LECTURE NOTES

on

PROBABILITY and STATISTICS

Eusebius Doedel

TABLE OF CONTENTS

SAMPLE SPACES 1
Events 5
The Algebra of Events 6
Axioms of Probability 9
Further Properties 10
Counting Outcomes 13
Permutations 14
Combinations 21
CONDITIONAL PROBABILITY 45
Independent Events 63
DISCRETE RANDOM VARIABLES 71
Joint distributions 82
Independent random variables 91
Conditional distributions 97
Expectation 101
Variance and Standard Deviation 108
Covariance 110
SPECIAL DISCRETE RANDOM VARIABLES 118
The Bernoulli Random Variable 118
The Binomial Random Variable 120
The Poisson Random Variable 130
CONTINUOUS RANDOM VARIABLES 142
Joint distributions 150
Marginal density functions 153
Independent continuous random variables 158
Conditional distributions 161
Expectation 163
Variance 169
Covariance 175
Markov's inequality 181
Chebyshev's inequality 184
SPECIAL CONTINUOUS RANDOM VARIABLES 187
The Uniform Random Variable 187
The Exponential Random Variable 191
The Standard Normal Random Variable 196
The General Normal Random Variable 201
The Chi-Square Random Variable 206
THE CENTRAL LIMIT THEOREM 211
SAMPLE STATISTICS 246
The Sample Mean 252
The Sample Variance 257
Estimating the Variance of a Normal Distribution 266
Samples from Finite Populations 274
The Sample Correlation Coefficient 282
Maximum Likelihood Estimators 288
Hypothesis Testing 305
LEAST SQUARES APPROXIMATION 335
Linear Least Squares 335
General Least Squares 343
RANDOM NUMBER GENERATION 362
The Logistic Equation 363
Generating Random Numbers 378
Generating Uniformly Distributed Random Numbers 379
Generating Random Numbers using the Inverse Method 392
SUMMARY TABLES AND FORMULAS 403

SAMPLE SPACES

DEFINITION :

The sample space is the set of all possible outcomes of an experiment.

EXAMPLE: When we flip a coin then sample space is
where

$$
\mathcal{S}=\{H, T\},
$$

and

$$
H \text { denotes that the coin lands "Heads up" }
$$

T denotes that the coin lands "Tails up".
For a "fair coin " we expect H and T to have the same " chance " of occurring, i.e., if we flip the coin many times then about 50% of the outcomes will be H.

We say that the probability of H to occur is 0.5 (or 50%).
The probability of T to occur is then also 0.5 .

EXAMPLE :

When we roll a fair die then the sample space is

$$
\mathcal{S}=\{1,2,3,4,5,6\} .
$$

The probability the die lands with k up is $\frac{1}{6},(k=1,2, \cdots, 6)$.

When we roll it 1200 times we expect a 5 up about 200 times.

The probability the die lands with an even number up is

$$
\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2} .
$$

EXAMPLE :

When we toss a coin 3 times and record the results in the sequence that they occur, then the sample space is
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$.
Elements of \mathcal{S} are "vectors ", "sequences ", or " ordered outcomes".

We may expect each of the 8 outcomes to be equally likely.

Thus the probability of the sequence $H T T$ is $\frac{1}{8}$.

The probability of a sequence to contain precisely two Heads is

$$
\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{3}{8}
$$

EXAMPLE: When we toss a coin 3 times and record the results without paying attention to the order in which they occur, e.g., if we only record the number of Heads, then the sample space is

$$
\mathcal{S}=\{\{H, H, H\},\{H, H, T\},\{H, T, T\},\{T, T, T\}\}
$$

The outcomes in \mathcal{S} are now sets ; i.e., order is not important.
Recall that the ordered outcomes are
\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT \}.
Note that

$$
\begin{array}{cclc}
\{H, H, H\} & \text { corresponds to } & \text { one } & \text { of the ordered outcomes, } \\
\{H, H, T\} & " & \text { three } & " \\
\{H, T, T\} & " & \text { three } & " \\
\{T, T, T\} & ", & \text { one } & "
\end{array}
$$

Thus $\{H, H, H\}$ and $\{T, T, T\}$ each occur with probability $\frac{1}{8}$, while $\{H, H, T\}$ and $\{H, T, T\}$ each occur with probability $\frac{3}{8}$.

Events

In Probability Theory subsets of the sample space are called events.

EXAMPLE: The set of basic outcomes of rolling a die once is

$$
\mathcal{S}=\{1,2,3,4,5,6\}
$$

so the subset $E=\{2,4,6\}$ is an example of an event.

If a die is rolled once and it lands with a 2 or a 4 or a 6 up then we say that the event E has occurred.

We have already seen that the probability that E occurs is

$$
P(E)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2} .
$$

The Algebra of Events

Since events are sets, namely, subsets of the sample space \mathcal{S}, we can do the usual set operations :

If E and F are events then we can form

$$
\begin{array}{ll}
E^{c} & \text { the complement of } E \\
E \cup F & \text { the union of } E \text { and } F \\
E F & \text { the intersection of } E \text { and } F
\end{array}
$$

We write $E \subset F$ if E is a subset of F.
REMARK: In Probability Theory we use

$$
\begin{array}{ll}
E^{c} & \text { instead of } \bar{E}, \\
E F & \text { instead of } \\
E \cap F, \\
E \subset F & \text { instead of } \\
E \subseteq F .
\end{array}
$$

If the sample space \mathcal{S} is finite then we typically allow any subset of \mathcal{S} to be an event.

EXAMPLE: If we randomly draw one character from a box containing the characters a, b, and c, then the sample space is

$$
\mathcal{S}=\{a, b, c\},
$$

and there are 8 possible events, namely, those in the set of events

$$
\mathcal{E}=\{\{ \},\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

If the outcomes a, b, and c, are equally likely to occur, then

$$
\begin{gathered}
P\left(\})=0, P(\{a\})=\frac{1}{3}, \quad P(\{b\})=\frac{1}{3}, \quad P(\{c\})=\frac{1}{3},\right. \\
P(\{a, b\})=\frac{2}{3}, P(\{a, c\})=\frac{2}{3}, P(\{b, c\})=\frac{2}{3}, P(\{a, b, c\})=1 .
\end{gathered}
$$

For example, $P(\{a, b\})$ is the probability the character is an a or a b.

We always assume that the set \mathcal{E} of allowable events includes the complements, unions, and intersections of its events.

EXAMPLE : If the sample space is

$$
\mathcal{S}=\{a, b, c, d\}
$$

and we start with the events

$$
\mathcal{E}_{0}=\{\{a\},\{c, d\}\}
$$

then this set of events needs to be extended to (at least)
$\mathcal{E}=\{\{ \},\{a\},\{c, d\},\{b, c, d\},\{a, b\},\{a, c, d\},\{b\},\{a, b, c, d\}\}$.

EXERCISE: Verify \mathcal{E} includes complements, unions, intersections.

Axioms of Probability

A probability function P assigns a real number (the probability of E) to every event E in a sample space \mathcal{S}.
$P(\cdot)$ must satisfy the following basic properties :

- $0 \leq P(E) \leq 1$,
- $\quad P(\mathcal{S})=1$,
- For any disjoint events $E_{i}, i=1,2, \cdots, n$, we have

$$
P\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+\cdots P\left(E_{n}\right) .
$$

Further Properties

PROPERTY 1:

$$
\begin{equation*}
P\left(E \cup E^{c}\right)=P(E)+P\left(E^{c}\right)=1 \tag{Why?}
\end{equation*}
$$

Thus

$$
P\left(E^{c}\right)=1-P(E) .
$$

EXAMPLE:

What is the probability of at least one "H" in four tosses of a coin?

SOLUTION : The sample space \mathcal{S} will have 16 outcomes. (Which?)

$$
P(\text { at least one } \mathrm{H})=1-P(\text { no } \mathrm{H})=1-\frac{1}{16}=\frac{15}{16} .
$$

PROPERTY 2:

$$
P(E \cup F)=P(E)+P(F)-P(E F)
$$

PROOF (using the third axiom) :

$$
\begin{aligned}
P(E \cup F) & =P(E F)+P\left(E F^{c}\right)+P\left(E^{c} F\right) \\
& =\left[P(E F)+P\left(E F^{c}\right)\right]+\left[P(E F)+P\left(E^{c} F\right)\right]-P(E F) \\
& =\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{~F})-\mathrm{P}(\mathrm{EF}) . \quad(\text { Why ?) }
\end{aligned}
$$

NOTE:

- Draw a Venn diagram with E and F to see this !
- The formula is similar to the one for the number of elements :

$$
n(E \cup F)=n(E)+n(F)-n(E F)
$$

So far our sample spaces \mathcal{S} have been finite.
\mathcal{S} can also be countably infinite, e.g., the set \mathbb{Z} of all integers.
\mathcal{S} can also be uncountable, e.g., the set \mathbb{R} of all real numbers.
EXAMPLE : Record the low temperature in Montreal on January 8 in each of a large number of years.

We can take \mathcal{S} to be the set of all real numbers, i.e., $\mathcal{S}=\mathbb{R}$.
(Are there are other choices of \mathcal{S} ?)
What probability would you expect for the following events to have?

$$
\text { (a) } P(\{\pi\}) \quad \text { (b) } P(\{x:-\pi<x<\pi\})
$$

(How does this differ from finite sample spaces?)

We will encounter such infinite sample spaces many times ...

Counting Outcomes

We have seen examples where the outcomes in a finite sample space \mathcal{S} are equally likely, i.e., they have the same probability.

Such sample spaces occur quite often.

Computing probabilities then requires counting all outcomes and counting certain types of outcomes.

The counting has to be done carefully!

We will discuss a number of representative examples in detail.

Concepts that arise include permutations and combinations.

Permutations

- Here we count of the number of "words" that can be formed from a collection of items (e.g., letters).
- (Also called sequences, vectors, ordered sets.)
- The order of the items in the word is important; e.g., the word $a c b$ is different from the word bac.
- The word length is the number of characters in the word.

NOTE:

For sets the order is not important. For example, the set $\{a, c, b\}$ is the same as the set $\{b, a, c\}$.

EXAMPLE : Suppose that four-letter words of lower case alphabetic characters are generated randomly with equally likely outcomes. (Assume that letters may appear repeatedly.)
(a) How many four-letter words are there in the sample space \mathcal{S} ? SOLUTION: $26^{4}=456,976$.
(b) How many four-letter words are there are there in \mathcal{S} that start with the letter " s "? SOLUTION: 26^{3}.
(c) What is the probability of generating a four-letter word that starts with an " s "?

SOLUTION:

$$
\frac{26^{3}}{26^{4}}=\frac{1}{26} \cong 0.038
$$

Could this have been computed more easily?

EXAMPLE : How many re-orderings (permutations) are there of the string abc? (Here letters may appear only once.)
SOLUTION : Six, namely, $a b c, a c b, b a c, b c a, ~ c a b, c b a$.
If these permutations are generated randomly with equal probability then what is the probability the word starts with the letter " a "? SOLUTION :

$$
\frac{2}{6}=\frac{1}{3} .
$$

EXAMPLE : In general, if the word length is n and all characters are distinct then there are $n!$ permutations of the word. (Why ?)

If these permutations are generated randomly with equal probability then what is the probability the word starts with a particular letter?

SOLUTION :

$$
\frac{(n-1)!}{n!}=\frac{1}{n} \cdot \quad(\text { Why } ?)
$$

EXAMPLE: How many

$$
\text { words of length } k
$$

can be formed from

$$
\text { a set of } n \text { (distinct) characters, }
$$

(where $k \leq n$),
when letters can be used at most once ?

SOLUTION :

$$
\begin{aligned}
& n(n-1)(n-2) \cdots(n-(k-1)) \\
= & n(n-1)(n-2) \cdots(n-k+1) \\
= & \frac{n!}{(n-k)!} \quad(\text { Why ? })
\end{aligned}
$$

EXAMPLE : Three-letter words are generated randomly from the five characters a, b, c, d, e, where letters can be used at most once.
(a) How many three-letter words are there in the sample space \mathcal{S} ? SOLUTION: $5 \cdot 4 \cdot 3=60$.
(b) How many words containing a, b are there in \mathcal{S} ?

SOLUTION : First place the characters

$$
a, b
$$

i.e., select the two indices of the locations to place them.

This can be done in

$$
3 \times 2=6 \text { ways . (Why ?) }
$$

There remains one position to be filled with a c, d or an e. Therefore the number of words is $3 \times 6=18$.
(c) Suppose the 60 solutions in the sample space are equally likely. What is the probability of generating a three-letter word that contains the letters a and b ?

SOLUTION :

$$
\frac{18}{60}=0.3
$$

EXERCISE :

Suppose the sample space \mathcal{S} consists of all five-letter words having distinct alphabetic characters .

- How many words are there in \mathcal{S} ?
- How many "special" words are in \mathcal{S} for which only the second and the fourth character are vowels, i.e., one of $\{a, e, i, o, u, y\}$?
- Assuming the outcomes in \mathcal{S} to be equally likely, what is the probability of drawing such a special word?

Combinations

Let S be a set containing n (distinct) elements.

Then

$$
\text { a combination of } k \text { elements from } S \text {, }
$$

is any selection of k elements from S,
where order is not important.
(Thus the selection is a set .)

NOTE: By definition a set always has distinct elements.

EXAMPLE :

There are three combinations of 2 elements chosen from the set

$$
S=\{a, b, c\},
$$

namely, the subsets

$$
\{a, b\},\{a, c\},\{b, c\},
$$

whereas there are six words of 2 elements from S, namely,

$$
a b, b a \quad, \quad a c, c a \quad, \quad b c, c b .
$$

In general, given

$$
\text { a set } S \text { of } n \text { elements, }
$$

the number of possible subsets of k elements from S equals

$$
\binom{n}{k} \equiv \frac{n!}{k!(n-k)!} .
$$

REMARK : The notation $\binom{n}{k}$ is referred to as

$$
" n \text { choose } k " \text {. }
$$

NOTE: $\binom{n}{n}=\frac{n!}{n!(n-n)!}=\frac{n!}{n!0!}=1$,
since $0!\equiv 1 \quad$ (by "convenient definition" !).

PROOF :

First recall that there are

$$
n(n-1)(n-2) \cdots(n-k+1)=\frac{n!}{(n-k)!}
$$

possible sequences of k distinct elements from S.

However, every sequence of length k has k ! permutations of itself, and each of these defines the same subset of S.

Thus the total number of subsets is

$$
\frac{n!}{k!(n-k)!} \equiv\binom{n}{k}
$$

24

EXAMPLE :

In the previous example, with 2 elements chosen from the set

$$
\{a, b, c\},
$$

we have $n=3$ and $k=2$, so that there are

$$
\frac{3!}{(3-2)!}=6 \text { words }
$$

namely

$$
a b, b a \quad, \quad a c, c a \quad, \quad b c, c b
$$

while there are

$$
\binom{3}{2} \equiv \frac{3!}{2!(3-2)!}=\frac{6}{2}=3 \text { subsets }
$$

namely

$$
\{a, b\},\{a, c\},\{b, c\} .
$$

EXAMPLE: If we choose 3 elements from $\{a, b, c, d\}$, then

$$
n=4 \text { and } k=3
$$

so there are

$$
\begin{aligned}
& \frac{4!}{(4-3)!}=24 \text { words, namely : } \\
& a b c, a b d, a c d, \quad b c d, \\
& a c b, a d b, a d c, b d c \text {, } \\
& \text { bac , bad , cad , cbd , } \\
& \text { bca , bda , cda , cdb , } \\
& c a b \text {, dab , dac , dbc , } \\
& c b a, d b a, d c a, d c b \text {, }
\end{aligned}
$$

while there are

$$
\binom{4}{3} \equiv \frac{4!}{3!(4-3)!}=\frac{24}{6}=4 \quad \text { subsets }
$$

namely,

$$
\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\}
$$

EXAMPLE:

(a) How many ways are there to choose a committee of 4 persons from a group of 10 persons, if order is not important? SOLUTION:

$$
\binom{10}{4}=\frac{10!}{4!(10-4)!}=210 .
$$

(b) If each of these 210 outcomes is equally likely then what is the probability that a particular person is on the committee?

SOLUTION :

$$
\binom{9}{3} /\binom{10}{4}=\frac{84}{210}=\frac{4}{10} . \quad(\text { Why ? })
$$

Is this result surprising?
(c) What is the probability that a particular person is not on the committee?

SOLUTION :

$$
\binom{9}{4} /\binom{10}{4}=\frac{126}{210}=\frac{6}{10} . \quad(\text { Why ? })
$$

Is this result surprising?
(d) How many ways are there to choose a committee of 4 persons from a group of 10 persons, if one is to be the chairperson? SOLUTION:

$$
\binom{10}{1}\binom{9}{3}=10\binom{9}{3}=10 \frac{9!}{3!(9-3)!}=840 .
$$

QUESTION : Why is this four times the number in (a)?

EXAMPLE : Two balls are selected at random from a bag with four white balls and three black balls, where order is not important.

What would be an appropriate sample space \mathcal{S} ?
SOLUTION : Denote the set of balls by

$$
B=\left\{w_{1}, w_{2}, w_{3}, w_{4}, b_{1}, b_{2}, b_{3}\right\},
$$

where same color balls are made "distinct" by numbering them.
Then a good choice of the sample space is

$$
\mathcal{S}=\text { the set of all subsets of two balls from } B,
$$

because the wording "selected at random" suggests that each such subset has the same chance to be selected.

The number of outcomes in \mathcal{S} (which are sets of two balls) is then

$$
\binom{7}{2}=21 .
$$

EXAMPLE: (continued...)

(Two balls are selected at random from a bag with four white balls and three black balls.)

- What is the probability that both balls are white?

SOLUTION :

$$
\binom{4}{2} /\binom{7}{2}=\frac{6}{21}=\frac{2}{7} .
$$

- What is the probability that both balls are black? SOLUTION :

$$
\binom{3}{2} /\binom{7}{2}=\frac{3}{21}=\frac{1}{7} .
$$

- What is the probability that one is white and one is black? SOLUTION:

$$
\binom{4}{1}\binom{3}{1} /\binom{7}{2}=\frac{4 \cdot 3}{21}=\frac{4}{7} .
$$

(Could this have been computed differently?)

EXAMPLE: (continued...)

In detail, the sample space \mathcal{S} is

$$
\begin{aligned}
& \left\{\left\{w_{1}, w_{2}\right\},\left\{w_{1}, w_{3}\right\},\left\{w_{1}, w_{4}\right\}, \left\lvert\, \begin{array}{llll}
& \left.\mid w_{1}, b_{1}\right\}, & \left\{w_{1}, b_{2}\right\}, & \left\{w_{1}, b_{3}\right\},
\end{array}\right.\right. \\
& \left\{w_{2}, w_{3}\right\}, \quad\left\{w_{2}, w_{4}\right\}, \quad \mid \quad\left\{w_{2}, b_{1}\right\}, \quad\left\{w_{2}, b_{2}\right\}, \quad\left\{w_{2}, b_{3}\right\}, \\
& \left\{w_{3}, w_{4}\right\}, \mid\left\{w_{3}, b_{1}\right\}, \quad\left\{w_{3}, b_{2}\right\}, \quad\left\{w_{3}, b_{3}\right\}, \\
& \left\{w_{4}, b_{1}\right\}, \quad\left\{w_{4}, b_{2}\right\}, \quad\left\{w_{4}, b_{3}\right\}, \\
& \text { - - - } \\
& \left\{b_{1}, b_{2}\right\}, \quad\left\{b_{1}, b_{3}\right\}, \\
& \text { - } \mathcal{S} \text { has } 21 \text { outcomes, each of which is a set. }
\end{aligned}
$$

- We assumed each outcome of \mathcal{S} has probability $\frac{1}{21}$.
- The event "both balls are white" contains 6 outcomes.
- The event "both balls are black" contains 3 outcomes.
- The event "one is white and one is black" contains 12 outcomes.
- What would be different had we worked with sequences ?

EXERCISE :

Three balls are selected at random from a bag containing

$$
2 \text { red, } 3 \text { green , } 4 \text { blue balls. }
$$

What would be an appropriate sample space \mathcal{S} ?

What is the the number of outcomes in \mathcal{S} ?

What is the probability that all three balls are red?

What is the probability that all three balls are green?

What is the probability that all three balls are blue?

What is the probability of one red, one green, and one blue ball?

EXAMPLE: A bag contains 4 black balls and 4 white balls. Suppose one draws two balls at the time, until the bag is empty. What is the probability that each drawn pair is of the same color?

SOLUTION : An example of an outcome in the sample space \mathcal{S} is

$$
\left\{\left\{w_{1}, w_{3}\right\},\left\{w_{2}, b_{3}\right\},\left\{w_{4}, b_{1}\right\},\left\{b_{2}, b_{4}\right\}\right\}
$$

The number of such doubly unordered outcomes in \mathcal{S} is

$$
\frac{1}{4!}\binom{8}{2}\binom{6}{2}\binom{4}{2}\binom{2}{2}=\frac{1}{4!} \frac{8!}{2!} 6!\frac{6!}{2!} 4!\frac{4!}{2!2!} \frac{2!}{2!0!}=\frac{1}{4!} \frac{8!}{(2!)^{4}}=105(\text { Why? })
$$

The number of such outcomes with pairwise the same color is

$$
\begin{equation*}
\frac{1}{2!}\binom{4}{2}\binom{2}{2} \cdot \frac{1}{2!}\binom{4}{2}\binom{2}{2}=3 \cdot 3=9 \tag{Why?}
\end{equation*}
$$

Thus the probability each pair is of the same color is $9 / 105=3 / 35$.

EXAMPLE: (continued...)

The 9 outcomes of pairwise the same color constitute the event

$$
\left.\left.\left.\begin{array}{rl}
\{ & \left\{\left\{w_{1}, w_{2}\right\},\left\{w_{3}, w_{4}\right\},\left\{b_{1}, b_{2}\right\},\left\{b_{3}, b_{4}\right\}\right\} \\
& \left\{\left\{w_{1}, w_{3}\right\},\left\{w_{2}, w_{4}\right\},\left\{b_{1}, b_{2}\right\},\left\{b_{3}, b_{4}\right\}\right\} \\
\left.\left\{w_{1}, w_{4}\right\},\left\{w_{2}, w_{3}\right\},\left\{b_{1}, b_{2}\right\},\left\{b_{3}, b_{4}\right\}\right\}
\end{array}\right\} \begin{array}{l}
\left\{\left\{w_{1}, w_{2}\right\},\left\{w_{3}, w_{4}\right\},\left\{b_{1}, b_{3}\right\},\left\{b_{2}, b_{4}\right\}\right\}
\end{array}\right\} \begin{array}{l}
\left.\left\{w_{1}, w_{3}\right\},\left\{w_{2}, w_{4}\right\},\left\{b_{1}, b_{3}\right\},\left\{b_{2}, b_{4}\right\}\right\} \\
\\
\left\{\left\{w_{1}, w_{4}\right\},\left\{w_{2}, w_{3}\right\},\left\{b_{1}, b_{3}\right\},\left\{b_{2}, b_{4}\right\}\right\}
\end{array}\right\},
$$

EXERCISE :

- How many ways are there to choose a committee of 4 persons from a group of 6 persons, if order is not important?
- Write down the list of all these possible committees of 4 persons.
- If each of these outcomes is equally likely then what is the probability that two particular persons are on the committee?

EXERCISE :

Two balls are selected at random from a bag with three white balls and two black balls.

- Show all elements of a suitable sample space.
- What is the probability that both balls are white?

EXERCISE :

We are interested in birthdays in a class of 60 students.

- What is a good sample space \mathcal{S} for this purpose?
- How many outcomes are there in \mathcal{S} ?
- What is the probability of no common birthdays in this class?
- What is the probability of common birthdays in this class?

EXAMPLE:

How many nonnegative integer solutions are there to

$$
x_{1}+x_{2}+x_{3}=17 ?
$$

SOLUTION:

Consider seventeen 1's separated by bars to indicate the possible values of x_{1}, x_{2}, and x_{3}, e.g.,

111|111111111|11111.

The total number of positions in the "display" is $17+2=19$.

The total number of nonnegative solutions is now seen to be

$$
\binom{19}{2}=\frac{19!}{(19-2)!2!}=\frac{19 \times 18}{2}=171
$$

EXAMPLE:

How many nonnegative integer solutions are there to the inequality

$$
x_{1}+x_{2}+x_{3} \leq 17 ?
$$

SOLUTION :

Introduce an auxiliary variable (or "slack variable")

$$
x_{4} \equiv 17-\left(x_{1}+x_{2}+x_{3}\right) .
$$

Then

$$
x_{1}+x_{2}+x_{3}+x_{4}=17 .
$$

Use seventeen 1's separated by 3 bars to indicate the possible values of x_{1}, x_{2}, x_{3}, and x_{4}, e.g.,

111|11111111|1111|11.

111|11111111|1111|11.

The total number of positions is

$$
17+3=20 .
$$

The total number of nonnegative solutions is therefore

$$
\binom{20}{3}=\frac{20!}{(20-3)!3!}=\frac{20 \times 19 \times 18}{3 \times 2}=1140 .
$$

EXAMPLE :

How many positive integer solutions are there to the equation

$$
x_{1}+x_{2}+x_{3}=17 ?
$$

SOLUTION: Let

$$
x_{1}=\tilde{x}_{1}+1 \quad, \quad x_{2}=\tilde{x}_{2}+1 \quad, \quad x_{3}=\tilde{x}_{3}+1 .
$$

Then the problem becomes :
How many nonnegative integer solutions are there to the equation

$$
\begin{gathered}
\tilde{x}_{1}+\tilde{x}_{2}+\tilde{x}_{3}=14 \quad ? \\
111|111111111| 11
\end{gathered}
$$

The solution is

$$
\binom{16}{2}=\frac{16!}{(16-2)!2!}=\frac{16 \times 15}{2}=120
$$

EXAMPLE :

What is the probability the sum is 9 in three rolls of a die?
SOLUTION : The number of such sequences of three rolls with sum 9 is the number of integer solutions of
with

$$
x_{1}+x_{2}+x_{3}=9,
$$

$$
1 \leq x_{1} \leq 6 \quad, \quad 1 \leq x_{2} \leq 6 \quad, \quad 1 \leq x_{3} \leq 6
$$

Let

$$
x_{1}=\tilde{x}_{1}+1, \quad x_{2}=\tilde{x}_{2}+1, \quad x_{3}=\tilde{x}_{3}+1 .
$$

Then the problem becomes :
How many nonnegative integer solutions are there to the equation
with

$$
\tilde{x}_{1}+\tilde{x}_{2}+\tilde{x}_{3}=6,
$$

$$
0 \leq \tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3} \leq 5
$$

EXAMPLE: (continued...)
Now the equation

$$
\tilde{x}_{1}+\tilde{x}_{2}+\tilde{x}_{3}=6, \quad\left(0 \leq \tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3} \leq 5\right),
$$

$$
1|111| 11
$$

has

$$
\binom{8}{2}=28 \text { solutions }
$$

from which we must subtract the 3 impossible solutions

$$
\left.\begin{aligned}
\left(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right)= & (6,0,0) \quad, \quad(0,6,0) \quad, \quad(0,0,6) . \\
& 111111 \|, \quad|111111| \quad,
\end{aligned} \right\rvert\, 111111 .
$$

Thus the probability that the sum of 3 rolls equals 9 is

$$
\frac{28-3}{6^{3}}=\frac{25}{216} \cong 0.116
$$

EXAMPLE: (continued \cdot..)
The 25 outcomes of the event "the sum of the rolls is 9 " are

$$
\begin{array}{rllll}
\left\{\begin{array}{lllll}
126, & 135, & 144, & 153, & 162, \\
216, & 225, & 234, & 243, & 252, \\
315 & 324, & 333, & 342, & 351, \\
314, & 423, & 432, & 441, & \\
513, & 522, & 531, & \\
612, & 621 & \}
\end{array}\right. &
\end{array}
$$

The "lexicographic" ordering of the outcomes (which are sequences) in this event is used for systematic counting.

EXERCISE:

- How many integer solutions are there to the inequality

$$
x_{1}+x_{2}+x_{3} \leq 17
$$

if we require that

$$
x_{1} \geq 1, \quad x_{2} \geq 2 \quad, \quad x_{3} \geq 3 ?
$$

EXERCISE :

What is the probability that the sum is less than or equal to 9 in three rolls of a die?

CONDITIONAL PROBABILITY

Giving more information can change the probability of an event.

EXAMPLE :

If a coin is tossed two times then what is the probability of two Heads?

ANSWER:
 $$
\frac{1}{4} .
$$

EXAMPLE :

If a coin is tossed two times then what is the probability of two Heads, given that the first toss gave Heads?

ANSWER:
$\frac{1}{2}$.

NOTE:

Several examples will be about playing cards .

A standard deck of playing cards consists of 52 cards:

- Four suits :

> Hearts , Diamonds (red) , and Spades , Clubs (black).

- Each suit has 13 cards, whose denomination is

$$
2,3, \cdots, 10 \text {, Jack , Queen , King , Ace. }
$$

- The Jack, Queen, and King are called face cards.

EXERCISE :

Suppose we draw a card from a shuffled set of 52 playing cards.

- What is the probability of drawing a Queen ?
- What is the probability of drawing a Queen, given that the card drawn is of suit Hearts?
- What is the probability of drawing a Queen, given that the card drawn is a Face card?

What do the answers tell us?
(We'll soon learn the events "Queen" and "Hearts" are independent.)

The two preceding questions are examples of conditional probability.

Conditional probability is an important and useful concept.

If E and F are events, i.e., subsets of a sample space \mathcal{S}, then $P(E \mid F)$ is the conditional probability of E, given F,
defined as

$$
P(E \mid F) \equiv \frac{P(E F)}{P(F)}
$$

or, equivalently

$$
P(E F)=P(E \mid F) P(F),
$$

(assuming that $P(F)$ is not zero).

$$
P(E \mid F) \equiv \frac{P(E F)}{P(F)}
$$

Suppose that the 6 outcomes in \mathcal{S} are equally likely.
What is $P(E \mid F)$ in each of these two cases ?

$$
P(E \mid F) \equiv \frac{P(E F)}{P(F)}
$$

Suppose that the 6 outcomes in \mathcal{S} are equally likely.
What is $P(E \mid F)$ in each of these two cases ?

EXAMPLE : Suppose a coin is tossed two times.
The sample space is

$$
\mathcal{S}=\{H H, H T, T H, T T\}
$$

Let E be the event "two Heads", i.e.,

$$
E=\{H H\}
$$

Let F be the event " the first toss gives Heads" , i.e.,

$$
F=\{H H, H T\}
$$

Then

$$
E F=\{H H\}=E \quad(\text { since } E \subset F)
$$

We have

$$
P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{P(E)}{P(F)}=\frac{\frac{1}{4}}{\frac{2}{4}}=\frac{1}{2} .
$$

EXAMPLE :

Suppose we draw a card from a shuffled set of 52 playing cards.

- What is the probability of drawing a Queen, given that the card drawn is of suit Hearts?

ANSWER:

$$
P(Q \mid H)=\frac{P(Q H)}{P(H)}=\frac{\frac{1}{52}}{\frac{13}{52}}=\frac{1}{13} .
$$

- What is the probability of drawing a Queen, given that the card drawn is a Face card?

ANSWER:

$$
P(Q \mid F)=\frac{P(Q F)}{P(F)}=\frac{P(Q)}{P(F)}=\frac{\frac{4}{52}}{\frac{12}{52}}=\frac{1}{3} .
$$

(Here $Q \subset F$, so that $Q F=Q$.)

The probability of an event E is sometimes computed more easily if we condition E on another event F,
namely, from

$$
\begin{aligned}
P(E) & =P\left(E\left(F \cup F^{c}\right)\right) \quad(\text { Why ? }) \\
& =P\left(E F \cup E F^{c}\right)=P(E F)+P\left(E F^{c}\right) \quad(\text { Why ? })
\end{aligned}
$$

and

$$
P(E F)=P(E \mid F) P(F) \quad, \quad P\left(E F^{c}\right)=P\left(E \mid F^{c}\right) P\left(F^{c}\right),
$$

we obtain this basic formula

$$
P(E)=P(E \mid F) \cdot P(F)+P\left(E \mid F^{c}\right) \cdot P\left(F^{c}\right)
$$

EXAMPLE:

An insurance company has these data :

The probability of an insurance claim in a period of one year is
4 percent for persons under age 30
2 percent for persons over age 30
and it is known that
30 percent of the targeted population is under age 30 .

What is the probability of an insurance claim in a period of one year for a randomly chosen person from the targeted population?

SOLUTION:

Let the sample space \mathcal{S} be all persons under consideration.

Let C be the event (subset of \mathcal{S}) of persons filing a claim.
Let U be the event (subset of \mathcal{S}) of persons under age 30 .

Then U^{c} is the event (subset of \mathcal{S}) of persons over age 30 .

Thus

$$
\begin{aligned}
P(C) & =P(C \mid U) P(U)+P\left(C \mid U^{c}\right) P\left(U^{c}\right) \\
& =\frac{4}{100} \frac{3}{10}+\frac{2}{100} \frac{7}{10} \\
& =\frac{26}{1000}=2.6 \%
\end{aligned}
$$

EXAMPLE :

Two balls are drawn from a bag with 2 white and 3 black balls.
There are 20 outcomes (sequences) in \mathcal{S}. (Why ?)
What is the probability that the second ball is white?

SOLUTION :

Let F be the event that the first ball is white.
Let S be the event that the second second ball is white.
Then
$P(S)=P(S \mid F) P(F)+P\left(S \mid F^{c}\right) P\left(F^{c}\right)=\frac{1}{4} \cdot \frac{2}{5}+\frac{2}{4} \cdot \frac{3}{5}=\frac{2}{5}$.
QUESTION: Is it surprising that $P(S)=P(F)$?

EXAMPLE: (continued $\cdot \cdot$)
Is it surprising that $P(S)=P(F)$?

ANSWER: Not really, if one considers the sample space \mathcal{S} :

$$
\left.\begin{array}{llll}
\left\{\begin{array}{lll}
\mathbf{w}_{1} \mathbf{w}_{2}, & \mathbf{w}_{1} b_{1}, & \mathbf{w}_{1} b_{2},
\end{array} \mathbf{w}_{1} b_{3},\right. \\
\mathbf{w}_{2} \mathbf{w}_{1}, & \mathbf{w}_{2} b_{1}, & \mathbf{w}_{2} b_{2}, & \mathbf{w}_{2} b_{3} \\
b_{1} \mathbf{w}_{1}, & b_{1} \mathbf{w}_{2}, & b_{1} b_{2}, & b_{1} b_{3} \\
b_{2} \mathbf{w}_{1}, & b_{2} \mathbf{w}_{2}, & b_{2} b_{1}, & b_{2} b_{3} \\
b_{3} \mathbf{w}_{1}, & b_{3} \mathbf{w}_{2}, & b_{3} b_{1}, & b_{3} b_{2}
\end{array}\right\},
$$

where outcomes (sequences) are assumed equally likely.

EXAMPLE :

Suppose we draw two cards from a shuffled set of 52 playing cards.
What is the probability that the second card is a Queen?

ANSWER:

$P\left(2^{\text {nd }} \operatorname{card} Q\right)=$

$$
P\left(2^{\text {nd }} \operatorname{card} Q \mid 1^{\text {st }} \operatorname{card} Q\right) \cdot P\left(1^{\text {st }} \operatorname{card} Q\right)
$$

$+P\left(2^{\text {nd }}\right.$ card $Q \mid 1^{\text {st }}$ card not $\left.Q\right) \cdot P\left(1^{\text {st }}\right.$ card not $\left.Q\right)$

$$
=\frac{3}{51} \cdot \frac{4}{52}+\frac{4}{51} \cdot \frac{48}{52}=\frac{204}{51 \cdot 52}=\frac{4}{52}=\frac{1}{13} .
$$

QUESTION : Is it surprising that $P\left(2^{\text {nd }}\right.$ card $\left.Q\right)=P\left(1^{\text {st }} \operatorname{card} Q\right)$?

A useful formula that "inverts conditioning" is derived as follows :
Since we have both

$$
P(E F)=P(E \mid F) P(F),
$$

and

$$
P(E F)=P(F \mid E) P(E)
$$

If $P(E) \neq 0$ then it follows that

$$
P(F \mid E)=\frac{P(E F)}{P(E)}=\frac{P(E \mid F) \cdot P(F)}{P(E)},
$$

and, using the earlier useful formula, we get

$$
P(F \mid E)=\frac{P(E \mid F) \cdot P(F)}{P(E \mid F) \cdot P(F)+P\left(E \mid F^{c}\right) \cdot P\left(F^{c}\right)},
$$

which is known as Bayes' formula.

EXAMPLE : Suppose 1 in 1000 persons has a certain disease.
A test detects the disease in 99% of diseased persons.
The test also "detects" the disease in 5% of healthly persons.
With what probability does a positive test diagnose the disease?
SOLUTION: Let

$$
D \sim \text { "diseased" }, H \sim \text { "healthy" }, \quad+\sim \text { "positive". }
$$

We are given that

$$
P(D)=0.001, \quad P(+\mid D)=0.99, \quad P(+\mid H)=0.05
$$

By Bayes' formula

$$
\begin{aligned}
P(D \mid+) & =\frac{P(+\mid D) \cdot P(D)}{P(+\mid D) \cdot P(D)+P(+\mid H) \cdot P(H)} \\
& =\frac{0.99 \cdot 0.001}{0.99 \cdot 0.001+0.05 \cdot 0.999} \cong 0.0194
\end{aligned}
$$

EXERCISE :

Suppose 1 in 100 products has a certain defect.
A test detects the defect in 95% of defective products.
The test also "detects" the defect in 10% of non-defective products.

- With what probability does a positive test diagnose a defect?

EXERCISE :

Suppose 1 in 2000 persons has a certain disease.
A test detects the disease in 90% of diseased persons.
The test also "detects" the disease in 5% of healthly persons.

- With what probability does a positive test diagnose the disease?

More generally, if the sample space \mathcal{S} is the union of disjoint events

$$
\mathcal{S}=F_{1} \cup F_{2} \cup \cdots \cup F_{n},
$$

then for any event E

$$
P\left(F_{i} \mid E\right)=\frac{P\left(E \mid F_{i}\right) \cdot P\left(F_{i}\right)}{P\left(E \mid F_{1}\right) \cdot P\left(F_{1}\right)+P\left(E \mid F_{2}\right) \cdot P\left(F_{2}\right)+\cdots+P\left(E \mid F_{n}\right) \cdot P\left(F_{n}\right)}
$$

EXERCISE :

Machines M_{1}, M_{2}, M_{3} produce these proportions of a article
Production: $M_{1}: 10 \%, \quad M_{2}: 30 \%, \quad M_{3}: 60 \%$.

The probability the machines produce defective articles is

$$
\text { Defects: } \quad M_{1}: 4 \%, \quad M_{2}: 3 \%, \quad M_{3}: 2 \% .
$$

What is the probability a random article was made by machine M_{1}, given that it is defective?

Independent Events

Two events E and F are independent if

$$
P(E F)=P(E) P(F)
$$

In this case

$$
P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{P(E) P(F)}{P(F)}=P(E)
$$

(assuming $P(F)$ is not zero).

Thus
knowing F occurred doesn't change the probability of E.

EXAMPLE: Draw one card from a deck of 52 playing cards.
Counting outcomes we find

$$
\begin{array}{lll}
P(\text { Face Card }) & =\frac{12}{52} & =\frac{3}{13}, \\
P(\text { Hearts }) & =\frac{13}{52} & =\frac{1}{4}, \\
P(\text { Face Card and Hearts }) & & =\frac{3}{52}, \\
P(\text { Face Card } \mid \text { Hearts }) & & =\frac{3}{13} .
\end{array}
$$

We see that
$P($ Face Card and Hearts $)=P($ Face Card $) \cdot P($ Hearts $) \quad\left(=\frac{3}{52}\right)$.
Thus the events "Face Card" and "Hearts" are independent.
Therefore we also have

$$
P(\text { Face Card } \mid \text { Hearts })=P(\text { Face Card }) \quad\left(=\frac{3}{13}\right)
$$

EXERCISE:

Which of the following pairs of events are independent?
(1) drawing "Hearts" and drawing "Black" ,
(2) drawing "Black" and drawing "Ace",
(3) the event $\{2,3, \cdots, 9\}$ and drawing "Red".

65

EXERCISE : Two numbers are drawn at random from the set

$$
\{1,2,3,4\} .
$$

If order is not important then what is the sample space \mathcal{S} ?

Define the following functions on \mathcal{S} :

$$
X(\{i, j\})=i+j, \quad Y(\{i, j\})=|i-j|
$$

Which of the following pairs of events are independent?

$$
\begin{aligned}
& \text { (1) } \quad X=5 \quad \text { and } \quad Y=2, \\
& \text { (2) } X=5 \quad \text { and } \quad Y=1 .
\end{aligned}
$$

REMARK:

X and Y are examples of random variables. (More soon!)

EXAMPLE: If E and F are independent then so are E and F^{c}.

PROOF: $E=E\left(F \cup F^{c}\right)=E F \cup E F^{c}$, where

$$
E F \text { and } E F^{c} \text { are disjoint. }
$$

Thus

$$
P(E)=P(E F)+P\left(E F^{c}\right),
$$

from which

$$
\begin{aligned}
P\left(E F^{c}\right) & =P(E)-P(E F) \\
& =P(E)-P(E) \cdot P(F) \quad \text { (since } E \text { and } F \text { independent) } \\
& =P(E) \cdot(1-P(F)) \\
& =P(E) \cdot P\left(F^{c}\right) .
\end{aligned}
$$

EXERCISE :

Prove that if E and F are independent then so are E^{c} and F^{c}.

NOTE: Independence and disjointness are different things!

Independent, but not disjoint.

Disjoint, but not independent.
(The six outcomes in S are assumed to have equal probability.)

If E and F are independent then $P(E F)=P(E) P(F)$.
If E and F are disjoint then $P(E F)=P(\emptyset)=0$.
If E and F are independent and disjoint then one has zero probability!

Three events E, F, and G are independent if

$$
P(E F G)=P(E) P(F) P(G) .
$$

and

$$
\begin{aligned}
P(E F) & =P(E) P(F) . \\
P(E G) & =P(E) P(G) . \\
P(F G) & =P(F) P(G) .
\end{aligned}
$$

EXERCISE : Are the three events of drawing
(1) a red card,
(2) a face card,
(3) a Heart or Spade,
independent?

EXERCISE :

A machine M consists of three independent parts, M_{1}, M_{2}, and M_{3}.

Suppose that
M_{1} functions properly with probability $\frac{9}{10}$,
M_{2} functions properly with probability $\frac{9}{10}$,
M_{3} functions properly with probability $\frac{8}{10}$,
and that
the machine M functions if and only if its three parts function.

- What is the probability for the machine M to function?
- What is the probability for the machine M to malfunction?

DISCRETE RANDOM VARIABLES

DEFINITION : A discrete random variable is a function $X(s)$ from a finite or countably infinite sample space \mathcal{S} to the real numbers :

$$
X(\cdot) \quad: \quad \mathcal{S} \quad \rightarrow \quad \mathbb{R} .
$$

EXAMPLE: Toss a coin 3 times in sequence. The sample space is
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$, and examples of random variables are

- $X(s)=$ the number of Heads in the sequence ; e.g., $X(H T H)=2$,
- $Y(s)=$ The index of the first H; e.g., $Y(T T H)=3$, 0 if the sequence has no H, i.e., $Y(T T T)=0$.

NOTE : In this example $X(s)$ and $Y(s)$ are actually integers.

Value-ranges of a random variable correspond to events in \mathcal{S}.

EXAMPLE: For the sample space
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$, with

$$
X(s)=\text { the number of Heads }
$$

the value
$X(s)=2$, corresponds to the event $\{H H T, H T H, T H H\}$, and the values
$1<X(s) \leq 3$, correspond to $\{H H H, H H T, H T H, T H H\}$.

NOTATION : If it is clear what \mathcal{S} is then we often just write $X \quad$ instead of $\quad X(s)$.

Value-ranges of a random variable correspond to events in \mathcal{S}, and events in \mathcal{S} have a probability.
Thus
Value-ranges of a random variable have a probability.

EXAMPLE: For the sample space
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$,
with

$$
X(s)=\text { the number of Heads }
$$

we have

$$
P(0<X \leq 2)=\frac{6}{8} .
$$

QUESTION : What are the values of
$P(X \leq-1), P(X \leq 0), P(X \leq 1), P(X \leq 2), P(X \leq 3), P(X \leq 4) ?$

NOTATION: We will also write $p_{X}(x)$ to denote $P(X=x)$.
EXAMPLE: For the sample space
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$, with

$$
X(s)=\text { the number of Heads }
$$

we have

$$
\begin{array}{rlrl}
p_{X}(0) & \equiv P(\{T T T\}) & =\frac{1}{8} \\
p_{X}(1) & \equiv P(\{H T T, T H T, T T H\}) & =\frac{3}{8} \\
p_{X}(2) \equiv P(\{H H T, H T H, T H H\}) & =\frac{3}{8} \\
p_{X}(3) \equiv P(\{H H H\}) & =\frac{1}{8}
\end{array}
$$

where

$$
p_{X}(0)+p_{X}(1)+p_{X}(2)+p_{X}(3)=1 . \quad(\text { Why } ?)
$$

Graphical representation of X.
The events $E_{0}, E_{1}, E_{2}, E_{3}$ are disjoint since $X(s)$ is a function! ($X: S \rightarrow \mathbb{R}$ must be defined for all $s \in S$ and must be single-valued.)

The graph of p_{X}.

DEFINITION:

$$
p_{X}(x) \equiv P(X=x)
$$

is called the probability mass function.

DEFINITION :

$$
F_{X}(x) \equiv P(X \leq x),
$$

is called the (cumulative) probability distribution function .

PROPERTIES:

- $F_{X}(x)$ is a non-decreasing function of x. (Why ?)
- $F_{X}(-\infty)=0$ and $F_{X}(\infty)=1$.
(Why?)
- $P(a<X \leq b)=F_{X}(b)-F_{X}(a)$.
(Why ?)

NOTATION: When it is clear what X is then we also write

$$
p(x) \text { for } p_{X}(x) \text { and } F(x) \text { for } F_{X}(x) .
$$

EXAMPLE: With $X(s)=$ the number of Heads, and

$$
\begin{gathered}
\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}, \\
p(0)=\frac{1}{8} \quad, \quad p(1)=\frac{3}{8} \quad, \quad p(2)=\frac{3}{8}, \quad p(3)=\frac{1}{8},
\end{gathered}
$$

we have the probability distribution function

$F(-1)$	\equiv	$P(X \leq-1)$	$=$	0
$F(0)$	\equiv	$P(X \leq 0)$	$=$	$\frac{1}{8}$
$F(1)$	\equiv	$P(X \leq 1)$	$=$	$\frac{4}{8}$
$F(2)$	\equiv	$P(X \leq 2)$	$=$	$\frac{7}{8}$
$F(3)$	\equiv	$P(X \leq 3)$	$=$	1
$F(4)$	\equiv	$P(X \leq 4)$	$=$	1

We see, for example, that

$$
\begin{aligned}
P(0<X \leq 2) & =P(X=1)+P(X=2) \\
& =F(2)-F(0)=\frac{7}{8}-\frac{1}{8}=\frac{6}{8} .
\end{aligned}
$$

The graph of the probability distribution function F_{X}.

EXAMPLE: Toss a coin until "Heads" occurs.
Then the sample space is countably infinite, namely,

$$
\mathcal{S}=\{H, T H, T T H, T T T H, \cdots\}
$$

The random variable X is the number of rolls until "Heads" occurs:

$$
X(H)=1 \quad, \quad X(T H)=2 \quad, \quad X(T T H)=3 \quad, \cdots
$$

Then
nen $p(1)=\frac{1}{2} \quad, \quad p(2)=\frac{1}{4} \quad, \quad p(3)=\frac{1}{8} \quad, \quad \cdots \quad$ (Why ?)

$$
F(n)=P(X \leq n)=\sum_{k=1}^{n} p(k)=\sum_{k=1}^{n} \frac{1}{2^{k}}=1-\frac{1}{2^{n}},
$$

and, as should be the case,

$$
\sum_{k=1}^{\infty} p(k)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} p(k)=\lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{n}}\right)=1 .
$$

NOTE: The outcomes in \mathcal{S} do not have equal probability!
EXERCISE: Draw the probability mass and distribution functions.
$X(s)$ is the number of tosses until "Heads" occurs ...
REMARK : We can also take $\mathcal{S} \equiv \mathcal{S}_{n}$ as all ordered outcomes of length n. For example, for $n=4$,

$$
\begin{aligned}
& \mathcal{S}_{4}=\{\tilde{H} H H H, \tilde{H} H H T \text {, } \tilde{H} H T H, \tilde{H} H T T, \\
& \text { H̃TH , } \tilde{H} T H T, \tilde{H} T T H, \tilde{H} T T T, \\
& \text { TH̃Hh, Tथ̃HT, TH̃TH, TH̃TT, } \\
& \text { TTH̃H, TTH̃T, TTTH̃, TTTT \}. }
\end{aligned}
$$

where for each outcome the first "Heads" is marked as \tilde{H}.
Each outcome in \mathcal{S}_{4} has equal probability 2^{-n} (here $2^{-4}=\frac{1}{16}$), and

$$
p_{X}(1)=\frac{1}{2} \quad, \quad p_{X}(2)=\frac{1}{4} \quad, \quad p_{X}(3)=\frac{1}{8} \quad, \quad p_{X}(4)=\frac{1}{16} \quad \cdots,
$$

independent of n.

Joint distributions

The probability mass function and the probability distribution function can also be functions of more than one variable.

EXAMPLE: Toss a coin 3 times in sequence. For the sample space
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$, we let
$X(s)=$ \# Heads $\quad, \quad Y(s)=$ index of the first $H \quad(0$ for TTT $)$.
Then we have the joint probability mass function

$$
p_{X, Y}(x, y)=P(X=x, Y=y) .
$$

For example,

$$
\begin{aligned}
p_{X, Y}(2,1) & =P(X=2, Y=1) \\
& =P\left(2 \text { Heads }, 1^{\text {st }} \text { toss is Heads }\right) \\
& =\frac{2}{8}=\frac{1}{4}
\end{aligned}
$$

EXAMPLE: (continued …) For
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$, $X(s)=$ number of Heads, and $Y(s)=$ index of the first H, we can list the values of $p_{X, Y}(x, y)$:
Joint probability mass function

	$p_{X, Y}(x, y)$				
	$y=0$	$\mathbf{y}=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=0$	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$
$x=1$	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{8}$
$\mathbf{x}=2$	0	$\frac{2}{8}$	$\frac{1}{8}$	0	$\frac{3}{8}$
$x=3$	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
$p_{Y}(y)$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	1

NOTE :

- The marginal probability p_{X} is the probability mass function of X.
- The marginal probability p_{Y} is the probability mass function of Y.

EXAMPLE: (continued ...)
$X(s)=$ number of Heads, and $Y(s)=$ index of the first H.

	$y=0$	$\mathbf{y}=\mathbf{1}$	$y=2$	$y=3$	$p_{X}(x)$
$x=0$	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$
$x=1$	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{8}$
$\mathbf{x}=\mathbf{2}$	0	$\frac{2}{8}$	$\frac{1}{8}$	0	$\frac{3}{8}$
$x=3$	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
$p_{Y}(y)$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	1

For example,

- $X=2$ corresponds to the event $\{H H T, H T H, T H H\}$.
- $Y=1$ corresponds to the event $\{H H H, H H T, H T H, H T T\}$.
- $(X=2$ and $Y=1)$ corresponds to the event $\{H H T, H T H\}$.

QUESTION : Are the events $X=2$ and $Y=1$ independent?

The events $E_{i, j} \equiv\{s \in S: X(s)=i, Y(s)=j\}$ are disjoint. QUESTION : Are the events $X=2$ and $Y=1$ independent?

DEFINITION:

$$
p_{X, Y}(x, y) \equiv P(X=x, Y=y),
$$

is called the joint probability mass function.

DEFINITION :

$$
F_{X, Y}(x, y) \equiv P(X \leq x, Y \leq y)
$$

is called the joint (cumulative) probability distribution function.

NOTATION: When it is clear what X and Y are then we also write

$$
p(x, y) \text { for } p_{X, Y}(x, y) \text {, }
$$

and

$$
F(x, y) \text { for } \quad F_{X, Y}(x, y) .
$$

EXAMPLE: Three tosses : $X(s)=\#$ Heads, $Y(s)=$ index $1^{\text {st }} H$.

	$y=0$	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=0$	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$
$x=1$	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{8}$
$x=2$	0	$\frac{2}{8}$	$\frac{8}{8}$	0	$\frac{3}{8}$
$x=3$	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
$p_{Y}(y)$	$\frac{1}{8}$	$\frac{4}{8}$	8	8	1

Joint distribution function $F_{X, Y}(x, y) \equiv P(X \leq x, Y \leq y)$

	$y=0$	$y=1$	$y=2$	$y=3$	$F_{X}(\cdot)$
$x=0$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
$x=1$	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{3}{8}$	$\frac{4}{8}$	$\frac{4}{8}$
$x=2$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{6}{8}$	$\frac{7}{8}$	$\frac{7}{8}$
$x=3$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{7}{8}$	1	1
$F_{Y}(\cdot)$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{7}{8}$	1	1

Note that the distribution function F_{X} is a copy of the 4th column, and the distribution function F_{Y} is a copy of the 4th row. (Why?)

In the preceding example :

$$
\begin{aligned}
& \text { Joint probability mass function } p_{X, Y}(x, y) \\
& \begin{array}{|c||cc|cc||c|}
\hline & y=0 & y=1 & y=2 & y=3 & p_{X}(x) \\
\hline \hline x=0 & \frac{1}{8} & 0 & 0 & 0 & \frac{1}{8} \\
x=1 & 0 & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{3}{8} \\
\hline x=2 & 0 & \frac{2}{8} & \frac{1}{8} & 0 & \frac{3}{8} \\
x=3 & 0 & \frac{1}{8} & 0 & 0 & \frac{1}{8} \\
\hline \hline p_{Y}(y) & \frac{1}{8} & \frac{4}{8} & \frac{2}{8} & \frac{1}{8} & 1 \\
\hline
\end{array} \\
& \text { Joint distribution function } F_{X, Y}(x, y) \equiv P(X \leq x, Y \leq y) \\
&
\end{aligned}
$$

QUESTION : Why is
$P(1<X \leq 3,1<Y \leq 3)=F(3,3)-F(1,3)-F(3,1)+F(1,1) ?$

EXERCISE :

Roll a four-sided die (tetrahedron) two times.
(The sides are marked $1,2,3,4$.)
Suppose each of the four sides is equally likely to end facing down. Suppose the outcome of a single roll is the side that faces down (!).

Define the random variables X and Y as

$$
X=\text { result of the first roll }, Y=\text { sum of the two rolls. }
$$

- What is a good choice of the sample space \mathcal{S} ?
- How many outcomes are there in \mathcal{S} ?
- List the values of the joint probability mass function $p_{X, Y}(x, y)$.
- List the values of the joint cumulative distribution function $F_{X, Y}(x, y)$.

EXERCISE :

Three balls are selected at random from a bag containing

$$
2 \text { red, } 3 \text { green , } 4 \text { blue balls. }
$$

Define the random variables

$$
R(s)=\text { the number of red balls drawn, }
$$

and

$$
G(s)=\text { the number of green balls drawn. }
$$

List the values of

- the joint probability mass function $p_{R, G}(r, g)$.
- the marginal probability mass functions $p_{R}(r)$ and $p_{G}(g)$.
- the joint distribution function $F_{R, G}(r, g)$.
- the marginal distribution functions $F_{R}(r)$ and $F_{G}(g)$.

Independent random variables

Two discrete random variables $X(s)$ and $Y(s)$ are independent if

$$
P(X=x, Y=y)=P(X=x) \cdot P(Y=y), \quad \text { for all } x \text { and } y
$$

or, equivalently, if their probability mass functions satisfy

$$
p_{X, Y}(x, y)=p_{X}(x) \cdot p_{Y}(y), \quad \text { for all } x \text { and } y
$$

or, equivalently, if the events

$$
E_{x} \equiv X^{-1}(\{x\}) \quad \text { and } \quad E_{y} \equiv Y^{-1}(\{y\}),
$$

are independent in the sample space \mathcal{S}, i.e.,

$$
P\left(E_{x} E_{y}\right)=P\left(E_{x}\right) \cdot P\left(E_{y}\right), \quad \text { for all } x \text { and } y .
$$

NOTE :

- In the current discrete case, x and y are typically integers.
- $X^{-1}(\{x\}) \equiv\{s \in \mathcal{S}: X(s)=x\}$.

Three tosses : $X(s)=\#$ Heads, $Y(s)=$ index $1^{\text {st }} H$.

- What are the values of $p_{X}(2), p_{Y}(1), p_{X, Y}(2,1)$?
- Are X and Y independent?

RECALL:

$X(s)$ and $Y(s)$ are independent if for all x and y :

$$
p_{X, Y}(x, y)=p_{X}(x) \cdot p_{Y}(y) .
$$

EXERCISE :

Roll a die two times in a row.
Let

$$
X \text { be the result of the } 1^{\text {st }} \text { roll , }
$$

and

$$
Y \text { the result of the } 2^{\text {nd }} \text { roll } .
$$

Are X and Y independent, i.e., is

$$
p_{X, Y}(k, \ell)=p_{X}(k) \cdot p_{Y}(\ell), \quad \text { for all } 1 \leq k, \ell \leq 6 ?
$$

EXERCISE :

Are these random variables X and Y independent?

Joint probability mass function $p_{X, Y}(x, y)$

	$y=0$	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=0$	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$
$x=1$	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{8}$
$x=2$	0	$\frac{2}{8}$	$\frac{1}{8}$	0	$\frac{3}{8}$
$x=3$	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
$p_{Y}(y)$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	1

EXERCISE : Are these random variables X and Y independent?
Joint probability mass function $p_{X, Y}(x, y)$

	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=1$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{2}$
$x=2$	$\frac{2}{9}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{3}$
$x=3$	$\frac{1}{9}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
$p_{Y}(y)$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	1

Joint distribution function $F_{X, Y}(x, y) \equiv P(X \leq x, Y \leq y)$

	$y=1$	$y=2$	$y=3$	$F_{X}(x)$
$x=1$	$\frac{1}{3}$	$\frac{5}{12}$	$\frac{1}{2}$	$\frac{1}{2}$
$x=2$	$\frac{5}{9}$	$\frac{25}{36}$	$\frac{5}{6}$	$\frac{5}{6}$
$x=3$	$\frac{2}{3}$	$\frac{5}{6}$	1	1
$F_{Y}(y)$	$\frac{2}{3}$	$\frac{5}{6}$	1	1

QUESTION : Is $F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)$?

PROPERTY:

The joint distribution function of independent random variables X and Y satisfies

$$
F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y), \quad \text { for all } x, y
$$

PROOF:

$$
\begin{aligned}
F_{X, Y}\left(x_{k}, y_{\ell}\right) & =P\left(X \leq x_{k}, Y \leq y_{\ell}\right) \\
& =\sum_{i \leq k} \sum_{j \leq \ell} p_{X, Y}\left(x_{i}, y_{j}\right) \\
& =\sum_{i \leq k} \sum_{j \leq \ell} p_{X}\left(x_{i}\right) \cdot p_{Y}\left(y_{j}\right) \quad \text { (by independence) } \\
& =\sum_{i \leq k}\left\{p_{X}\left(x_{i}\right) \cdot \sum_{j \leq \ell} p_{Y}\left(y_{j}\right)\right\} \\
& =\left\{\sum_{i \leq k} p_{X}\left(x_{i}\right)\right\} \cdot\left\{\sum_{j \leq \ell} p_{Y}\left(y_{j}\right)\right\} \\
& =F_{X}\left(x_{k}\right) \cdot F_{Y}\left(y_{\ell}\right) .
\end{aligned}
$$

Conditional distributions

Let X and Y be discrete random variables with joint probability mass function

$$
p_{X, Y}(x, y) .
$$

For given x and y, let

$$
E_{x}=X^{-1}(\{x\}) \quad \text { and } \quad E_{y}=Y^{-1}(\{y\}),
$$

be their corresponding events in the sample space \mathcal{S}.

Then

$$
P\left(E_{x} \mid E_{y}\right) \equiv \frac{P\left(E_{x} E_{y}\right)}{P\left(E_{y}\right)}=\frac{p_{X, Y}(x, y)}{p_{Y}(y)} .
$$

Thus it is natural to define the conditional probability mass function

$$
p_{X \mid Y}(x \mid y) \equiv P(X=x \mid Y=y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)} .
$$

Three tosses : $X(s)=\#$ Heads, $Y(s)=$ index $1^{\text {st }} H$.

- What are the values of $P(X=2 \mid Y=1)$ and $P(Y=1 \mid X=2)$?

EXAMPLE: (3 tosses : $X(s)=\#$ Heads, $Y(s)=$ index $\left.1^{\text {st }} H.\right)$
Joint probability mass function $p_{X, Y}(x, y)$

	$y=0$	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=0$	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$
$x=1$	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{8}$
$x=2$	0	$\frac{2}{8}$	$\frac{1}{8}$	0	$\frac{3}{8}$
$x=3$	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
$p_{Y}(y)$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	1

Conditional probability mass function $p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$.

	$y=0$	$y=1$	$y=2$	$y=3$
$x=0$	1	0	0	0
$x=1$	0	$\frac{2}{8}$	$\frac{4}{8}$	1
$x=2$	0	$\frac{4}{8}$	$\frac{4}{8}$	0
$x=3$	0	$\frac{2}{8}$	0	0
	1	1	1	1

EXERCISE : Also construct the Table for $p_{Y \mid X}(y \mid x)=\frac{p_{X, Y}(x, y)}{p_{X}(x)}$.

EXAMPLE :
Joint probability mass function $p_{X, Y}(x, y)$

	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=1$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{2}$
$x=2$	$\frac{2}{9}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{3}$
$x=3$	$\frac{1}{9}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
$p_{Y}(y)$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	1

Conditional probability mass function $p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$.

	$y=1$	$y=2$	$y=3$
$x=1$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$x=2$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
$x=3$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
	1	1	1

QUESTION: What does the last Table tell us?
EXERCISE : Also construct the Table for $P(Y=y \mid X=x)$.

Expectation

The expected value of a discrete random variable X is

$$
E[X] \equiv \sum_{k} x_{k} \cdot P\left(X=x_{k}\right)=\sum_{k} x_{k} \cdot p_{X}\left(x_{k}\right) .
$$

Thus $E[X]$ represents the weighted average value of X.
($E[X]$ is also called the mean of X.

EXAMPLE: The expected value of rolling a die is

$$
E[X]=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+\cdots+6 \cdot \frac{1}{6}=\frac{1}{6} \cdot \sum_{k=1}^{6} k=\frac{7}{2} .
$$

EXERCISE: Prove the following :

- $E[a X]=a E[X]$,
- $E[a X+b]=a E[X]+b$.

EXAMPLE: Toss a coin until "Heads" occurs. Then

$$
\mathcal{S}=\{H, T H, T T H, T T T H, \cdots\}
$$

The random variable X is the number of tosses until "Heads" occurs:

$$
X(H)=1 \quad, \quad X(T H)=2 \quad, \quad X(T T H)=3
$$

Then
$E[X]=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{8}+\cdots=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k}{2^{k}}=2$.

n	$\sum_{k=1}^{n} k / 2^{k}$
1	0.50000000
2	1.00000000
3	1.37500000
10	1.98828125
40	1.99999999

REMARK :

Perhaps using $\mathcal{S}_{n}=\{$ all sequences of n tosses $\}$ is better \cdots

The expected value of a function of a random variable is

$$
E[g(X)] \equiv \sum_{k} g\left(x_{k}\right) p\left(x_{k}\right) .
$$

EXAMPLE:

The pay-off of rolling a die is $\$ k^{2}$, where k is the side facing up.
What should the entry fee be for the betting to break even?

SOLUTION : Here $g(X)=X^{2}$, and
$E[g(X)]=\sum_{k=1}^{6} k^{2} \frac{1}{6}=\frac{1}{6} \frac{6(6+1)(2 \cdot 6+1)}{6}=\frac{91}{6} \cong \$ 15.17$.

The expected value of a function of two random variables is

$$
E[g(X, Y)] \equiv \sum_{k} \sum_{\ell} g\left(x_{k}, y_{\ell}\right) p\left(x_{k}, y_{\ell}\right) .
$$

EXAMPLE:

	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=1$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{2}$
$x=2$	$\frac{2}{9}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{3}$
$x=3$	$\frac{1}{9}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
$p_{Y}(y)$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	1

$$
\begin{align*}
E[X] & =1 \cdot \frac{1}{2}+2 \cdot \frac{1}{3}+3 \cdot \frac{1}{6}=\frac{5}{3} \\
E[Y] & =1 \cdot \frac{2}{3}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}=\frac{3}{2} \\
E[X Y] & =1 \cdot \frac{1}{3}+2 \cdot \frac{1}{12}+3 \cdot \frac{1}{12} \\
& +2 \cdot \frac{2}{9}+4 \cdot \frac{1}{18}+6 \cdot \frac{1}{18} \\
& +3 \cdot \frac{1}{9}+6 \cdot \frac{1}{36}+9 \cdot \frac{1}{36}=\frac{5}{2} \tag{So?}
\end{align*}
$$

PROPERTY:

- If X and Y are independent then $E[X Y]=E[X] E[Y]$.

PROOF :

$$
\begin{aligned}
E[X Y] & =\sum_{k} \sum_{\ell} x_{k} y_{\ell} p_{X, Y}\left(x_{k}, y_{\ell}\right) \\
& =\sum_{k} \sum_{\ell} x_{k} y_{\ell} p_{X}\left(x_{k}\right) p_{Y}\left(y_{\ell}\right) \quad \text { (by independence) } \\
& =\sum_{k}\left\{x_{k} p_{X}\left(x_{k}\right) \sum_{\ell} y_{\ell} p_{Y}\left(y_{\ell}\right)\right\} \\
& =\left\{\sum_{k} x_{k} p_{X}\left(x_{k}\right)\right\} \cdot\left\{\sum_{\ell} y_{\ell} p_{Y}\left(y_{\ell}\right)\right\} \\
& =E[X] \cdot E[Y]
\end{aligned}
$$

EXAMPLE: See the preceding example!

PROPERTY: $E[X+Y]=E[X]+E[Y]$.

PROOF :

$$
\begin{aligned}
E[X+Y] & =\sum_{k} \sum_{\ell}\left(x_{k}+y_{\ell}\right) p_{X, Y}\left(x_{k}, y_{\ell}\right) \\
& =\sum_{k} \sum_{\ell} x_{k} p_{X, Y}\left(x_{k}, y_{\ell}\right)+\sum_{k} \sum_{\ell} y_{\ell} p_{X, Y}\left(x_{k}, y_{\ell}\right) \\
& =\sum_{k} \sum_{\ell} x_{k} p_{X, Y}\left(x_{k}, y_{\ell}\right)+\sum_{\ell} \sum_{k} y_{\ell} p_{X, Y}\left(x_{k}, y_{\ell}\right) \\
& =\sum_{k}\left\{x_{k} \sum_{\ell} p_{X, Y}\left(x_{k}, y_{\ell}\right)\right\}+\sum_{\ell}\left\{y_{\ell} \sum_{k} p_{X, Y}\left(x_{k}, y_{\ell}\right)\right\} \\
& =\sum_{k}\left\{x_{k} p_{X}\left(x_{k}\right)\right\}+\sum_{\ell}\left\{y_{\ell} p_{Y}\left(y_{\ell}\right)\right\} \\
& =E[X]+E[Y] .
\end{aligned}
$$

NOTE : X and Y need not be independent!

EXERCISE :
Probability mass function $p_{X, Y}(x, y)$

	$y=6$	$y=8$	$y=10$	$p_{X}(x)$
$x=1$	$\frac{1}{5}$	0	$\frac{1}{5}$	$\frac{2}{5}$
$x=2$	0	$\frac{1}{5}$	0	$\frac{1}{5}$
$x=3$	$\frac{1}{5}$	0	$\frac{1}{5}$	$\frac{2}{5}$
$p_{Y}(y)$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{2}{5}$	1

Show that

- $E[X]=2, E[Y]=8, E[X Y]=16$
- X and Y are not independent

Thus if

$$
E[X Y]=E[X] E[Y]
$$

then it does not necessarily follow that X and Y are independent!

Variance and Standard Deviation

Let X have mean

$$
\mu=E[X] .
$$

Then the variance of X is

$$
\operatorname{Var}(X) \equiv E\left[(X-\mu)^{2}\right] \equiv \sum_{k}\left(x_{k}-\mu\right)^{2} p\left(x_{k}\right),
$$

which is the average weighted square distance from the mean.

We have

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}-2 \mu X+\mu^{2}\right] \\
& =E\left[X^{2}\right]-2 \mu E[X]+\mu^{2} \\
& =E\left[X^{2}\right]-2 \mu^{2}+\mu^{2} \\
& =E\left[X^{2}\right]-\mu^{2} .
\end{aligned}
$$

The standard deviation of X is

$$
\sigma(X) \equiv \sqrt{\operatorname{Var}(X)}=\sqrt{E\left[(X-\mu)^{2}\right]}=\sqrt{E\left[X^{2}\right]-\mu^{2}} .
$$

which is the average weighted distance from the mean.

EXAMPLE: The variance of rolling a die is

$$
\begin{aligned}
\operatorname{Var}(X)= & \sum_{k=1}^{6}\left[k^{2} \cdot \frac{1}{6}\right]-\mu^{2} \\
& =\frac{1}{6} \frac{6(6+1)(2 \cdot 6+1)}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12} .
\end{aligned}
$$

The standard deviation is

$$
\sigma=\sqrt{\frac{35}{12}} \cong 1.70
$$

Covariance

Let X and Y be random variables with mean

$$
E[X]=\mu_{X} \quad, \quad E[Y]=\mu_{Y} .
$$

Then the covariance of X and Y is defined as
$\operatorname{Cov}(X, Y) \equiv E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=\sum_{k, \ell}\left(x_{k}-\mu_{X}\right)\left(y_{\ell}-\mu_{Y}\right) p\left(x_{k}, y_{\ell}\right)$.
We have

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =E\left[X Y-\mu_{X} Y-\mu_{Y} X+\mu_{X} \mu_{Y}\right] \\
& =E[X Y]-\mu_{X} \mu_{Y}-\mu_{Y} \mu_{X}+\mu_{X} \mu_{Y} \\
& =E[X Y]-E[X] E[Y] .
\end{aligned}
$$

We defined

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & \equiv E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\sum_{k, \ell}\left(x_{k}-\mu_{X}\right)\left(y_{\ell}-\mu_{Y}\right) p\left(x_{k}, y_{\ell}\right) \\
& =E[X Y]-E[X] E[Y] .
\end{aligned}
$$

NOTE:
$\operatorname{Cov}(X, Y)$ measures "concordance " or " coherence " of X and Y :

- If $X>\mu_{X}$ when $Y>\mu_{Y}$ and $X<\mu_{X}$ when $Y<\mu_{Y}$ then

$$
\operatorname{Cov}(X, Y)>0 .
$$

- If $X>\mu_{X}$ when $Y<\mu_{Y}$ and $X<\mu_{X}$ when $Y>\mu_{Y}$ then

$$
\operatorname{Cov}(X, Y)<0
$$

EXERCISE: Prove the following :

- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$,
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$,
- $\operatorname{Cov}(c X, Y)=c \operatorname{Cov}(X, Y)$,
- $\operatorname{Cov}(X, c Y)=c \operatorname{Cov}(X, Y)$,
- $\operatorname{Cov}(X+Y, Z)=\operatorname{Cov}(X, Z)+\operatorname{Cov}(Y, Z)$,
- Var $(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$.

PROPERTY:

If X and Y are independent then $\operatorname{Cov}(X, Y)=0$.

PROOF :

We have already shown (with $\mu_{X} \equiv E[X]$ and $\mu_{Y} \equiv E[Y]$) that
$\operatorname{Cov}(X, Y) \equiv E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[X Y]-E[X] E[Y]$,
and that if X and Y are independent then

$$
E[X Y]=E[X] E[Y]
$$

from which the result follows.

EXERCISE : (already used earlier ...)
Probability mass function $p_{X, Y}(x, y)$

	$y=6$	$y=8$	$y=10$	$p_{X}(x)$
$x=1$	$\frac{1}{5}$	0	$\frac{1}{5}$	$\frac{2}{5}$
$x=2$	0	$\frac{1}{5}$	0	$\frac{1}{5}$
$x=3$	$\frac{1}{5}$	0	$\frac{1}{5}$	$\frac{2}{5}$
$p_{Y}(y)$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{2}{5}$	1

Show that

- $E[X]=2, E[Y]=8, E[X Y]=16$
- $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0$
- X and Y are not independent

Thus if

$$
\operatorname{Cov}(X, Y)=0,
$$

then it does not necessarily follow that X and Y are independent!

PROPERTY:

If X and Y are independent then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

PROOF :

We have already shown (in an exercise !) that

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y),
$$

and that if X and Y are independent then

$$
\operatorname{Cov}(X, Y)=0
$$

from which the result follows.

EXERCISE :

Compute

$$
\begin{gathered}
E[X], E[Y], E\left[X^{2}\right], E\left[Y^{2}\right] \\
E[X Y], \operatorname{Var}(X), \operatorname{Var}(Y) \\
\operatorname{Cov}(X, Y)
\end{gathered}
$$

for
Joint probability mass function $p_{X, Y}(x, y)$

	$y=0$	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=0$	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$
$x=1$	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{8}$
$x=2$	0	$\frac{2}{8}$	$\frac{1}{8}$	0	$\frac{3}{8}$
$x=3$	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
$p_{Y}(y)$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	1

EXERCISE :

Compute

$$
\begin{gathered}
E[X], E[Y], E\left[X^{2}\right], E\left[Y^{2}\right] \\
E[X Y], \operatorname{Var}(X), \operatorname{Var}(Y) \\
\operatorname{Cov}(X, Y)
\end{gathered}
$$

for
Joint probability mass function $p_{X, Y}(x, y)$

	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=1$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{2}$
$x=2$	$\frac{2}{9}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{3}$
$x=3$	$\frac{1}{9}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
$p_{Y}(y)$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	1

SPECIAL DISCRETE RANDOM VARIABLES

The Bernoulli Random Variable
A Bernoulli trial has only two outcomes, with probability

$$
\begin{aligned}
& P(X=1) \quad=p \\
& P(X=0) \quad=1-p
\end{aligned}
$$

e.g., tossing a coin, winning or losing a game, \cdots.

We have

$$
\begin{gathered}
E[X]=1 \cdot p+0 \cdot(1-p)=p \\
E\left[X^{2}\right]=1^{2} \cdot p+0^{2} \cdot(1-p)=p \\
\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=p-p^{2}=p(1-p) .
\end{gathered}
$$

NOTE: If p is small then $\operatorname{Var}(X) \cong p$.

EXAMPLES :

- When $p=\frac{1}{2}$ (e.g., for tossing a coin), we have

$$
E[X]=p=\frac{1}{2} \quad, \quad \operatorname{Var}(X)=p(1-p)=\frac{1}{4} .
$$

- When rolling a die, with outcome $k,(1 \leq k \leq 6)$, let $X(k)=1$ if the roll resulted in a six,
and

$$
X(k)=0 \text { if the roll did not result in a six. }
$$

Then

$$
E[X]=p=\frac{1}{6} \quad, \quad \operatorname{Var}(X)=p(1-p)=\frac{5}{36} .
$$

- When $p=0.01$, then

$$
E[X]=0.01 \quad, \quad \operatorname{Var}(X)=0.0099 \cong 0.01
$$

The Binomial Random Variable

Perform a Bernoulli trial n times in sequence.
Assume the individual trials are independent.
An outcome could be

$$
100011001010 \quad(n=12),
$$

with probability

$$
P(100011001010)=p^{5} \cdot(1-p)^{7} . \quad(\text { Why } ?)
$$

Let the X be the number of "successes" (i.e. 1's).
For example,

$$
X(100011001010)=5 .
$$

We have

$$
P(X=5)=\binom{12}{5} \cdot p^{5} \cdot(1-p)^{7} . \quad(\text { Why ? })
$$

In general, for k successes in a sequence of n trials, we have

$$
P(X=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}, \quad(0 \leq k \leq n) .
$$

EXAMPLE : Tossing a coin 12 times:

$n=12, \quad \mathbf{p}=\frac{1}{\mathbf{2}}$		
k	$p_{X}(k)$	$F_{X}(k)$
0	$1 / 4096$	$1 / 4096$
1	$12 / 4096$	$13 / 4096$
2	$66 / 4096$	$79 / 4096$
3	$220 / 4096$	$299 / 4096$
4	$495 / 4096$	$794 / 4096$
5	$792 / 4096$	$1586 / 4096$
6	$924 / 4096$	$2510 / 4096$
7	$792 / 4096$	$3302 / 4096$
8	$495 / 4096$	$3797 / 4096$
9	$220 / 4096$	$4017 / 4096$
10	$66 / 4096$	$4083 / 4096$
11	$12 / 4096$	$4095 / 4096$
12	$1 / 4096$	$4096 / 4096$

The Binomial mass and distribution functions for $n=12, p=\frac{1}{2}$

For k successes in a sequence of n trials :

$$
P(X=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}, \quad(0 \leq k \leq n)
$$

EXAMPLE: Rolling a die 12 times:

$n=12 \quad, \quad \mathbf{p}=\frac{1}{6}$		
k	$p_{X}(k)$	$F_{X}(k)$
0	0.1121566221	0.112156
1	0.2691758871	0.381332
2	0.2960935235	0.677426
3	0.1973956972	0.874821
4	0.0888280571	0.963649
5	0.0284249838	0.992074
6	0.0066324966	0.998707
7	0.0011369995	0.999844
8	0.0001421249	0.999986
9	0.0000126333	0.999998
10	0.0000007580	0.999999
11	0.0000000276	0.999999
12	0.0000000005	1.000000

The Binomial mass and distribution functions for $n=12, p=\frac{1}{6}$

EXAMPLE :

In 12 rolls of a die write the outcome as, for example,

100011001010

where 1 denotes the roll resulted in a six,
and

$$
0 \text { denotes the roll did not result in a six. }
$$

As before, let X be the number of 1's in the outcome.
Then X represents the number of sixes in the 12 rolls.

Then, for example, using the preceding Table:

$$
P(X=5) \cong 2.8 \% \quad, \quad P(X \leq 5) \cong 99.2 \% .
$$

EXERCISE : Show that from
and

$$
P(X=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k},
$$

$$
P(X=k+1)=\binom{n}{k+1} \cdot p^{k+1} \cdot(1-p)^{n-k-1}
$$

it follows that

$$
P(X=k+1)=c_{k} \cdot P(X=k)
$$

where

$$
c_{k}=\frac{n-k}{k+1} \cdot \frac{p}{1-p}
$$

NOTE: This recurrence formula is an efficient and stable algorithm to compute the binomial probabilities :

$$
\begin{gathered}
P(X=0)=(1-p)^{n} \\
P(X=k+1)=c_{k} \cdot P(X=k), \quad k=0,1, \cdots, n-1 .
\end{gathered}
$$

Mean and variance of the Binomial random variable :

By definition, the mean of a Binomial random variable X is

$$
E[X]=\sum_{k=0}^{n} k \cdot P(X=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k},
$$

which can be shown to equal $n p$.

An easy way to see this is as follows:

If in a sequence of n independent Bernoulli trials we let
$X_{k}=$ the outcome of the $k^{\text {th }}$ Bernoulli trial, $\quad\left(X_{k}=0\right.$ or 1$)$, then

$$
X \equiv X_{1}+X_{2}+\cdots+X_{n}
$$

is the Binomial random variable that counts the successes".

$$
X \equiv X_{1}+X_{2}+\cdots+X_{n}
$$

We know that

$$
E\left[X_{k}\right]=p
$$

so

$$
E[X]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right]=n p .
$$

We already know that

$$
\operatorname{Var}\left(X_{k}\right)=E\left[X_{k}^{2}\right]-\left(E\left[X_{k}\right]\right)^{2}=p-p^{2}=p(1-p),
$$

so, since the X_{k} are independent, we have

$$
\operatorname{Var}(X)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=n p(1-p) .
$$

NOTE: If p is small then $\operatorname{Var}(X) \cong n p$.

EXAMPLES :

- For 12 tosses of a coin, with Heads is success, we have

$$
\text { so } \begin{aligned}
n=12 \quad, \quad p & =\frac{1}{2} \\
E[X]=n p=6, \quad \operatorname{Var}(X) & =n p(1-p)=3 .
\end{aligned}
$$

- For 12 rolls of a die, with six is success, we have SO

$$
n=12 \quad, \quad p=\frac{1}{6}
$$

$$
E[X]=n p=2 \quad, \quad \operatorname{Var}(X)=n p(1-p)=5 / 3 .
$$

- If $n=500$ and $p=0.01$, then

$$
E[X]=n p=5, \quad \operatorname{Var}(X)=n p(1-p)=4.95 \cong 5 .
$$

The Poisson Random Variable

The Poisson variable approximates the Binomial random variable :

$$
P(X=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k} \cong e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

when we take

$$
\lambda=n p \quad \text { (the average number of successes }) .
$$

This approximation is accurate if n is large and p small.

Recall that for the Binomial random variable

$$
E[X]=n p, \text { and } \operatorname{Var}(X)=n p(1-p) \cong n p \text { when } p \text { is small. }
$$

Indeed, for the Poisson random variable we will show that

$$
E[X]=\lambda \quad \text { and } \quad \operatorname{Var}(X)=\lambda .
$$

A stable and efficient way to compute the Poisson probability

$$
\begin{gathered}
P(X=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \cdots \\
P(X=k+1)=e^{-\lambda} \cdot \frac{\lambda^{k+1}}{(k+1)!}
\end{gathered}
$$

is to use the recurrence relation

$$
\begin{gathered}
P(X=0)=e^{-\lambda}, \\
P(X=k+1)=\frac{\lambda}{k+1} \cdot P(X=k), \quad k=0,1,2, \cdots .
\end{gathered}
$$

NOTE: Unlike the Binomial random variable, the Poisson random variable can have an arbitrarily large integer value k.

The Poisson random variable

$$
P(X=k) \quad=\quad e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \cdots
$$

has (as shown later) : $E[X]=\lambda$ and $\operatorname{Var}(X)=\lambda$.

The Poisson distribution function is

$$
F(k)=P(X \leq k)=\sum_{\ell=0}^{k} e^{-\lambda} \frac{\lambda^{\ell}}{\ell!}=e^{-\lambda} \sum_{\ell=0}^{k} \frac{\lambda^{\ell}}{\ell!},
$$

with, as should be the case,

$$
\lim _{k \rightarrow \infty} F(k)=e^{-\lambda} \sum_{\ell=0}^{\infty} \frac{\lambda^{\ell}}{\ell!}=e^{-\lambda} e^{\lambda}=1
$$

(using the Taylor series from Calculus for e^{λ}).

The Poisson random variable

$$
P(X=k) \quad=\quad e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \cdots
$$

models the probability of k "successes " in a given "time" interval, when the average number of successes is λ.

EXAMPLE: Suppose customers arrive at the rate of six per hour. The probability that k customers arrive in a one-hour period is

$$
\begin{aligned}
& P(k=0)=e^{-6} \cdot \frac{6^{0}}{0!} \cong 0.0024 \\
& P(k=1)=e^{-6} \cdot \frac{6^{1}}{1!} \cong 0.0148 \\
& P(k=2)=e^{-6} \cdot \frac{6^{2}}{2!} \cong 0.0446
\end{aligned}
$$

The probability that more than 2 customers arrive is

$$
1-(0.0024+0.0148+0.0446) \cong 0.938
$$

$$
p_{\text {Binomial }}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \cong p_{\text {Poisson }}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

EXAMPLE: $\lambda=6$ customers/hour.
For the Binomial take $n=12, p=0.5$ (0.5 customers $/ 5$ minutes), so that indeed $n p=\lambda$.

k	$p_{\text {Binomial }}$	$p_{\text {Poisson }}$	$F_{\text {Binomial }}$	$F_{\text {Poisson }}$	
0	0.0002	0.0024	0.0002	0.0024	
1	0.0029	0.0148	0.0031	0.0173	
2	0.0161	0.0446	0.0192	0.0619	
3	0.0537	0.0892	0.0729	0.1512	
4	0.1208	0.1338	0.1938	0.2850	
5	0.1933	0.1606	0.3872	0.4456	
6	0.2255	0.1606	0.6127	0.6063	
7	0.1933	0.1376	0.8061	0.7439	
8	0.1208	0.1032	0.9270	0.8472	
9	0.0537	0.0688	0.9807	0.9160	
10	0.0161	0.0413	0.9968	0.9573	
11	0.0029	0.0225	0.9997	0.9799	
12	0.0002	0.0112	1.0000	0.9911*	Why not 1.0000 ?

Here the approximation is not so good ...

$$
p_{\text {Binomial }}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \cong p_{\text {Poisson }}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

EXAMPLE: $\lambda=6$ customers/hour.
For the Binomial take $n=60, p=0.1$ (0.1 customers/minute), so that indeed $n p=\lambda$.

k	$p_{\text {Binomial }}$	$p_{\text {Poisson }}$	$F_{\text {Binomial }}$	$F_{\text {Poisson }}$
0	0.0017	0.0024	0.0017	0.0024
1	0.0119	0.0148	0.0137	0.0173
2	0.0392	0.0446	0.0530	0.0619
3	0.0843	0.0892	0.1373	0.1512
4	0.1335	0.1338	0.2709	0.2850
5	0.1662	0.1606	0.4371	0.4456
6	0.1692	0.1606	0.6064	0.6063
7	0.1451	0.1376	0.7515	0.7439
8	0.1068	0.1032	0.8583	0.8472
9	0.0685	0.0688	0.9269	0.9160
10	0.0388	0.0413	0.9657	0.9573
11	0.0196	0.0225	0.9854	0.9799
12	0.0089	0.0112	0.9943	0.9911
13	\cdots	\cdots	\cdots	\cdots

Here the approximation is better ...

$$
n=12, \quad p=\frac{1}{2}, \lambda=6
$$

$$
n=200, p=0.01, \quad \lambda=2
$$

The Binomial (blue) and Poisson (red) probability mass functions. For the case $n=200, p=0.01$, the approximation is very good!

For the Binomial random variable we found

$$
E[X]=n p \quad \text { and } \quad \operatorname{Var}(X)=n p(1-p),
$$

while for the Poisson random variable, with $\lambda=n p$ we will show

$$
E[X]=n p \quad \text { and } \quad \operatorname{Var}(X)=n p .
$$

Note again that

$$
n p(1-p) \cong n p \quad, \quad \text { when } p \text { is small }
$$

EXAMPLE: In the preceding two Tables we have

$\mathrm{n}=12, \mathrm{p}=0.5$		
	Binomial	Poisson
$E[X]$	6.0000	6.0000
$\operatorname{Var}[X]$	3.0000	6.0000
$\sigma[X]$	1.7321	2.4495

$$
\mathrm{n}=60, \mathrm{p}=0.1
$$

	Binomial	Poisson
$E[X]$	6.0000	6.0000
$\operatorname{Var}[X]$	5.4000	6.0000
$\sigma[X]$	2.3238	2.4495

FACT : (The Method of Moments)
By Taylor expansion of $e^{t X}$ about $t=0$, we have

$$
\begin{aligned}
\psi(t) & \equiv E\left[e^{t X}\right]=E\left[1+t X+\frac{t^{2} X^{2}}{2!}+\frac{t^{3} X^{3}}{3!}+\cdots\right] \\
& =1+t E[X]+\frac{t^{2}}{2!} E\left[X^{2}\right]+\frac{t^{3}}{3!} E\left[X^{3}\right]+\cdots
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\psi^{\prime}(0)=E[X] \quad, \quad \psi^{\prime \prime}(0)=E\left[X^{2}\right] \tag{Why?}
\end{equation*}
$$

This sometimes facilitates computing the mean
and the variance

$$
\mu=E[X]
$$

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-\mu^{2} .
$$

APPLICATION: The Poisson mean and variance:

$$
\begin{aligned}
\psi(t) \equiv E\left[e^{t X}\right] & =\sum_{k=0}^{\infty} e^{t k} P(X=k)=\sum_{k=0}^{\infty} e^{t k} e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda} \sum_{k=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{k}}{k!}=e^{-\lambda} e^{\lambda} e^{t}=e^{\lambda\left(e^{t}-1\right)} .
\end{aligned}
$$

Here

$$
\begin{aligned}
\psi^{\prime}(t) & =\lambda e^{t} e^{\lambda\left(e^{t}-1\right)} \\
\psi^{\prime \prime}(t) & =\lambda\left[\lambda\left(e^{t}\right)^{2}+e^{t}\right] e^{\lambda\left(e^{t}-1\right)} \quad(\text { Check }!)
\end{aligned}
$$

so that

$$
\begin{gathered}
E[X]=\psi^{\prime}(0)=\lambda \\
E\left[X^{2}\right]=\psi^{\prime \prime}(0)=\lambda(\lambda+1)=\lambda^{2}+\lambda \\
\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=\lambda .
\end{gathered}
$$

EXAMPLE : Defects in a wire occur at the rate of one per 10 meter, with a Poisson distribution:

$$
P(X=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \cdots
$$

What is the probability that:

- A 12-meter roll has at no defects?

ANSWER: Here $\lambda=1.2$, and $P(X=0)=e^{-\lambda}=0.3012$.

- A 12-meter roll of wire has one defect?

ANSWER: With $\lambda=1.2, \quad P(X=1)=e^{-\lambda} \cdot \lambda=0.3614$.

- Of five 12 -meter rolls two have one defect and three have none?

ANSWER: $\binom{5}{3} \cdot 0.3012^{3} \cdot 0.3614^{2}=0.0357 . \quad($ Why ?)

EXERCISE :

Defects in a certain wire occur at the rate of one per 10 meter.
Assume the defects have a Poisson distribution.
What is the probability that:

- a 20 -meter wire has no defects?
- a 20 -meter wire has at most 2 defects?

EXERCISE :

Customers arrive at a counter at the rate of 8 per hour.
Assume the arrivals have a Poisson distribution. What is the probability that:

- no customer arrives in 15 minutes?
- two customers arrive in a period of 30 minutes?

CONTINUOUS RANDOM VARIABLES

DEFINITION: A continuous random variable is a function $X(s)$ from an uncountably infinite sample space \mathcal{S} to the real numbers \mathbb{R},

$$
X(\cdot) \quad: \quad \mathcal{S} \quad \rightarrow \quad \mathbb{R} .
$$

EXAMPLE :

Rotate a pointer about a pivot in a plane (like a hand of a clock).
The outcome is the angle where it stops : $2 \pi \theta$, where $\theta \in(0,1]$.
A good sample space is all values of θ, i.e. $\mathcal{S}=(0,1]$.
A very simple example of a continuous random variable is $X(\theta)=\theta$.

Suppose any outcome, i.e., any value of θ is "equally likely".
What are the values of

$$
P\left(0<\theta \leq \frac{1}{2}\right) \quad, \quad P\left(\frac{1}{3}<\theta \leq \frac{1}{2}\right) \quad, \quad P\left(\theta=\frac{1}{\sqrt{2}}\right) ?
$$

The (cumulative) probability distribution function is defined as

$$
F_{X}(x) \equiv P(X \leq x)
$$

Thus

$$
F_{X}(b)-F_{X}(a) \equiv P(a<X \leq b)
$$

We must have

$$
F_{X}(-\infty)=0 \quad \text { and } \quad F_{X}(\infty)=1
$$

i.e.,

$$
\lim _{x \rightarrow-\infty} F_{X}(x)=0
$$

and

$$
\lim _{x \rightarrow \infty} F_{X}(x)=1
$$

Also, $F_{X}(x)$ is a non-decreasing function of x. (Why?)

NOTE : All the above is the same as for discrete random variables !

EXAMPLE: In the " pointer example ", where $X(\theta)=\theta$, we have the probability distribution function

Note that

$$
\begin{gathered}
F\left(\frac{1}{3}\right) \equiv P\left(X \leq \frac{1}{3}\right)=\frac{1}{3} \quad, \quad F\left(\frac{1}{2}\right) \equiv P\left(X \leq \frac{1}{2}\right)=\frac{1}{2}, \\
P\left(\frac{1}{3}<X \leq \frac{1}{2}\right)=F\left(\frac{1}{2}\right)-F\left(\frac{1}{3}\right)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6} .
\end{gathered}
$$

QUESTION : What is $P\left(\frac{1}{3} \leq X \leq \frac{1}{2}\right)$?

The probability density function is the derivative of the probability distribution function :

$$
f_{X}(x) \equiv F_{X}^{\prime}(x) \equiv \frac{d}{d x} F_{X}(x)
$$

EXAMPLE: In the "pointer example "

$$
F_{X}(x)= \begin{cases}0, & x \leq 0 \\ x, & 0<x \leq 1 \\ 1, & 1<x\end{cases}
$$

Thus

$$
f_{X}(x)=F_{X}^{\prime}(x)= \begin{cases}0, & x \leq 0 \\ 1, & 0<x \leq 1 \\ 0, & 1<x\end{cases}
$$

NOTATION: When it is clear what X is then we also write

$$
f(x) \text { for } f_{X}(x), \quad \text { and } \quad F(x) \text { for } F_{X}(x) .
$$

EXAMPLE: (continued...)

$$
F(x)=\left\{\begin{array}{ll}
0, & x \leq 0 \\
x, & 0<x \leq 1 \\
1, & 1<x
\end{array} \quad, \quad f(x)= \begin{cases}0, & x \leq 0 \\
1, & 0<x \leq 1 \\
0, & 1<x\end{cases}\right.
$$

Distribution function

NOTE:
$P\left(\frac{1}{3}<X \leq \frac{1}{2}\right)=\int_{\frac{1}{3}}^{\frac{1}{2}} f(x) d x=\frac{1}{6}=$ the shaded area.

In general, from
with

$$
f(x) \equiv F^{\prime}(x)
$$

$$
F(-\infty)=0 \quad \text { and } \quad F(\infty)=1
$$

we have from Calculus the following basic identities:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} F^{\prime}(x) d x=F(\infty)-F(-\infty)=1 \\
& \int_{-\infty}^{x} f(x) d x=F(x)-F(-\infty)=F(x)=P(X \leq x), \\
& \int_{a}^{b} f(x) d x=F(b)-F(a)=P(a<X \leq b), \\
& \int_{a}^{a} f(x) d x=F(a)-F(a)=0=P(X=a) .
\end{aligned}
$$

EXERCISE : Draw graphs of the distribution and density functions

$$
F(x)=\left\{\begin{array}{ll}
0, & x \leq 0 \\
1-e^{-x}, & x>0
\end{array} \quad, \quad f(x)=\left\{\begin{array}{ll}
0, & x \leq 0 \\
e^{-x}, & x>0
\end{array},\right.\right.
$$

and verify that

- $F(-\infty)=0, \quad F(\infty)=1$,
- $\quad f(x)=F^{\prime}(x)$,
- $F(x)=\int_{0}^{x} f(x) d x, \quad$ (Why is zero as lower limit OK ?)
- $\int_{0}^{\infty} f(x) d x=1$,
- $P(0<X \leq 1)=F(1)-F(0)=F(1)=1-e^{-1} \cong 0.63$,
- $P(X>1)=1-F(1)=e^{-1} \cong 0.37$,
- $P(1<X \leq 2)=F(2)-F(1)=e^{-1}-e^{-2} \cong 0.23$.

EXERCISE : For positive integer n, consider the density functions

$$
f_{n}(x)=\left\{\begin{array}{cc}
c x^{n}\left(1-x^{n}\right), & 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- Determine the value of c in terms of n.
- Draw the graph of $f_{n}(x)$ for $n=1,2,4,8,16$.
- Determine the distribution function $F_{n}(x)$.
- Draw the graph of $F_{n}(x)$ for $n=1,2,3,4,8,16$.
- Determine $P\left(0 \leq X \leq \frac{1}{2}\right)$ in terms of n.
- What happens to $P\left(0 \leq X \leq \frac{1}{2}\right)$ when n becomes large?
- Determine $P\left(\frac{9}{10} \leq X \leq 1\right)$ in terms of n.
- What happens to $P\left(\frac{9}{10} \leq X \leq 1\right)$ when n becomes large?

Joint distributions

A joint probability density function $f_{X, Y}(x, y)$ must satisfy

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1 \quad(\text { "Volume" }=1)
$$

The corresponding joint probability distribution function is

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f_{X, Y}(x, y) d x d y
$$

By Calculus we have $\quad \frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y}=f_{X, Y}(x, y)$.

Also,

$$
P(a<X \leq b, c<Y \leq d)=\int_{c}^{d} \int_{a}^{b} f_{X, Y}(x, y) d x d y
$$

EXAMPLE:

If

$$
f_{X, Y}(x, y)= \begin{cases}1 & \text { for } x \in(0,1] \text { and } y \in(0,1] \\ 0 & \text { otherwise },\end{cases}
$$

then, for $x \in(0,1]$ and $y \in(0,1]$,

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=\int_{0}^{y} \int_{0}^{x} 1 d x d y=x y
$$

Thus

$$
F_{X, Y}(x, y)=x y, \quad \text { for } x \in(0,1] \text { and } y \in(0,1] .
$$

For example

$$
P\left(X \leq \frac{1}{3}, Y \leq \frac{1}{2}\right) \quad=\quad F_{X, Y}\left(\frac{1}{3}, \frac{1}{2}\right)=\frac{1}{6} .
$$

Also,
$P\left(\frac{1}{3} \leq X \leq \frac{1}{2}, \frac{1}{4} \leq Y \leq \frac{3}{4}\right)=\int_{\frac{1}{4}}^{\frac{3}{4}} \int_{\frac{1}{3}}^{\frac{1}{2}} f(x, y) d x d y=\frac{1}{12}$.
EXERCISE : Show that we can also compute this as follows :

$$
F\left(\frac{1}{2}, \frac{3}{4}\right)-F\left(\frac{1}{3}, \frac{3}{4}\right)-F\left(\frac{1}{2}, \frac{1}{4}\right)+F\left(\frac{1}{3}, \frac{1}{4}\right)=\frac{1}{12} .
$$

and explain why !

Marginal density functions

The marginal density functions are

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \quad, \quad f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
$$

with corresponding marginal distribution functions

$$
\begin{aligned}
& F_{X}(x) \equiv P(X \leq x)=\int_{-\infty}^{x} f_{X}(x) d x=\int_{-\infty}^{x} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d y d x \\
& F_{Y}(y) \equiv P(Y \leq y)=\int_{-\infty}^{y} f_{Y}(y) d y=\int_{-\infty}^{y} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y
\end{aligned}
$$

By Calculus we have

$$
\frac{d F_{X}(x)}{d x}=f_{X}(x) \quad, \quad \frac{d F_{Y}(y)}{d y}=f_{Y}(y)
$$

EXAMPLE: If

$$
\begin{aligned}
& \text { PLE : If } \\
& f_{X, Y}(x, y)= \begin{cases}1 & \text { for } x \in(0,1] \text { and } y \in(0,1] \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

then, for $x \in(0,1]$ and $y \in(0,1]$,

$$
\begin{aligned}
& f_{X}(x)=\int_{0}^{1} f_{X, Y}(x, y) d y=\int_{0}^{1} 1 d y=1 \\
& f_{Y}(y)=\int_{0}^{1} f_{X, Y}(x, y) d x=\int_{0}^{1} 1 d x=1 \\
& F_{X}(x)=P(X \leq x)=\int_{0}^{x} f_{X}(x) d x=x \\
& F_{Y}(y)=P(Y \leq y)=\int_{0}^{y} f_{Y}(y) d y=y
\end{aligned}
$$

For example

$$
P\left(X \leq \frac{1}{3}\right)=F_{X}\left(\frac{1}{3}\right)=\frac{1}{3} \quad, \quad P\left(Y \leq \frac{1}{2}\right)=F_{Y}\left(\frac{1}{2}\right)=\frac{1}{2}
$$

EXERCISE:

Let $F_{X, Y}(x, y)=\left\{\begin{array}{cl}\left(1-e^{-x}\right)\left(1-e^{-y}\right) & \text { for } x \geq 0 \text { and } y \geq 0, \\ 0 & \text { otherwise } .\end{array}\right.$

- Verify that

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F}{\partial x \partial y}=\left\{\begin{array}{cl}
e^{-x-y} & \text { for } x \geq 0 \text { and } y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Density function $f_{X, Y}(x, y)$

Distribution function $F_{X, Y}(x, y)$

EXERCISE: (continued $\cdot \cdot$)
$F_{X, Y}(x, y)=\left(1-e^{-x}\right)\left(1-e^{-y}\right) \quad, \quad f_{X, Y}(x, y)=e^{-x-y}, \quad$ for $x, y \geq 0$.

Also verify the following :

- $\quad F(0,0)=0 \quad, \quad F(\infty, \infty)=1$,
- $\int_{0}^{\infty} \int_{0}^{\infty} f_{X, Y}(x, y) d x d y=1$,
(Why zero lower limits?)
- $f_{X}(x)=\int_{0}^{\infty} e^{-x-y} d y=e^{-x}$,
- $f_{Y}(y)=\int_{0}^{\infty} e^{-x-y} d x=e^{-y}$.
- $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$.

EXERCISE: (continued \cdot.)
$F_{X, Y}(x, y)=\left(1-e^{-x}\right)\left(1-e^{-y}\right) \quad, \quad f_{X, Y}(x, y)=e^{-x-y}, \quad$ for $x, y \geq 0$.

Also verify the following :

- $F_{X}(x)=\int_{0}^{x} f_{X}(x) d x=\int_{0}^{x} e^{-x} d x=1-e^{-x}$,
- $F_{Y}(y)=\int_{0}^{y} f_{Y}(y) d y=\int_{0}^{y} e^{-y} d y=1-e^{-y}$,
- $F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)$. (So ?)
- $P(1<x<\infty)=F_{X}(\infty)-F_{X}(1)=1-\left(1-e^{-1}\right)=e^{-1} \cong 0.37$,
- $P(1<x \leq 2,0<y \leq 1)=\int_{0}^{1} \int_{1}^{2} e^{-x-y} d x d y$

$$
=\left(e^{-1}-e^{-2}\right)\left(1-e^{-1}\right) \cong 0.15,
$$

Independent continuous random variables

Recall that two events E and F are independent if

$$
P(E F)=P(E) P(F) .
$$

Continuous random variables $X(s)$ and $Y(s)$ are independent if

$$
P\left(X \in I_{X}, Y \in I_{Y}\right)=P\left(X \in I_{X}\right) \cdot P\left(Y \in I_{Y}\right),
$$

for all allowable sets I_{X} and I_{Y} (typically intervals) of real numbers.

Equivalently, $X(s)$ and $Y(s)$ are independent if for all such sets I_{X} and I_{Y} the events

$$
X^{-1}\left(I_{X}\right) \quad \text { and } \quad Y^{-1}\left(I_{Y}\right),
$$

are independent in the sample space \mathcal{S}.

NOTE :

$$
\begin{aligned}
X^{-1}\left(I_{X}\right) & \equiv\left\{s \in \mathcal{S}: X(s) \in I_{X}\right\}, \\
Y^{-1}\left(I_{Y}\right) & \equiv\left\{s \in \mathcal{S}: Y(s) \in I_{Y}\right\}
\end{aligned}
$$

FACT : $X(s)$ and $Y(s)$ are independent if for all x and y

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

EXAMPLE: The random variables with density function

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
e^{-x-y} & \text { for } x \geq 0 \text { and } y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

are independent because (by the preceding exercise)

$$
f_{X, Y}(x, y)=e^{-x-y}=e^{-x} \cdot e^{-y}=f_{X}(x) \cdot f_{Y}(y) .
$$

NOTE:

$$
F_{X, Y}(x, y)=\left\{\begin{array}{cc}
\left(1-e^{-x}\right)\left(1-e^{-y}\right) & \text { for } x \geq 0 \text { and } y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

also satisfies (by the preceding exercise)

$$
F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)
$$

PROPERTY:

For independent continuous random variables X and Y we have

$$
F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y), \quad \text { for all } x, y
$$

PROOF :

$$
\begin{aligned}
F_{X, Y}(x, y) & =P(X \leq x, Y \leq y) \\
& =\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(x, y) d y d x \\
& =\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X}(x) \cdot f_{Y}(y) d y d x \quad \text { (by independence) } \\
& =\int_{-\infty}^{x}\left[f_{X}(x) \cdot \int_{-\infty}^{y} f_{Y}(y) d y\right] d x \\
& =\left[\int_{-\infty}^{x} f_{X}(x) d x\right] \cdot\left[\int_{-\infty}^{y} f_{Y}(y) d y\right] \\
& =F_{X}(x) \cdot F_{Y}(y)
\end{aligned}
$$

REMARK : Note how the proof parallels that for the discrete case !

Conditional distributions

Let X and Y be continuous random variables.
For given allowable sets I_{X} and I_{Y} (typically intervals), let

$$
E_{x}=X^{-1}\left(I_{X}\right) \quad \text { and } \quad E_{y}=Y^{-1}\left(I_{Y}\right)
$$

be their corresponding events in the sample space \mathcal{S}.
We have $\quad P\left(E_{x} \mid E_{y}\right) \equiv \frac{P\left(E_{x} E_{y}\right)}{P\left(E_{y}\right)}$.
The conditional probability density function is defined as

$$
f_{X \mid Y}(x \mid y) \equiv \frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

When X and Y are independent then

$$
f_{X \mid Y}(x \mid y) \equiv \frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{f_{X}(x) f_{Y}(y)}{f_{Y}(y)}=f_{X}(x)
$$

(assuming $\left.f_{Y}(y) \neq 0\right)$.

EXAMPLE: The random variables with density function

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cl}
e^{-x-y} & \text { for } x \geq 0 \text { and } y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

have (by previous exercise) the marginal density functions

$$
f_{X}(x)=e^{-x} \quad, \quad f_{Y}(y)=e^{-y}
$$

for $x \geq 0$ and $y \geq 0$, and zero otherwise.

Thus for such x, y we have

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{e^{-x-y}}{e^{-y}}=e^{-x}=f_{X}(x),
$$

i.e., information about Y does not alter the density function of X.

Indeed, we have already seen that X and Y are independent.

Expectation

The expected value of a continuous random variable X is

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

which represents the average value of X over many trials.

The expected value of a function of a random variable is

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

The expected value of a function of two random variables is

$$
E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d y d x
$$

EXAMPLE:

For the pointer experiment

$$
f_{X}(x)= \begin{cases}0, & x \leq 0 \\ 1, & 0<x \leq 1 \\ 0, & 1<x\end{cases}
$$

we have

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2},
$$

and

$$
E\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x=\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3} .
$$

EXAMPLE : For the joint density function

$$
f_{X, Y}(x, y)= \begin{cases}e^{-x-y} & \text { for } x>0 \text { and } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

we have (by previous exercise) the marginal density functions
$f_{X}(x)=\left\{\begin{array}{ll}e^{-x} & \text { for } x>0, \\ 0 & \text { otherwise },\end{array} \quad\right.$ and $\quad f_{Y}(y)= \begin{cases}e^{-y} & \text { for } y>0, \\ 0 & \text { otherwise } .\end{cases}$

Thus $E[X]=\int_{0}^{\infty} x e^{-x} d x=-\left.\left[(x+1) e^{-x}\right]\right|_{0} ^{\infty}=1 . \quad($ Check ! $)$
Similarly

$$
E[Y]=\int_{0}^{\infty} y e^{-y} d y=1
$$

and

$$
\begin{equation*}
E[X Y]=\int_{0}^{\infty} \int_{0}^{\infty} x y e^{-x-y} d y d x=1 \tag{Check!}
\end{equation*}
$$

EXERCISE :

Prove the following for continuous random variables:

- $E[a X]=a E[X]$,
- $E[a X+b]=a E[X]+b$,
- $E[X+Y]=E[X]+E[Y]$,
and compare the proofs to those for discrete random variables.

EXERCISE :

A stick of length 1 is split at a randomly selected point X.
(Thus X is uniformly distributed in the interval $[0,1]$.)
Determine the expected length of the piece containing the point $1 / 3$.

PROPERTY: If X and Y are independent then

$$
E[X Y]=E[X] \cdot E[Y]
$$

PROOF :

$$
\begin{aligned}
E[X Y] & =\int_{\mathbb{R}} \int_{\mathbb{R}} x y f_{X, Y}(x, y) d y d x \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} x y f_{X}(x) f_{Y}(y) d y d x \quad \text { (by independence) } \\
& =\int_{\mathbb{R}}\left[x f_{X}(x) \int_{\mathbb{R}} y f_{Y}(y) d y\right] d x \\
& =\left[\int_{\mathbb{R}} x f_{X}(x) d x\right] \cdot\left[\int_{\mathbb{R}} y f_{Y}(y) d y\right] \\
& =E[X] \cdot E[Y]
\end{aligned}
$$

REMARK : Note how the proof parallels that for the discrete case !

EXAMPLE: For

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cl}
e^{-x-y} & \text { for } x>0 \text { and } y>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

we already found

$$
f_{X}(x)=e^{-x} \quad, \quad f_{Y}(y)=e^{-y}
$$

so that

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y),
$$

i.e., X and Y are independent.

Indeed, we also already found that

$$
E[X]=E[Y]=E[X Y]=1,
$$

so that

$$
E[X Y]=E[X] \cdot E[Y] .
$$

Variance

Let $\quad \mu=E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
Then the variance of the continuous random variable X is

$$
\operatorname{Var}(X) \equiv E\left[(X-\mu)^{2}\right] \equiv \int_{-\infty}^{\infty}(x-\mu)^{2} f_{X}(x) d x
$$

which is the average weighted square distance from the mean.

As in the discrete case, we have

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}-2 \mu X+\mu^{2}\right] \\
& =E\left[X^{2}\right]-2 \mu E[X]+\mu^{2}=E\left[X^{2}\right]-\mu^{2} .
\end{aligned}
$$

The standard deviation of X is

$$
\sigma(X) \equiv \sqrt{\operatorname{Var}(X)}=\sqrt{E\left[X^{2}\right]-\mu^{2}} .
$$

which is the average weighted distance from the mean.

EXAMPLE: For $f(x)= \begin{cases}e^{-x}, & x>0, \\ 0, & x \leq 0,\end{cases}$
we have

$$
\begin{aligned}
E[X] & =\mu=\int_{0}^{\infty} x e^{-x} d x=1 \quad(\text { already done }!) \\
E\left[X^{2}\right] & =\int_{0}^{\infty} x^{2} e^{-x} d x=-\left.\left[\left(x^{2}+2 x+2\right) e^{-x}\right]\right|_{0} ^{\infty}=2, \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-\mu^{2}=2-1^{2}=1 \\
\sigma(X) & =\sqrt{\operatorname{Var}(X)}=1
\end{aligned}
$$

NOTE: The two integrals can be done by "integration by parts".

EXERCISE :

Also use the Method of Moments to compute $E[X]$ and $E\left[X^{2}\right]$.

EXERCISE : For the random variable X with density function

$$
f(x)=\left\{\begin{array}{lc}
0, & x \leq-1 \\
\mathrm{c}, & -1<x \leq 1 \\
0, & x>1
\end{array}\right.
$$

- Determine the value of c
- Draw the graph of $f(x)$
- Determine the distribution function $F(x)$
- Draw the graph of $F(x)$
- Determine $E[X]$
- Compute $\operatorname{Var}(X)$ and $\sigma(X)$
- Determine $P\left(X \leq-\frac{1}{2}\right)$
- Determine $P\left(|X| \geq \frac{1}{2}\right)$

EXERCISE : For the random variable X with density function

$$
f(x)=\left\{\begin{array}{cc}
x+1, & -1<x \leq 0 \\
1-x, & 0<x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- Draw the graph of $f(x)$
- Verify that $\int_{-\infty}^{\infty} f(x) d x=1$
- Determine the distribution function $F(x)$
- Draw the graph of $F(x)$
- Determine $E[X]$
- Compute $\operatorname{Var}(X)$ and $\sigma(X)$
- Determine $P\left(X \geq \frac{1}{3}\right)$
- Determine $P\left(|X| \leq \frac{1}{3}\right)$

EXERCISE : For the random variable X with density function

$$
f(x)=\left\{\begin{array}{cc}
\frac{3}{4}\left(1-x^{2}\right), & -1<x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- Draw the graph of $f(x)$
- Verify that $\int_{-\infty}^{\infty} f(x) d x=1$
- Determine the distribution function $F(x)$
- Draw the graph of $F(x)$
- Determine $E[X]$
- Compute $\operatorname{Var}(X)$ and $\sigma(X)$
- Determine $P(X \leq 0)$
- Compute $P\left(X \geq \frac{2}{3}\right)$
- Compute $P\left(|X| \geq \frac{2}{3}\right)$

EXERCISE : Recall the density function

$$
f_{n}(x)= \begin{cases}c x^{n}\left(1-x^{n}\right), & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

considered earlier, where n is a positive integer, and where

$$
c=\frac{(n+1)(2 n+1)}{n} .
$$

- Determine $E[X]$.
- What happens to $E[X]$ for large n ?
- Determine $E\left[X^{2}\right]$
- What happens to $E\left[X^{2}\right]$ for large n ?
- What happens to $\operatorname{Var}(X)$ for large n ?

Covariance

Let X and Y be continuous random variables with mean

$$
E[X]=\mu_{X} \quad, \quad E[Y]=\mu_{Y} .
$$

Then the covariance of X and Y is

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & \equiv E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f_{X, Y}(x, y) d y d x .
\end{aligned}
$$

As in the discrete case, we have

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =E\left[X Y-\mu_{X} Y-\mu_{Y} X+\mu_{X} \mu_{Y}\right] \\
& =E[X Y]-E[X] E[Y] .
\end{aligned}
$$

As in the discrete case, we also have

PROPERTY 1:

- Var $(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$, and

PROPERTY 2: If X and Y are independent then

- $\operatorname{Cov}(X, Y)=0$,
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.

NOTE:

- The proofs are identical to those for the discrete case !
- As in the discrete case, if $\operatorname{Cov}(X, Y)=0$ then X and Y are not necessarily independent!

EXAMPLE: For

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cl}
e^{-x-y} & \text { for } x>0 \text { and } y>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

we already found

$$
f_{X}(x)=e^{-x} \quad, \quad f_{Y}(y)=e^{-y}
$$

so that

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y),
$$

i.e., X and Y are independent.

Indeed, we also already found

$$
E[X]=E[Y]=E[X Y]=1,
$$

so that

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0
$$

EXERCISE :

Verify the following properties :

- $\operatorname{Var}(c X+d)=c^{2} \operatorname{Var}(X)$,
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$,
- $\operatorname{Cov}(c X, Y)=c \operatorname{Cov}(X, Y)$,
- $\operatorname{Cov}(X, c Y)=c \operatorname{Cov}(X, Y)$,
- $\operatorname{Cov}(X+Y, Z)=\operatorname{Cov}(X, Z)+\operatorname{Cov}(Y, Z)$,
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$.

EXERCISE :

For the random variables X, Y with joint density function

$$
f(x, y)=\left\{\begin{array}{cc}
45 x y^{2}(1-x)\left(1-y^{2}\right), & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- Verify that $\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x=1$.
- Determine the marginal density functions $f_{X}(x)$ and $f_{Y}(y)$.
- Are X and Y independent?
- What is the value of $\operatorname{Cov}(X, Y)$?

The joint probability density function $f_{X Y}(x, y)$.

Markov's inequality.

For a continuous nonnegative random variable X, and $c>0$, we have

$$
P(X \geq c) \leq \frac{E[X]}{c} .
$$

PROOF :

$$
\begin{aligned}
E[X]=\int_{0}^{\infty} x f(x) d x & =\int_{0}^{c} x f(x) d x+\int_{c}^{\infty} x f(x) d x \\
& \geq \int_{c}^{\infty} x f(x) d x \\
& \geq c \int_{c}^{\infty} f(x) d x \quad \text { (Why ?) } \\
& =c P(X \geq c) .
\end{aligned}
$$

EXERCISE :

Show Markov's inequality also holds for discrete random variables.

Markov's inequality : For continuous nonnegative $X, c>0$:

$$
P(X \geq c) \leq \frac{E[X]}{c}
$$

EXAMPLE: For

$$
f(x)=\left\{\begin{array}{cc}
e^{-x} & \text { for } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
E[X]=\int_{0}^{\infty} x e^{-x} d x=1 \quad(\text { already done }!)
$$

Markov's inequality gives

$$
\begin{aligned}
& c=1: \quad P(X \geq 1) \leq \frac{E[X]}{1}=\frac{1}{1}=1(!) \\
& c=10: \quad P(X \geq 10) \leq \frac{E[X]}{10}=\frac{1}{10}=0.1
\end{aligned}
$$

QUESTION : Are these estimates "sharp"?

QUESTION : Are these estimates "sharp"?
Markov's inequality gives

$$
\begin{array}{ll}
c=1: & P(X \geq 1) \leq \frac{E[X]}{1}=\frac{1}{1}=1(!) \\
c=10: & P(X \geq 10) \leq \frac{E[X]}{10}=\frac{1}{10}=0.1
\end{array}
$$

The actual values are

$$
\begin{gathered}
P(X \geq 1)=\int_{1}^{\infty} e^{-x} d x=e^{-1} \cong 0.37 \\
P(X \geq 10)=\int_{10}^{\infty} e^{-x} d x=e^{-10} \cong 0.000045
\end{gathered}
$$

EXERCISE : Suppose the score of students taking an examination is a random variable with mean 65 .
Give an upper bound on the probability that a student's score is greater than 75 .

Chebyshev's inequality: For (practically) any random variable X :

$$
P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

where $\mu=E[X]$ is the mean, $\sigma=\sqrt{\operatorname{Var}(X)}$ the standard deviation.
PROOF: Let $Y \equiv(X-\mu)^{2}$, which is nonnegative.
By Markov's inequality

$$
P(Y \geq c) \leq \frac{E[Y]}{c}
$$

Taking $c=k^{2} \sigma^{2}$ we have
$P(|X-\mu| \geq k \sigma)=P\left((X-\mu)^{2} \geq k^{2} \sigma^{2}\right)=P\left(Y \geq k^{2} \sigma^{2}\right)$

$$
\leq \frac{E[Y]}{k^{2} \sigma^{2}}=\frac{\operatorname{Var}(X)}{k^{2} \sigma^{2}}=\frac{\sigma^{2}}{k^{2} \sigma^{2}}=\frac{1}{k^{2}} .
$$

NOTE : This inequality also holds for discrete random variables.

EXAMPLE : Suppose the value of the Canadian dollar in terms of the US dollar over a certain period is a random variable X with

$$
\text { mean } \mu=0.98 \text { and standard deviation } \sigma=0.05 \text {. }
$$

What can be said of the probability that the Canadian dollar is valued between $\$ 0.88 \mathrm{US}$ and $\$ 1.08 \mathrm{US}$,
that is,

$$
\text { between } \mu-2 \sigma \text { and } \mu+2 \sigma \text { ? }
$$

SOLUTION : By Chebyshev's inequality we have

$$
P(|X-\mu| \geq 2 \sigma) \leq \frac{1}{2^{2}}=0.25
$$

Thus

$$
P(|X-\mu|<2 \sigma)>1-0.25=0.75
$$

that is,

$$
P(\$ 0.88 \mathrm{US}<\mathrm{Can} \$<\$ 1.08 \mathrm{US})>75 \%
$$

EXERCISE :

The score of students taking an examination is a random variable with mean $\mu=65$ and standard deviation $\sigma=5$.

- What is the probability a student scores between 55 and 75 ?
- How many students would have to take the examination so that the probability that their average grade is between 60 and 70 is at least 80% ?
HINT : Defining

$$
\bar{X}=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right), \quad(\text { the average grade })
$$

we have

$$
\mu_{\bar{X}}=E[\bar{X}]=\frac{1}{n} n \mu=\mu=65
$$

and, assuming independence,

$$
\operatorname{Var}(\bar{X})=n \frac{\sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n}=\frac{25}{n}, \quad \text { and } \quad \sigma_{\bar{X}}=\frac{5}{\sqrt{n}} .
$$

SPECIAL CONTINUOUS RANDOM VARIABLES

The Uniform Random Variable

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a}, & a<x \leq b \\
0, & \text { otherwise }
\end{array} \quad, \quad F(x)=\left\{\begin{array}{cl}
0, & x \leq a \\
\frac{x-a}{b-a}, & a<x \leq b \\
1, & x>b
\end{array}\right.\right.
$$

(Already introduced earlier for the special case $a=0, b=1$.)

EXERCISE :

Show that the uniform density function

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a}, & a<x \leq b \\
0, & \text { otherwise }
\end{array}\right.
$$

has mean

$$
\mu=\frac{a+b}{2}
$$

and standard deviation

$$
\sigma=\frac{b-a}{2 \sqrt{3}}
$$

A joint uniform random variable:

$$
f(x, y)=\frac{1}{(b-a)(d-c)} \quad, \quad F(x, y)=\frac{(x-a)(y-c)}{(b-a)(d-c)},
$$

for $x \in(a, b], y \in(c, d]$.

Here $x \in[0,1], y \in[0,1]$.

EXERCISE :

Consider the joint uniform density function

$$
f(x, y)= \begin{cases}c & \text { for } x^{2}+y^{2} \leq 4 \\ 0 & \text { otherwise }\end{cases}
$$

- What is the value of c ?
- What is $P(X<0)$?
- What is $P(X<0, Y<0)$?
- What is $f(x \mid y=1)$?

HINT : No complicated calculations are needed!

The Exponential Random Variable

$$
f(x)=\left\{\begin{array}{ll}
\lambda e^{-\lambda x}, & x>0 \\
0, & x \leq 0
\end{array} \quad, \quad F(x)= \begin{cases}1-e^{-\lambda x}, & x>0 \\
0, & x \leq 0\end{cases}\right.
$$

$$
\begin{aligned}
E[X] & =\mu=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\frac{1}{\lambda} \quad(\text { Check !) }) \\
E\left[X^{2}\right] & =\int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} d x=\frac{2}{\lambda^{2}} \quad(\text { Check }!) \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-\mu^{2}=\frac{1}{\lambda^{2}} \\
\sigma(X) & =\sqrt{\operatorname{Var}(X)}=\frac{1}{\lambda} .
\end{aligned}
$$

NOTE : The two integrals can be done by "integration by parts".
EXERCISE : (Done earlier for $\lambda=1$) :
Also use the Method of Moments to compute $E[X]$ and $E\left[X^{2}\right]$.

The Exponential density and distribution functions

$$
f(x)=\lambda e^{-\lambda x} \quad, \quad F(x)=1-e^{-\lambda x}
$$

for $\lambda=0.25,0.50,0.75,1.00$ (blue), 1.25, 1.50, 1.75, 2.00 (red).

PROPERTY: From

$$
F(x) \equiv P(X \leq x)=1-e^{-\lambda x}, \quad(\text { for } x>0)
$$

we have

$$
P(X>x)=1-\left(1-e^{-\lambda x}\right)=e^{-\lambda x} .
$$

Also, for $\Delta x>0$,
$P(X>x+\Delta x \mid X>x)=\frac{P(X>x+\Delta x, X>x)}{P(X>x)}$

$$
=\frac{P(X>x+\Delta x)}{P(X>x)}=\frac{e^{-\lambda(x+\Delta x)}}{e^{-\lambda x}}=e^{-\lambda \Delta x}
$$

CONCLUSION : $\quad P(X>x+\Delta x \mid X>x)$
only depends on Δx (and λ), and not on x !
We say that the exponential random variable is "memoryless".

EXAMPLE:

Let the density function $f(t)$ model failure of a device,

$$
f(t)=e^{-t}, \quad(\text { taking } \lambda=1)
$$

i.e., the probability of failure in the time-interval $(0, t]$ is

$$
F(t)=\int_{0}^{t} f(t) d t=\int_{0}^{t} e^{-t} d t=1-e^{-t}
$$

with

$$
F(0)=0, \quad(\text { the device works at time } 0)
$$

and

$$
F(\infty)=1, \quad(\text { the device must fail at some time }) .
$$

EXAMPLE: (continued...)

$$
F(t)=1-e^{-t}
$$

Let E_{t} be the event that the device still works at time t :

$$
P\left(E_{t}\right)=1-F(t)=e^{-t} .
$$

The probability it still works at time $t+1$ is

$$
P\left(E_{t+1}\right)=1-F(t+1)=e^{-(t+1)}
$$

The probability it still works at time $t+1$, given it works at time t is
$P\left(E_{t+1} \mid E_{t}\right)=\frac{P\left(E_{t+1} E_{t}\right)}{P\left(E_{t}\right)}=\frac{P\left(E_{t+1}\right)}{P\left(E_{t}\right)}=\frac{e^{-(t+1)}}{e^{-t}}=\frac{1}{e}$,
which is independent of t !

QUESTION : Is such an exponential distribution realistic if the "device" is your heart, and time t is measured in decades?

The Standard Normal Random Variable

The standard normal random variable has density function

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}, \quad-\infty<x<\infty
$$

with mean

$$
\begin{equation*}
\mu=\int_{-\infty}^{\infty} x f(x) d x=0 \tag{Check!}
\end{equation*}
$$

Since

$$
E\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f(x) d x=1, \quad(\text { more difficult } \cdots)
$$

we have

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-\mu^{2}=1, \quad \text { and } \quad \sigma(X)=1
$$

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

The standard normal density function $f(x)$.

$$
\Phi(\mathbf{x})=F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} x^{2}} d x
$$

The standard normal distribution function $F(x)$ (often denoted by $\Phi(\mathrm{x})$).

The Standard Normal Distribution $\Phi(z)$

z	$\Phi(z)$	z	$\Phi(z)$
0.0	.5000	-1.2	.1151
-0.1	.4602	-1.4	.0808
-0.2	.4207	-1.6	.0548
-0.3	.3821	-1.8	.0359
-0.4	.3446	-2.0	.0228
-0.5	.3085	-2.2	.0139
-0.6	.2743	-2.4	.0082
-0.7	.2420	-2.6	.0047
-0.8	.2119	-2.8	.0026
-0.9	.1841	-3.0	.0013
-1.0	.1587	-3.2	.0007

(For example, $P(Z \leq-2.0)=\Phi(-2.0)=2.28 \%$)

QUESTION : How to get the values of $\Phi(z)$ for positive z ?

EXERCISE :

Suppose the random variable X has the standard normal distribution.
What are the values of

- $\quad P(X \leq-0.5)$
- $\quad P(X \leq 0.5)$
- $\quad P(|X| \geq 0.5)$
- $P(|X| \leq 0.5)$
- $P(-1 \leq X \leq 1)$
- $P(-1 \leq X \leq 0.5)$

The General Normal Random Variable

The general normal density function is

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}}
$$

where, not surprisingly,

$$
E[X]=\mu \quad \text { (Why ?) }
$$

One can also show that

$$
\operatorname{Var}(X) \equiv E\left[(X-\mu)^{2}\right]=\sigma^{2},
$$

so that σ is in fact the standard deviation.

The standard normal (black) and the normal density functions with $\mu=-1, \sigma=0.5$ (red) and $\mu=1.5, \sigma=2.5$ (blue).

To compute the mean of the general normal density function

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}}
$$

consider

$$
\begin{aligned}
E[X-\mu] & =\int_{-\infty}^{\infty}(x-\mu) f(x) d x \\
& =\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty}(x-\mu) e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}} d x \\
& =\left.\frac{-\sigma^{2}}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}}\right|_{-\infty} ^{\infty}=0
\end{aligned}
$$

Thus the mean is indeed

$$
E[X]=\mu
$$

NOTE: If X is general normal we have the very useful formula:

$$
P\left(\frac{X-\mu}{\sigma} \leq c\right)=\Phi(c)
$$

i.e., we can use the Table of the standard normal distribution!

PROOF : For any constant c we have
$P\left(\frac{X-\mu}{\sigma} \leq c\right)=P(X \leq \mu+c \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\mu+c \sigma} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}} d x$.
Let $y \equiv(x-\mu) / \sigma$, so that $\quad x=\mu+y \sigma$.
Then the new variable y ranges from $-\infty$ to c, and

$$
(x-\mu)^{2} / \sigma^{2}=y^{2} \quad, \quad d x=\sigma d y
$$

so that

$$
\begin{aligned}
P\left(\frac{X-\mu}{\sigma} \leq c\right)= & \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{c} e^{-\frac{1}{2} y^{2}} d y=\Phi(c) . \\
& \text { (the standard normal distribution) }
\end{aligned}
$$

EXERCISE: Suppose X is normally distributed with

$$
\text { mean } \mu=1.5 \quad \text { and } \quad \text { standard deviation } \quad \sigma=2.5 \text {. }
$$

Use the standard normal Table to determine:

- $\quad P(X \leq-0.5)$
- $\quad P(X \geq 0.5)$
- $P(|X-\mu| \geq 0.5)$
- $P(|X-\mu| \leq 0.5)$

The Chi-Square Random Variable

Suppose

$$
X_{1}, X_{2}, \cdots, X_{n},
$$

are independent standard normal random variables.

Then

$$
\chi_{\mathrm{n}}^{2} \equiv X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}
$$

is called the chi-square random variable with n degrees of freedom.

We will show that

$$
E\left[\chi_{n}^{2}\right]=n \quad, \quad \operatorname{Var}\left(\chi_{n}^{2}\right)=2 n \quad, \quad \sigma\left(\chi_{n}^{2}\right)=\sqrt{2 n} .
$$

NOTE:

The ${ }^{2}$ in χ_{n}^{2} is part of its name, while ${ }^{2}$ in X_{1}^{2}, etc. is "power 2 "!

The Chi-Square density and distribution functions for $n=1,2, \cdots, 10$.
(In the Figure for F, the value of n increases from left to right.)

If $n=1$ then

$$
\chi_{1}^{2} \equiv X_{1}^{2}, \quad \text { where } \quad X \equiv X_{1} \quad \text { is standard normal }
$$

We can compute the moment generating function of χ_{1}^{2} :

$$
\begin{aligned}
E\left[e^{t \chi_{1}^{2}}\right]=E\left[e^{t X^{2}}\right] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x^{2}} e^{-\frac{1}{2} x^{2}} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} x^{2}(1-2 t)} d x
\end{aligned}
$$

Let

$$
1-2 t=\frac{1}{\hat{\sigma}^{2}}, \quad \text { or equivalently }, \quad \hat{\sigma} \equiv \frac{1}{\sqrt{1-2 t}} .
$$

Then

$$
E\left[e^{t \chi_{1}^{2}}\right]=\hat{\sigma} \cdot \frac{1}{\sqrt{2 \pi} \hat{\sigma}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} x^{2} / \hat{\sigma}^{2}} d x=\hat{\sigma}=\frac{1}{\sqrt{1-2 t}} .
$$

(integral of a normal density function)

Thus we have found that:

The moment generating function of χ_{1}^{2} is

$$
\psi(t) \equiv E\left[e^{t \chi_{1}^{2}}\right]=\frac{1}{\sqrt{1-2 t}},
$$

with which we can compute

$$
\begin{aligned}
& E\left[\chi_{1}^{2}\right]=\psi^{\prime}(0)=1, \quad(\text { Check }!) \\
& E\left[\left(\chi_{1}^{2}\right)^{2}\right]=\psi^{\prime \prime}(0)=3, \quad(\text { Check }!) \\
& \operatorname{Var}\left(\chi_{1}^{2}\right)=E\left[\left(\chi_{1}^{2}\right)^{2}\right]-E\left[\chi_{1}^{2}\right]^{2}=2 .
\end{aligned}
$$

We found that

$$
E\left[\chi_{1}^{2}\right]=1 \quad, \quad \operatorname{Var}\left(\chi_{1}^{2}\right)=2 .
$$

In the general case where

$$
\chi_{n}^{2} \equiv X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}
$$

we have

$$
E\left[\chi_{n}^{2}\right]=E\left[X_{1}^{2}\right]+E\left[X_{2}^{2}\right]+\cdots+E\left[X_{n}^{2}\right]=n,
$$

and since the X_{i} are assumed independent,

$$
\operatorname{Var}\left[\chi_{n}^{2}\right]=\operatorname{Var}\left[X_{1}^{2}\right]+\operatorname{Var}\left[X_{2}^{2}\right]+\cdots+\operatorname{Var}\left[X_{n}^{2}\right]=2 n,
$$

and

$$
\sigma\left(\chi_{n}^{2}\right)=\sqrt{2 n} .
$$

The Chi-Square density functions for $n=5,6, \cdots, 15$.
(For large n they look like normal density functions!)

The χ_{n}^{2} - Table

n	$\alpha=0.975$	$\alpha=0.95$	$\alpha=0.05$	$\alpha=0.025$
5	0.83	1.15	11.07	12.83
6	1.24	1.64	12.59	14.45
7	1.69	2.17	14.07	16.01
8	2.18	2.73	15.51	17.54
9	2.70	3.33	16.92	19.02
10	3.25	3.94	18.31	20.48
11	3.82	4.58	19.68	21.92
12	4.40	5.23	21.03	23.34
13	5.01	5.89	22.36	24.74
14	5.63	6.57	23.69	26.12
15	6.26	7.26	25.00	27.49

This Table shows $z_{\alpha, n}$ values such that $P\left(\chi_{n}^{2} \geq z_{\alpha, n}\right)=\alpha$.
(For example, $\left.P\left(\chi_{10}^{2} \geq 3.94\right)=95 \%\right)$

THE CENTRAL LIMIT THEOREM

The density function of the Chi-Square random variable

$$
\chi_{n}^{2} \equiv \tilde{X}_{1}+\tilde{X}_{2}+\cdots+\tilde{X}_{n}
$$

where

$$
\tilde{X}_{i}=X_{i}^{2}, \quad \text { and } \quad X_{i} \text { is standard normal, } i=1,2, \cdots, n,
$$

starts looking like a normal density function when n gets large.

- This remarkable fact holds much more generally !
- It is known as the Central Limit Theorem (CLT).

RECALL:

If $X_{1}, X_{2}, \cdots, X_{n}$ are independent, identically distributed, each having
mean μ, variance σ^{2}, standard deviation σ,
then

$$
S \equiv X_{1}+X_{2}+\cdots+X_{n}
$$

has

$$
\begin{array}{lll}
\text { mean }: & \mu_{S} \equiv E[S]=n \mu & \text { (Why ?) } \\
\text { variance : } & \operatorname{Var}(S)=n \sigma^{2} & \text { (Why ?) } \tag{Why?}
\end{array}
$$

Standard deviation: $\sigma_{S}=\sqrt{n} \sigma$

NOTE: σ_{S} gets bigger as n increases (and so does $\left|\mu_{S}\right|$).

THEOREM (The Central Limit Theorem) (CLT) :

Let $X_{1}, X_{2}, \cdots, X_{n}$ be identical, independent random variables, each having
mean μ, variance σ^{2}, standard deviation σ.

Then for large n the random variable

$$
S \equiv X_{1}+X_{2}+\cdots+X_{n},
$$

(which has mean $n \mu$, variance $n \sigma^{2}$, standard deviation $\sqrt{n} \sigma$)
is approximately normal.

NOTE: Thus $\frac{S-n \mu}{\sqrt{n} \sigma}$ is approximately standard normal.

EXAMPLE : Recall that

$$
\chi_{n}^{2} \equiv X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}
$$

where each X_{i} is standard normal, and (using moments) we found

$$
\chi_{n}^{2} \text { has mean } n \text { and standard deviation } \sqrt{2 n} \text {. }
$$

The Table below illustrates the accuracy of the approximation

$$
\begin{aligned}
& P\left(\chi_{n}^{2} \leq 0\right) \cong \Phi\left(\frac{0-n}{\sqrt{2 n}}\right)=\Phi\left(-\sqrt{\frac{n}{2}}\right) . \\
& \begin{array}{|c|c||c|}
\hline n & -\sqrt{\frac{n}{2}} & \Phi\left(-\sqrt{\frac{n}{2}}\right) \\
\hline \hline 2 & -1 & 0.1587 \\
\hline 8 & -2 & 0.0228 \\
\hline 18 & -3 & 0.0013 \\
\hline
\end{array}
\end{aligned}
$$

QUESTION : What is the exact value of $P\left(\chi_{n}^{2} \leq 0\right)$?

EXERCISE :

Use the approximation

$$
P\left(\chi_{n}^{2} \leq x\right) \cong \Phi\left(\frac{x-n}{\sqrt{2 n}}\right)
$$

to compute approximate values of

- $\quad P\left(\chi_{32}^{2} \leq 24\right)$
- $\quad P\left(\chi_{32}^{2} \geq 40\right)$
- $P\left(\left|\chi_{32}^{2}-32\right| \leq 8\right)$

RECALL:

If $X_{1}, X_{2}, \cdots, X_{n}$ are independent, identically distributed, each having

$$
\text { mean } \mu \text {, variance } \sigma^{2} \text {, standard deviation } \sigma,
$$

then

$$
\bar{X} \equiv \frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)
$$

has

$$
\begin{array}{ll}
\text { mean : } & \mu_{\bar{X}}=E[\bar{X}]=\mu \\
\text { variance : } & \sigma_{\bar{X}}^{2}=\frac{1}{n^{2}} n \sigma^{2}=\sigma^{2} / n \tag{Why?}
\end{array}
$$

Standard deviation: $\sigma_{\bar{X}}=\sigma / \sqrt{n}$

NOTE: $\sigma_{\bar{X}}$ gets smaller as n increases.

COROLLARY (to the Central Limit Theorem) :

If $X_{1}, X_{2}, \cdots, X_{n}$ be identical, independent random variables, each having
mean μ, variance σ^{2}, standard deviation σ,
then for large n the random variable

$$
\bar{X} \equiv \frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)
$$

(which has mean μ, \quad variance $\frac{\sigma^{2}}{n}$, standard deviation $\frac{\sigma}{\sqrt{n}}$)
is approximately normal.

NOTE: Thus $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$ is approximately standard normal.

EXAMPLE: Suppose $X_{1}, X_{2}, \cdots, X_{n}$ are
identical, independent, uniform random variables, each having density function

$$
f(x)=\frac{1}{2}, \quad \text { for } \quad x \in[-1,1], \quad(0 \text { otherwise })
$$

with

$$
\text { mean } \mu=0 \quad \text {, standard deviation } \sigma=\frac{1}{\sqrt{3}} \quad(\text { Check !) }
$$

Then for large n the random variable

$$
\bar{X} \equiv \frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)
$$

with

$$
\text { mean } \mu=0 \quad, \quad \text { standard deviation } \sigma=\frac{1}{\sqrt{3 n}}
$$

is approximately normal, so that

$$
P(\bar{X} \leq x) \cong \Phi\left(\frac{x-0}{1 / \sqrt{3 n}}\right) \cong \Phi(\sqrt{3 n} x)
$$

EXERCISE: In the preceding example

$$
P(\bar{X} \leq x) \cong \Phi\left(\frac{x-0}{1 / \sqrt{3 n}}\right) \equiv \Phi(\sqrt{3 n} x)
$$

- Fill in the Table to illustrate the accuracy of this approximation :

n	$P(\bar{X} \leq-1) \cong \Phi(-\sqrt{3 n})$
3	
12	

(What is the exact value of $P(\bar{X} \leq-1)$? !)

- For $n=12$ find the approximate value of $P(\bar{X} \leq-0.1)$.
- For $n=12$ find the approximate value of $P(\bar{X} \leq-0.5)$.

EXPERIMENT : (a lengthy one ... !)

We give a detailed computational example to illustrate :

- The concept of density function.
- The numerical construction of a density function
and (most importantly)
- The Central Limit Theorem .

EXPERIMENT : (continued...)

- Generate N uniformly distributed random numbers in $[0,1]$.
- Many programming languages have a function for this.
- Call the random number values generated $\tilde{x}_{i}, i=1,2, \cdots, N$.
- Letting $x_{i}=2 \tilde{x}_{i}-1$ gives uniform random values in $[-1,1]$.

EXPERIMENT : (continued...)

-0.737	0.511	-0.083	0.066	-0.562	-0.906	0.358	0.359
0.869	-0.233	0.039	0.662	-0.931	-0.893	0.059	0.342
-0.985	-0.233	-0.866	-0.165	0.374	0.178	0.861	0.692
0.054	-0.816	0.308	-0.168	0.402	0.821	0.524	-0.475
-0.905	0.472	-0.344	0.265	0.513	0.982	-0.269	-0.506
0.965	0.445	0.507	0.303	-0.855	0.263	0.769	-0.455
-0.127	0.533	-0.045	-0.524	-0.450	-0.281	-0.667	-0.027
0.795	0.818	-0.879	0.809	0.009	0.033	-0.362	0.973
-0.012	-0.468	-0.819	0.896	-0.853	0.001	-0.232	-0.446
0.828	0.059	-0.071	0.882	-0.900	0.523	0.540	0.656
-0.749	-0.968	0.377	0.736	0.259	0.472	0.451	0.999
0.777	-0.534	-0.387	-0.298	0.027	0.182	0.692	-0.176
0.683	-0.461	-0.169	0.075	-0.064	-0.426	-0.643	-0.693
0.143	0.605	-0.934	0.069	-0.003	0.911	0.497	0.109
0.781	0.250	0.684	-0.680	-0.574	0.429	-0.739	-0.818

120 values of a uniform random variable in $[-1,1]$.

EXPERIMENT : (continued...)

- Divide $[-1,1]$ into M subintervals of equal size $\Delta x=\frac{2}{M}$.
- Let I_{k} denote the k th interval, with midpoint x_{k}.
- Let m_{k} be the frequency count (\# of random numbers in I_{k}).
- Let $f\left(x_{k}\right)=\frac{m_{k}}{N \Delta x}, \quad(N$ is the total \# of random numbers).
- Then $\int_{-1}^{1} f(x) d x \cong \sum_{k=1}^{M} f\left(x_{k}\right) \Delta x=\sum_{k=1}^{M} \frac{m_{k}}{N \Delta x} \Delta x=1$, and $f\left(x_{k}\right)$ approximates the value of the density function.
- The corresponding distribution function is

$$
F\left(x_{\ell}\right)=\int_{-1}^{x_{\ell}} f(x) d x \cong \sum_{k=1}^{\ell} f\left(x_{k}\right) \Delta x
$$

EXPERIMENT : (continued \cdot.)

Interval	Frequency	Sum	$f(x)$	$F(x)$
1	50013	50013	0.500	0.067
2	50033	100046	0.500	0.133
3	50104	150150	0.501	0.200
4	49894	200044	0.499	0.267
5	50242	250286	0.502	0.334
6	49483	299769	0.495	0.400
7	50016	349785	0.500	0.466
8	50241	400026	0.502	0.533
9	50261	450287	0.503	0.600
10	49818	500105	0.498	0.667
11	49814	549919	0.498	0.733
12	50224	600143	0.502	0.800
13	49971	650114	0.500	0.867
14	49873	699987	0.499	0.933
15	50013	750000	0.500	1.000

Frequency Table, showing the count per interval . ($N=750,000$ random numbers, $M=15$ intervals)

EXPERIMENT : (continued ...)

The approximate density function, $f\left(x_{k}\right)=\frac{m_{k}}{N \Delta x}$ for $N=5,000,000$ random numbers, and $M=200$ intervals.

EXPERIMENT : (continued...)

Approximate density function $f(x)$ and distribution function $F(x)$, for the case $N=5,000,000$ random numbers, and $M=200$ intervals.

NOTE: $F(x)$ appears smoother than $f(x)$. (Why ?)

EXPERIMENT : (continued...)

Next \cdots (still for the uniform random variable in $[-1,1]$):

- Generate n random numbers (n relatively small).
- Take the average of the n random numbers.
- Do the above N times, where (as before) N is very large .
- Thus we deal with a random variable

$$
\bar{X} \equiv \frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right) .
$$

EXPERIMENT : (continued...)

-0.047	0.126	-0.037	0.148	-0.130	-0.004	-0.174	0.191
0.198	0.073	-0.025	-0.070	-0.018	-0.031	0.063	-0.064
-0.197	-0.026	-0.062	-0.004	-0.083	-0.031	-0.102	-0.033
-0.164	0.265	-0.274	0.188	-0.067	0.049	-0.090	0.002
0.118	0.088	-0.071	0.067	-0.134	-0.100	0.132	0.242
-0.005	-0.011	-0.018	-0.048	-0.153	0.016	0.086	-0.179
-0.011	-0.058	0.198	-0.002	0.138	-0.044	-0.094	0.078
-0.011	-0.093	0.117	-0.156	-0.246	0.071	0.166	0.142
0.103	-0.045	-0.131	-0.100	0.072	0.034	0.176	0.108
0.108	0.141	-0.009	0.140	0.025	-0.149	0.121	-0.120
0.012	0.002	-0.015	0.106	0.030	-0.096	-0.024	-0.111
-0.147	0.004	0.084	0.047	-0.048	0.018	-0.183	0.069
-0.236	-0.217	0.061	0.092	-0.003	0.005	-0.054	0.025
-0.110	-0.094	-0.115	0.052	0.135	-0.076	-0.018	-0.121
-0.030	-0.146	-0.155	0.089	-0.177	0.027	-0.025	0.020

Values of \bar{X} for the case $N=120$ and $n=25$.

EXPERIMENT : (continued...)

For sample size $n, \quad(n=1,2,5,10,25)$, and $M=200$ intervals :

- Generate N values of \bar{X}, where N is very large .
- Let m_{k} be the number of values of \bar{X} in I_{k}.
- As before, let $f_{n}\left(x_{k}\right)=\frac{m_{k}}{N \Delta x}$.
- Now $f_{n}\left(x_{k}\right)$ approximates the density function of \bar{X}.

EXPERIMENT : (continued...)

Interval	Frequency	Sum	$f(x)$	$F(x)$
1	0	0	0.00000	0.00000
2	0	0	0.00000	0.00000
3	0	0	0.00000	0.00000
4	11	11	0.00011	0.00001
5	1283	1294	0.01283	0.00173
6	29982	31276	0.29982	0.04170
7	181209	212485	1.81209	0.28331
8	325314	537799	3.25314	0.71707
9	181273	719072	1.81273	0.95876
10	29620	748692	0.29620	0.99826
11	1294	749986	0.01294	0.99998
12	14	750000	0.00014	1.00000
13	0	750000	0.00000	1.00000
14	0	750000	0.00000	1.00000
15	0	750000	0.00000	1.00000

Frequency Table for \bar{X}, showing the count per interval . ($N=750,000$ values of $\bar{X}, M=15$ intervals, sample size $n=25$)

EXPERIMENT : (continued \cdot.)

The approximate density functions $f_{n}(x), n=1,2,5,10,25$, and the corresponding distribution functions $F_{n}(x)$. ($N=5,000,000$ values of $\bar{X} \quad, \quad M=200$ intervals)

EXPERIMENT : (continued...)

Recall that for uniform random variables X_{i} on $[-1,1]$

$$
\bar{X} \equiv \frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right),
$$

is approximately normal, with

$$
\text { mean } \mu=0 \quad, \quad \text { standard deviation } \sigma=\frac{1}{\sqrt{3 n}} \text {. }
$$

Thus for each n we can normalize x and $f_{n}(x)$:

$$
\hat{x}=\frac{x-\mu}{\sigma}=\frac{x-0}{\frac{1}{\sqrt{3 n}}}=\sqrt{3 n} x \quad, \quad \hat{f}_{n}(\hat{x})=\frac{f_{n}(x)}{\sqrt{3 n}} .
$$

The next Figure shows :

- The normalized $\hat{f}_{n}(\hat{x})$ approach a limit as n get large.
- This limit is the standard normal density function.
- Thus our computations agree with the Central Limit Theorem !

The normalized density functions $\hat{f}_{n}(x)$, for $n=1,2,5,10,25$.

$$
(N=5,000,000 \text { values of } \bar{X}, M=200 \text { intervals })
$$

EXERCISE: Suppose

$$
X_{1}, X_{2}, \cdots, X_{12}, \quad(n=12)
$$

are identical, independent, uniform random variables on $[0,1]$.
We already know that each X_{i} has

$$
\text { mean } \mu=\frac{1}{2} \quad, \quad \text { standard deviation } \frac{1}{2 \sqrt{3}} \text {. }
$$

Let

$$
\bar{X} \equiv \frac{1}{12}\left(X_{1}+X_{2}+\cdots+X_{12}\right)
$$

Use the CLT to compute approximate values of

- $P\left(\bar{X} \leq \frac{1}{3}\right)$
- $P\left(\bar{X} \geq \frac{2}{3}\right)$
- $\quad P\left(\left|\bar{X}-\frac{1}{2}\right| \leq \frac{1}{3}\right)$

EXERCISE: Suppose

$$
X_{1}, X_{2}, \cdots, X_{9}, \quad(n=9)
$$

are identical, independent, exponential random variables, with

$$
f(x)=\lambda e^{-\lambda x}, \quad \text { where } \quad \lambda=1
$$

We already know that each X_{i} has

$$
\text { mean } \mu=\frac{1}{\lambda}=1, \quad \text { and } \quad \text { standard deviation } \quad \frac{1}{\lambda}=1
$$

Let

$$
\bar{X} \equiv \frac{1}{9}\left(X_{1}+X_{2}+\cdots+X_{9}\right)
$$

Use the CLT to compute approximate values of

- $\quad P(\bar{X} \leq 0.4)$
- $\quad P(\bar{X} \geq 1.6)$
- $\quad P(|\bar{X}-1| \leq 0.6)$

EXERCISE: Suppose

$$
X_{1}, X_{2}, \cdots, X_{n}
$$

are identical, independent, normal random variables, with

$$
\text { mean } \mu=7 \quad, \quad \text { standard deviation } 4
$$

Let

$$
\bar{X} \equiv \frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)
$$

Use the CLT to determine at least how big n must be so that

- $\quad P(|\bar{X}-\mu| \leq 1) \geq 90 \%$.

EXAMPLE: The CLT also applies to discrete random variables. The Binomial random variable, with

$$
P(X=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}, \quad(0 \leq k \leq n)
$$

is already a sum (namely, of Bernoulli random variables).
Thus its binomial probability mass function already "looks normal":

Binomial : $n=10, p=0.3$

Binomial : $n=100, p=0.3$

EXAMPLE: (continued...)
We already know that if X is binomial then

$$
\mu(X)=n p \quad \text { and } \quad \sigma(X)=\sqrt{n p(1-p)} .
$$

Thus, for $n=100, p=0.3$, we have

$$
\mu(X)=30 \quad \text { and } \quad \sigma(X)=\sqrt{21} \cong 4.58
$$

Using the CLT we can approximate

$$
P(X \leq 26) \cong \Phi\left(\frac{26-30}{4.58}\right)=\Phi(-0.87) \cong 19.2 \%
$$

The exact binomial value is

$$
P(X \leq 26)=\sum_{k=0}^{26}\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}=22.4 \%,
$$

QUESTION: What do you say?

EXAMPLE: (continued...)
We found the exact binomial value

$$
P(X \leq 26)=22.4 \%
$$

and the CLT approximation

$$
P(X \leq 26) \cong \Phi\left(\frac{26-30}{4.58}\right)=\Phi(-0.87) \cong 19.2 \% .
$$

It is better to
"spread" $P(X=26)$ over the interval $[25.5,26.5]$. (Why ?)
Thus it is better to adjust the approximation to $P(X \leq 26)$ by

$$
P(X \leq 26) \cong \Phi\left(\frac{26.5-30}{4.58}\right)=\Phi(-0.764) \cong 22.2 \%
$$

QUESTION : What do you say now?

EXERCISE :

Consider the Binomial distribution with $n=676$ and $p=\frac{1}{26}$:

The Binomial $\left(n=676, p=\frac{1}{26}\right)$, shown in $[0,50]$.

EXERCISE: (continued \cdots) (Binomial: $n=676, p=\frac{1}{26}$)

- Write down the Binomial formula for $P(X=24)$.
- Evaluate $P(X=24)$ using the Binomial recurrence formula .
- Compute $E[X]=n p$ and $\sigma(X)=\sqrt{n p(1-p)}$.

The Poisson probability mass function

$$
P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad(\text { with } \lambda=n p)
$$

approximates the Binomial when p is small and n large.

- Evaluate $P(X=24)$ using the Poisson recurrence formula .
- Compute the standard normal approximation to $P(X=24)$.

ANSWERS: 7.61%, $7.50 \%, 7.36 \%$.

EXPERIMENT :

Compare the accuracy of the Poisson and the adjusted Normal approximations to the Binomial, for different values of n.

k	n	Binomial	Poisson	Normal
2	4	0.6875	0.6767	0.6915
4	8	0.6367	0.6288	0.6382
8	16	0.5982	0.5925	0.5987
16	32	0.5700	0.5660	0.5702
32	64	0.5497	0.5468	0.5497
64	128	0.5352	0.5332	0.5352

$P(X \leq k)$, where $k=\lfloor n p\rfloor$, with $p=0.5$.

- Any conclusions ?

EXPERIMENT : (continued...)

Compare the accuracy of the Poisson and the adjusted Normal approximations to the Binomial, for different values of n.

k	n	Binomial	Poisson	Normal
0	4	0.6561	0.6703	0.5662
0	8	0.4305	0.4493	0.3618
1	16	0.5147	0.5249	0.4668
3	32	0.6003	0.6025	0.5702
6	64	0.5390	0.5423	0.5166
12	128	0.4805	0.4853	0.4648
25	256	0.5028	0.5053	0.4917
51	512	0.5254	0.5260	0.5176

$P(X \leq k)$, where $k=\lfloor n p\rfloor$, with $p=0.1$.

- Any conclusions ?

EXPERIMENT : (continued...)

Compare the accuracy of the Poisson and the adjusted Normal approximations to the Binomial, for different values of n.

k	n	Binomial	Poisson	Normal
0	4	0.9606	0.9608	0.9896
0	8	0.9227	0.9231	0.9322
0	16	0.8515	0.8521	0.8035
0	32	0.7250	0.7261	0.6254
0	64	0.5256	0.5273	0.4302
1	128	0.6334	0.6339	0.5775
2	256	0.5278	0.5285	0.4850
5	512	0.5948	0.5949	0.5670
10	1024	0.5529	0.5530	0.5325
20	2048	0.5163	0.5165	0.5018
40	4096	0.4814	0.4817	0.4712
$P(X \leq k)$, where $k=\lfloor n p\rfloor$, with $p=0.01$.				

- Any conclusions ?

SAMPLE STATISTICS

Sampling can consist of

- Gathering random data from a large population, for example,
- measuring the height of randomly selected adults
- measuring the starting salary of random CS graduates
- Recording the results of experiments, for example,
- measuring the breaking strength of randomly selected bolts
- measuring the lifetime of randomly selected light bulbs
- We shall generally assume the population is infinite (or large).
- We shall also generally assume the observations are independent.
- The outcome of any experiment does not affect other experiments.

DEFINITIONS :

- A random sample from a population consists of independent , identically distributed random variables,

$$
X_{1}, X_{2}, \cdots, X_{n}
$$

- The values of the X_{i} are called the outcomes of the experiment.
- A statistic is a function of $X_{1}, X_{2}, \cdots, X_{n}$.
- Thus a statistic itself is a random variable.

EXAMPLES :

The most important statistics are

- The sample mean

$$
\bar{X} \equiv \frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right) .
$$

- The sample variance

$$
S^{2} \equiv \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2} .
$$

(to be discussed in detail ...)

- The sample standard deviation $S=\sqrt{S^{2}}$.

For a random sample

$$
X_{1}, X_{2}, \cdots, X_{n}
$$

one can think of many other statistics such as :

- The order statistic in which the observation are ordered in size.
- The sample median, which is
- the midvalue of the order statistic (if n is odd),
- the average of the two middle values (if n is even).
- The sample range : the difference between the largest and the smallest observation.

EXAMPLE: For the 8 observations

$$
-0.737,0.511,-0.083,0.066,-0.562,-0.906,0.358,0.359,
$$

from the first row of the Table given earlier, we have

Sample mean :

$$
\begin{aligned}
\bar{X}=\frac{1}{8}(& -0.737+0.511-0.083+0.066 \\
& -0.562-0.906+0.358+0.359)=-0.124 .
\end{aligned}
$$

Sample variance :

$$
\begin{aligned}
& \frac{1}{8}\left\{(-0.737-\bar{X})^{2}+(0.511-\bar{X})^{2}+(-0.083-\bar{X})^{2}\right. \\
& +(0.066-\bar{X})^{2}+(-0.562-\bar{X})^{2}+(-0.906-\bar{X})^{2} \\
& \left.+(0.358-\bar{X})^{2}+(0.359-\bar{X})^{2}\right\}=0.26 .
\end{aligned}
$$

Sample standard deviation: $\sqrt{0.26}=0.51$.

EXAMPLE: (continued...)

For the 8 observations

$$
-0.737,0.511,-0.083,0.066,-0.562,-0.906,0.358,0.359,
$$

we also have

The order statistic:
$-0.906,-0.737,-0.562,-0.083,0.066,0.358, ~ 0.359, ~ 0.511$.

The sample median: $(-0.083+0.066) / 2=-0.0085$.

The sample range: $0.511-(-0.906)=1.417$.

The Sample Mean

Suppose the population mean and standard deviation are μ and σ.
As before, the sample mean

$$
\bar{X} \equiv \frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)
$$

is also a random variable, with expected value

$$
\mu_{\bar{X}} \equiv E[\bar{X}]=E\left[\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]=\mu,
$$

and variance

$$
\sigma_{\bar{X}}^{2} \equiv \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n},
$$

$$
\text { Standard deviation of } \bar{X}: \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}} .
$$

NOTE: The sample mean approximates the population mean μ.

How well does the sample mean approximate the population mean?

From the Corollary to the CLT we know

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

is approximately standard normal when n is large.

Thus, for given n and $z,(z>0)$, we can, for example, estimate

$$
P\left(\left|\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right| \leq z\right) \cong 1-2 \Phi(-z)
$$

(A problem is that we often don't know the value of $\sigma \cdots$)

It follows that

$$
\begin{aligned}
P\left(\left|\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right| \leq z\right) & =P\left(|\bar{X}-\mu| \leq \frac{\sigma z}{\sqrt{n}}\right) \\
& =P\left(\mu \in\left[\bar{X}-\frac{\sigma z}{\sqrt{n}}, \bar{X}+\frac{\sigma z}{\sqrt{n}}\right]\right) \\
& \cong 1-2 \Phi(-z)
\end{aligned}
$$

which gives us a confidence interval estimate of μ.

We found : $\quad P\left(\mu \in\left[\bar{X}-\frac{\sigma z}{\sqrt{n}}, \bar{X}+\frac{\sigma z}{\sqrt{n}}\right]\right) \cong 1-2 \Phi(-z)$.
EXAMPLE: We take samples from a given population :

- The population mean μ is unknown.
- The population standard deviation is $\sigma=3$
- The sample size is $n=25$.
- The sample mean is $\bar{X}=4.5$.

Taking $\mathbf{z}=2$, we have
$\begin{aligned} P\left(\mu \in\left[4.5-\frac{3 \cdot 2}{\sqrt{25}}, 4.5+\frac{3 \cdot 2}{\sqrt{25}}\right]\right) & =P(\mu \in[3.3,5.7]) \\ & \cong 1-2 \Phi(-2) \cong 95 \% .\end{aligned}$

We call [3.3, 5.7] the 95% confidence interval estimate of μ.

EXERCISE:

As in the preceding example, μ is unknown, $\sigma=3, \bar{X}=4.5$.
Use the formula

$$
P\left(\mu \in\left[\bar{X}-\frac{\sigma z}{\sqrt{n}}, \bar{X}+\frac{\sigma z}{\sqrt{n}}\right]\right) \cong 1-2 \Phi(-z)
$$

to determine

- The 50% confidence interval estimate of μ when $n=25$.
- The 50% confidence interval estimate of μ when $n=100$.
- The 95% confidence interval estimate of μ when $n=100$.

NOTE : In the Standard Normal Table, check that

- The 50% confidence interval corresponds to $z=0.68 \cong 0.7$.
- The 95% confidence interval corresponds to $z=1.96 \cong 2.0$.

The Sample Variance We defined the sample variance as

$$
S^{2} \equiv \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}=\sum_{k=1}^{n}\left[\left(X_{k}-\bar{X}\right)^{2} \cdot \frac{1}{n}\right] .
$$

Earlier, for discrete random variables X, we defined the variance as

$$
\sigma^{2} \equiv E\left[(X-\mu)^{2}\right] \equiv \sum_{k}\left[\left(X_{k}-\mu\right)^{2} \cdot p\left(X_{k}\right)\right] .
$$

- These two formulas look deceptively similar !
- In fact, they are quite different !
- The 1st sum for S^{2} is only over the sampled X-values.
- The 2 nd sum for σ^{2} is over all X-values.
- The 1st sum for S^{2} has constant weights.
- The 2nd sum for σ^{2} uses the probabilities as weights .

We have just argued that the sample variance

$$
S^{2} \equiv \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2},
$$

and the population variance (for discrete random variables)

$$
\sigma^{2} \equiv E\left[(X-\mu)^{2}\right] \equiv \sum_{k}\left[\left(X_{k}-\mu\right)^{2} \cdot p\left(X_{k}\right)\right]
$$

are quite different.

Nevertheless, we will show that for large n their values are close!

Thus for large n we have the approximation

$$
S^{2} \cong \sigma^{2}
$$

FACT 1: We (obviously) have that

$$
\bar{X}=\frac{1}{n} \sum_{k=1}^{n} X_{k} \quad \text { implies } \quad \sum_{k=1}^{n} X_{k}=n \bar{X} .
$$

FACT 2: From

$$
\sigma^{2} \equiv \operatorname{Var}(X) \equiv E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-\mu^{2}
$$

we (obviously) have

$$
E\left[X^{2}\right]=\sigma^{2}+\mu^{2} .
$$

FACT 3: Recall that for independent, identically distributed X_{k}, where each X_{k} has mean μ and variance σ^{2}, we have

$$
\mu_{\bar{X}} \equiv E[\bar{X}]=\mu \quad, \quad \sigma_{\bar{X}}^{2} \equiv E\left[(\bar{X}-\mu)^{2}\right]=\frac{\sigma^{2}}{n}
$$

FACT 4: (Useful for computing S^{2} efficiently) :

$$
S^{2} \equiv \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}=\frac{1}{n}\left[\sum_{k=1}^{n} X_{k}^{2}\right]-\bar{X}^{2} .
$$

PROOF :

$$
\begin{aligned}
S^{2} & =\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2} \\
& =\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}^{2}-2 X_{k} \bar{X}+\bar{X}^{2}\right) \\
& =\frac{1}{n}\left[\sum_{k=1}^{n} X_{k}^{2}-2 \bar{X} \sum_{k=1}^{n} X_{k}+n \bar{X}^{2}\right] \quad \text { (now use Fact } 1 \text {) } \\
& =\frac{1}{n}\left[\sum_{k=1}^{n} X_{k}^{2}-2 n \bar{X}^{2}+n \bar{X}^{2}\right]=\frac{1}{n}\left[\sum_{k=1}^{n} X_{k}^{2}\right]-\bar{X}^{2} \mathrm{QED}!
\end{aligned}
$$

THEOREM : The sample variance
has expected value

$$
S^{2} \equiv \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}
$$

$$
E\left[S^{2}\right]=\left(1-\frac{1}{n}\right) \cdot \sigma^{2}
$$

PROOF :
$E\left[S^{2}\right]=E\left[\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}\right]$
$=E\left[\frac{1}{n} \sum_{k=1}^{n}\left[X_{k}^{2}\right]-\bar{X}^{2}\right] \quad$ (using Fact 4)
$=\frac{1}{n} \sum_{k=1}^{n} E\left[X_{k}^{2}\right]-E\left[\bar{X}^{2}\right]$
$=\sigma^{2}+\mu^{2}-\left(\sigma_{\bar{X}}^{2}+\mu_{\bar{X}}^{2}\right) \quad($ using Fact $2 n+1$ times $!)$
$=\sigma^{2}+\mu^{2}-\left(\frac{\sigma^{2}}{n}+\mu^{2}\right)=\left(1-\frac{1}{n}\right) \sigma^{2} .($ Fact 3$) \quad$ QED $!$
REMARK: Thus $\lim _{n \rightarrow \infty} E\left[S^{2}\right]=\sigma^{2}$.

Most authors instead define the sample variance as

$$
\hat{S}^{2} \equiv \frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}
$$

In this case the Theorem becomes :

THEOREM : The sample variance

$$
\hat{S}^{2} \equiv \frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}
$$

has expected value

$$
E\left[\hat{S}^{2}\right]=\sigma^{2} .
$$

EXERCISE : Check this !

EXAMPLE: The random sample of 120 values of a uniform random variable on $[-1,1]$ in an earlier Table has

$$
\begin{aligned}
\bar{X} & =\frac{1}{120} \sum_{k=1}^{120} X_{k}=0.030 \\
S^{2} & =\frac{1}{120} \sum_{k=1}^{120}\left(X_{k}-\bar{X}\right)^{2}=0.335 \\
S & =\sqrt{S^{2}}=0.579
\end{aligned}
$$

while

$$
\begin{aligned}
\mu & =0 \\
\sigma^{2} & =\int_{-1}^{1}(x-\mu)^{2} \frac{1}{2} d x=\frac{1}{3} \\
\sigma & =\sqrt{\sigma^{2}}=\frac{1}{\sqrt{3}}=0.577 .
\end{aligned}
$$

- What do you say ?

EXAMPLE:

- Generate 50 uniform random numbers in $[-1,1]$.
- Compute their average.
- Do the above 500 times.
- Call the results $\bar{X}_{k}, k=1,2, \cdots, 500$.
- Thus each \bar{X}_{k} is the average of 50 random numbers.
- Compute the sample statistics \bar{X} and S of these 500 values.
- Can you predict the values of \bar{X} and S ?

EXAMPLE: (continued...)
Results : $\quad \bar{X}=\frac{1}{500} \sum_{k=1}^{500} \bar{X}_{k}=-0.00136$,

$$
\begin{aligned}
S^{2} & =\frac{1}{500} \sum_{k=1}^{500}\left(\bar{X}_{k}-\bar{X}\right)^{2}=0.00664 \\
S & =\sqrt{S^{2}}=0.08152
\end{aligned}
$$

EXERCISE :

- What is the value of $E[\bar{X}]$?
- Compare \bar{X} to $E[\bar{X}]$.
- What is the value of $\operatorname{Var}(\bar{X})$?
- Compare S^{2} to $\operatorname{Var}(\bar{X})$.

Estimating the variance of a normal distribution
We have shown that

$$
S^{2} \equiv \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2} \cong \sigma^{2} .
$$

How good is this approximation for normal random variables X_{k} ?
To answer this we need :
FACT 5 :

$$
\sum_{k=1}^{n}\left(X_{k}-\mu\right)^{2}-\sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}=n(\bar{X}-\mu)^{2}
$$

PROOF :

LHS $=\sum_{k=1}^{n}\left\{X_{k}^{2}-2 X_{k} \mu+\mu^{2}-X_{k}^{2}+2 X_{k} \bar{X}-\bar{X}^{2}\right\}$

$$
\begin{aligned}
& =-2 n \bar{X} \mu+n \mu^{2}+2 n \bar{X}^{2}-n \bar{X}^{2} \\
& =n \bar{X}^{2}-2 n \bar{X} \mu+n \mu^{2}=\text { RHS } . \quad \text { QED ! }
\end{aligned}
$$

Rewrite Fact 5

$$
\sum_{k=1}^{n}\left(X_{k}-\mu\right)^{2}-\sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}=n(\bar{X}-\mu)^{2}
$$

as

$$
\sum_{k=1}^{n}\left(\frac{X_{k}-\mu}{\sigma}\right)^{2}-\frac{n}{\sigma^{2}} \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}=\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2}
$$

and then as

$$
\sum_{k=1}^{n} Z_{k}^{2}-\frac{n}{\sigma^{2}} S^{2}=Z^{2}
$$

where S^{2} is the sample variance,
and
Z and Z_{k} are standard normal because the X_{k} are normal.

Finally, we can write the above as

$$
\frac{n}{\sigma^{2}} S^{2}=\chi_{n}^{2}-\chi_{1}^{2} . \quad(\text { Why } ?)
$$

We have found that

$$
\frac{n}{\sigma^{2}} S^{2}=\chi_{n}^{2}-\chi_{1}^{2}
$$

THEOREM : For samples from a normal distribution :

$$
\frac{n}{\sigma^{2}} S^{2} \text { has the } \chi_{n-1}^{2} \text { distribution! }
$$

PROOF: Omitted (and not as obvious as it might appear !) .

REMARK : If we use the alternate definition

$$
\hat{S}^{2} \equiv \frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}
$$

then the Theorem becomes

$$
\frac{n-1}{\sigma^{2}} \hat{S}^{2} \text { has the } \chi_{n-1}^{2} \text { distribution. }
$$

For normal random variables : $\frac{n-1}{\sigma^{2}} \hat{S}^{2}$ has the χ_{n-1}^{2} distribution
EXAMPLE : For a large shipment of light bulbs we know that :

- The lifetime of the bulbs has a normal distribution.
- The standard deviation is claimed to be $\sigma=100$ hours.
(The mean lifetime μ is not given.)
Suppose we test the lifetime of 16 bulbs. What is the probability that the sample standard deviation \hat{S} satisfies $\hat{S} \geq 129$ hours?

SOLUTION:

$$
\begin{aligned}
P(\hat{S} \geq 129) & =P\left(\hat{S}^{2} \geq 129^{2}\right) \\
& \cong P\left(\frac{n-1}{\sigma^{2}} \hat{S}^{2} \geq \frac{15}{100^{2}} 129^{2}\right) \\
& \cong\left(\chi_{15}^{2} \geq 24.96\right) \cong 5 \% \quad\left(\text { from the } \chi^{2} \text { Table }\right)
\end{aligned}
$$

QUESTION : If $\hat{S}=129$ then would you believe that $\sigma=100$?

The Chi-Square density functions for $n=5,6, \cdots, 15$.
(For large n they look like normal density functions.)

EXERCISE :

In the preceding example, also compute

$$
P\left(\chi_{15}^{2} \geq 24.96\right)
$$

using the standard normal approximation .

EXERCISE :

Consider the same shipment of light bulbs :

- The lifetime of the bulbs has a normal distribution.
- The mean lifetime is not given.
- The standard deviation is claimed to be $\sigma=100$ hours.

Suppose we test the lifetime of only 6 bulbs.

- For what value of s is $P(\hat{S} \leq s)=5 \%$?

EXAMPLE : For the data below from a normal population:

- Estimate the population standard deviation.
- Determine a 95 percent confidence interval for σ.

-0.047	0.126	-0.037	0.148
0.198	0.073	-0.025	-0.070
-0.197	-0.026	-0.062	-0.004
-0.164	0.265	-0.274	0.188

SOLUTION: We find (with $n=16$) that

$$
\bar{X}=\frac{1}{n} \sum_{1}^{n} X_{i}=0.00575
$$

and

$$
\hat{S}^{2}=\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}=0.02278
$$

SOLUTION : We have $n=16, \bar{X}=0.00575, \hat{S}^{2}=0.02278$.

- Estimate the population standard deviation :

$$
\text { ANSWER : } \sigma \cong \hat{S}=\sqrt{0.02278}=0.15095
$$

- Compute a 95 percent confidence interval for σ :

ANSWER: From the Chi-Square Table:

$$
\begin{gathered}
P\left(\chi_{15}^{2} \leq 6.26\right)=0.025 \quad, \quad P\left(\chi_{15}^{2}>27.49\right)=0.025 \\
\frac{(n-1) \hat{S}^{2}}{\sigma^{2}}=6.26 \quad \Rightarrow \quad \sigma^{2}=\frac{(n-1) \hat{S}^{2}}{6.26}=\frac{15 \cdot 0.02278}{6.26}=0.05458 \\
\frac{(n-1) \hat{S}^{2}}{\sigma^{2}}=27.49 \quad \Rightarrow \quad \sigma^{2}=\frac{(n-1) \hat{S}^{2}}{27.49}=\frac{15 \cdot 0.02278}{27.49}=0.01223
\end{gathered}
$$

Thus the 95% confidence interval for σ is

$$
[\sqrt{0.01223}, \sqrt{0.05458}]=[0.106,0.234]
$$

Samples from Finite Populations

Samples from a finite population can be taken
(1) with replacement
(2) without replacement

- In Case 1 the sample

$$
X_{1}, X_{2}, \cdots, X_{n}
$$

may contain the same outcome more than once.

- In Case 2 the outcomes are distinct.
- Case 2 arises, e.g., when the experiment destroys the sample.

EXAMPLE :

Suppose a bag contains three balls, numbered 1, 2, and 3.

A sample of two balls is drawn at random from the bag.

Recall that (here with $n=2$):

$$
\begin{gathered}
\bar{X} \equiv \frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right) . \\
S^{2} \equiv \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2} .
\end{gathered}
$$

For both, sampling with and without replacement, compute

$$
E[\bar{X}] \quad \text { and } \quad E\left[S^{2}\right] .
$$

- With replacement: The possible samples are $(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)$, each with equal probability $\frac{1}{9}$.

The sample means \bar{X} are

$$
1, \frac{3}{2}, 2, \frac{3}{2}, 2, \frac{5}{2}, 2, \frac{5}{2}, 3,
$$

with
$E[\bar{X}]=\frac{1}{9}\left(1+\frac{3}{2}+2+\frac{3}{2}+2+\frac{5}{2}+2+\frac{5}{2}+3\right)=2$.
The sample variances S^{2} are
$0, \frac{1}{4}, 1, \frac{1}{4}, 0, \frac{1}{4}, 1, \frac{1}{4}, 0 . \quad$ (Check!)
with
$E\left[S^{2}\right]=\frac{1}{9}\left(0+\frac{1}{4}+1+\frac{1}{4}+0+\frac{1}{4}+1+\frac{1}{4}+0\right)=\frac{1}{3}$.

- Without replacement: The possible samples are

$$
(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),
$$

each with equal probability $\frac{1}{6}$.
The sample means \bar{X} are

$$
\frac{3}{2}, 2, \frac{3}{2}, \frac{5}{2}, 2, \frac{5}{2}
$$

with expected value

$$
E[\bar{X}]=\frac{1}{6}\left(\frac{3}{2}+2+\frac{3}{2}+\frac{5}{2}+2+\frac{5}{2}\right)=2 .
$$

The sample variances S^{2} are

$$
\frac{1}{4}, 1, \frac{1}{4}, \frac{1}{4}, 1, \frac{1}{4} . \quad(\text { Check }!)
$$

with expected value

$$
E\left[S^{2}\right]=\frac{1}{6}\left(\frac{1}{4}+1+\frac{1}{4}+\frac{1}{4}+1+\frac{1}{4}\right)=\frac{1}{2} .
$$

EXAMPLE: (continued...)
A bag contains three balls, numbered 1, 2, and 3 .
A sample of two balls is drawn at random from the bag.

We have computed $E[\bar{X}]$ and $E\left[S^{2}\right]$:

- With replacement: $E[\bar{X}]=2, \quad E\left[S^{2}\right]=\frac{1}{3}$,
- Without replacement : $E[\bar{X}]=2, \quad E\left[S^{2}\right]=\frac{1}{2}$.

We also know the population mean and variance:

$$
\begin{gathered}
\mu=1 \cdot \frac{1}{3}+2 \cdot \frac{1}{3}+3 \cdot \frac{1}{3}=2 \\
\sigma^{2}=(1-2)^{2} \cdot \frac{1}{3}+(2-2)^{2} \cdot \frac{1}{3}+(3-2)^{2} \cdot \frac{1}{3}=\frac{2}{3} .
\end{gathered}
$$

EXAMPLE: (continued...)
We have computed :

- Population statistics : $\quad \mu=2, \sigma^{2}=\frac{2}{3}$,
- Sampling with replacement : $E[\bar{X}]=2, E\left[S^{2}\right]=\frac{1}{3}$,
- Sampling without replacement : $E[\bar{X}]=2, E\left[S^{2}\right]=\frac{1}{2}$.

According to the earlier Theorem

$$
E\left[S^{2}\right]=\left(1-\frac{1}{n}\right) \sigma^{2} .
$$

In this example the sample size is $n=2$, thus

$$
E\left[S^{2}\right]=\left(1-\frac{1}{2}\right) \sigma^{2}=\frac{1}{3} .
$$

NOTE: $E\left[S^{2}\right]$ is wrong for sampling without replacement!

QUESTION :

Why is $E\left[S^{2}\right]$ wrong for sampling without replacement?
ANSWER: Without replacement the outcomes X_{k} of a sample

$$
X_{1}, X_{2}, \cdots, X_{n}
$$

are not independent!

In our example, where $n=2$, and where the possible samples are

$$
(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),
$$

we have, e.g.,

$$
P\left(X_{2}=1 \mid X_{1}=1\right)=0 \quad, \quad P\left(X_{2}=1 \mid X_{1}=2\right)=\frac{1}{2} .
$$

Thus X_{1} and X_{2} are not independent. (Why not?)

NOTE:

Let N be the population size and n the sample size.
Suppose N is very large compared to n.
For example, $n=2$, and the population is

$$
\{1,2,3, \cdots, N\} .
$$

Then we still have

$$
P\left(X_{2}=1 \mid X_{1}=1\right)=0,
$$

but for $k \neq 1$ we have

$$
P\left(X_{2}=k \mid X_{1}=1\right)=\frac{1}{N-1} .
$$

One could say that X_{1} and X_{2} are "almost independent" . (Why ?)

The Sample Correlation Coefficient

Recall the covariance of random variables X and Y : $\sigma_{X, Y} \equiv \operatorname{Cov}(X, Y) \equiv E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[X Y]-E[X] E[Y]$.

It is often better to use a scaled version, the correlation coefficient

$$
\rho_{X, Y} \equiv \frac{\sigma_{X, Y}}{\sigma_{X} \sigma_{Y}}
$$

where σ_{X} and σ_{Y} are the standard deviation of X and Y.
We have

- $\left|\sigma_{X, Y}\right| \leq \sigma_{X} \sigma_{Y}$, (the Cauchy-Schwartz inequality)
- Thus $\left|\rho_{X, Y}\right| \leq 1$, (Why?)
- If X and Y are independent then $\rho_{X, Y}=0$. (Why ?)

Similarly, the sample correlation coefficient of a data set

$$
\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{N}
$$

is defined as

$$
R_{X, Y} \equiv \frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}} \sqrt{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}}}
$$

for which we have another version of the Cauchy-Schwartz inequality:

$$
\left|R_{X, Y}\right| \leq 1
$$

Like the covariance, $R_{X, Y}$ measures "concordance" of X and Y :

- If $X_{i}>\bar{X}$ when $Y_{i}>\bar{Y}$ and $X_{i}<\bar{X}$ when $Y_{i}<\bar{Y}$ then

$$
R_{X, Y}>0
$$

- If $X_{i}>\bar{X}$ when $Y_{i}<\bar{Y}$ and $X_{i}<\bar{X}$ when $Y_{i}>\bar{Y}$ then

$$
R_{X, Y}<0
$$

The sample correlation coefficient

$$
R_{X, Y} \equiv \frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}} \sqrt{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}}}
$$

can also be used to test for linearity of the data.
In fact,

- If $\left|R_{X, Y}\right|=1$ then X and Y are related linearly.

Specifically,

- If $R_{X, Y}=1$ then $Y_{i}=c X_{i}+d$, for constants c, d, with $c>0$.
- If $R_{X, Y}=-1$ then $Y_{i}=c X_{i}+d$, for constants c, d, with $c<0$.

Also,

- If $\left|R_{X, Y}\right| \cong 1$ then X and Y are almost linear.

EXAMPLE :

- Consider the average daily high temperature in Montreal in March.
- The Table shows these averages, taken over a number of years :

1	-1.52	8	-0.52	15	2.08	22	3.39	29	6.95
2	-1.55	9	-0.67	16	1.22	23	3.69	30	6.83
3	-1.72	10	0.01	17	1.73	24	4.45	31	6.93
4	-0.94	11	0.96	18	1.93	25	4.74		
5	-0.51	12	0.49	19	3.10	26	5.01		
6	-0.29	13	1.26	20	3.05	27	4.66		
7	0.02	14	1.99	21	3.32	28	6.45		

Average daily high temperature in Montreal in March : 1943-2014 .
(Source: http://climate.weather.gc.ca/)

These data have sample correlation coefficient $R_{X, Y}=0.98$.

A scatter diagram showing the average daily high temperature. The sample correlation coefficient is $R_{X, Y}=0.98$

EXERCISE :

- The Table below shows class attendance and course grade/100.
- The attendance was sampled in 18 sessions.

11	47	13	43	15	70	17	72	18	96	14	61	5	25	17	74
16	85	13	82	16	67	17	91	16	71	16	50	14	77	12	68
8	62	13	71	12	56	15	81	16	69	18	93	18	77	17	48
14	82	17	66	16	91	17	67	7	43	15	86	18	85	17	84
11	43	17	66	18	57	18	74	13	73	15	74	18	73	17	71
14	69	15	85	17	79	18	84	17	70	15	55	14	75	15	61
16	61	4	46	18	70	0	29	17	82	18	82	16	82	14	68
9	84	15	91	15	77	16	75								

Class attendance - Course grade

- Draw a scatter diagram showing the data.
- Determine the sample correlation coefficient.
- Any conclusions?

Maximum Likelihood Estimators

EXAMPLE :

Suppose a random variable has a normal distribution with mean 0.

Thus the density function is

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} x^{2} / \sigma^{2}}
$$

- Suppose we don't know σ (the population standard deviation).
- How can we estimate σ from observed data?
- (We want a formula for estimating σ.)
- Don't we already have such a formula ?

EXAMPLE: (continued...)

We know we can estimate σ^{2} by the sample variance

$$
S^{2} \equiv \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}
$$

In fact, we have proved that

$$
E\left[S^{2}\right]=\left(1-\frac{1}{n}\right) \sigma^{2}
$$

- Thus, we can call S^{2} an estimator of σ^{2}.
- The "maximum likelihood procedure" derives such estimators.

The maximum likelihood procedure is the following :
Let

$$
X_{1}, X_{2}, \cdots, X_{n}
$$

be independent, identically distributed,
each having

$$
\text { density function } f(x ; \sigma) \text {, }
$$

with unknown parameter σ.

By independence, the joint density function is

$$
f\left(x_{1}, x_{2}, \cdots, x_{n} ; \sigma\right)=f\left(x_{1} ; \sigma\right) f\left(x_{2} ; \sigma\right) \cdots f\left(x_{n} ; \sigma\right),
$$

DEFINITION: The maximum likelihood estimate $\hat{\sigma}$ is the value of σ that maximizes $f\left(x_{1}, x_{2}, \cdots, x_{n} ; \sigma\right)$.

NOTE: $\hat{\sigma}$ will be a function of $x_{1}, x_{2}, \cdots, x_{n}$.

EXAMPLE: For our normal distribution with mean 0 we have

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \cdots, x_{n} ; \sigma\right)=\frac{e^{-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{n} x_{k}^{2}}}{(\sqrt{2 \pi} \sigma)^{n}} . \tag{Why?}
\end{equation*}
$$

To find the maximum (with respect to σ) we set

$$
\frac{d}{d \sigma} f\left(x_{1}, x_{2}, \cdots, x_{n} ; \sigma\right)=0, \quad(\text { by Calculus }!)
$$

or, equivalently, we set

$$
\frac{d}{d \sigma} \log \left(\frac{e^{-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{n} x_{k}^{2}}}{\sigma^{n}}\right)=0 . \quad \text { (Why equivalent?) }
$$

Taking the (natural) logarithm gives

$$
\frac{d}{d \sigma}\left(-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{n} x_{k}^{2}-n \log \sigma\right)=0 .
$$

EXAMPLE: (continued...)
We had

$$
\frac{d}{d \sigma}\left(-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{n} x_{k}^{2}-n \log \sigma\right)=0
$$

Taking the derivative gives

$$
\frac{\sum_{k=1}^{n} x_{k}^{2}}{\sigma^{3}}-\frac{n}{\sigma}=0
$$

from which

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{k=1}^{n} x_{k}^{2} .
$$

Thus we have derived the maximum likelihood estimate

$$
\hat{\sigma}=\frac{1}{\sqrt{n}}\left(\sum_{k=1}^{n} X_{k}^{2}\right)^{\frac{1}{2}}
$$

(Surprise?)

EXERCISE :

Suppose a random variable has the general normal density function

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}}
$$

with unknown mean μ and unknown standard deviation σ.

Derive maximum likelihood estimators for both μ and σ as follows:
For the joint density function

$$
f\left(x_{1}, x_{2}, \cdots, x_{n} ; \mu, \sigma\right)=f\left(x_{1} ; \mu, \sigma\right) f\left(x_{2} ; \mu, \sigma\right) \cdots f\left(x_{n} ; \mu, \sigma\right)
$$

- Take the \log of $f\left(x_{1}, x_{2}, \cdots, x_{n} ; \mu, \sigma\right)$.
- Set the partial derivative w.r.t. μ equal to zero.
- Set the partial derivative w.r.t. σ equal to zero.
- Solve these two equations for $\hat{\mu}$ and $\hat{\sigma}$.

EXERCISE: (continued $\cdot \cdots$)

The maximum likelihood estimators turn out to be

$$
\begin{gathered}
\hat{\mu}=\frac{1}{n} \sum_{k=1}^{n} X_{k}, \\
\hat{\sigma}=\frac{1}{\sqrt{n}}\left(\sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}\right)^{\frac{1}{2}},
\end{gathered}
$$

that is,

$$
\begin{gathered}
\hat{\mu}=\bar{X}, \quad(\text { the sample mean }) \\
\hat{\sigma}=S \quad(\text { the sample standard deviation }) .
\end{gathered}
$$

NOTE:

- Earlier we defined the sample variance as

$$
S^{2}=\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2} .
$$

- Then we proved that, in general,

$$
E\left[S^{2}\right]=\left(1-\frac{1}{n}\right) \sigma^{2} \cong \sigma^{2} .
$$

- In the preceding exercise we derived the estimator for σ !
- (But we did so specifically for the general normal distribution.)

EXERCISE:

A random variable has the standard exponential distribution with density function

$$
f(x ; \lambda)= \begin{cases}\lambda e^{-\lambda x}, & x>0 \\ 0, & x \leq 0\end{cases}
$$

- Suppose we don't know λ.
- Derive the maximum likelihood estimator of λ.
- (Can you guess what the formula will be?)

EXAMPLE: Consider the special exponential density function

$$
f(x ; \lambda)= \begin{cases}\lambda^{2} x e^{-\lambda x}, & x>0 \\ 0, & x \leq 0\end{cases}
$$

Density and distribution functions for $\lambda=1,2,3,4$.

EXAMPLE: (continued...)

For the maximum likelihood estimator of λ, we have

$$
f(x ; \lambda)=\lambda^{2} x e^{-\lambda x}, \quad \text { for } x>0
$$

so, assuming independence, the joint density function is

$$
f\left(x_{1}, x_{2}, \cdots, x_{n} ; \lambda\right)=\lambda^{2 n} x_{1} x_{2} \cdots x_{n} e^{-\lambda\left(x_{1}+x_{2}+\cdots+x_{n}\right)} .
$$

To find the maximum (with respect to λ) we set

$$
\frac{d}{d \lambda} \log \left(\lambda^{2 n} x_{1} x_{2} \cdots x_{n} e^{-\lambda\left(x_{1}+x_{2}+\cdots+x_{n}\right)}\right)=0 .
$$

Taking the logarithm gives

$$
\frac{d}{d \lambda}\left(2 n \log \lambda+\sum_{k=1}^{n} \log x_{k}-\lambda \sum_{k=1}^{n} x_{k}\right)=0 .
$$

EXAMPLE: (continued ...)
We had

$$
\frac{d}{d \lambda}\left(2 n \log \lambda+\sum_{k=1}^{n} \log x_{k}-\lambda \sum_{k=1}^{n} x_{k}\right)=0
$$

Differentiating gives
from which

$$
\frac{2 n}{\lambda}-\sum_{k=1}^{n} x_{k}=0
$$

$$
\hat{\lambda}=\frac{2 n}{\sum_{k=1}^{n} x_{k}} .
$$

Thus we have derived the maximum likelihood estimate

$$
\hat{\lambda}=\frac{2 n}{\sum_{k=1}^{n} X_{k}}=\frac{2}{\bar{X}} .
$$

NOTE: This result suggests that perhaps $E[X]=2 / \lambda$. (Why?)

EXERCISE :

For the special exponential density function in the preceding example,

$$
f(x ; \lambda)= \begin{cases}\lambda^{2} x e^{-\lambda x}, & x>0 \\ 0, & x \leq 0\end{cases}
$$

- Verify that

$$
\int_{0}^{\infty} f(x ; \lambda) d x=1
$$

- Also compute

$$
E[X]=\int_{0}^{\infty} x f(x ; \lambda) d x
$$

- Is it indeed true that

$$
E[X]=\frac{2}{\lambda} ?
$$

NOTE:

- Maximum likelihood estimates also work in the discrete case .
- In such case we maximize the probability mass function .

EXAMPLE :

Find the maximum likelihood estimator of p in the Bernoulli trial

$$
\begin{aligned}
& P(X=1) \quad=\quad p \\
& P(X=0)=1-p .
\end{aligned}
$$

SOLUTION: We can write

$$
\begin{equation*}
P(x ; p) \equiv P(X=x)=p^{x}(1-p)^{1-x}, \quad(x=0,1) \tag{!}
\end{equation*}
$$

so, assuming independence, the joint probability mass function is

$$
\begin{gathered}
P\left(x_{1}, x_{2}, \cdots, x_{n} ; p\right)=p^{x_{1}}(1-p)^{1-x_{1}} p^{x_{2}}(1-p)^{1-x_{2}} \cdots p^{x_{n}}(1-p)^{1-x_{n}} \\
=p^{\sum_{k=1}^{n} x_{k}} \cdot(1-p)^{n} \cdot(1-p)^{-\sum_{k=1}^{n} x_{k}}
\end{gathered}
$$

EXAMPLE: (continued \cdot..)
We found

$$
P\left(x_{1}, x_{2}, \cdots, x_{n} ; p\right)=p^{\sum_{k=1}^{n} x_{k}} \cdot(1-p)^{n} \cdot(1-p)^{-\sum_{k=1}^{n} x_{k}} .
$$

To find the maximum (with respect to p) we set

$$
\frac{d}{d p} \log \left(p^{\sum_{k=1}^{n} x_{k}} \cdot(1-p)^{n} \cdot(1-p)^{-\sum_{k=1}^{n} x_{k}}\right)=0
$$

Taking the logarithm gives
$\frac{d}{d p}\left(\log p \sum_{k=1}^{n} x_{k}+n \log (1-p)-\log (1-p) \sum_{k=1}^{n} x_{k}\right)=0$.
Differentiating gives

$$
\frac{1}{p} \sum_{k=1}^{n} x_{k}-\frac{n}{1-p}+\frac{1}{1-p} \sum_{k=1}^{n} x_{k}=0
$$

EXAMPLE: (continued \cdot..)
We found

$$
\frac{1}{p} \sum_{k=1}^{n} x_{k}-\frac{n}{1-p}+\frac{1}{1-p} \sum_{k=1}^{n} x_{k}=0
$$

from which

$$
\left(\frac{1}{p}+\frac{1}{1-p}\right) \sum_{k=1}^{n} x_{k}=\frac{n}{1-p}
$$

Multiplying by $1-p$ gives

$$
\left(\frac{1-p}{p}+1\right) \sum_{k=1}^{n} x_{k}=\frac{1}{p} \sum_{k=1}^{n} x_{k}=n
$$

from which we obtain the maximum likelihood estimator

$$
\hat{p}=\frac{\sum_{k=1}^{n} X_{k}}{n} \equiv \bar{X} .
$$

(Surprise?)

EXERCISE :

Consider the Binomial probability mass function

$$
P(x ; p) \equiv P(X=x)=\binom{N}{x} \cdot p^{x} \cdot(1-p)^{N-x}
$$

where x is an integer, $(0 \leq x \leq N)$.

- What is the joint probability mass function $P\left(x_{1}, x_{2}, \cdots, x_{n} ; p\right)$?
- (Be sure to distinguish between N and $n!$)
- Determine the maximum likelihood estimator \hat{p} of p.
- (Can you guess what \hat{p} will be ?)

Hypothesis Testing

- Often we want to decide whether a hypothesis is True or False.
- To do so we gather data, i.e., a sample .
- A typical hypothesis is that a random variable has a given mean.
- Based on the data we want to accept or reject the hypothesis.
- To illustrate concepts we consider an example in detail.

EXAMPLE :

We consider ordering a large shipment of 50 watt light bulbs.
The manufacturer claims that:

- The lifetime of the bulbs has a normal distribution.
- The mean lifetime is $\mu=1000$ hours.
- The standard deviation is $\sigma=100$ hours.

We want to test the hypothesis that $\mu=1000$.
We assume that:

- The lifetime of the bulbs has indeed a normal distribution.
- The standard deviation is indeed $\sigma=100$ hours.
- We test the lifetime of a sample of 25 bulbs.

Density function of X, also indicating $\mu \pm \sigma_{X}$, ($\mu_{X}=1000, \sigma_{X}=100$).

Density function of $\bar{X}(n=25)$, also indicating $\mu_{\bar{X}} \pm \sigma_{\bar{X}}$,

$$
\left(\mu_{\bar{X}}=1000, \sigma_{\bar{X}}=20\right) .
$$

EXAMPLE: (continued...)
We test a sample of 25 light bulbs:

- We find the sample average lifetime is $\bar{X}=960$ hours.
- Do we accept the hypothesis that $\mu=1000$ hours ?

Using the standard normal Table we have the one-sided probability

$$
P(\bar{X} \leq 960)=\Phi\left(\frac{960-1000}{100 / \sqrt{25}}\right)=\Phi(-2.0)=2.28 \%
$$

(assuming that the average lifetime is indeed 1000 hours).

- Would you accept the hypothesis that $\mu=1000$?
- Would you accept (and pay for !) the shipment?

EXAMPLE: (continued...)
We test a sample of 25 light bulbs:

- Suppose instead the sample average lifetime is $\bar{X}=1040$ hours.
- Do we accept that $\mu=1000$ hours ?

Using the standard normal Table we have one-sided probability
$P(\bar{X} \geq 1040)=1-\Phi\left(\frac{1040-1000}{100 / \sqrt{25}}\right)=1-\Phi(2)=\Phi(-2)=2.28 \%$,
(assuming again that the average lifetime is indeed 1000 hours).

- Would you accept the hypothesis that that the mean is 1000 hours?
- Would you accept the shipment?

EXAMPLE: (continued...)
Suppose that we accept the hypothesis that $\mu=1000$ if

$$
960 \leq \bar{X} \leq 1040
$$

Thus, if indeed $\mu=1000$, we accept the hypothesis with probability

$$
P(|\bar{X}-1000| \leq 40)=1-2 \Phi\left(\frac{960-1000}{100 / \sqrt{25}}\right)=1-2 \Phi(-2) \cong 95 \%
$$

and we reject the hypothesis with probability

$$
P(|\bar{X}-1000| \geq 40)=100 \%-95 \%=5 \%
$$

Density function of $\bar{X}(n=25)$, with $\mu=\mu_{\bar{X}}=1000, \sigma_{\bar{X}}=20$,

$$
P(960 \leq \bar{X} \leq 1040) \cong 95 \%
$$

EXAMPLE: (continued...)

What is the probability of
acceptance of the hypothesis if μ is different from 1000 ?

- If the actual mean is $\mu=980$, then acceptance has probability

$$
\begin{aligned}
P(960 \leq \bar{X} \leq 1040)= & \Phi\left(\frac{1040-980}{100 / \sqrt{25}}\right)-\Phi\left(\frac{960-980}{100 / \sqrt{25}}\right) \\
= & \Phi(3)-\Phi(-1)=1-\Phi(-3)-\Phi(-1) \\
& (1-0.0013)-0.1587=84 \% .
\end{aligned}
$$

- If the actual mean is $\mu=1040$, then acceptance has probability

$$
\begin{aligned}
P(960 \leq \bar{X} \leq 1040) & =\Phi\left(\frac{1040-1040}{100 / \sqrt{25}}\right)-\Phi\left(\frac{960-1040}{100 / \sqrt{25}}\right) \\
& =\Phi(0)-\Phi(-4) \cong 50 \% .
\end{aligned}
$$

$$
\mu=\mu_{\bar{X}}=980
$$

$P($ accept $)=84 \%$

$$
\mu=\mu_{\bar{X}}=1000
$$

$$
P(\text { accept })=95 \%
$$

$\mu=\mu_{\bar{X}}=1040$
$P($ accept $)=50 \%$

Density functions of $\bar{X}: n=25, \sigma_{\bar{X}}=20$

QUESTION 1: How does P (accept) change when we "slide" the density function of \bar{X} along the \bar{X}-axis, i.e., when μ changes ?

QUESTION 2: What is the effect of increasing the sample size n ?

EXAMPLE :

Now suppose there are two lots of light bulbs:

- Lot 1: Light bulbs with mean life time $\mu_{1}=1000$ hours,
- Lot 2: Light bulbs with mean life time $\mu_{2}=1100$ hours.

We want to decide which lot our sample of 25 bulbs is from.

Consider the decision criterion \hat{x}, where $1000 \leq \hat{x} \leq 1100$:

- If $\bar{X} \leq \hat{x}$ then the sample is from Lot 1 .
- If $\bar{X}>\hat{x}$ then the sample is from Lot 2 .

There are two hypotheses:

- H1: The sample is from Lot $1\left(\mu_{1}=1000\right)$.
- H2 : The sample is from Lot $2\left(\mu_{2}=1100\right)$.

We can make two types of errors:

- Type 1 error: Accept H2 when H1 is True,
- Type 2 error: Accept H1 when H2 is True,
which happen when, for given decision criterion \hat{x},
- Type 1 error: If $\bar{X}>\hat{x}$ and the sample is from Lot 1 .
- Type 2 error: If $\bar{X} \leq \hat{x}$ and the sample is from Lot 2 .

The density functions of $\bar{X} \quad(n=25)$, also indicating \hat{x}. blue: $\left(\mu_{1}, \sigma_{1}\right)=(1000,100)$, red $:\left(\mu_{2}, \sigma_{2}\right)=(1100,200)$.

Type 1 error : area under the blue curve, to the right of \hat{x}. Type 2 error : area under the red curve, to the left of \hat{x}.

QUESTION : What is the effect of moving \hat{x} on these errors ?

RECALL:

- Type 1 error: If $\bar{X}>\hat{x}$ and the sample is from Lot 1 .
- Type 2 error: If $\bar{X} \leq \hat{x}$ and the sample is from Lot 2 .

These errors occur with probability

- Type 1 error : $P\left(\bar{X} \geq \hat{x} \mid \mu=\mu_{1} \equiv 1000\right)$.
- Type 2 error : $P\left(\bar{X} \leq \hat{x} \mid \mu=\mu_{2} \equiv 1100\right)$.

We should have, for the (rather bad) choice $\hat{x}=1000$,

- Type 1 error : $P\left(\bar{X} \geq 1000 \mid \mu=\mu_{1} \equiv 1000\right)=0.5$.
and for the (equally bad) choice $\hat{x}=1100$,
- Type 2 error: $P\left(\bar{X} \leq 1100 \mid \mu=\mu_{2} \equiv 1100\right)=0.5$.

Probability of Type 1 error vs. \hat{x}

$$
\left(\mu_{1}, \sigma_{1}\right)=(1000,100)
$$

Probability of Type 2 error vs. \hat{x}

$$
\left(\mu_{2}, \sigma_{2}\right)=(1100,100) .
$$

Sample sizes: 2 (red), 8 (blue) , 32 (black).

The probability of Type 1 and Type 2 errors versus \hat{x}.
Left: $\left(\mu_{1}, \boldsymbol{\sigma}_{1}\right)=(1000,100),\left(\mu_{2}, \boldsymbol{\sigma}_{2}\right)=(1100,100)$.
Right: $\left(\mu_{1}, \boldsymbol{\sigma}_{1}\right)=(1000,100),\left(\mu_{2}, \boldsymbol{\sigma}_{2}\right)=(1100,200)$.
Colors indicate sample size: 2 (red), 8 (blue), 32 (black).
Curves of a given color intersect at the minimax \hat{x}-value.

The probability of Type 1 and Type 2 errors versus \hat{x}.
Left: $\left(\mu_{1}, \boldsymbol{\sigma}_{1}\right)=(1000,100),\left(\mu_{2}, \boldsymbol{\sigma}_{2}\right)=(1100,300)$.
Right: $\left(\mu_{1}, \boldsymbol{\sigma}_{1}\right)=(1000,100),\left(\mu_{2}, \boldsymbol{\sigma}_{2}\right)=(1100,400)$.
Colors indicate sample size: 2 (red), 8 (blue), 32 (black).
Curves of a given color intersect at the minimax \hat{x}-value.

NOTE:

- There is an optimal value \hat{x}^{*} of \hat{x}.
- At \hat{x}^{*} the value of

$$
\max \{P(\text { Type } 1 \text { Error }), P(\text { Type } 2 \text { Error })\}
$$

is minimized.

- We call \hat{x}^{*} the minimax value.
- The value of \hat{x}^{*} depends on σ_{1} and σ_{2}.
- The value of \hat{x}^{*} is independent of the sample size.
- (We will prove this!)

The population density functions.

The density functions of $\bar{X}(n=25)$.

$$
\begin{aligned}
\left(\mu_{1}, \sigma_{1}\right) & =(1000,100) \quad(\text { blue }) \\
\left(\mu_{2}, \sigma_{2}\right) & =(1100,200) \quad(\text { red })
\end{aligned}
$$

The density functions of $\bar{X} \quad(n=25)$, with minimax value of \hat{x}.

$$
\left(\mu_{1}, \sigma_{1}\right)=(1000,100)(\text { blue }) \quad, \quad\left(\mu_{2}, \sigma_{2}\right)=(1100,200)(\text { red }) .
$$

The minimax value \hat{x}^{*} of \hat{x} is easily computed: At \hat{x}^{*} we have

$$
P(\text { Type } 1 \text { Error }) \quad=\quad P(\text { Type } 2 \text { Error }),
$$

$$
P\left(\bar{X} \geq \hat{x}^{*} \mid \mu=\mu_{1}\right) \quad=\quad P\left(\bar{X} \leq \hat{x}^{*} \mid \mu=\mu_{2}\right),
$$

$$
\Phi\left(\frac{\mu_{1}-\hat{x}^{*}}{\sigma_{1} / \sqrt{n}}\right)=\Phi\left(\frac{\hat{x}^{*}-\mu_{2}}{\sigma_{2} / \sqrt{n}}\right)
$$

$$
\frac{\mu_{1}-\hat{x}^{*}}{\sigma_{1} / \sqrt{n}}=\frac{\hat{x}^{*}-\mu_{2}}{\sigma_{2} / \sqrt{n}}, \quad(\text { by monotonicity of } \Phi) .
$$

from which

$$
\hat{x}^{*}=\frac{\mu_{1} \cdot \sigma_{2}+\mu_{2} \cdot \sigma_{1}}{\sigma_{1}+\sigma_{2}} .
$$

(Check!)

With $\mu_{1}=1000, \sigma_{1}=100, \mu_{2}=1100, \sigma_{2}=200$, we have

$$
\hat{x}^{*}=\frac{1000 \cdot 200+1100 \cdot 100}{100+200}=1033 .
$$

Thus we have proved the following :

FACT : Suppose Lot 1 and Lot 2 are normally distributed, with mean and standard deviation

$$
\left(\mu_{1}, \sigma_{1}\right) \text { and }\left(\mu_{2}, \sigma_{2}\right), \quad \text { where }\left(\mu_{1}<\mu_{2}\right),
$$

and sample size n.
Then the value of decision criterion \hat{x} that minimizes

$$
\max \{P(\text { Type } 1 \text { Error }), P \text { (Type } 2 \text { Error })\},
$$

i.e., the value of \hat{x} that minimizes
$\max \left\{P\left(\bar{X} \geq \hat{x} \mid \mu=\mu_{1}, \sigma=\sigma_{1}\right), \quad P\left(\bar{X} \leq \hat{x} \mid \mu=\mu_{2}, \sigma=\sigma_{2}\right\}\right.$,
is given by

$$
\hat{x}^{*}=\frac{\sigma_{1} \mu_{2}+\sigma_{2} \mu_{1}}{\sigma_{1}+\sigma_{2}}
$$

EXERCISE :

Determine the optimal decision criterion \hat{x}^{*} that minimizes

$$
\max \{P(\text { Type } 1 \text { Error }), P \text { (Type } 2 \text { Error })\},
$$

when

$$
\left(\mu_{1}, \sigma_{1}\right)=(1000,200) \quad, \quad\left(\mu_{2}, \sigma_{2}\right)=(1100,300) .
$$

For this \hat{x}^{*} find the probability of a Type 1 and a Type 2 Error, when

$$
n=1 \quad, \quad n=25 \quad, \quad n=100
$$

EXAMPLE (Known standard deviation) :

Given: A sample of size 9 from a normal population with $\sigma=0.2$ has sample mean

$$
\bar{X}=4.88
$$

Claim: The population mean is

$$
\mu=5.00, \quad\left(\text { the } " n u l l \text { hypothesis } " H_{0}\right)
$$

We see that $|\bar{X}-\mu|=|4.88-5.00|=0.12$.

We reject H_{0} if $P(|\bar{X}-\mu| \geq 0.12)$ is rather small, say, if
$P(|\bar{X}-\mu| \geq 0.12)<10 \% \quad$ ("level of significance" 10%)

Do we accept H_{0} ?

SOLUTION (Known standard deviation) :

Given: $n=9, \quad \sigma=0.2, \quad \bar{X}=4.88, \quad \mu=5.0, \quad|\bar{X}-\mu|=0.12$.
Since

$$
Z \equiv \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \quad \text { is standard normal }
$$

the "p-value" (from the standard normal Table) is

$$
\begin{aligned}
& P(|\bar{X}-\mu| \geq 0.12)=P\left(|Z| \geq \frac{0.12}{0.2 / \sqrt{9}}\right) \\
& \quad=P(|Z| \geq 1.8)=2 \Phi(-1.8) \cong 7.18 \%
\end{aligned}
$$

Thus we reject the hypothesis that $\mu=5.00$ significance level 10%.

NOTE: We would accept H_{0} if the level of significance were 5%. (We are "more tolerant" when the level of significance is smaller.)

EXAMPLE (Unknown standard deviation, large sample):
Given : A sample of size $n=64$ from a normal population has
and

$$
\text { sample mean } \bar{X}=4.847,
$$

sample standard deviation $\hat{S}=0.234$.

Test the hypothesis that $\mu \leq 4.8$, and reject it if $P(\bar{X} \geq 4.847)$ is small, say if

$$
P(\bar{X} \geq 4.847)<5 \%
$$

NOTE : Since the sample size $n=64$ is large, we can assume that

$$
\sigma \cong \hat{S}=0.234
$$

SOLUTION (Unknown standard deviation, large sample):

Given $\bar{X}=4.847, \mu=4.8, n=64$, and $\sigma \cong \hat{S}=0.234$.
Using the standard normal approximation we have that
if and only if

$$
\bar{X} \geq 4.847
$$

$$
Z \equiv \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \geq \frac{4.847-4.8}{0.234 / 8}=1.6 .
$$

From the standard normal Table we have the p-value

$$
P(Z \geq 1.6)=1-\Phi(1.6)=\Phi(-1.6)=5.48 \% .
$$

CONCLUSION:

We (barely) accept H_{0} at level of significance 5%.
(We would reject H_{0} at level of significance 10%.)

EXAMPLE (Unknown standard deviation, small sample) :

A sample of size $n=16$ from a normal population has
and

$$
\text { sample mean } \bar{X}=4.88,
$$

sample standard deviation $\hat{S}=0.234$.

Test the null hypothesis

$$
\begin{gathered}
H_{0}: \quad \mu \leq 4.8, \\
P(\bar{X} \geq 4.88)<5 \% .
\end{gathered}
$$

and reject it if

NOTE:

If $n \leq 30$ then the approximation $\sigma \cong \hat{S}$ is not so accurate. In this case better use the "student t-distribution" T_{n-1}.

The T-distribution Table

n	$\alpha=0.1$	$\alpha=0.05$	$\alpha=0.01$	$\alpha=0.005$
5	-1.476	-2.015	-3.365	-4.032
6	-1.440	-1.943	-3.143	-3.707
7	-1.415	-1.895	-2.998	-3.499
8	-1.397	-1.860	-2.896	-3.355
9	-1.383	-1.833	-2.821	-3.250
10	-1.372	-1.812	-2.764	-3.169
11	-1.363	-1.796	-2.718	-3.106
12	-1.356	-1.782	-2.681	-3.055
13	-1.350	-1.771	-2.650	-3.012
14	-1.345	-1.761	-2.624	-2.977
15	-1.341	-1.753	-2.602	-2.947

This Table shows $t_{\alpha, n}$ values such that $P\left(T_{n} \leq t_{\alpha, n}\right)=\alpha$.
(For example, $\left.P\left(T_{10} \leq-2.764\right)=1 \%\right)$

SOLUTION (Unknown standard deviation, small sample):

With $n=16$ we have $\bar{X} \geq 4.88$ if and only if

$$
T_{n-1}=T_{15}=\frac{\bar{X}-\mu}{\hat{S} / \sqrt{n}} \geq \frac{4.88-4.8}{0.234 / 4} \cong 1.37
$$

The t-distribution Table shows that

$$
\begin{aligned}
& P\left(T_{15} \geq 1.341\right)=P\left(T_{15} \leq-1.341\right)=10 \%, \\
& P\left(T_{15} \geq 1.753\right)=P\left(T_{15} \leq-1.753\right)=5 \% .
\end{aligned}
$$

Thus we reject H_{0} at level of significance 10%,
but we accept H_{0} at level of significance 5%.
(We are "more tolerant" when the level of significance is smaller.)

EXAMPLE (Testing a hypothesis on the standard deviation):

A sample of 16 items from a normal population has sample standard deviation $\hat{S}=2.58$.

Do you believe the population standard deviation satisfies $\sigma \leq 2.0$?
SOLUTION : We know that

$$
\frac{n-1}{\sigma^{2}} \hat{S}^{2} \text { has the } \chi_{n-1}^{2} \text { distribution }
$$

For our data :
$\hat{S} \geq 2.58 \quad$ if and only if $\quad \frac{n-1}{\sigma^{2}} \hat{S}^{2} \geq \frac{15}{4} 2.58^{2}=24.96$, and from the χ^{2} Table

$$
P\left(\chi_{15}^{2} \geq 25.0\right) \cong 5.0 \%
$$

Thus we (barely) accept the hypothesis at significance level 5%. (We would reject the hypothesis at significance level 10%.)

EXERCISE :

A sample of 16 items from a normal population has sample standard deviation

$$
\hat{S}=0.83
$$

Do you believe the hypothesis that σ satisfies

$$
\sigma \leq 1.2 ?
$$

(Probably Yes!)

LEAST SQUARES APPROXIMATION

Linear Least Squares

Recall the following data :

1	-1.52	8	-0.52	15	2.08	22	3.39	29	6.95
2	-1.55	9	-0.67	16	1.22	23	3.69	30	6.83
3	-1.72	10	0.01	17	1.73	24	4.45	31	6.93
4	-0.94	11	0.96	18	1.93	25	4.74		
5	-0.51	12	0.49	19	3.10	26	5.01		
6	-0.29	13	1.26	20	3.05	27	4.66		
7	0.02	14	1.99	21	3.32	28	6.45		

Average daily high temperature in Montreal in March : 1943-2014 .
(Source: http://climate.weather.gc.ca/)

These data have sample correlation coefficient $R_{X, Y}=0.98$

Average daily high temperature in Montreal in March

Suppose that:

- We believe that these temperatures basically increase linearly.
- In fact we found the sample correlation coefficient $R_{x y}=0.98$.
- Thus we believe in a relation

$$
T_{k}=c_{1}+c_{2} k, \quad k=1,2, \cdots, 31 .
$$

- The deviations from linearity come from random influences.
- These random influences can be due to many factors.
- The deviations may have a normal distribution.
- We want to determine " the best" linear approximation.

Average daily high temperatures, with a linear approximation .
QUESTION : Guess how this linear approximation was obtained!

- There are many ways to determine such a linear approximation.
- Often used is the least squares method.
- This method determines the values of c_{1} and c_{2} that minimize the least squares error:

$$
\sum_{k=1}^{N}\left(T_{k}-\left(c_{1}+c_{2} x_{k}\right)\right)^{2}
$$

where, in our example, $N=31$ and $x_{k}=k$.

- To do so set the partial derivatives w.r.t. c_{1} and c_{2} to zero :

$$
\begin{array}{lll}
\text { w.r.t. } c_{1}: & -2 \sum_{k=1}^{N}\left(T_{k}-\left(c_{1}+c_{2} x_{k}\right)\right)=0 \\
\text { w.r.t. } c_{2}: & -2 \sum_{k=1}^{N} x_{k}\left(T_{k}-\left(c_{1}+c_{2} x_{k}\right)\right)=0
\end{array}
$$

The least squares error versus c_{1} and c_{2}.

From setting the partial derivatives to zero, we have
$\sum_{k=1}^{N}\left(T_{k}-\left(c_{1}+c_{2} x_{k}\right)\right)=0 \quad, \quad \sum_{k=1}^{N} x_{k}\left(T_{k}-\left(c_{1}+c_{2} x_{k}\right)\right)=0$.

Solving these two equations for c_{1} and c_{2} gives
and

$$
c_{2}=\frac{\sum_{k=1}^{N} x_{k} T_{k}-\bar{x} \sum_{k=1}^{N} T_{k}}{\sum_{k=1}^{N} x_{k}^{2}-N \bar{x}^{2}},
$$

$$
c_{1}=\bar{T}-c_{2} \bar{x},
$$

where

$$
\bar{x}=\frac{1}{N} \sum_{k=1}^{N} x_{k} \quad, \quad \bar{T}=\frac{1}{N} \sum_{k=1}^{N} T_{k} .
$$

EXERCISE : Check these formulas !

EXAMPLE : For our "March temperatures " example, we find

$$
c_{1}=-2.47 \quad \text { and } \quad c_{2}=0.289 .
$$

Average daily high temperatures, with linear least squares approximation.

General Least Squares

Given discrete data points

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N},
$$

find the coefficients c_{k} of the function

$$
p(x) \equiv \sum_{k=1}^{n} c_{k} \phi_{k}(x)
$$

that minimize the least squares error

$$
E_{L} \equiv \sum_{i=1}^{N}\left(p\left(x_{i}\right)-y_{i}\right)^{2}
$$

EXAMPLES :

- $p(x)=c_{1}+c_{2} x$.
(Already done !)
- $p(x)=c_{1}+c_{2} x+c_{3} x^{2}$.
(Quadratic approximation)

For any vector $\mathbf{x} \in \mathbb{R}^{N}$ let

$$
\|\mathbf{x}\|^{2} \equiv \mathbf{x}^{T} \mathbf{x} \equiv \sum_{i=1}^{N} x_{k}^{2} \cdot \quad(T \text { denotes transpose })
$$

Then

$$
\begin{aligned}
E_{L} & \equiv \sum_{i=1}^{N}\left[p\left(x_{i}\right)-y_{i}\right]^{2}=\left\|\left(\begin{array}{c}
p\left(x_{1}\right) \\
\cdot \\
\cdot \\
p\left(x_{N}\right)
\end{array}\right)-\left(\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
y_{N}
\end{array}\right)\right\|^{2} \\
& =\left\|\left(\begin{array}{c}
\sum_{i=1}^{n} c_{i} \phi_{i}\left(x_{1}\right) \\
\cdot \\
\cdot \\
\sum_{i=1}^{n} c_{i} \phi_{i}\left(x_{N}\right)
\end{array}\right)-\left(\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
y_{N}
\end{array}\right)\right\|^{2} \\
& =\left\|\left(\begin{array}{ccc}
\phi_{1}\left(x_{1}\right) & \cdot & \phi_{n}\left(x_{1}\right) \\
\cdot & \cdot \\
\cdot & \cdot \\
\phi_{1}\left(x_{N}\right) & \cdot & \phi_{n}\left(x_{N}\right)
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\cdot \\
c_{n}
\end{array}\right)-\left(\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
y_{N}
\end{array}\right)\right\|^{2} \equiv\|\mathbf{A c}-\mathbf{y}\|^{2} .
\end{aligned}
$$

THEOREM :

For the least squares error E_{L} to be minimized we must have

$$
\mathbf{A}^{T} \mathbf{A} \mathbf{c}=\mathbf{A}^{T} \mathbf{y}
$$

PROOF :

$$
\begin{aligned}
E_{L} & =\|\mathbf{A} \mathbf{c}-\mathbf{y}\|^{2} \\
& =(\mathbf{A c}-\mathbf{y})^{T}(\mathbf{A} \mathbf{c}-\mathbf{y}) \\
& =(\mathbf{A c})^{T} \mathbf{A} \mathbf{c}-(\mathbf{A c})^{T} \mathbf{y}-\mathbf{y}^{T} \mathbf{A c}+\mathbf{y}^{T} \mathbf{y} \\
& =\mathbf{c}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{c}-\mathbf{c}^{T} \mathbf{A}^{T} \mathbf{y}-\mathbf{y}^{T} \mathbf{A c}+\mathbf{y}^{T} \mathbf{y}
\end{aligned}
$$

PROOF: (continued...)

We had

$$
E_{L}=\mathbf{c}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{c}-\mathbf{c}^{T} \mathbf{A}^{T} \mathbf{y}-\mathbf{y}^{T} \mathbf{A} \mathbf{c}+\mathbf{y}^{T} \mathbf{y}
$$

For a minimum we need

$$
\frac{\partial E_{L}}{\partial \mathbf{c}}=0, \quad \text { i.e., } \quad \frac{\partial E_{L}}{\partial c_{i}}=0, \quad i=0,1, \cdots, n
$$

which gives

$$
\mathbf{c}^{T} \mathbf{A}^{T} \mathbf{A}+\left(\mathbf{A}^{T} \mathbf{A c}\right)^{T}-\left(\mathbf{A}^{T} \mathbf{y}\right)^{T}-\mathbf{y}^{T} \mathbf{A}=0, \quad(\text { Check }!)
$$

i.e.,

$$
2 \mathbf{c}^{T} \mathbf{A}^{T} \mathbf{A}-2 \mathbf{y}^{T} \mathbf{A}=0
$$

or

$$
\mathbf{c}^{T} \mathbf{A}^{T} \mathbf{A}=\mathbf{y}^{T} \mathbf{A}
$$

Transposing gives

$$
\mathbf{A}^{T} \mathbf{A c}=\mathbf{A}^{T} \mathbf{y}
$$

EXAMPLE : Given the data points

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{4}=\{(0,1),(1,3),(2,2),(4,3)\}
$$

find the coefficients c_{1} and c_{2} of $p(x)=c_{1}+c_{2} x$, that minimize

$$
E_{L} \equiv \sum_{i=1}^{4}\left[\left(c_{1}+c_{2} x_{i}\right)-y_{i}\right]^{2}
$$

SOLUTION: Here $N=4, n=2, \phi_{1}(x)=1, \phi_{2}(x)=x$.
Use the Theorem :

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 4
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
1 \\
3 \\
2 \\
3
\end{array}\right)
$$

or

$$
\left(\begin{array}{cc}
4 & 7 \\
7 & 21
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{9}{19}
$$

with solution $c_{1}=1.6$ and $c_{2}=0.371429$.

EXAMPLE : Given the same data points, find the coefficients of that minimize $p(x)=c_{1}+c_{2} x+c_{3} x^{2}$,

$$
E_{L} \equiv \sum_{i=1}^{4}\left[\left(c_{1}+c_{2} x_{i}+c_{3} x_{i}^{2}\right)-y_{i}\right]^{2}
$$

SOLUTION: Here

$$
N=4 \quad, \quad n=3 \quad, \quad \phi_{1}(x)=1 \quad, \quad \phi_{2}(x)=x \quad, \quad \phi_{3}(x)=x^{2} .
$$

Use the Theorem :
$\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 4 & 16\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 16\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 4 & 16\end{array}\right)\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 3\end{array}\right)$,
or

$$
\left(\begin{array}{ccc}
4 & 7 & 21 \\
7 & 21 & 73 \\
21 & 73 & 273
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
9 \\
19 \\
59
\end{array}\right)
$$

with solution $c_{1}=1.32727, c_{2}=0.936364, c_{3}=-0.136364$.

The least squares approximations from the preceding two examples :

$$
p(x)=c_{1}+c_{2} x+c_{3} x^{2}
$$

EXAMPLE : From actual data :
The average daily high temperatures in Montreal (by month) are :

January	-5
February	-3
March	3
April	11
May	19
June	24
July	26
August	25
September	20
October	13
November	6
December	-2

Source: http : //weather.uk.msn.com

Average daily high temperature in Montreal (by month).

EXAMPLE: (continued...)

The graph suggests using a 3 -term least squares approximation

$$
p(x)=c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)+c_{3} \phi_{3}(x)
$$

of the form

$$
p(x)=c_{1}+c_{2} \sin \left(\frac{\pi x}{6}\right)+c_{3} \cos \left(\frac{\pi x}{6}\right)
$$

QUESTIONS :

- Why include $\phi_{2}(x)=\sin \left(\frac{\pi x}{6}\right)$?
- Why is the argument $\frac{\pi x}{6}$?
- Why include the constant term $\phi_{1}(x)=c_{1}$?
- Why include $\phi_{3}(x)=\cos \left(\frac{\pi x}{6}\right)$?

In this example we find the least squares coefficients

$$
c_{1}=11.4 \quad, \quad c_{2}=-8.66 \quad, \quad c_{3}=-12.8
$$

Least squares fit of average daily high temperatures.

EXAMPLE:

Consider the following experimental data :

EXAMPLE: (continued...)

Suppose we are given that :

- These data contain "noise".
- The underlying physical process is understood.
- The functional dependence is known to have the form

$$
y=c_{1} x^{c_{2}} e^{-c_{3} x} .
$$

- The values of c_{1}, c_{2}, c_{3} are not known.

EXAMPLE: (continued...)

The functional relationship has the form

$$
y=c_{1} x^{c_{2}} e^{-c_{3} x}
$$

NOTE:

- The unknown coefficients c_{1}, c_{2}, c_{3} appear nonlinearly!
- This gives nonlinear equations for c_{1}, c_{2}, c_{3} !
- Such problems are more difficult to solve!
- What to do ?

EXAMPLE: (continued...)
Fortunately, in this example we can take the logarithm:

$$
\log y=\log \left(c_{1} x^{c_{2}} e^{-c_{3} x}\right)=\log c_{1}+c_{2} \log x-c_{3} x .
$$

This gives a linear relationship

$$
\log y=\hat{c}_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)+c_{3} \phi_{3}(x)
$$

where

$$
\hat{c}_{1}=\log c_{1}
$$

and

$$
\phi_{1}(x)=1 \quad, \quad \phi_{2}(x)=\log x \quad, \quad \phi_{3}(x)=-x .
$$

Thus

- We can now use regular least squares.
- We first need to take the logarithm of the data.

EXAMPLE: (continued...)

The logarithm of the original y-values versus x.

EXAMPLE: (continued...)
We had

$$
y=c_{1} x^{c_{2}} e^{-c_{3} x},
$$

and

$$
\log y=\hat{c}_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)+c_{3} \phi_{3}(x)
$$

with

$$
\phi_{1}(x)=1 \quad, \quad \phi_{2}(x)=\log x \quad, \quad \phi_{3}(x)=-x,
$$

and

$$
\hat{c}_{1}=\log c_{1}
$$

We find the following least squares values of the coefficients :

$$
\hat{c}_{1}=-0.00473 \quad, \quad c_{2}=2.04, \quad c_{3}=1.01
$$

and

$$
c_{1}=e^{\hat{c}_{1}}=0.995
$$

EXAMPLE: (continued...)

The least squares approximation of the transformed data.

EXAMPLE: (continued \cdot.)

The least squares approximation shown in the original data.

RANDOM NUMBER GENERATION

- Measured data often have random fluctuations .
- This may be due to inaccurate measurements .
- It may also be due to other external influences.
- Often we know or believe there is a deterministic model.
- (i.e., the process can be modeled by a deterministic equation .)
- However, deterministic equations can also have random behavior !
- The study of such equations is sometimes called chaos theory.
- We will look at a simple example, namely, the logistic equation.

The Logistic Equation

A simple deterministic model of population growth is

$$
x_{k+1}=\lambda x_{k}, \quad k=1,2, \cdots,
$$

for given $\lambda,(\lambda \geq 0)$, and for given $x_{0},\left(x_{0} \geq 0\right)$.

The solution is

$$
x_{k}=\lambda^{k} \quad x_{0}, \quad k=1,2, \cdots
$$

Thus
If $0 \leq \lambda<1$ then $x_{k} \rightarrow 0 \quad$ as $\quad k \rightarrow \infty \quad$ ("extinction").

If $\quad \lambda>1 \quad$ then $\quad x_{k} \rightarrow \infty \quad$ as $\quad k \rightarrow \infty \quad$ ("exponential growth").

A somewhat more realistic population growth model is

$$
x_{k+1}=\lambda x_{k}\left(1-x_{k}\right), \quad k=1,2, \cdots,
$$

- This model is known as the logistic equation.
- The maximum sustainable population is 1 .
- $\quad \lambda$ is given, $(0 \leq \lambda \leq 4)$.
- $\quad x_{0}$ is given, $\left(0 \leq x_{0} \leq 1\right)$.
- Then $0 \leq x_{k} \leq 1$ for all k.
(Prove this !)

QUESTION : How does the sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ depend on λ ?

EXERCISE :

$$
x_{k+1}=\lambda x_{k}\left(1-x_{k}\right), \quad k=1,2, \cdots,
$$

- Divide the interval [0, 1] into 200 subintervals.
- Compute x_{k} for $k=1,2, \cdots 50$.
- Count the x_{k} 's in each subinterval.
- Determine the percentage of x_{k} 's in each subinterval.
- Present the result in a diagram.
- Do this for different choices of $\lambda \quad(0 \leq \lambda \leq 4)$.
 $\lambda=0.9 \quad, \quad x_{0}=0.77 \quad, \quad 50$ iterations $\quad, 200$ subintervals .

$\lambda=1.7 \quad, \quad x_{0}=0.77 \quad, 50$ iterations $\quad, 200$ subintervals .

$\lambda=3.77 \quad, \quad x_{0}=0.77 \quad, 50$ iterations , 200 subintervals .

EXERCISE :

$$
x_{k+1}=\lambda x_{k}\left(1-x_{k}\right), \quad k=1,2, \cdots,
$$

Do the same as in the preceding example, but now

- Compute x_{k} for $k=1,2, \cdots 1,000,000$!
- Do not record the first 200 iterations.
- (This to eliminate transient effects .)
- You will see that there is a fixed point (a cycle of period 1).

Percentage per interval

Graphical interpretation. $\lambda=1.7 \quad, \quad 1,000,000$ iterations $\quad, 200$ subintervals .

There is a fixed point (a cycle of period 1).

$\lambda=3.46 \quad, \quad 1,000,000$ iterations $\quad, 200$ subintervals .
There is a cycle of period 4 .

Percentage per interval

Graphical interpretation.
$\lambda=3.561 \quad, \quad 1,000,000$ iterations $\quad, 200$ subintervals .
There is a cycle of period 8 .

Percentage per interval

Graphical interpretation. $\lambda=3.6 \quad, \quad 1,000,000$ iterations $\quad, 200$ subintervals .
(The Figure on the right only shows 100 of these iterations.)
There is apparent chaotic behavior .

Percentage per interval

Graphical interpretation. $\lambda=3.77 \quad, \quad 1,000,000$ iterations $\quad, 200$ subintervals .
(The Figure on the right only shows 100 of these iterations.)
There is apparent chaotic behavior .

Percentage per interval

Graphical interpretation.
$\lambda=3.89 \quad, \quad 1,000,000$ iterations $\quad, 200$ subintervals .
(The Figure on the right only shows 100 of these iterations.)
There is apparent chaotic behavior .

CONCLUSIONS :

- The behavior of the logistic equation depends on λ.
- For certain values of λ we see fixed points.
- For other values of λ there are cycles.
- For yet other values of λ there is seemingly random behavior .
- Many other deterministic equations have "complex behavior"!
- Nature is complex !

Generating Random Numbers

The logistic equation is a recurrence relation of the form

$$
x_{k+1}=f\left(x_{k}\right), \quad k=1,2,3, \cdots .
$$

Most random number generators also have this form.
For the logistic equation we did not see sequences $\left\{x_{k}\right\}_{k=1}^{N}$ having

- a uniform distribution,
- a normal distribution,
- another known distribution.

QUESTION :

- How to generate uniform (and other) random numbers ?
- (These are useful in computer simulations .)

Generating Uniformly Distributed Random Numbers

Uniformly distributed random numbers can also be generated by a recurrence relation of the form

$$
x_{k+1}=f\left(x_{k}\right), \quad k=1,2,3, \cdots .
$$

Unlike the logistic equation, the x_{k} are most often integers.

The recurrence relation typically has the form

$$
x_{k+1}=\left(n x_{k}\right) \bmod p .
$$

where p is a large prime number, and n a large integer, with

$$
p \quad \Varangle n .
$$

The following fact is useful :

THEOREM :

Let p be a prime number, and n an integer such that

$$
p \quad X n .
$$

Then the function

$$
f:\{0,1,2, \cdots, p-1\} \quad \rightarrow \quad\{0,1,2, \cdots, p-1\}
$$

given by

$$
f(x)=(n x) \bmod p
$$

is one-to-one (and hence onto, a bijection, and invertible).

EXAMPLE :

$$
p=7 \quad \text { and } \quad n=12
$$

x	12 x	$12 \mathrm{x} \bmod 7$
0	0	0
1	12	5
2	24	3
3	36	1
4	48	6
5	60	4
6	72	2

Invertible!
NOTE: The values of $12 x$ mod 7 look somewhat random!

381

```
p prime , p \n # (nx) mod p is 1-1
```


EXAMPLE :

$$
p=6 \quad \text { and } \quad n=2 .
$$

x	2 x	$2 \mathrm{x} \bmod 6$
0	0	0
1	2	2
2	4	4
3	6	0
4	8	2
5	10	4

Not Invertible .

```
p prime, p \n # (nx)mod p is 1-1
```

EXAMPLE :

$$
p=6 \quad \text { and } \quad n=13
$$

x	13 x	$13 \mathrm{x} \bmod 6$
0	0	0
1	13	1
2	26	2
3	39	3
4	52	4
5	65	5

Invertible . (So ?)
NOTE: The numbers in the right hand column don't look random!

```
p prime, p \n # (nx) mod p is 1-1
```

PROOF : By contradiction: Suppose the function is not $1-1$.
Then there are distinct integers $x_{1}, x_{2} \in\{0,1,2, \cdots, p-1\}$, such that

$$
\left(n x_{1}\right) \bmod p=k \quad \text { and } \quad\left(n x_{2}\right) \bmod p=k
$$

where also $k \in\{0,1,2, \cdots, p-1\}$. It follows that

$$
p \mid n\left(x_{1}-x_{2}\right), \quad(\text { Why ?) }
$$

Since p is prime and $p \nmid n$ it follows that

$$
p \mid\left(x_{1}-x_{2}\right) .
$$

Thus $x_{1}-x_{2}=0$ (Why?), i.e., $x_{1}=x_{2}$.

For given x_{0}, an iteration of the form

$$
x_{k}=\left(n x_{k-1}\right) \bmod p, \quad k=1,2, \cdots, p-1 .
$$

can be used to generate random numbers.

- Here p is a large prime number.
- The value of n is also large.
- The integer n must not be divisible by p.
- Do not start with $x_{0}=0$ (because it is a fixed point!).
- Be aware of cycles (of period less than $p-1$)!

REMARK : Actually, more often used is an iteration of the form

$$
x_{k}=\left(n x_{k-1}+m\right) \bmod p, \quad k=1,2, \cdots, p-1
$$

EXAMPLE : As a simple example, take again $p=7$ and $n=12$:

x	12 x	$12 \mathrm{x} \bmod 7$
0	0	0
1	12	5
2	24	3
3	36	1
4	48	6
5	60	4
6	72	2

With $x_{1}=1$ the recurrence relation

$$
x_{k+1}=f\left(x_{k}\right), \quad \text { where } \quad f(x)=12 x \bmod 7
$$

generates the sequence

$$
1 \rightarrow 5 \rightarrow 4 \rightarrow 6 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 5 \rightarrow \cdots
$$

which is a cycle of maximal period $p-1$ (here 6).

$f(x)$	sequence	cycle period
$5 x \bmod 7$	$1 \rightarrow 5 \rightarrow 4 \rightarrow 6 \rightarrow 2 \rightarrow 3 \rightarrow 1$	6
$6 x \bmod 7$	$1 \rightarrow 6 \rightarrow 1 \rightarrow 6 \rightarrow 1 \rightarrow 6 \rightarrow 1$	2
$8 x \bmod 7$	$1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1$	1
$9 x \bmod 7$	$1 \rightarrow 2 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow 1$	3
$10 x \bmod 7$	$1 \rightarrow 3 \rightarrow 2 \rightarrow 6 \rightarrow 4 \rightarrow 5 \rightarrow 1$	6
$11 x \bmod 7$	$1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1$	3
$12 x \bmod 7$	$1 \rightarrow 5 \rightarrow 4 \rightarrow 6 \rightarrow 2 \rightarrow 3 \rightarrow 1$	6

EXAMPLE: With $x_{0}=2$, compute

$$
x_{k}=\left(137951 x_{k-1}\right) \bmod 101, \quad k=1,2, \cdots, 100 .
$$

Result :

71	46	17	48	88	94	4	41	92	34
96	75	87	8	82	83	68	91	49	73
16	63	65	35	81	98	45	32	25	29
70	61	95	90	64	50	58	39	21	89
79	27	100	15	78	42	77	57	54	99
30	55	84	53	13	7	97	60	9	67
5	26	14	93	19	18	33	10	52	28
85	38	36	66	20	3	56	69	76	72
31	40	6	11	37	51	43	62	80	12
22	74	1	86	23	59	24	44	47	2

QUESTION : Are there repetitions (i.e., cycles)?

EXAMPLE: As in the preceding example, use $x_{0}=2$, and compute

$$
x_{k}=\left(137951 x_{k-1}\right) \bmod 101, \quad k=1,2, \cdots, 100
$$

and set

$$
\hat{x}_{k}=\frac{x_{k}}{100} .
$$

0.710	0.460	0.170	0.480	0.880	0.940	0.040	0.410	0.920	0.340
0.960	0.750	0.870	0.080	0.820	0.830	0.680	0.910	0.490	0.730
0.160	0.630	0.650	0.350	0.810	0.980	0.450	0.320	0.250	0.290
0.700	0.610	0.950	0.900	0.640	0.500	0.580	0.390	0.210	0.890
0.790	0.270	1.000	0.150	0.780	0.420	0.770	0.570	0.540	0.990
0.300	0.550	0.840	0.530	0.130	0.070	0.970	0.600	0.090	0.670
0.050	0.260	0.140	0.930	0.190	0.180	0.330	0.100	0.520	0.280
0.850	0.380	0.360	0.660	0.200	0.030	0.560	0.690	0.760	0.720
0.310	0.400	0.060	0.110	0.370	0.510	0.430	0.620	0.800	0.120
0.220	0.740	0.010	0.860	0.230	0.590	0.240	0.440	0.470	0.020

QUESTION : Do these numbers look uniformly distributed?

EXAMPLE: With $x_{0}=2$, compute

$$
x_{k}=\left(137953 x_{k-1}\right) \bmod 101, \quad k=1,2, \cdots, 100 .
$$

Result :

75	35	50	57	67	38	11	59	41	73
61	15	7	10	72	74	48	83	32	89
55	93	3	62	2	75	35	50	57	67
38	11	59	41	73	61	15	7	10	72
74	48	83	32	89	55	93	3	62	2
75	35	50	57	67	38	11	59	41	73
61	15	7	10	72	74	48	83	32	89
55	93	3	62	2	75	35	50	57	67
38	11	59	41	73	61	15	7	10	72
74	48	83	32	89	55	93	3	62	2

QUESTION: Are there cycles?

EXAMPLE: With $x_{0}=4$, compute

$$
x_{k}=\left(137953 x_{k-1}\right) \bmod 101, \quad k=1,2, \cdots, 100 .
$$

Result :

49	70	100	13	33	76	22	17	82	45
21	30	14	20	43	47	96	65	64	77
9	85	6	23	4	49	70	100	13	33
76	22	17	82	45	21	30	14	20	43
47	96	65	64	77	9	85	6	23	4
49	70	100	13	33	76	22	17	82	45
21	30	14	20	43	47	96	65	64	77
9	85	6	23	4	49	70	100	13	33
76	22	17	82	45	21	30	14	20	43
47	96	65	64	77	9	85	6	23	4

QUESTIONS :

- Are there cycles?
- Is this the same cycle that we already found ?

Generating Random Numbers using the Inverse Method

- There are algorithms that generate uniform random numbers.
- These can be used to generate other random numbers.
- A simple method to do this is the Inverse Transform Method.

RECALL:

Let $f(x)$ be a density function on an interval $[a, b]$.

The distribution function is

$$
F(x) \equiv \int_{a}^{x} f(x) d x
$$

- Since $f(x) \geq 0$ we know that $F(x)$ is increasing.
- If $F(x)$ is strictly increasing then $F(x)$ is invertible.

We want random numbers X with distribution $F(x)$ (blue). Let the random variable Y be uniform on the interval $[0,1]$.

$$
\text { Let } X=F^{-1}(Y) \text {. }
$$

Then $P\left(x_{1} \leq X \leq x_{2}\right)=y_{2}-y_{1}=F\left(x_{2}\right)-F\left(x_{1}\right)$. Thus $F(x)$ is indeed the distribution function of X !

- If Y is uniformly distributed on $[0,1]$ then

$$
P\left(y_{1} \leq Y \leq y_{2}\right) \quad=\quad y_{2}-y_{1} .
$$

- Let

$$
X=F^{-1}(Y),
$$

with

$$
x_{1}=F^{-1}\left(y_{1}\right) \quad \text { and } \quad x_{2}=F^{-1}\left(y_{2}\right) .
$$

- Then

$$
\begin{equation*}
P\left(x_{1} \leq X \leq x_{2}\right)=y_{2}-y_{1}=F\left(x_{2}\right)-F\left(x_{1}\right) . \tag{Why?}
\end{equation*}
$$

- Thus $F(X)$ is also the distribution function of $X \equiv F^{-1}(Y)$!

NOTE : In the illustration X is on $[0,1]$, but this is not necessary.

EXAMPLE :

Recall that the exponential density function

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & x>0 \\ 0, & x \leq 0\end{cases}
$$

has distribution function

$$
F(x)= \begin{cases}1-e^{-\lambda x}, & x>0 \\ 0, & x \leq 0\end{cases}
$$

The inverse distribution function is

$$
\begin{equation*}
F^{-1}(y)=-\frac{1}{\lambda} \log (1-y), \quad 0 \leq y<1 \tag{Check!}
\end{equation*}
$$

The inverse method for generating 20 "exponential random numbers", for the exponential distribution function with $\lambda=1$.

EXAMPLE: (continued...)
(Using the inverse method to get exponential random numbers.)

- Divide $[0,12]$ into 100 subintervals of equal size $\Delta x=0.12$.
- Let I_{k} denote the k th interval, with midpoint x_{k}.
- Use the inverse method to get N exponential random numbers.
- Let m_{k} be the frequency count (\# of random values in I_{k}).
- Let

$$
\hat{f}\left(x_{k}\right)=\frac{m_{k}}{N \Delta x} .
$$

- Then

$$
\int_{0}^{\infty} \hat{f}(x) d x \cong \sum_{k=1}^{100} \hat{f}\left(x_{k}\right) \Delta x=1
$$

- Then $\hat{f}(x)$ approximates the actual density function $f(x)$.

Simulating the exponential random variable with $\lambda=1$.
(The actual density function is shown in blue.)

EXERCISE : Consider the Tent density function

$$
f(x)=\left\{\begin{array}{cc}
x+1, & -1<x \leq 0 \\
1-x, & 0<x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- Verify that that the distribution function is given by

$$
F(x)=\left\{\begin{array}{rr}
\frac{1}{2} x^{2}+x+\frac{1}{2}, & -1 \leq x \leq 0 \\
-\frac{1}{2} x^{2}+x+\frac{1}{2}, & 0<x \leq 1
\end{array}\right.
$$

- Verify that that the inverse distribution function is

$$
F^{-1}(y)=\left\{\begin{aligned}
-1+\sqrt{2 y}, & 0 \leq y \leq \frac{1}{2} \\
1-\sqrt{2-2 y}, & \frac{1}{2}<y \leq 1
\end{aligned}\right.
$$

- Use the inverse method to generate "Tent random numbers".

The inverse method for generating 20 "Tent random numbers".

Simulating the "Tent random variable".
(The actual density function is shown in blue.)

SUMMARY TABLES

and

FORMULAS

Discrete	Continuous
$p\left(x_{i}\right)=P\left(X=x_{i}\right)$	$f(x) \delta x \cong P\left(x-\frac{\delta}{2}<X<x+\frac{\delta}{2}\right)$
$\sum_{i} p\left(x_{i}\right)=1$	$\int_{-\infty}^{\infty} f(x) d x=1$
$F\left(x_{k}\right)=\sum_{i \leq k} p\left(x_{i}\right)$	$F(x)=\int_{-\infty}^{x} f(x) d x$
$p\left(x_{k}\right)=F\left(x_{k}\right)-F\left(x_{k-1}\right)$	$f(x)=F^{\prime}(x)$
$E[X]=\sum_{i} x_{i} p\left(x_{i}\right)$	$E[X]=\int_{-\infty}^{\infty} x f(x) d x$
$E[g(X)]=\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)$	$E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x$
$E[X Y]=\sum_{i, j} x_{i} y_{j} p\left(x_{i}, y_{j}\right)$	$E[X Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d y d x$

Name	General Formula
Mean	$\mu=E[X]$
Variance	$\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-\mu^{2}$
Covariance	$\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[X Y]-\mu_{X} \mu_{Y}$
Markov	$P(X \geq c) \leq E[X] / c$
Chebyshev	$P(\|X-\mu\| \geq k \sigma) \leq 1 / k^{2}$
Moments	$\psi(t)=E\left[e^{t X}\right], \psi^{\prime}(0)=E[X], \psi^{\prime \prime}(0)=E\left[X^{2}\right]$

Name	Probability mass function	Domain
Bernoulli	$P(X=1)=p, P(X=0)=1-p$	0,1
Binomial	$P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$	$0 \leq k \leq n$
Poisson	$P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}$	$k=0,1,2, \cdots$

Name	Mean	Standard deviation
Bernoulli	p	$\sqrt{p(1-p)}$
Binomial	$n p$	$\sqrt{n p(1-p)}$
Poisson	λ	$\sqrt{\lambda}$

Name	Density function	Distribution	Domain
Uniform	$\frac{1}{b-a}$	$\frac{x-a}{b-a}$	$x \in(a, b]$
Exponential	$\lambda e^{-\lambda x}$	$1-e^{-\lambda x}$	$x \in(0, \infty)$
Std. Normal	$\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$		$x \in(-\infty, \infty)$
Normal	$\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}}$		$x \in(-\infty, \infty)$

Name	Mean	Standard Deviation
Uniform	$\frac{a+b}{2}$	$\frac{b-a}{2 \sqrt{3}}$
Exponential	$\frac{1}{\lambda}$	$\frac{1}{\lambda}$
Standard Normal	0	1
General Normal	μ	σ
Chi-Square	n	$\sqrt{2 n}$

The Standard Normal Distribution $\Phi(z)$

z	$\Phi(z)$	z	$\Phi(z)$
0.0	.5000	-1.2	.1151
-0.1	.4602	-1.4	.0808
-0.2	.4207	-1.6	.0548
-0.3	.3821	-1.8	.0359
-0.4	.3446	-2.0	.0228
-0.5	.3085	-2.2	.0139
-0.6	.2743	-2.4	.0082
-0.7	.2420	-2.6	.0047
-0.8	.2119	-2.8	.0026
-0.9	.1841	-3.0	.0013
-1.0	.1587	-3.2	.0007

(For example, $P(Z \leq-2.0)=\Phi(-2.0)=2.28 \%$)

The χ_{n}^{2} - Table

n	$\alpha=0.975$	$\alpha=0.95$	$\alpha=0.05$	$\alpha=0.025$
5	0.83	1.15	11.07	12.83
6	1.24	1.64	12.59	14.45
7	1.69	2.17	14.07	16.01
8	2.18	2.73	15.51	17.54
9	2.70	3.33	16.92	19.02
10	3.25	3.94	18.31	20.48
11	3.82	4.58	19.68	21.92
12	4.40	5.23	21.03	23.34
13	5.01	5.89	22.36	24.74
14	5.63	6.57	23.69	26.12
15	6.26	7.26	25.00	27.49

This Table shows $z_{\alpha, n}$ values such that $P\left(\chi_{n}^{2} \geq z_{\alpha, n}\right)=\alpha$.
(For example, $\left.P\left(\chi_{10}^{2} \geq 3.94\right)=95 \%\right)$

The T-distribution Table

n	$\alpha=0.1$	$\alpha=0.05$	$\alpha=0.01$	$\alpha=0.005$
5	-1.476	-2.015	-3.365	-4.032
6	-1.440	-1.943	-3.143	-3.707
7	-1.415	-1.895	-2.998	-3.499
8	-1.397	-1.860	-2.896	-3.355
9	-1.383	-1.833	-2.821	-3.250
10	-1.372	-1.812	-2.764	-3.169
11	-1.363	-1.796	-2.718	-3.106
12	-1.356	-1.782	-2.681	-3.055
13	-1.350	-1.771	-2.650	-3.012
14	-1.345	-1.761	-2.624	-2.977
15	-1.341	-1.753	-2.602	-2.947

This Table shows $t_{\alpha, n}$ values such that $P\left(T_{n} \leq t_{\alpha, n}\right)=\alpha$.
(For example, $\left.P\left(T_{10} \leq-2.764\right)=1 \%\right)$

