≡
∫ x

a

f(x) dx .

• Since f(x) ≥ 0 we know that F (x) is increasing .

• If F (x) is strictly increasing then F (x) is invertible .
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X x1 x2

We want random numbers X with distribution F (x) (blue) .

Let the random variable Y be uniform on the interval [0, 1] .

Let X = F−1(Y ) .

Then P (x1 ≤ X ≤ x2) = y2 − y1 = F (x2) − F (x1) .

Thus F (x) is indeed the distribution function of X !
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• If Y is uniformly distributed on [0, 1] then

P ( y1 ≤ Y ≤ y2 ) = y2 − y1 .

• Let
X = F−1(Y ) ,

with
x1 = F−1(y1) and x2 = F−1(y2) .

• Then

P (x1 ≤ X ≤ x2) = y2−y1 = F (x2)−F (x1) . ( Why ? )

• Thus F (X) is also the distribution function of X ≡ F−1(Y ) !

NOTE : In the illustration X is on [0, 1] , but this is not necessary.
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EXAMPLE :

Recall that the exponential density function

f(x) =







λe−λx , x > 0

0 , x ≤ 0

has distribution function

F (x) =







1 − e−λx , x > 0

0 , x ≤ 0

The inverse distribution function is

F−1(y) = − 1

λ
log(1 − y) , 0 ≤ y < 1 . ( Check ! )
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The inverse method for generating 20 ”exponential random numbers ” ,

for the exponential distribution function with λ = 1 .
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EXAMPLE : ( continued · · · )

(Using the inverse method to get exponential random numbers.)

• Divide [0, 12] into 100 subintervals of equal size ∆x = 0.12 .

• Let Ik denote the kth interval, with midpoint xk .

• Use the inverse method to get N exponential random numbers.

• Let mk be the frequency count (# of random values in Ik) .

• Let f̂(xk) =
mk

N ∆x
.

• Then
∫ ∞

0

f̂(x) dx ∼=
100
∑

k=1

f̂(xk) ∆x = 1 .

• Then f̂(x) approximates the actual density function f(x) .
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N = 500 . N = 50, 000 .

Simulating the exponential random variable with λ = 1 .

(The actual density function is shown in blue.)
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EXERCISE : Consider the Tent density function

f(x) =







x+ 1 , −1 < x ≤ 0
1 − x , 0 < x ≤ 1

0 , otherwise

• Verify that that the distribution function is given by

F (x) =







1
2
x2 + x+ 1

2
, −1 ≤ x ≤ 0

−1
2
x2 + x+ 1

2
, 0 < x ≤ 1

• Verify that that the inverse distribution function is

F−1(y) =







−1 +
√

2y , 0 ≤ y ≤ 1
2

1 −√
2 − 2y , 1

2
< y ≤ 1

• Use the inverse method to generate ”Tent random numbers ”.
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The ”Tent ” density Function. The ”Tent ” distribution function.

The inverse method for generating 20 ”Tent random numbers ” .
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Simulating the ”Tent random variable ” .

(The actual density function is shown in blue.)
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Discrete Continuous

p(xi) = P (X = xi) f(x)δx ∼= P (x− δ
2
< X < x+ δ

2
)

∑

i p(xi) = 1
∫ ∞

−∞
f(x) dx = 1

F (xk) =
∑

i≤k p(xi) F (x) =
∫ x

−∞
f(x) dx

p(xk) = F (xk) − F (xk−1) f(x) = F ′(x)

E[X] =
∑

i xip(xi) E[X] =
∫ ∞

−∞
x f(x) dx

E[g(X)] =
∑

i g(xi)p(xi) E[g(X)] =
∫ ∞

−∞
g(x) f(x) dx

E[XY ] =
∑

i,j xiyjp(xi, yj) E[XY ] =
∫ ∞

−∞

∫ ∞

−∞
xyf(x, y) dy dx
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Name General Formula

Mean µ = E[X]

Variance V ar(X) = E[(X − µ)2] = E[X2] − µ2

Covariance Cov(X,Y ) = E[(X − µX)(Y − µY )] = E[XY ] − µXµY

Markov P (X ≥ c) ≤ E[X]/c

Chebyshev P (| X − µ |≥ kσ) ≤ 1/k2

Moments ψ(t) = E[etX ] , ψ′(0) = E[X] , ψ′′(0) = E[X2]
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Name Probability mass function Domain

Bernoulli P (X = 1) = p , P (X = 0) = 1 − p 0 , 1

Binomial P (X = k) =

(

n
k

)

pk(1 − p)n−k 0 ≤ k ≤ n

Poisson P (X = k) = e−λ λk

k!
k = 0, 1, 2, · · ·
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Name Mean Standard deviation

Bernoulli p
√

p(1 − p)

Binomial np
√

np(1 − p)

Poisson λ
√
λ
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Name Density function Distribution Domain

Uniform 1
b−a

x−a
b−a

x ∈ (a, b]

Exponential λe−λx 1 − e−λx x ∈ (0,∞)

Std. Normal 1√
2π
e−

1

2
x2

x ∈ (−∞,∞)

Normal 1√
2π σ

e−
1

2
(x−µ)2/σ2

x ∈ (−∞,∞)
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Name Mean Standard Deviation

Uniform a+b
2

b−a
2
√

3

Exponential 1
λ

1
λ

Standard Normal 0 1

General Normal µ σ

Chi-Square n
√

2n
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The Standard Normal Distribution Φ(z)

z Φ(z) z Φ(z)

0.0 .5000 -1.2 .1151
-0.1 .4602 -1.4 .0808
-0.2 .4207 -1.6 .0548
-0.3 .3821 -1.8 .0359
-0.4 .3446 -2.0 .0228

-0.5 .3085 -2.2 .0139
-0.6 .2743 -2.4 .0082
-0.7 .2420 -2.6 .0047
-0.8 .2119 -2.8 .0026
-0.9 .1841 -3.0 .0013
-1.0 .1587 -3.2 .0007

( For example, P (Z ≤ −2.0) = Φ(−2.0) = 2.28% )
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The χ2
n - Table

n α = 0.975 α = 0.95 α = 0.05 α = 0.025

5 0.83 1.15 11.07 12.83
6 1.24 1.64 12.59 14.45
7 1.69 2.17 14.07 16.01
8 2.18 2.73 15.51 17.54
9 2.70 3.33 16.92 19.02
10 3.25 3.94 18.31 20.48
11 3.82 4.58 19.68 21.92
12 4.40 5.23 21.03 23.34
13 5.01 5.89 22.36 24.74
14 5.63 6.57 23.69 26.12
15 6.26 7.26 25.00 27.49

This Table shows zα,n values such that P (χ2
n ≥ zα,n) = α .

( For example, P (χ2
10

≥ 3.94) = 95% )
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The T - distribution Table

n α = 0.1 α = 0.05 α =0.01 α = 0.005

5 -1.476 -2.015 -3.365 -4.032
6 -1.440 -1.943 -3.143 -3.707
7 -1.415 -1.895 -2.998 -3.499
8 -1.397 -1.860 -2.896 -3.355
9 -1.383 -1.833 -2.821 -3.250
10 -1.372 -1.812 -2.764 -3.169
11 -1.363 -1.796 -2.718 -3.106
12 -1.356 -1.782 -2.681 -3.055
13 -1.350 -1.771 -2.650 -3.012
14 -1.345 -1.761 -2.624 -2.977
15 -1.341 -1.753 -2.602 -2.947

This Table shows tα,n values such that P (Tn ≤ tα,n) = α .

( For example, P (T10 ≤ −2.764) = 1% )
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