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UNIT-3 

PROBABILITY 

INTRODUCTION: 

     Probability theory was originated from gambling theory. A large number of problems 

exist even today which are based on the game of chance, such as coin tossing, dice throwing and 

playing cards. 

 The probability is defined in two different ways, 

 Mathematical (or a priori) definition 

 Statistical (or empirical) definition 

SOME IMPORTANT TERMS &CONCEPTS: 

 RANDOM EXPERIMENTS: 

               Experiments of any type where the outcome cannot be predicted are called 

random experiments. 

 SAMPLE SPACE: 

               A set of all possible outcomes from an experiment is called a sample space. 

Eg: Consider a random experiment E of throwing 2 coins at a time. The possible 

outcomes are HH, TT, HT, TH. 

      These 4 outcomes constitute a sample space denoted by, S ={ HH, TT, HT, TH}. 

 TRAIL & EVENT: 

                Consider an experiment of throwing a coin. When tossing a coin, we may get a 

head(H) or tail(T). Here tossing of a coin is a trail and getting a hand or tail is an event. 

         In otherwords, “Every non-empty subset of A of the sample space S is called an 

event”. 

 NULL EVENT: 

               An event having no sample point is called a null event and is denoted by ∅. 

 EXHAUSTIVE EVENTS: 

               The total number of possible outcomes in any trail is known as exhaustive 

events. 

Eg: In throwing a die the possible outcomes are getting 1 or 2 or 3 or 4 or 5 or 6. Hence 

we have 6 exhaustive events in  throwing a die. 

 MUTUALLY EXCLUSIVE EVENTS: 

              Two events are said to be mutually exclusive when the occurrence of one affects 

the occurrence of the other. In otherwords, if A & B are mutually exclusive events and if 

A happens then B will not happen and viceversa. 

Eg: In tossing a coin the events head or tail are mutually exclusive, since both tail & head 

cannot appear in the same time. 



 EQUALLY LIKELY EVENTS: 

            Two events are said to be equally likely if one of them cannot be expected in the 

preference to the other. 

Eg: In throwing a coin, the events head & tail have equal chances of occurrence. 

 INDEPENDENT & DEPENDENT EVENTS: 

           Two events are said to be independent when the actual happening of one doesnot 

influence in any way the happening of the other. Events which are not independent are 

called dependent events. 

Eg: If we draw a card in a pack of well shuffled cards and again draw a card from the rest 

of pack of cards (containing 51 cards), then the second draw is dependent on the first. But 

if  on the other hand, we draw a second card from the pack by replacing the first card 

drawn, the second draw is known as independent of the first. 

 FAVOURABLE EVENTS: 

           Mathematical or classical or a priori definition of probability, 

  Probability (of happening an event E) = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

                          = 
𝑚

𝑛
 

     Where m = Number of favourable cases 

                 n  = Total number of exhaustive cases. 

PROBLEMS: 

1. In tossing a coin, what is the prob. of getting a head. 

Sol:     Total no. of events = {H, T}= 2 

          Favourable event = {H}= 1 

       

Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

                    =  
1

2
 

2. In throwing a die, the prob. of getting 2. 

Sol:   Total no. of events = {1,2,3,4,5,6}= 6 

          Favourable event = {2}= 1 

       

Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

                    =  
1

6
 

3. Find the prob. of throwing 7 with two dice. 

Sol:    Total no. of possible ways of throwing a dice twice = 36 ways 

          Number of ways of getting 7 is, (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) = 6 

 



          Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

                              =  
6

36
 

                              = 
1

6
 

4. A bag contains 6 red & 7 black balls. Find the prob. of drawing a red ball. 

Sol:   Total no. of possible ways of getting 1 ball = 6 + 7 

         Number of ways of getting 1 red ball = 6 

Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

                    =  
6

13
 

5. Find the prob. of a card drawn at random from an ordinary pack, is a diamond. 

Sol:      Total no. of possible ways of getting 1 card = 52 

         Number of ways of getting 1 diamond card is 6 

Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

                    =  
13

52
 

                    = 
1

4
 

6. From a pack of 52 cards, 1 card is drawn at random. Find the prob. of getting a queen. 

Sol:   A queen may be chosen in 4 ways. 

         Total no. of ways of selecting 1 card = 52 

 Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

                    =  
4

52
  = 

1

13
 

7. Find the prob. of throwing: (a) 4, (b) an odd number, (c) an even number with an ordinary 

die (six faced). 

Sol:   a) When throwing a die there is only one way of getting 4. 

 Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

                           =  
1

6
 

b) Number of ways of falling an odd number is 1, 3, 5 = 3 

Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 =  

3

6
 = 

1

2
 



c) Number of ways of falling an even number is 2, 4, 6 = 3 

Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 =  

3

6
 = 

1

2
 

8. From a group of 3 Indians, 4 Pakistanis, and 5 Americans, a sub-committee of four 

people is selected by lots. Find the probability that the sub-committee will consist of  

               i) 2 Indians and 2 Pakistanis. 

              ii) 1 Indians, 1 Pakistanis and 2 Americans. 

              iii) 4 Americans. 

Sol:      Total no. of people = 3 + 4 + 5 = 12 

         ∴ 4 people can be chosen from 12 people = 12𝐶4 ways 

                                                                            = 
12 ×11 ×10 ×9

1 ×2 ×3×4
 = 495 ways 

    i) 2 Indians can be chosen from 3 Indians = 3𝐶2 ways 

       2 Pakistanis can be chosen from 4 Pakistanis = 4𝐶2 ways 

  ∴ No. of favourable cases = 3𝐶2 × 4𝐶2 

                ∴ Prob. = 
 3𝐶2× 4𝐶2

495
 = 

2

55
 

ii) 1 Indian can be chosen from 3 Indians =  3𝐶1 ways 

    1 Pakistani can be chosen from 4 Pakistanis =  4𝐶1 ways 

    2 Americans can be chosen from 5 Americans =  5𝐶2 ways 

                    Favourable events = 3𝐶1 × 4𝐶1  ×  5𝐶2 

                         ∴ Prob. = 
 3𝐶1× 4𝐶2× 5𝐶2  

495
 = 

8

33
 

iii) 4 Americans can be chosen from 5 Americans =  5𝐶4 ways 

            ∴ Prob. = 
 5𝐶4

495
 = 

1

99
 

9. A bag contains 7 white, 6 red & 5 black balls. Two balls are drawn at random. Find the 

prob. that they both will be white. 

Sol:      Total no. of balls = 7 + 6 + 5 

                                        = 18 



From there 18 balls, 2 balls can be drawn in  18𝐶2 ways 

      i.e) 
18 × 17

1 ×2
 = 153 

2 white balls can be drawn from 7 white balls = 7𝐶2 ways 

                                                                          = 21 

               ∴ Favourable cases = 21 

   P(drawing 2 white balls) = 
21

153
 = 

7

51
 

10. A bag contains 10 white, 6 red, 4 black & 7 blue balls. 5 balls are drawn at random. What 

is the prob. that 2 of them are red and one is black? 

Sol:  Total no. of balls = 10 + 6 + 4 + 7 =27 

    5 balls can be drawn from these 27 balls = 27𝐶5 ways 

                                                                     = 
27 × 26 ×25 × 24 ×23

1 ×2 ×3×4 ×5
 

                                                                     = 80730 ways 

            Total no. of exhaustive events = 80730 

        2 red balls can be drawn from 6 red balls = 6𝐶2 ways 

                                                                          = 
6 × 5

1 ×2
 = 15 ways 

1 black balls can be drawn from 4 black balls = 4𝐶1 ways 

                                                                          = 4 

               ∴ No. of favourable cases = 15 × 4 = 60 

          Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

                             = 
60

80730
 = 

6

8073
 

11. What is the prob. of having a king and a queen, when 2 cards are drawn from a pack of 

52 cards? 

Sol:     2 cards can be drawn from a pack of 52 cards = 52𝐶2 ways 

                                                                                     =  
52 × 51

1 ×2
 = 1326 ways 



1 queen card can be drawn from 4 queen cards = 4𝐶1 ways  

1 king card can be drawn from 4 king cards = 4𝐶1 ways 

          Favourable cases = 4 × 4 = 16 ways 

P(drawing 1 queen & 1 king card ) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

                                                        = 
16

1326
 = 

8

663
 

12. What is the prob. that out of 6 cards taken from a full pack, 3 will be black and 3 will be 

red? 

Sol:     A full pack contains 52cards. Out of 52 cards, 26 cards are red & 26 black cards . 

                  6 cards can be chosen from 52 cards = 52𝐶6 ways 

    3 black cards can be  chosen from 26 black cards = 26𝐶3 ways 

    3 red cards can be  chosen from 26 red cards = 26𝐶3 ways 

          Favourable cases = 26𝐶3 × 26𝐶3 

           Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

                   = 
 26𝐶3× 26𝐶3 

52𝐶6
 

13. Find the prob. that a hand at bridge will consist of 3 spades, 5 hearts, 2 diamonds & 3 

clubs? 

Sol:     Total no. of balls = 3 + 5 + 2 + 3 = 13 

From 52 cards, 13 cards are chosen in 52𝐶13 ways 

In a pack of 52 cards, there are 13 cards of each type. 

  3 spades can be chosen from 13 spades = 13𝐶3 ways 

 5 hearts can be chosen from 13 hearts = 13𝐶5 ways 

 2 diamonds can be chosen from 13 diamonds = 13𝐶2 ways 

 3 clubs can be chosen from 13 clubs = 13𝐶3 ways 

       Hence the total no. of favourable cases are = 13𝐶3 × 13𝐶5  ×  13𝐶2  ×  13𝐶3 



               Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

                                   = 
13𝐶3×13𝐶5  × 13𝐶2  × 13𝐶3

52𝐶13
 

OPERATIONS ON SETS: 

                If A & B are any two sets, then  

    i) UNION OF TWO SETS 

                𝐴 ∪ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 (𝑜𝑟) 𝑥 ∈ 𝐵} 

      In general, 𝐴1 ∪  𝐴2 ∪ … . .∪ 𝐴𝑛 = {𝑥: 𝑥 ∈ 𝐴1 𝑜𝑟 𝑥 ∈  𝐴2 𝑜𝑟 … … . . 𝑜𝑟 𝑥 ∈  𝐴𝑛} 

        i.e) ⋃ 𝐴𝑖 = {𝑥: 𝑥 ∈ 𝐴𝑖
𝑛
𝑖=1 ,  for atleast one i} 

 ii) INTERSECTION OF TWO SETS 

                𝐴 ∩ 𝐵 = { 𝑥: 𝑥 ∈ 𝐴 & 𝑥 ∈ 𝐵}      

     In general, 𝐴1 ∩  𝐴2 ∩ … . .∩ 𝐴𝑛 = {𝑥: 𝑥 ∈ 𝐴1 𝑎𝑛𝑑 𝑥 ∈  𝐴2 𝑎𝑛𝑑 … … . . 𝑎𝑛𝑑 𝑥 ∈  𝐴𝑛} 

i.e) ⋂ 𝐴𝑖
𝑛
𝑖=1  = {𝑥: 𝑥 ∈ 𝐴𝑖, for all i = 1,2,3…..n} 

iii)  COMPLEMENT OF A SET 

            𝐴′ 𝑜𝑟 �̅� = {𝑥: 𝑥 ∉ 𝐴} 

iv) DIFFERENCE OF TWO SETS 

          A – B = {𝑥: 𝑥 ∈ 𝐴 𝑏𝑢𝑡 𝑥 ∉ 𝐵} 

COMMUTATIVE LAW: 

           𝐴 ∪ 𝐵 =  𝐵 ∪ 𝐴   & 𝐴 ∩ 𝐵 =  𝐵 ∩ 𝐴 

ASSOCIATIVE LAW: 

          (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶) & (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶) 

DISTRIBUTIVE LAW: 

          𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) 

         𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) 

 



COMPLEMENTARY LAW: 

           𝐴 ∪ 𝐴′ = 𝑆 & 𝐴 ∩ 𝐴′ = ∅ 

AXIOMATIC APPROACH TO PROBABILITY: 

                   It is a rule which associates to each event a real number P (A) which satisfies the 

following three axioms. 

AXIOM I  : For any event A, P (A) ≥ 0. 

AXIOM II : P (S) =1 

AXIOM III: If A1, A2,….., An are finite number of disjoint event of S, then 

                      P(A1, A2,….., An) = P(A1) + P(A2) + …..+ P(An) 

                                                   = ∑ P (Ai) 

THEOREMS ON PROBABILITY: 

    THEOREM 1: Probability of an impossible event is zero. i.e) P (∅) = 0 

    THEOREM 2: Probability of the complementary event �̅� of A is given by, P (�̅�) =1 – P(A). 

    THEOREM 3: For any two events A & B, P (�̅�  ∩ 𝐵) = P (B) – P(A∩ 𝐵). 

    THEOREM 4: If A and B are two events such that A ⊂ B, then P (B ∩ �̅�) = P (B) – P (A). 

    THEOREM 5: If B ⊂ A, then P (A) ≥ P (B). 

    THEOREM 6: If A ∩ B = ∅, then P (A) ≤ P (�̅�). 

LAW OF ADDITION OF PROBABILITIES: 

             P (𝐴 ∪ 𝐵) = P (A) + P (B) – P (𝐴 ∩ 𝐵), where A & B are any two events and are not 

disjoint. 

PROBLEMS: 

1. If from a pack of cards a single card is drawn. What is the prob. that it is either a 

spade or a king? 

Sol:       P (A) = P (a spade card) = 
13

52
 

              P (B) = P (a king card) = 
4

52
 



          P (either a spade or a king card) = P (A or B) 

                                                                         = P (A ∪ 𝐵) 

                                                                         = P (A) + P (B) – P (A ∩ 𝐵) 

                                                                         = 
13

52
 + 

4

52
 - [ 

13

52
×

4

52
] 

                                                                        = 
4

13
 

2. A person is known to hit the target in 3 out of 4 shots, whereas another person  is known 

to hit the target in 2 out of 3 shots. Find the probability of the targets being hit at all when 

they both person try. 

Sol:      The prob. that the first person hit the target = P (A) = 
3

4
 

             The prob. that the second person hit the target = P (B) = 
2

3
 

             The two events are not mutually exclusive, since both persons hit the same target. 

                             P (A or B) = P (A ∪ 𝐵) 

                                                 = P (A) + P (B) – P (A ∩ 𝐵) 

                                                 = 
3

4
 + 

2

3
  - [ 

3

4
×

2

3
] 

                                                 = 
11

12
 

MULTIPLICATION LAW OF PROBABILITY (INDEPENDENT EVENTS): 

If  A & B are two independent events, then  

         P (A ∩ 𝐵) = P (Both A & B will happen) 

                                                     = P (A) × P (B) 

PROBLEMS: 

1. If P (A) = 0.35, P (B) = 0.73, P (A ∩ 𝐵) = 0.14. Find P (�̅�  ∪  �̅�) 

Sol:   Using Demargon’s Law, 

                                 �̅�  ∪ �̅� = 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅̅  

                              P (�̅�  ∪  �̅�) = P (𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅̅ ) 



                 P (�̅�  ∪ �̅�) = 1 – P (A ∩ 𝐵) 

                                    = 1 – 0.14 = 0.86 

2. A bag contains 8 white and 10 black balls. Two balls are drawn in succession. What is the 

prob. that first is white and second is black. 

Sol:       Total no. of balls = 8 + 10 = 18 

         P (drawing one white ball from 8 balls) = 
8

18
 

         P (drawing one black ball from 10 balls) = 
10

18
 

         P (drawing first white & second black) =  
8

18
 ×  

10

18
 

                                                                        =  
20

81
 

3. Two persons A & B appear in an interview for 2 vacancies for the same post. The probability of 

A’s selection is  
1

7
 and that of B’s selection is  

1

5
 . What is the probability that, i) both of them will 

be selected, ii) none of them will be selected. 

Sol:                                       P (A selected) = 
1

7
 

                                             P (B selected) = 
1

5
 

               P (A will not be selected) = 1 -  
1

7
 = 

6

7
 

               P (B will not be selected) = 1 - 
1

5
 = 

4

5
 

i) P (Both of them will be selected) = P (A) × P (B) 

                                                          = 
1

7
 ×  

1

5
 

                                                          =  
1

35
 

ii) P (none of them will be selected) = P (A) × P (B) 

                                                          = 
6

7
 × 

4

5
 

                                                          = 
24

35
 



4. A problem in mathematics is given to 3 students A, B, C whose chances of solving it are 
1

2
 , 

1

3
 ,

1

4
 respectively. What is the prob. that the problem will be solved? 

Sol:               P (A will not solve the problem) = 1-  
1

2
 = 

1

2
 

                      P (B will not solve the problem) = 1-  
1

3
 = 

2

3
 

                      P (C will not solve the problem) = 1-  
1

4
 = 

3

4
 

             P (all three will not solve the problem) = 
1

2
 ×  

2

3
 ×  

3

4
 

                                                                            = 
1

4
 

           ∴ P (all the three will solve the problem) = 1-  
1

4
 = 

3

4
 

5. What is the chance of getting two sixes in two rolling of a single die? 

Sol:              P (getting a six in first rolling) = 
1

6
 

                    P (getting a six in second rolling) = 
1

6
 

          Since two rolling are independent. 

         ∴ P (getting two sixes in 2 rolls) = 
1

6
 ×  

1

6
       

                                                              = 
1

36
    

6. An article manufactured by a company consists of two parts A & B. In the process of 

manufacture of part A, 9 out of 100 are likely to be defective. Similarly, 5 0ut of 100 are 

likely to be defective in the manufacture of part B. Calculate the prob. that the assembled 

article will not be (assuming that the events of finding the part A non-defective and that 

of B are independent). 

Sol:        Prob. that part A will be defective = 
9

100
  

              ∴ P (A will not be defective) = 1-  
9

100
 

                                                             = 
100 − 9

100
 

                                                            = 
91

100
 



         Prob. that part B will be defective = 
5

100
  

              ∴ P (A will not be defective) = 1-  
5

100
 

                                                             = 
100 − 5

100
 

                                                            = 
95

100
 

    ∴ P (the assembled article will not be defective) = P (A will not be defective) ×  

                                                                                                     P (B will not be defective) 

                                                                                   =  
91

100
 ×  

95

100
 

                                                                                   = 0.86 

7. From a bag containing 4 white and 6 black balls, two balls are drawn at random. If the 

balls are drawn one after the other without replacement, find the probability that  

               i) both balls are white. 

               ii) both balls are black. 

              iii) the first ball is white and the second ball is black. 

              iv) one ball is white and the other is black. 

Sol:      Total no. of balls = 4 + 6 = 10 

         i)    P (first ball is white) = 
4

10
 

   P (second ball is white) = 
3

9
 

            ∴ P (both balls are white) = 
4

10
 ×  

3

9
       

                                                      = 
2

15
    

        ii)   P (first ball is black) = 
6

10
 

               P (second ball is black) = 
5

9
 

            ∴ P (both balls are black) = 
6

10
 ×  

5

9
       

                                                      = 
1

3
    



        iii)    P (first ball is white) = 
4

10
 

                 P (second ball is black) = 
6

9
 

               ∴ P (first ball is white & second ball is black) = 
4

10
 ×  

6

9
       

                                                                                         = 
4

15
    

       iv)   a) P (first ball is white & second ball is black) = 
4

10
 ×  

6

9
       

                                                                                         = 
24

90
 

              b) P (first ball is black & second ball is white) = 
6

10
 ×  

4

9
       

                                                                                         = 
24

90
 

      Hence both events (a) & (b) are mutually exclusive. 

              ∴ P (one ball is white & the other is black) = 
24

90
 + 

24

90
       

                                                                                   = 
8

15
   

8. Find the probability in each of the below four cases, if the balls are drawn one after the 

other with replacement. A bag containing 4 white & 6 black balls, 2 balls are drawn at 

random. 

              i) both balls are white. 

             ii) both balls are black. 

              iii) the first ball is white and the second ball is black. 

              iv) one ball is white and the other is black. 

Sol:        Total no. of balls = 4 + 6 = 10 

         i)    P (first ball is white) = 
4

10
 

   P (second ball is white) = 
4

10
 

            ∴ P (both balls are white) = 
4

10
 ×  

4

10
       

                                                      = 
4

25
    

        ii)   P (first ball is black) = 
6

10
 



               P (second ball is black) = 
6

10
 

            ∴ P (both balls are black) = 
6

10
 ×  

6

10
       

                                                      = 
9

25
    

        iii)    P (first ball is white) = 
4

10
 

                 P (second ball is black) = 
6

10
 

               ∴ P (first ball is white & second ball is black) = 
4

10
 ×  

6

10
       

                                                                                         = 
6

25
    

       iv)    P (first ball is white & second ball is black) = 
4

10
 ×  

6

10
       

                                                                                         = 
6

25
 

CONDITIONAL PROBABILITY: 

                       The conditional probability of event A, when the event B has already happened is 

defined as,  

                   𝑃 (𝐴 𝐵⁄ ) =  
𝑃 (𝐴 ∩𝐵)

𝑃 (𝐵)
        , 𝑃 (𝐵) ≠ 0  (OR) 𝑃 (𝐴 ∩ 𝐵) =  𝑃 (𝐴 𝐵⁄ ) . 𝑃 (𝐵)  

       If A & B are mutually exclusive events then,  

                              𝑃 (𝐵 𝐴⁄ ) =  
𝑃 (𝐴 ∩𝐵)

𝑃 (𝐴)
        , 𝑃 (𝐴) ≠ 0   

PROBLEMS: 

1. A bag contains 3 red & 4 white balls. Two draws are made without replacement. What is 

the prob. that both the balls are red. 

Sol:          P (drawing a red ball in the first draw) = 
3

7
 

                                           i.e) P (A) = 
3

7
 

               P (drawing a red ball in the first draw given that first ball drawn is red) = 
2

6
 

                                           i.e)  𝑃 (𝐵 𝐴⁄ ) = 
2

6
 



                   ∴ 𝑃 (𝐴 ∩ 𝐵) =  𝑃 (𝐵 𝐴⁄ ) × 𝑃 (𝐴)  

                                        =  
2

6
 ×  

3

7
 

                                        = 
1

7
  

2. Find the prob. of drawing a queen and a king from a pack of cards in two consecutive 

draws, the cards drawn not being replaced. 

Sol:                  P (drawing a queen card) = 
4

52
 

                                           i.e) P (A) = 
4

52
 

               P (drawing a king after a queen has been drawn) = 
4

51
 

                                           i.e)  𝑃 (𝐵 𝐴⁄ ) = 
4

51
 

                   ∴ 𝑃 (𝐴 ∩ 𝐵) =  𝑃 (𝐵 𝐴⁄ ) × 𝑃 (𝐴)  

                                        =  
4

51
 ×  

4

52
 

                                        = 
4

663
  

3. In a box there are 100 resistors having resistance and tolerance as shown in the following 

table. Let a resistor be selected from the box and assume each resistor has the same 

likelihood of being chosen. Define three events A as draw a 47𝛺 resistor, B as draw a 

resistor with 5% tolerance and C as draw a 100Ω resistor. Find  

𝑃 (𝐴 𝐵⁄ ), 𝑃 (𝐴 𝐶⁄ ), 𝑃 (𝐵 𝐶⁄ ). 

Resistance Ω 5% 10% Total 

22 10 14 24 

47 28 16 44 

100 24 8 32 

Total 62 38 100 

 

  Sol:                        P (A) = P (47Ω) = 
44

100
 

                                P (B) = P (5%) = 
62

100
 



                             P (C) = P (100Ω) = 
32

100
 

         The joint probabilities are, 

                         P (A ∩ 𝐵) = P (47Ω ∩ 5%) 

                                         = 
28

100
 

                       P (A ∩ 𝐶) = P (47Ω ∩ 100𝛺) 

                                         = 0 

                      P (B ∩ 𝐶) = P (5% ∩ 100𝛺) 

                                         = 
24

100
 

               ∴ 𝑃 (𝐴 𝐵⁄ ) =  
𝑃 (𝐴 ∩𝐵)

𝑃 (𝐵)
  = 

28 100⁄

62 100⁄
 

                                  = 
28

62
 

                  𝑃 (𝐴 𝐶⁄ ) =  
𝑃 (𝐴 ∩𝐶)

𝑃 (𝐶)
 = 

0

32 100⁄
 

                                  = 0 

                 𝑃 (𝐵 𝐶⁄ ) =  
𝑃 (𝐵 ∩𝐶)

𝑃 (𝐶)
 = 

24 100⁄

32 100⁄
 

                                = 
24

32
 

4. The Hindu newspaper publishes three columns entitled politics (A), books(B), 

cinema(C). Reading habits of a randomly selected reader with respect to three columns 

are, 

Read 

Regularly 
A B C A ∩ B A ∩ C B ∩ C A ∩ B ∩ C 

Probability 0.14 0.23 0.37 0.08 0.09 0.13 0.05 

 Find P (A/B), P (A/B∪C), P (A/reads atleast one), P (A∪B /C). 

Sol:                             𝑃 (𝐴 𝐵⁄ ) =  
𝑃 (𝐴 ∩𝐵)

𝑃 (𝐵)
 

                                                   =  
0.08

0.23
 

                                                    = 0.348 



        P (𝐴 𝐵 ∪ 𝐶⁄ ) =  
𝑃 [𝐴 ∩(𝐵 ∪𝐶)]

𝑃 (𝐵 ∪𝐶)
                                                   

  

                               =  
0.04+0.05+0.03

0.47
 

                                = 0.255 

        P (A / reads atleast one) = P [A / (A∪ 𝐵 ∪ 𝐶)]                         

                                                =  
𝑃 [𝐴∩(𝐴∪𝐵∪𝐶)]

𝑃 (𝐴∪𝐵∪𝐶)
 

                                                =  
𝑃 (𝐴)

𝑃 (𝐴∪𝐵∪𝐶)
 

                                                =  
0.14

0.49
 

                                                = 0.286 

          P (A ∪ 𝐵 / C) =  
𝑃 [(𝐴∪𝐵)∩𝐶]

𝑃 (𝐶)
 

                                 = 
0.04+0.05+0.08

0.37
  

                                 = 0.459 

 

 

 

 

  

 

                        

 

 

 

 



 

 

 

       

 

     

 

                  

 

 

 

 

 

 

 

 

 

 

  

 



CHAPTER 12

Random Variables and
Probability Distributions

Random Variables
Suppose that to each point of a sample space we assign a number. We then have a function defined on the sam-
ple space. This function is called a random variable (or stochastic variable) or more precisely a random func-
tion (stochastic function). It is usually denoted by a capital letter such as X or Y. In general, a random variable
has some specified physical, geometrical, or other significance.

EXAMPLE 2.1 Suppose that a coin is tossed twice so that the sample space is S � {HH, HT, TH, TT}. Let X represent
the number of heads that can come up. With each sample point we can associate a number for X as shown in Table 2-1.
Thus, for example, in the case of HH (i.e., 2 heads), X � 2 while for TH (1 head), X � 1. It follows that X is a random
variable.

CHAPTER 2

Sample Point HH HT TH TT

X 2 1 1 0

Table 2-1

It should be noted that many other random variables could also be defined on this sample space, for example, the
square of the number of heads or the number of heads minus the number of tails.

A random variable that takes on a finite or countably infinite number of values (see page 4) is called a dis-
crete random variable while one which takes on a noncountably infinite number of values is called a nondiscrete
random variable.

Discrete Probability Distributions
Let X be a discrete random variable, and suppose that the possible values that it can assume are given by x1, x2,
x3, . . . , arranged in some order. Suppose also that these values are assumed with probabilities given by

P(X � xk) � f (xk) k � 1, 2, . . . (1)

It is convenient to introduce the probability function, also referred to as probability distribution, given by 

P(X � x) � f (x) (2)

For x � xk, this reduces to (1) while for other values of x, f (x) � 0.
In general, f (x) is a probability function if

1. f (x) � 0

2.

where the sum in 2 is taken over all possible values of x.

a
x

f (x) � 1

34
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EXAMPLE 2.2 Find the probability function corresponding to the random variable X of Example 2.1. Assuming that
the coin is fair, we have

Then

The probability function is thus given by Table 2-2.

P(X � 0) � P(TT) �
1
4

P(X � 1) � P(HT < TH ) � P(HT ) � P(TH ) �
1
4 �

1
4 �

1
2

P(X � 2) � P(HH) �
1
4

P(HH ) �
1
4  P(HT ) �

1
4  P(TH ) �

1
4  P(T T ) �

1
4

Distribution Functions for Random Variables
The cumulative distribution function, or briefly the distribution function, for a random variable X is defined by

F(x) � P(X � x) (3)

where x is any real number, i.e., � � x � .
The distribution function F(x) has the following properties:

1. F(x) is nondecreasing [i.e., F(x) � F(y) if x � y].
2.

3. F(x) is continuous from the right [i.e., for all x].

Distribution Functions for Discrete Random Variables
The distribution function for a discrete random variable X can be obtained from its probability function by noting
that, for all x in (� , ),

(4)

where the sum is taken over all values u taken on by X for which u � x.
If X takes on only a finite number of values x1, x2, . . . , xn, then the distribution function is given by

(5)

EXAMPLE 2.3 (a) Find the distribution function for the random variable X of Example 2.2. (b) Obtain its graph.

(a) The distribution function is

F(x) � d0 �` � x � 0
1
4 0 �  x � 1
3
4 1 � x � 2

1 2 � x � `

F(x) � e0 �` � x � x1

f (x1) x1 � x � x2

f (x1) � f (x2) x2 � x � x3

(  (
f (x1) � c� f (xn) xn � x � `

F(x) � P(X � x) � a
u�x

f (u)

``

lim
hS0�

F(x � h) � F(x)

lim
xS�`

F(x) � 0;  lim
xS`

F(x) � 1.

``

x 0 1 2

f (x) 1 4 1 2 1 4>>>

Table 2-2
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(b) The graph of F(x) is shown in Fig. 2-1.

The following things about the above distribution function, which are true in general, should be noted.

1. The magnitudes of the jumps at 0, 1, 2 are which are precisely the probabilities in Table 2-2. This fact
enables one to obtain the probability function from the distribution function.

2. Because of the appearance of the graph of Fig. 2-1, it is often called a staircase function or step function.
The value of the function at an integer is obtained from the higher step; thus the value at 1 is and not . This
is expressed mathematically by stating that the distribution function is continuous from the right at 0, 1, 2.

3. As we proceed from left to right (i.e. going upstairs), the distribution function either remains the same or
increases, taking on values from 0 to 1. Because of this, it is said to be a monotonically increasing function.

It is clear from the above remarks and the properties of distribution functions that the probability function of
a discrete random variable can be obtained from the distribution function by noting that

(6)

Continuous Random Variables
A nondiscrete random variable X is said to be absolutely continuous, or simply continuous, if its distribution func-
tion may be represented as

(7)

where the function f (x) has the properties

1. f (x) � 0

2.

It follows from the above that if X is a continuous random variable, then the probability that X takes on any
one particular value is zero, whereas the interval probability that X lies between two different values, say, a and b,
is given by

(8)P(a � X � b) � 3
b

a
f (x) dx

3
`

�`
f (x) dx � 1

F(x) � P(X � x) � 3
x

�`
f (u) du  (�` � x � `)

f (x) � F(x) � lim
uSx�

F(u).

1
4

3
4

1
4,

1
2,

1
4

Fig. 2-1



EXAMPLE 2.4 If an individual is selected at random from a large group of adult males, the probability that his height
X is precisely 68 inches (i.e., 68.000 . . . inches) would be zero. However, there is a probability greater than zero than X
is between 67.000 . . . inches and 68.500 . . . inches, for example.

A function f (x) that satisfies the above requirements is called a probability function or probability distribu-
tion for a continuous random variable, but it is more often called a probability density function or simply den-
sity function. Any function f (x) satisfying Properties 1 and 2 above will automatically be a density function, and
required probabilities can then be obtained from (8).

EXAMPLE 2.5 (a) Find the constant c such that the function

is a density function, and (b) compute P(1 � X � 2).

(a) Since f (x) satisfies Property 1 if c � 0, it must satisfy Property 2 in order to be a density function. Now

and since this must equal 1, we have c � 1 9.

(b)

In case f (x) is continuous, which we shall assume unless otherwise stated, the probability that X is equal
to any particular value is zero. In such case we can replace either or both of the signs � in (8) by �. Thus, in
Example 2.5,

EXAMPLE 2.6 (a) Find the distribution function for the random variable of Example 2.5. (b) Use the result of (a) to
find P(1 � x � 2).

(a) We have

If x � 0, then F(x) � 0. If 0 � x � 3, then 

If x � 3, then

Thus the required distribution function is

Note that F(x) increases monotonically from 0 to 1 as is required for a distribution function. It should also be noted
that F(x) in this case is continuous.

F(x) � •
0  x � 0

x3>27 0 � x � 3

1  x � 3

F(x) � 3
3

0
f (u) du � 3

x

3
f (u) du � 3

3

0

1
9

u2 du � 3
x

3
 0 du � 1

F(x) � 3
x

0
f  (u)  du � 3

x

0

1
9

u2 du �
x3

27

F(x) � P(X � x) � 3
x

�`
f  (u) du

P(1 � X � 2) � P(1 � X � 2) � P(1 � X � 2) � P(1 � X � 2) �
7

27

P(1 � X � 2) � 3
2

1

1
9  x2 dx �

x3

27  2  2
1

�
8

27 �
1

27 �
7

27

>

3
`

�`
f (x) dx � 3

3

0
cx2 dx �

cx3

3
 2  3

0
� 9c

f (x) � bcx2  0 � x � 3

0   otherwise
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(b) We have

as in Example 2.5.

The probability that X is between x and is given by

(9)

so that if is small, we have approximately

(10)

We also see from (7) on differentiating both sides that

(11)

at all points where f (x) is continuous; i.e., the derivative of the distribution function is the density function.
It should be pointed out that random variables exist that are neither discrete nor continuous. It can be shown

that the random variable X with the following distribution function is an example.

In order to obtain (11), we used the basic property

(12)

which is one version of the Fundamental Theorem of Calculus.

Graphical Interpretations
If f (x) is the density function for a random variable X, then we can represent y � f (x) graphically by a curve as
in Fig. 2-2. Since f (x) � 0, the curve cannot fall below the x axis. The entire area bounded by the curve and the
x axis must be 1 because of Property 2 on page 36. Geometrically the probability that X is between a and b, i.e.,
P(a � X � b), is then represented by the area shown shaded, in Fig. 2-2.

The distribution function F(x) � P(X � x) is a monotonically increasing function which increases from 0 to
1 and is represented by a curve as in Fig. 2-3.

d
dx3

x

a
f (u) du � f  (x)

F(x) � μ
0 x � 1

x
2
 1 � x � 2

1 x � 2

dF(x)
dx

� f (x)

P(x � X � x � 
x) � f (x)
x


x

P(x � X � x � 
x) � 3
x�
x

x
f  (u) du

x � 
x

P(1 � X � 2) 5 P(X � 2) � P(X � 1)

5 F(2) � F(1)

5
23

27
�

13

27
�

7
27

Fig. 2-2 Fig. 2-3



Joint Distributions 
The above ideas are easily generalized to two or more random variables. We consider the typical case of two ran-
dom variables that are either both discrete or both continuous. In cases where one variable is discrete and the other
continuous, appropriate modifications are easily made. Generalizations to more than two variables can also be
made.

1. DISCRETE CASE. If X and Y are two discrete random variables, we define the joint probability func-
tion of X and Y by

P(X � x, Y � y) � f (x, y) (13)

where 1. f (x, y) � 0

2.

i.e., the sum over all values of x and y is 1.
Suppose that X can assume any one of m values x1, x2, . . . , xm and Y can assume any one of n values y1, y2, . . . , yn.

Then the probability of the event that X � xj and Y � yk is given by 

P(X � xj, Y � yk) � f (xj, yk) (14)

A joint probability function for X and Y can be represented by a joint probability table as in Table 2-3. The
probability that X � xj is obtained by adding all entries in the row corresponding to xi and is given by

(15)P(X � xj) � f1(xj) � a
n

k�1
f (xj, yk)

a
x
a

y
f (x, y) � 1
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X

Y
y1 y2 yn Totals

x1 f (x1, y1) f (x1, y2) f (x1, yn) f1 (x1)

x2 f (x2, y1) f (x2, y2) f (x2, yn) f1 (x2)

xm f (xm, y1 ) f (xm, y2 ) f (xm, yn) f1 (xm)

Totals f2 (y1 ) f2 (y2 ) f2 (yn) 1 Grand Totaldc
S

c

(((((

c

c

c

Table 2-3

T

For j � 1, 2, . . . , m, these are indicated by the entry totals in the extreme right-hand column or margin of Table 2-3.
Similarly the probability that Y � yk is obtained by adding all entries in the column corresponding to yk and is
given by

(16)

For k � 1, 2, . . . , n, these are indicated by the entry totals in the bottom row or margin of Table 2-3.
Because the probabilities (15) and (16) are obtained from the margins of the table, we often refer to 

f1(xj) and f2(yk) [or simply f1(x) and f2(y)] as the marginal probability functions of X and Y, respectively. 

P(Y � yk) � f2(yk) � a
m

j�1
f (xj, yk)
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It should also be noted that

(17)

which can be written

(18)

This is simply the statement that the total probability of all entries is 1. The grand total of 1 is indicated in the
lower right-hand corner of the table.

The joint distribution function of X and Y is defined by

(19)

In Table 2-3, F(x, y) is the sum of all entries for which xj � x and yk � y.

2. CONTINUOUS CASE. The case where both variables are continuous is obtained easily by analogy with
the discrete case on replacing sums by integrals. Thus the joint probability function for the random vari-
ables X and Y (or, as it is more commonly called, the joint density function of X and Y ) is defined by

1. f (x, y) � 0

2.

Graphically z � f(x, y) represents a surface, called the probability surface, as indicated in Fig. 2-4. The total vol-
ume bounded by this surface and the xy plane is equal to 1 in accordance with Property 2 above. The probability
that X lies between a and b while Y lies between c and d is given graphically by the shaded volume of Fig. 2-4 and
mathematically by

(20)P(a � X � b,  c � Y � d ) � 3
b

x�a
3

d

y�c
f (x, y) dx dy

3
`

�`
3
`

�`
f (x, y) dx dy � 1

F(x, y) � P(X �  x,  Y �  y) � a  
u� x 

a
v� y

f (u, v)

a
m

j�1
 a

n

k�1
f (xj, yk) � 1

a
m

j�1
f1 (xj) � 1 a

n

k�1
f2 (yk) � 1

More generally, if A represents any event, there will be a region A of the xy plane that corresponds to it. In such
case we can find the probability of A by performing the integration over A, i.e.,

(21)

The joint distribution function of X and Y in this case is defined by

(22)F(x, y) � P(X �  x,  Y � y) � 3
x

u��`
3

y

v��`
f (u, v) du dv

P(A) � 33
5A

f (x, y) dx dy

5
5

Fig. 2-4



It follows in analogy with (11), page 38, that

(23)

i.e., the density function is obtained by differentiating the distribution function with respect to x and y.
From (22) we obtain

(24)

(25)

We call (24) and (25) the marginal distribution functions, or simply the distribution functions, of X and Y, respec-
tively. The derivatives of (24) and (25) with respect to x and y are then called the marginal density functions, or
simply the density functions, of X and Y and are given by

(26)

Independent Random Variables
Suppose that X and Y are discrete random variables. If the events X � x and Y � y are independent events for all
x and y, then we say that X and Y are independent random variables. In such case,

(27)

or equivalently

f (x, y) � f1(x) f2(y) (28)

Conversely, if for all x and y the joint probability function f (x, y) can be expressed as the product of a function
of x alone and a function of y alone (which are then the marginal probability functions of X and Y), X and Y are
independent. If, however, f (x, y) cannot be so expressed, then X and Y are dependent.

If X and Y are continuous random variables, we say that they are independent random variables if the events
X � x and Y � y are independent events for all x and y. In such case we can write

P(X � x, Y � y) � P(X � x)P(Y � y) (29)

or equivalently

F(x, y) � F1(x)F2(y) (30)

where F1(z) and F2(y) are the (marginal) distribution functions of X and Y, respectively. Conversely, X and Y are
independent random variables if for all x and y, their joint distribution function F(x, y) can be expressed as a prod-
uct of a function of x alone and a function of y alone (which are the marginal distributions of X and Y, respec-
tively). If, however, F(x, y) cannot be so expressed, then X and Y are dependent.

For continuous independent random variables, it is also true that the joint density function f (x, y) is the prod-
uct of a function of x alone, f1(x), and a function of y alone, f2(y), and these are the (marginal) density functions
of X and Y, respectively.

Change of Variables
Given the probability distributions of one or more random variables, we are often interested in finding distribu-
tions of other random variables that depend on them in some specified manner. Procedures for obtaining these
distributions are presented in the following theorems for the case of discrete and continuous variables.

P(X � x,  Y � y) � P(X � x)P(Y � y)

f1(x) � 3
`

v��`
f (x, v) dv  f2( y) � 3

`

u��`
f (u, y) du

P(Y �  y) � F2( y) � 3
`

u��`
3

y

v��`
f (u, v) du dv

P(X �  x) � F1(x) � 3
x

u��`
3
`

v��`
f (u, v) du dv

'2F
'x'y � f (x, y)
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1. DISCRETE VARIABLES
Theorem 2-1 Let X be a discrete random variable whose probability function is f (x). Suppose that a discrete

random variable U is defined in terms of X by U � �(X), where to each value of X there corre-
sponds one and only one value of U and conversely, so that X � �(U). Then the probability func-
tion for U is given by

g(u) � f [�(u)] (31)

Theorem 2-2 Let X and Y be discrete random variables having joint probability function f (x, y). Suppose that
two discrete random variables U and V are defined in terms of X and Y by U � �1(X, Y), V �
�2 (X, Y), where to each pair of values of X and Y there corresponds one and only one pair of val-
ues of U and V and conversely, so that X � �1(U, V ), Y � �2(U, V). Then the joint probability
function of U and V is given by

g(u, v) � f [�1(u, v), �2(u, v)] (32)

2. CONTINUOUS VARIABLES
Theorem 2-3 Let X be a continuous random variable with probability density f (x). Let us define U � �(X)

where X � � (U ) as in Theorem 2-1. Then the probability density of U is given by g(u) where

g(u)|du | � f (x) |dx | (33)

or (34)

Theorem 2-4 Let X and Y be continuous random variables having joint density function f (x, y). Let us define
U � �1(X, Y ), V � �2(X, Y ) where X � �1(U, V ), Y � �2(U, V ) as in Theorem 2-2. Then the
joint density function of U and V is given by g(u, v) where

g(u, v)|du dv | � f (x, y)|dx dy | (35)

or (36)

In (36) the Jacobian determinant, or briefly Jacobian, is given by

(37)

Probability Distributions of Functions of Random Variables
Theorems 2-2 and 2-4 specifically involve joint probability functions of two random variables. In practice one
often needs to find the probability distribution of some specified function of several random variables. Either of
the following theorems is often useful for this purpose.

Theorem 2-5 Let X and Y be continuous random variables and let U � �1(X, Y ), V � X (the second choice is
arbitrary). Then the density function for U is the marginal density obtained from the joint den-
sity of U and V as found in Theorem 2-4. A similar result holds for probability functions of dis-
crete variables.

Theorem 2-6 Let f (x, y) be the joint density function of X and Y. Then the density function g(u) of the 
random variable U � �1(X, Y ) is found by differentiating with respect to u the distribution 

∞J �
'(x, y)
'(u, v)

�

'x
'u   

'x
'v

'y
'u   

'y
'v

∞

g(u, v) �  f (x, y) 2  '(x, y)
'(u, v) 

2 � f [ c1 (u, v), c2(u, v)]ZJZ

g(u) � f (x) 2  dx
du

 2 � f [c (u)]Z  cr(u)Z



function given by

(38)

Where is the region for which �1(x, y) � u.

Convolutions
As a particular consequence of the above theorems, we can show (see Problem 2.23) that the density function of
the sum of two continuous random variables X and Y, i.e., of U � X � Y, having joint density function f (x, y) is
given by

(39)

In the special case where X and Y are independent, f (x, y) � f1 (x) f2 (y), and (39) reduces to

(40)

which is called the convolution of f1 and f2, abbreviated, f1 * f2.
The following are some important properties of the convolution:

1. f1 * f2 � f2 * f1

2. f1 *( f2 * f3) � ( f1 * f2) * f3

3. f1 *( f2 � f3) � f1 * f2 � f1 * f3

These results show that f1, f2, f3 obey the commutative, associative, and distributive laws of algebra with respect
to the operation of convolution.

Conditional Distributions
We already know that if P(A) � 0,

(41)

If X and Y are discrete random variables and we have the events (A: X � x), (B: Y � y), then (41) becomes

(42)

where f (x, y) � P(X � x, Y � y) is the joint probability function and f1 (x) is the marginal probability function
for X. We define

(43)

and call it the conditional probability function of  Y given X. Similarly, the conditional probability function of X
given Y is

(44)

We shall sometimes denote f (x y) and f( y x) by f1 (x y) and f2 ( y x), respectively.
These ideas are easily extended to the case where X, Y are continuous random variables. For example, the con-

ditional density function of Y given X is

(45)f (y u x) ;
f (x, y)
f1(x)

uuuu

f  (x u  y) ;   
f (x, y)
f2(y)

f (y u  x) ;   
f (x, y)
f1(x)

P(Y � y u  X �  x) �  
f (x, y)
f1(x)

P(B uA) �  
P(A ¨  B)

P(A)

g(u) � 3
`

�`
f1(x) f2 (u � x) dx

g(u) �  3
`

�`
f (x, u � x) dx

5

G(u) � P[f1 (X, Y ) � u] � 6
5

 

 f (x, y) dx dy
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where f (x, y) is the joint density function of X and Y, and f1 (x) is the marginal density function of X. Using (45)
we can, for example, find that the probability of Y being between c and d given that x � X � x � dx is

(46)

Generalizations of these results are also available.

Applications to Geometric Probability
Various problems in probability arise from geometric considerations or have geometric interpretations. For ex-
ample, suppose that we have a target in the form of a plane region of area K and a portion of it with area K1, as
in Fig. 2-5. Then it is reasonable to suppose that the probability of hitting the region of area K1 is proportional
to K1. We thus define

P(c � Y � d u x � X � x � dx) � 3
d

c
f ( y u x) dy

Fig. 2-5

(47)

where it is assumed that the probability of hitting the target is 1. Other assumptions can of course be made. For
example, there could be less probability of hitting outer areas. The type of assumption used defines the proba-
bility distribution function.

SOLVED PROBLEMS

Discrete random variables and probability distributions
2.1. Suppose that a pair of fair dice are to be tossed, and let the random variable X denote the sum of the points.

Obtain the probability distribution for X.

The sample points for tosses of a pair of dice are given in Fig. 1-9, page 14. The random variable X is the sum of
the coordinates for each point. Thus for (3, 2) we have X � 5. Using the fact that all 36 sample points are equally
probable, so that each sample point has probability 1 36, we obtain Table 2-4. For example, corresponding to X � 5,
we have the sample points (1, 4), (2, 3), (3, 2), (4, 1), so that the associated probability is 4 36.>

>

P(hitting region of area K1) �  
K1

K

x 2 3 4 5 6 7 8 9 10 11 12

f (x) 1 36 2 36 3 36 4 36 5 36 6 36 5 36 4 36 3 36 2 36 1 36>>>>>>>>>>>

Table 2-4



2.2. Find the probability distribution of boys and girls in families with 3 children, assuming equal probabilities
for boys and girls.

Problem 1.37 treated the case of n mutually independent trials, where each trial had just two possible outcomes,
A and A�, with respective probabilities p and q � 1 � p. It was found that the probability of getting exactly x A’s
in the n trials is nCx px qn�x. This result applies to the present problem, under the assumption that successive births
(the “trials”) are independent as far as the sex of the child is concerned. Thus, with A being the event “a boy,” n � 3,
and , we have

where the random variable X represents the number of boys in the family. (Note that X is defined on the
sample space of 3 trials.) The probability function for X,

is displayed in Table 2-5.

f (x) � 3Cx Q12R
3

P(exactly x  boys) � P(X �  x) � 3Cx Q12R
xQ1

2
R3�x

 �  3Cx Q12R
3

p � q �
1
2
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x 0 1 2 3

f (x) 1 8 3 8 3 8 1 8>>>>

Table 2-5

Discrete distribution functions
2.3. (a) Find the distribution function F(x) for the random variable X of Problem 2.1, and (b) graph this distri-

bution function.

(a) We have Then from the results of Problem 2.1, we find

(b) See Fig. 2-6.

F(x)  �   g0  �`  �  x �  2

1>36  2 �   x �  3

3>36  3 �   x �  4

6>36  4 �   x �  5

(   (
35>36 11 �   x �  12

1  12 �   x �  `

F(x) � P(X � x) � gu� x f (u).

Fig. 2-6

2.4. (a) Find the distribution function F(x) for the random variable X of Problem 2.2, and (b) graph this distri-
bution function.
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(a) Using Table 2-5 from Problem 2.2, we obtain

(b) The graph of the distribution function of (a) is shown in Fig. 2-7.

F(x)  �   e0  �`  �  x � 0

1>8 0 �   x �  1

1>2 1 �   x �  2

7>8 2 �   x �  3

1  3 �  x �  `

Fig. 2-7

Continuous random variables and probability distributions
2.5. A random variable X has the density function f (x) � c (x2 � 1), where � � x � . (a) Find the value of

the constant c. (b) Find the probability that X2 lies between 1 3 and 1.

(a) We must have i.e.,

so that c � 1 �.

(b) If then either or Thus the required probability is

2.6. Find the distribution function corresponding to the density function of Problem 2.5.

�
1
2

  �   
1
p  tan �1 x

�
1
p  [tan �1 x � tan �1(�`)]  �   

1
p  B tan �1 x �  

p
2
RF(x)  � 3

x

�`
f (u) du �

1
p3

x

�`
  

du
u2 � 1

�
1
p  B tan�1 uZx

�`
R

�
2
p ¢p4 �

p
6
≤ �  

1
6

�
2
p  Btan �1(1) � tan �1¢23

3
≤ R1

p3
�!3>3

�1

 
dx

x2 � 1
�

1
p3

1

!3>3
dx

x2 � 1
�

2
p3

1

!3>3
dx

x2 � 1

�1 � X � �
23
3 .

23
3  �   X �   1

1
3 � X2 � 1,

>
3
`

�`

c dx
x2 � 1

� c tan �1 x P`
�`

� cBp
2

 �  ¢�
p
2
≤ R � 1

3
`

�`
f (x) dx � 1,

>
``>



2.7. The distribution function for a random variable X is

Find (a) the density function, (b) the probability that X � 2, and (c) the probability that �3 � X � 4.

(a)

(b)

Another method
By definition, P(X � 2) � F(2) � 1 � e�4. Hence,

P(X � 2) � 1 � (1 � e�4) � e�4

(c)

Another method

P(�3 � X � 4) � P(X � 4) � P(X � �3)

� F(4) � F(�3)

� (1 � e�8) � (0) � 1 � e�8

Joint distributions and independent variables
2.8. The joint probability function of two discrete random variables X and Y is given by f(x, y) � c(2x � y), where

x and y can assume all integers such that 0 � x � 2, 0 � y � 3, and f (x, y) � 0 otherwise.

(a) Find the value of the constant c. (c) Find P(X � 1, Y � 2).
(b) Find P(X � 2, Y � 1).

(a) The sample points (x, y) for which probabilities are different from zero are indicated in Fig. 2-8. The
probabilities associated with these points, given by c(2x � y), are shown in Table 2-6. Since the grand total,
42c, must equal 1, we have c � 1 42.>

P(�3 �  X �   4) � 3
4

�3
f (u) du � 3

0

�3
 0 du � 3

4

0
 2e�2u du

� �e�2u Z 4
0

� 1 � e�8

P(X � 2) � 3
`

2
 2e�2u du � �e�2u P `

2 � e�4

f (x)  �   
d
dx

 F(x) � e2e�2x x  �  0

0  x �  0

F(x) � e1 � e�2x x  �   0

0  x  �  0
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X
Y 0 1 2 3 Totals

0 0 c 2c 3c 6c

1 2c 3c 4c 5c 14c

2 4c 5c 6c 7c 22c

Totals 6c 9c 12c 15c 42cS

T

Fig. 2-8

Table 2-6

(b) From Table 2-6 we see that

P(X �  2,  Y �  1)  �  5c �  
5
42
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(c) From Table 2-6 we see that

as indicated by the entries shown shaded in the table.

2.9. Find the marginal probability functions (a) of X and (b) of Y for the random variables of Problem 2.8.

(a) The marginal probability function for X is given by P(X � x) � f1(x) and can be obtained from the margin
totals in the right-hand column of Table 2-6. From these we see that

Check:

(b) The marginal probability function for Y is given by P(Y � y) � f2(y) and can be obtained from the margin
totals in the last row of Table 2-6. From these we see that

Check:

2.10. Show that the random variables X and Y of Problem 2.8 are dependent.

If the random variables X and Y are independent, then we must have, for all x and y,

But, as seen from Problems 2.8(b) and 2.9,

so that

The result also follows from the fact that the joint probability function (2x � y) 42 cannot be expressed as a
function of x alone times a function of y alone.

2.11. The joint density function of two continuous random variables X and Y is

(a) Find the value of the constant c. (c) Find P(X � 3, Y � 2).

(b) Find P(1 � X � 2, 2 � Y � 3).

(a) We must have the total probability equal to 1, i.e.,

3
`

�`
3
`

�`
f (x, y) dx dy � 1

f (x, y) �  e cxy 0 � x � 4,  1 � y � 5

0 otherwise

>
P(X � 2, Y � 1) 2 P(X � 2)P(Y � 1)

P(Y �  1) �  
3
14P(X �  2) �  

11
21P(X �  2, Y �  1) �  

5
42

P(X � x, Y � y) � P(X � x)P(Y � y)

1
7 �

3
14 �

2
7 �

5
14 � 1

P(Y �  y) �  f2(y) �  μ
6c �  1>7 y �  0

9c �  3>14 y �  1

12c �  2>7 y �  2

15c �  5>14 y �  3

1
7

 �  
1
3

 �  
11
21

 �  1

P(X � x) � f1 (x) �  •
6c � 1>7 x � 0

14c � 1>3 x � 1

22c � 11>21 x � 2

� 24c �
24
42

�
4
7

� (2c � 3c � 4c)(4c � 5c � 6c)

P(X � 1, Y � 2) � a
x�1

 a
y�2

f (x, y)



Using the definition of f (x, y), the integral has the value

Then 96c � 1 and c � 1 96.

(b) Using the value of c found in (a), we have

(c)

2.12. Find the marginal distribution functions (a) of X and (b) of Y for Problem 2.11.

(a) The marginal distribution function for X if 0 � x � 4 is

For x � 4, F1(x) � 1; for x � 0, F1(x) � 0. Thus

As F1 (x) is continuous at x � 0 and x � 4, we could replace � by � in the above expression.

F1(x) � •
0 x � 0

x2>16 0 � x � 4

1 x � 4

�
1

963
x

u�0
B 35

v�1
uvdvR  du �

x2

16

� 3
x

u�0
3

5

v�1
 
uv
96

dudv

F1(x) � P(X � x) � 3
x

u��`
3
`

v��`
f (u, v) dudv

�
1

963
4

x�3

3x
2

 dx �
7

128

�
1

963
4

x�3
B32

y�1
xydyR  dx �

1
963

4

x�3

xy2

2
2 2
y�1

dx

P(X � 3, Y � 2) � 3
4

x�3
3

2

y�1

xy
96

dx dy

�
1

963
2

x�1
 
5x
2

 dx �
5

192
ax2

2
b 2 2

1

�
5

128

�
1
963

2

x�1
B33

y�2
xy dyR  dx �

1
963

2

x�1

xy2

2
2 3
y�2

 dx

P(1 �  X �  2, 2 �  Y � 3)  �   3
2

x�1
3

3

y�2 

 
xy
96

  dx dy

>

� c3
4

x�0
 12x dx � c(6x2) 2 4

x�0

� 96c

�  c3
4

z�0
 
xy2

2
 2 5

y�1

dx � c3
4

x�0
¢25x

2
�

x
2
≤  dx

3
4

x�0
3

5

y�1
cxy dxdy � c3

4

x�0 

B35

y�1
xydyR  dx
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(b) The marginal distribution function for Y if 1 � y � 5 is

For y � 5, F2( y) � 1. For y � 1, F2(y) � 0. Thus

As F2(y) is continuous at y � 1 and y � 5, we could replace � by � in the above expression.

2.13. Find the joint distribution function for the random variables X, Y of Problem 2.11.

From Problem 2.11 it is seen that the joint density function for X and Y can be written as the product of a
function of x alone and a function of y alone. In fact, f (x, y) � f1(x) f2(y), where

and c1c2 � c � 1 96. It follows that X and Y are independent, so that their joint distribution function is given by>
f2(y) �  e c2y 1 �  y �  5

0 otherwise
f1 (x) � e c1x 0 �  x � 4

0 otherwise

F2(y) � •
0 y � 1

(y2 � 1)>24 1 � y � 5

1 y � 5

� 3
4

u�0
 3

y

v�1
  
uv
96

dudv �
y2 � 1

24

F2( y) � P(Y � y) � 3
`

u��`
 3

y

v�1
f (u, v) dudv

Fig. 2-9

In Fig. 2-10 we have indicated the square region 0 � x � 4, 1 � y � 5 within which the joint density
function of X and Y is different from zero. The required probability is given by

P(X �  Y � 3)  �   6
5

 

 f (x, y) dx dy

F(x, y) � F1(x)F2(y). The marginal distributions F1(x) and F2(y) were determined in Problem 2.12, and Fig. 2-9
shows the resulting piecewise definition of F(x, y).

2.14. In Problem 2.11 find P(X � Y � 3).



where is the part of the square over which x � y � 3, shown shaded in Fig. 2-10. Since f (x, y) � xy 96
over , this probability is given by

�
1
963

2

x�0
 
xy2

2
 2 3�x

y�1

 dx �  
1

1923
2

x�0
[x(3 � x)2 � x] �  

1
48

�
1

963
2

x�0
B 33�x

y�1
 xy dyR  dx

3
2

x�0
 3

3�x

y�1
 
xy
96

dxdy

5
>5
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Fig. 2-10

Change of variables
2.15. Prove Theorem 2-1, page 42.

The probability function for U is given by

In a similar manner Theorem 2-2, page 42, can be proved.

2.16. Prove Theorem 2-3, page 42.

Consider first the case where u � �(x) or x � �(u) is an increasing function, i.e., u increases as x increases
(Fig. 2-11). There, as is clear from the figure, we have

(1) P(u1 � U � u2) � P(x1 � X � x2)

or

(2) 3
u2

u1

g(u) du � 3
x2

x1

f (x) dx

g(u) � P(U � u) � P[f(X) � u] � P[X � c(u)] � f [c(u)]

Fig. 2-11
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Letting x � �(u) in the integral on the right, (2) can be written

This can hold for all u1 and u2 only if the integrands are identical, i.e.,

This is a special case of (34), page 42, where (i.e., the slope is positive). For the case where
i.e., u is a decreasing function of x, we can also show that (34) holds (see Problem 2.67). The

theorem can also be proved if or .

2.17. Prove Theorem 2-4, page 42.

We suppose first that as x and y increase, u and v also increase. As in Problem 2.16 we can then show that

P(u1 � U � u2, v1 � V � v2) � P(x1 � X � x2, y1 � Y � y2)

or

Letting x � �1 (u, v), y � �2(u, v) in the integral on the right, we have, by a theorem of advanced calculus,

where

is the Jacobian. Thus

which is (36), page 42, in the case where J � 0. Similarly, we can prove (36) for the case where J � 0.

2.18. The probability function of a random variable X is

Find the probability function for the random variable .

Since the relationship between the values u and x of the random variables U and X is given by 

u � x4 � 1 or where u � 2, 17, 82, . . . and the real positive root is taken. Then the required

probability function for U is given by

using Theorem 2-1, page 42, or Problem 2.15.

2.19. The probability function of a random variable X is given by

Find the probability density for the random variable U �
1
3  (12 � X ).

f (x) � e x2>81 �3 � x � 6

0 otherwise

g(u) � e2�24 u�1 u � 2, 17, 82, . . .

0 otherwise

x � 24 u � 1,

U � X4 � 1,

U � X4 � 1

f (x) � e2�x x � 1, 2, 3, c

0 otherwise

g(u, v) � f [c1(u, v), c2(u, v)]J

J �
'(x, y)
'(u, v)

3
u2

v1

3
v2

v1

g(u, v) du dv � 3
u2

u1

3
v2

v1

f [c1 (u, v), c2(u, v)]J du dv

3
u2

v1

3
v2

v1

g(u, v) du dv � 3
x2

x1

3
y2

y1

f (x, y) dx dy

cr(u) � 0cr(u) � 0
cr(u) � 0,

cr(u) � 0

g(u) � f [c(u)]cr(u)

3
u2

u1

g(u) du � 3
u2

u1

f [c (u)] cr(u) du



We have or x � 12 � 3u. Thus to each value of x there is one and only one value of u andu �
1
3   (12 � x)
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Fig. 2-12

But if 9 � u � 36, we have

G(u)  �   P(U �   u)  �   P(�3 �  X � !u) � 32u

�3
f (x) dx

conversely. The values of u corresponding to x � �3 and x � 6 are u � 5 and u � 2, respectively. Since
, it follows by Theorem 2-3, page 42, or Problem 2.16 that the density function for U is

Check:

2.20. Find the probability density of the random variable U � X2 where X is the random variable of
Problem 2.19.

We have or Thus to each value of x there corresponds one and only one value of u, but to
each value of there correspond two values of x. The values of x for which �3 � x � 6 correspond to
values of u for which 0 � u � 36 as shown in Fig. 2-12.

As seen in this figure, the interval �3 � x � 3 corresponds to 0 � u � 9 while 3 � x � 6 corresponds to 
9 � u � 36. In this case we cannot use Theorem 2-3 directly but can proceed as follows. The distribution
function for U is

G(u) � P(U � u)

Now if 0 � u � 9, we have

� 3
1u

�1u
f (x) dx

G(u) � P(U � u) � P(X2 � u) � P(�!u � X � !u)

u 2 0
x � !u.u � x2

3
5

2
 
(12 � 3u)2

27
du � �

(12 � 3u)3

243
 2 5

2

� 1

g(u) � e (12 � 3u)2>27 2 � u � 5

0 otherwise

cr(u) � dx>du � �3
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Since the density function g(u) is the derivative of G(u), we have, using (12),

Using the given definition of f (x), this becomes

Check:

2.21. If the random variables X and Y have joint density function

(see Problem 2.11), find the density function of U � X � 2Y.

Method 1
Let u � x � 2y, v � x, the second relation being chosen arbitrarily. Then simultaneous solution 
yields Thus the region 0 � x � 4, 1 � y � 5 corresponds to the region 0 � v � 4,x � v, y �

1
2 (u � v).

f (x, y) � e xy>96 0 � x � 4,  1 � y � 5

0 otherwise

3
9

0
 
!u
81

 du � 3
36

9
 
!u
162

  du �
2u3>2
243

 2 9
0

�
u3>2
243

  2 36

9

� 1

g(u) � •
!u>81   0 �   u �   9

!u>162    9 � u � 36

0 otherwise

g(u) � e f (!u) � f (�!u)

2!u
0 � u � 9

f (!u)

2!u
9 � u � 36

0 otherwise

Fig. 2-13

The Jacobian is given by

J � 4  'x'u 'x
'v

'y
'u

'y
'v

 4
0 1

1
2 �

1
2

�

� �
1
2

2 � u � v � 10 shown shaded in Fig. 2-13.
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Then by Theorem 2-4 the joint density function of U and V is

The marginal density function of U is given by

as seen by referring to the shaded regions I, II, III of Fig. 2-13. Carrying out the integrations, we find

A check can be achieved by showing that the integral of g1 (u) is equal to 1.

Method 2
The distribution function of the random variable X � 2Y is given by

For 2 � u � 6, we see by referring to Fig. 2-14, that the last integral equals

The derivative of this with respect to u is found to be (u � 2)2(u � 4) 2304. In a similar manner we can obtain
the result of Method 1 for 6 � u � 10, etc.

>
3

u�2

x�0
3

(u�x)>2
y�1

 
xy
96  dx dy � 3

u�2

x�0
B x(u � x)2

768 �
x

192 R dx

P(X � 2Y �   u) � 6
x�2y�  u

f (x, y)dx  dy � 6
x�2y�u
0�x�4
1�y�5

 
xy
96 dx  dy

g1(u) � d (u � 2)2(u � 4)>2304 2 � u � 6

(3u � 8)>144 6 � u � 10

(348u � u3 � 2128)>2304  10 � u � 14

0 otherwise

g1(u) � g3u�2

v�0
 
v(u � v)

384 dv 2 �  u �  6

3
4

v�0
 
v(u � v)

384 dv 6 � u � 10

3
4

v�u�10

v(u � v)
384 dv 10 � u � 14

0  otherwise

g(u, v) � ev(u � v)>384 2 � u � v � 10, 0 � v � 4

0 otherwise

Fig. 2-14 Fig. 2-15



CHAPTER 2 Random Variables and Probability Distributions56

2.22. If the random variables X and Y have joint density function

(see Problem 2.11), find the joint density function of U � XY 2, V � X2Y.

Consider u � xy2, v � x2y. Dividing these equations, we obtain y x � u v so that y � ux v. This leads to>>>

f (x,  y) � e xy>96 0 � x � 4,  1 � y � 5

0 otherwise

the simultaneous solution x � v2 3 u �1 3, y � u2 3 v �1 3. The image of 0 � x � 4, 1 � y � 5 in the uv-plane is
given by

which are equivalent to

This region is shown shaded in Fig. 2-15.
The Jacobian is given by

Thus the joint density function of U and V is, by Theorem 2-4,

or

Convolutions
2.23. Let X and Y be random variables having joint density function f (x, y). Prove that the density function of

U � X � Y is

Method 1
Let U � X � Y, V � X, where we have arbitrarily added the second equation. Corresponding to these we have 
u � x � y, v � x or x � v, y � u � v. The Jacobian of the transformation is given by

Thus by Theorem 2-4, page 42, the joint density function of U and V is

g(u, v) � f (v, u � v)

It follows from (26), page 41, that the marginal density function of U is

g(u) � 3
`

�`
 f (v, u � v)dv

J � 4 'x'u 'x
'v

'y
'u 

'y
'v

4 � 2  0 1

1 �1
 2 � �1

g(u) � 3
`

�`
 f (v, u � v)dv

g(u, v) � eu�1>3 v�1>3>288 v2 � 64u,  v � u2 � 125v

0 otherwise

g(u, v) � c(v2> 3u�1>3)(u2>3v�1>3)
96 (1

3  u�2>3 v�2>3)  v2 � 64u, v � u2 � 125v

0 otherwise

J � 4�1
3v

2>3 u�4>3 2
3 v

�1>3u�1>3

2
3 u�1>3 v�1>3 �

1
3 u2>3v�4>3

4 � �
1
3  u�2>3 v�2>3

v2 � 64u  v � u2 � 125v

0 � v2>3u�1>3 � 4  1 � u2>3v�1>3 � 5

>>>>
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Method 2
The distribution function of U � X � Y is equal to the double integral of f (x, y) taken over the region defined
by x � y u, i.e.,

Since the region is below the line x � y � u, as indicated by the shading in Fig. 2-16, we see that

G(u) � 3
`

x��`
B 3u�x

y��`  

f (x, y) dyR  dx

G(u) � 6
x�y�  u

f (x, y) dx dy

�

Fig. 2-16

The density function of U is the derivative of G (u) with respect to u and is given by

using (12) first on the x integral and then on the y integral.

2.24. Work Problem 2.23 if X and Y are independent random variables having density functions f1(x), f2(y),
respectively.

In this case the joint density function is f (x, y) � f 1(x) f2(y), so that by Problem 2.23 the density function 
of U � X � Y is

which is the convolution of f1 and f2.

2.25. If X and Y are independent random variables having density functions

find the density function of their sum, U � X � Y.

By Problem 2.24 the required density function is the convolution of f1 and f2 and is given by

In the integrand f1 vanishes when v � 0 and f2 vanishes when v � u. Hence

�  6e�3u 3
u

0 

ev dv � 6e�3u (eu � 1) � 6(e�2u � e3u)

g(u) � 3
u

0
(2e�2v)(3e�3(u�v)) dv

g(u) � f1 * f2 � 3
`

�`
f1(v) f2(u � v) dv

f2(y) � e3e�3y y � 0

0 y � 0
f1(x) � e2e�2x x � 0

0 x � 0

g(u) � 3
`

�`
f1(v) f2(u � v)dv � f1 * f2

g(u) � 3
`

�`
f (x, u � x)dx



CHAPTER 2 Random Variables and Probability Distributions58

if u � 0 and g(u) � 0 if u � 0.

Check:

2.26. Prove that f1 * f2 � f2 * f1 (Property 1, page 43).
We have

Letting w � u � v so that v� u � w, dv � �dw, we obtain

Conditional distributions
2.27. Find (a) f (y 2), (b) P(Y � 1 X � 2) for the distribution of Problem 2.8.

(a) Using the results in Problems 2.8 and 2.9, we have

so that with x � 2

(b)

2.28. If X and Y have the joint density function

find (a) f ( y x), (b) 

(a) For 0 � x � 1,

and

For other values of x, f ( y x) is not defined.

(b)

2.29. The joint density function of the random variables X and Y is given by

Find (a) the marginal density of X, (b) the marginal density of Y, (c) the conditional density of X, (d) the
conditional density of Y.

The region over which f (x, y) is different from zero is shown shaded in Fig. 2-17.

f (x, y) � e8xy 0 �  x � 1, 0 � y �  x

0 otherwise

P(Y �  
1
2 u  

1
2 �  X �  

1
2 �  dx) � 3

`

1>2 f (y u 1
2) dy � 3

1

1> 2
 
3 � 2y

4  dy �
9

16

u

f (y u x) �
f (x, y)
f1(x) � •

3 � 4xy
3 � 2x 0 �  y �  1

0 other y

f1(x) � 3
1

0
¢ 3

4 � xy≤ dy �
3
4 �

x
2

P(Y �
1
2 u  

1
2 � X �  

1
2 � dx).u

f (x, y) � e 3
4 � xy  0 �  x � 1,  0 � y � 1

0 otherwise

P(Y � 1 u  X � 2) � f (1 u 2) �
5

22

f (y u 2) �
(4 � y)>42

11>21
�

4 �  y
22

f (y u x) �
f (x, y)
f1(x) �

(2x �  y)>42
f1(x)

uu

f1 * f2 � 3
�`

w�` 

 f1(u � w) f2(w)(�dw) � 3
`

w��`
 
 

f2(w)f1(u � w) dw � f2 * f1

f1 * f2 � 3
`

v��` 

f1(v) f2(u � v) dv

3
`

�`
 g(u) du �  63

`

0
(e�2u � e�3u) du � 6¢ 1

2 �
1
3 ≤ � 1
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(a) To obtain the marginal density of X, we fix x and integrate with respect to y from 0 to x as indicated by the
vertical strip in Fig. 2-17. The result is

for 0 � x � 1. For all other values of x, f1 (x) � 0.

(b) Similarly, the marginal density of Y is obtained by fixing y and integrating with respect to x from x � y to x � 1,
as indicated by the horizontal strip in Fig. 2-17. The result is, for 0 � y � 1,

For all other values of y, f2 ( y) � 0.

(c) The conditional density function of X is, for 0 � y � 1,

The conditional density function is not defined when f2( y) � 0.

(d) The conditional density function of Y is, for 0 � x � 1,

The conditional density function is not defined when f1(x) � 0.

Check:

2.30. Determine whether the random variables of Problem 2.29 are independent.

In the shaded region of Fig. 2-17, f (x, y) � 8xy, f1(x) � 4x3, f2( y) � 4y (1 � y2). Hence f (x, y) f1(x) f2( y),
and thus X and Y are dependent.

It should be noted that it does not follow from f (x, y) � 8xy that f (x, y) can be expressed as a function of x
alone times a function of y alone. This is because the restriction 0 y x occurs. If this were replaced by
some restriction on y not depending on x (as in Problem 2.21), such a conclusion would be valid.

��

2

3
x

0
f2( y u x) dy � 3

x

0
 
2y
x 2 dy � 1

3
1

y
 f1(x u y) dx � 3

1

y
 

2x
1 � y2  dx � 1

3
1

0
f1(x) dx � 3

1

0 

4x 3 dx � 1, 3
1

0
f2(y) dy � 3

1

0
 4y(1 � y2) dy � 1

f2(y u x) �
f (x, y)
f1(x) � e2y>x 2 0 � y �  x

0  other y

f1(x u y) �
f (x, y)
f2 (y) � e2x>(1 � y2) y �   x �   1

0 other x

f2 (y) � 3
1

x�y
 8xy dx �  4y(1 � y2)

f1(x) � 3
x

y�0
8xy dy �  4x 3

Fig. 2-17



CHAPTER 2 Random Variables and Probability Distributions60

Applications to geometric probability
2.31. A person playing darts finds that the probability of the dart striking between r and r � dr is

Here, R is the distance of the hit from the center of the target, c is a constant, and a is the radius of the tar-
get (see Fig. 2-18). Find the probability of hitting the bull’s-eye, which is assumed to have radius b. As-
sume that the target is always hit.

The density function is given by

Since the target is always hit, we have

c3
a

0 

B1 � ¢ r
a ≤ 2R  dr � 1

f (r) � c B1 � ¢ r
a ≤ 2R

P(r �  R �  r � dr) � c B1 � ¢ r
a ≤ 2R dr

Fig. 2-18

from which c � 3 2a. Then the probability of hitting the bull’s-eye is

2.32. Two points are selected at random in the interval 0 x 1. Determine the probability that the sum of their
squares is less than 1.

Let X and Y denote the random variables associated with the given points. Since equal intervals are assumed to
have equal probabilities, the density functions of X and Y are given, respectively, by

(1)

Then since X and Y are independent, the joint density function is given by

(2)

It follows that the required probability is given by

(3)

where is the region defined by x2 � y2 1, x 0, y 0, which is a quarter of a circle of radius 1 (Fig. 2-19).
Now since (3) represents the area of , we see that the required probability is 4.>pr

���r

P(X2 � Y2 � 1) � 6
r

 

dx dy

f (x, y) � f1(x) f2(y) � e1 0 �  x � 1, 0 �  y � 1

0  otherwise

f2 ( y) � e1 0 �  y � 1

0  otherwise
f1(x) � e1 0 �  x � 1

0  otherwise

��

3
b

0 

f (r) dr �
3

2a 3
b

0 

B1 � ¢ r
a ≤ 2R  dr �

b (3a2 � b2)

2a3

>
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Miscellaneous problems
2.33. Suppose that the random variables X and Y have a joint density function given by

Find (a) the constant c, (b) the marginal distribution functions for X and Y, (c) the marginal density func-
tions for X and Y, (d) P(3 � X � 4, Y � 2), (e) P(X � 3), (f) P(X � Y � 4), (g) the joint distribution func-
tion, (h) whether X and Y are independent.

(a) The total probability is given by

For this to equal 1, we must have c � 1 210.

(b) The marginal distribution function for X is

The marginal distribution function for Y is

� g3`u��`
3

y

v��8
 0 du dv � 0   y � 0

3
6

u�0
3

y

v�0

2u � v
210   du dv �

y2 �  16y
105   0 �   y �  5

3
6

u�2
3

5

v�0

2u � v
210  du dv � 1  y �   5

F2(y) � P(Y �   y) � 3
`

u��`
3

y

v��`
 f (u, v) du dv

� g3x

u��`
3
`

v��`
0 du dv �  0  x � 2

3
x

u�2
3

5

v�0

2u � v
210 du dv �  

2x 2 � 5x � 18
84    2 �   x � 6

3
6

u�2
3

5

v�0

2u � v
210 du dv � 1   x �  6

F1(x) � P(X �  x) � 3
x

u��`
3
`

v��`
f (u, v) du dv

>

53
6

x�2
c¢10x �

25
2 ≤ dx � 210c

3
6

x�2
3

5

y�0
c(2x � y) dx dy � 3

6

x�2
c¢2xy �

y2

2 ≤ 2 50 dx

f (x, y) � e c (2x � y) 2 � x � 6, 0 � y � 5

0 otherwise

Fig. 2-19
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(c) The marginal density function for X is, from part (b),

The marginal density function for Y is, from part (b),

(d)

(e)

(f )

where is the shaded region of Fig. 2-20. Although this can be found, it is easier to use the fact that

where is the cross-hatched region of Fig. 2-20. We have

Thus P(X � Y � 4) � 33 35.>
P(X � Y �  4) �

1
2103

4

x�2
3

4�x

y�0 

(2x � y) dx dy �
2

35

rr

P(X � Y � 4) � 1 � P(X � Y �  4) � 1 � 6
r

 

f (x, y) dx dy

r

P(X � Y � 4) � 6
r

 

f (x, y) dx dy

P(X � 3) �  
1

2103
6

x�3
3

5

y�0
(2x � y) dx dy �

23
28

P(3 � X � 4, Y � 2) �
1

2103
4

x�3
3

5

y�2
(2x �  y) dx dy �

3
20

f2( y) �
d
dy F2(y) � e (2y �  16)>105 0 � y � 5

0  otherwise

f1(x) �
d
dx F1(x) � e (4x � 5)>84 2 � x � 6

0 otherwise

Fig. 2-20 Fig. 2-21

(g) The joint distribution function is

In the uv plane (Fig. 2-21) the region of integration is the intersection of the quarter plane u x, v y and
the rectangle 2 � u � 6, 0 � v� 5 [over which f (u, v) is nonzero]. For (x, y) located as in the figure, we have

F(x, y) � 3
6

u�2
3

y

v�0

2u � v
210 du dv �  

16y � y2

105

��

F(x, y) � P(X �  x, Y � y) � 3
x

u��`
3

y

v��` 

f (u, v) du dv



CHAPTER 2 Random Variables and Probability Distributions 63

When (x, y) lies inside the rectangle, we obtain another expression, etc. The complete results are shown in 
Fig. 2-22.

(h) The random variables are dependent since

f (x, y) f1(x) f2(y)

or equivalently, F(x, y) F1(x)F2(y).

2.34. Let X have the density function

Find a function Y � h(X) which has the density function

g(y) � e12y3(1 � y2) 0 � y � 1

0 otherwise

f (x) � e6x (1 � x) 0 � x � 1

0  otherwise

2

2

Fig. 2-22

We assume that the unknown function h is such that the intervals X x and Y y � h(x) correspond in a
one-one, continuous fashion. Then P(X x) � P(Y y), i.e., the distribution functions of X and Y must be
equal. Thus, for 0 � x, y � 1,

or 3x2 � 2x3 � 3y4 � 2y6

By inspection, x � y2 or is a solution, and this solution has the desired properties. Thus
.

2.35. Find the density function of U � XY if the joint density function of X and Y is f (x, y).

Method 1
Let U � XY and V � X, corresponding to which u � xy, v� x or x � v, y � u v. Then the Jacobian is given by

J � 4 'x'u 'x
'v

'y
'u 

'y
'v

4 � 2 0    1

v�1  �uv�2
2 � �v�1

>

Y � �!X
y � h(x) � �!x

3
x

0
6u(1 � u) du � 3

y

0
12v3 (1 � v2) dv

��

��
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Thus the joint density function of U and V is

from which the marginal density function of U is obtained as

Method 2
The distribution function of U is

For u � 0, the region of integration is shown shaded in Fig. 2-23. We see that

G(u) � 3
0

�`

 B 3`
u>x  

f (x, y) dyR  dx � 3
`

0 

B 3u>x
�`

f (x, y) dyR    dx

G(u) �  6
xy�  u

f (x, y) dx dy

g(u) �  3
`

�`
g(u, v) dv �  3

`

�`

1
u v u

 f ¢v, u
v ≤ dv

g(u,v) �
1
u v u

  f ¢v, u
v ≤

Fig. 2-23 Fig. 2-24

Differentiating with respect to u, we obtain

The same result is obtained for u � 0, when the region of integration is bounded by the dashed hyperbola in
Fig. 2-24.

2.36. A floor has parallel lines on it at equal distances l from each other. A needle of length a � l is dropped at
random onto the floor. Find the probability that the needle will intersect a line. (This problem is known as
Buffon’s needle problem.)

Let X be a random variable that gives the distance of the midpoint of the needle to the nearest line (Fig. 2-24). Let 
be a random variable that gives the acute angle between the needle (or its extension) and the line. We denote by
x and any particular values of X and . It is seen that X can take on any value between 0 and l 2, so that 0
x l 2. Also can take on any value between 0 and 2. It follows that

i.e., the density functions of X and are given by f1(x) � 2 l, f2( ) � 2 . As a check, we note that

3
l>2
0

2
l dx � 1 3

p>2
0

2
p du � 1

p>u>�

P(u �   � � du) �
2
p duP(x � X �   x � dx) �

2
l dx

>p�>�

�>�u

�

g(u) � 3
0

�`
¢�1

x ≤  f ¢x,
u
x ≤     dx � 3

`

0

1
x f ¢x, 

u
x ≤ dx � 3

`

�`
 

1
u x u

 f ¢x,  
u
x ≤ dx
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Since X and are independent the joint density function is

From Fig. 2-24 it is seen that the needle actually hits a line when X (a 2) sin . The probability of this
event is given by

When the above expression is equated to the frequency of hits observed in actual experiments, accurate
values of are obtained. This indicates that the probability model described above is appropriate.

2.37. Two people agree to meet between 2:00 P.M. and 3:00 P.M., with the understanding that each will wait no
longer than 15 minutes for the other. What is the probability that they will meet?

Let X and Y be random variables representing the times of arrival, measured in fractions of an hour after 
2:00 P.M., of the two people. Assuming that equal intervals of time have equal probabilities of arrival, the
density functions of X and Y are given respectively by

Then, since X and Y are independent, the joint density function is

(1)

Since 15 minutes hour, the required probability is

(2)

where 5 is the region shown shaded in Fig. 2-25. The right side of (2) is the area of this region, which is equal
to since the square has area 1, while the two corner triangles have areas each. Thus the
required probability is 7 16.>

1
2  (3

4)(
3
4)1 � (3

4)(3
4) �

7
16,

P¢ uX � Y u  �   
1
4 ≤ � 6

r 

dx dy

�
1
4

f (x, y) � f1(x) f2(y) � e1 0 �  x � 1,  0 �  y � 1

0 otherwise

f2( y) � e1 0 � y � 1

0  otherwise

f1(x) � e1 0 �  x � 1

0 otherwise

p

4
lp 3

p>2
u�0

 3
(a>2) sin  u

x�0
dx du �  

2a
lp

�>�

f (x, u) �
2
l ?

2
p �

4
lp

�

Fig. 2-25
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SUPPLEMENTARY PROBLEMS

Discrete random variables and probability distributions
2.38. A coin is tossed three times. If X is a random variable giving the number of heads that arise, construct a table

showing the probability distribution of X.

2.39. An urn holds 5 white and 3 black marbles. If 2 marbles are to be drawn at random without replacement and X
denotes the number of white marbles, find the probability distribution for X.

2.40. Work Problem 2.39 if the marbles are to be drawn with replacement.

2.41. Let Z be a random variable giving the number of heads minus the number of tails in 2 tosses of a fair coin. Find
the probability distribution of Z. Compare with the results of Examples 2.1 and 2.2.

2.42. Let X be a random variable giving the number of aces in a random draw of 4 cards from an ordinary deck of 52
cards. Construct a table showing the probability distribution of X.

Discrete distribution functions
2.43. The probability function of a random variable X is shown in Table 2-7. Construct a table giving the distribution

function of X.

x 1 2 3

f (x) 1 2 1 3 1 6>>>

Table 2-7

x 1 2 3 4

F(x) 1 8 3 8 3 4 1>>>

Table 2-8

2.44. Obtain the distribution function for (a) Problem 2.38, (b) Problem 2.39, (c) Problem 2.40.

2.45. Obtain the distribution function for (a) Problem 2.41, (b) Problem 2.42.

2.46. Table 2-8 shows the distribution function of a random variable X. Determine (a) the probability function,
(b) P(1 X 3), (c) P(X 2), (d) P(X � 3), (e) P(X � 1.4).

Continuous random variables and probability distributions
2.47. A random variable X has density function

Find (a) the constant c, (b) P(l � X � 2), (c) P(X � 3), (d) P(X � 1).

2.48. Find the distribution function for the random variable of Problem 2.47. Graph the density and distribution
functions, describing the relationship between them.

2.49. A random variable X has density function

Find (a) the constant c, (b) P(X � 2), (c) P(1 2 � X � 3 2).>>

f (x) � •
cx 2 1 � x � 2

cx 2 � x � 3

0 otherwise

f (x) � e ce�3x x � 0

0 x � 0

���
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2.50. Find the distribution function for the random variable X of Problem 2.49.

2.51. The distribution function of a random variable X is given by

If P(X � 3) � 0, find (a) the constant c, (b) the density function, (c) P(X � 1), (d) P(1 � X � 2).

2.52. Can the function

be a distribution function? Explain.

2.53. Let X be a random variable having density function

Find (a) the value of the constant c, (b) (c) P(X � 1), (d) the distribution function.

Joint distributions and independent variables
2.54. The joint probability function of two discrete random variables X and Y is given by f (x, y) � cxy for x � 1, 2, 3

and y � 1, 2, 3, and equals zero otherwise. Find (a) the constant c, (b) P(X � 2, Y � 3), (c) P(l X 2, Y 2),
(d) P(X � 2), (e) P(Y � 2), (f) P(X � 1), (g) P(Y � 3).

2.55. Find the marginal probability functions of (a) X and (b) Y for the random variables of Problem 2.54. 
(c) Determine whether X and Y are independent.

2.56. Let X and Y be continuous random variables having joint density function

Determine (a) the constant c, (b) (c) (d) (e) whether X and Y are
independent.

2.57. Find the marginal distribution functions (a) of X and (b) of Y for the density function of Problem 2.56.

Conditional distributions and density functions
2.58. Find the conditional probability function (a) of X given Y, (b) of Y given X, for the distribution of Problem 2.54.

2.59. Let

Find the conditional density function of (a) X given Y, (b) Y given X.

2.60. Find the conditional density of (a) X given Y, (b) Y given X, for the distribution of Problem 2.56.

2.61. Let

be the joint density function of X and Y. Find the conditional density function of (a) X given Y, (b) Y given X.

f (x, y) � e e�(x�y) x � 0, y � 0

0 otherwise

f (x, y) � e x � y 0 �  x � 1, 0 �  y � 1

0 otherwise

P(Y �
1
2),P (1

4 � X �
3
4),P(X �  

1
2, Y �

1
2),

f (x, y) � e c(x 2 � y2) 0 �  x � 1, 0 � y � 1

0 otherwise

���

P(1
2 � X �

3
2),

f (x) � e cx 0 �  x �  2

0 otherwise

F(x) � e c(1 � x2) 0 �  x � 1

0 otherwise

F(x) � •
cx3 0 � x � 3

1  x � 3

0 x � 0
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Change of variables
2.62. Let X have density function

Find the density function of Y � X2.

2.63. (a) If the density function of X is f (x) find the density function of X3. (b) Illustrate the result in part (a) by
choosing

and check the answer.

2.64. If X has density function find the density function of Y � X2.

2.65. Verify that the integral of g1(u) in Method 1 of Problem 2.21 is equal to 1.

2.66. If the density of X is f (x) � 1 (x2 � 1), , find the density of Y � tan�1 X.

2.67. Complete the work needed to find g1(u) in Method 2 of Problem 2.21 and check your answer.

2.68. Let the density of X be

Find the density of (a) 3X � 2, (b) X3 � 1.

2.69. Check by direct integration the joint density function found in Problem 2.22.

2.70. Let X and Y have joint density function

If U � X Y, V � X � Y, find the joint density function of U and V.

2.71. Use Problem 2.22 to find the density function of (a) U � XY2, (b) V � X 2Y.

2.72. Let X and Y be random variables having joint density function f (x, y) � (2 )�1 , ,
. If R and are new random variables such that X � R cos , Y � R sin , show that the density

function of R is

g(r) � e re�r2>2 r � 0

0 r � 0

����` � y � `

�` � x � `e�(x2�y2)p

>
f (x, y) � e e�(x�y) x �  0, y �  0

0 otherwise

f (x) � e1>2 �1 � x � 1

0 otherwise

�` � x � `p>

f (x) � 2(p)�1> 2e�x2> 2, �`  � x � `,

f (x) � e2e�2x x � 0

0 x � 0

f (x) � e e�x x � 0

0 x �  0
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2.73. Let

be the joint density function of X and Y. Find the density function of Z � XY.

Convolutions
2.74. Let X and Y be identically distributed independent random variables with density function

Find the density function of X � Y and check your answer.

2.75. Let X and Y be identically distributed independent random variables with density function

Find the density function of X � Y and check your answer.

2.76. Work Problem 2.21 by first making the transformation 2Y � Z and then using convolutions to find the density
function of U � X � Z.

2.77. If the independent random variables X1 and X2 are identically distributed with density function

find the density function of X1 � X2.

Applications to geometric probability
2.78. Two points are to be chosen at random on a line segment whose length is a � 0. Find the probability that the

three line segments thus formed will be the sides of a triangle.

2.79. It is known that a bus will arrive at random at a certain location sometime between 3:00 P.M. and 3:30 P.M. A
man decides that he will go at random to this location between these two times and will wait at most 5 minutes
for the bus. If he misses it, he will take the subway. What is the probability that he will take the subway?

2.80. Two line segments, AB and CD, have lengths 8 and 6 units, respectively. Two points P and Q are to be chosen at
random on AB and CD, respectively. Show that the probability that the area of a triangle will have height AP
and that the base CQ will be greater than 12 square units is equal to (1 � ln 2) 2.

Miscellaneous problems
2.81. Suppose that f (x) � c 3x, x � 1, 2 is the probability function for a random variable X. (a) Determine c.

(b) Find the distribution function. (c) Graph the probability function and the distribution function. (d) Find 
P(2 X 5). (e) Find P(X � 3).

2.82. Suppose that

is the density function for a random variable X. (a) Determine c. (b) Find the distribution function. (c) Graph the
density function and the distribution function. (d) Find P(X � 1). (e) Find P(2 X � 3).�

f (x) � e cxe�2x x �  0

0 otherwise

��

,c,>

>

f (t) � e te�t t � 0

0 t � 0

f (t) � e e�t t �  0

0 otherwise

f (t) � e1 0 �  t � 1

0 otherwise

f (x, y) � e1 0 �  x � 1, 0 � y � 1

0 otherwise
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2.83. The probability function of a random variable X is given by

where p is a constant. Find (a) P(0 X � 3), (b) P(X � 1).

2.84. (a) Prove that for a suitable constant c,

is the distribution function for a random variable X, and find this c. (b) Determine P(l � X � 2).

2.85. A random variable X has density function

Find the density function of the random variable Y � X2 and check your answer.

2.86. Two independent random variables, X and Y, have respective density functions

Find (a) c1 and c2, (b) P(X � Y � 1), (c) P(l � X � 2, Y 1), (d) P(1 � X � 2), (e) P(Y l).

2.87. In Problem 2.86 what is the relationship between the answers to (c), (d), and (e)? Justify your answer.

2.88. Let X and Y be random variables having joint density function

Find (a) the constant c, (b) (c) the (marginal) density function of X, (d) the (marginal) density
function of Y.

2.89. In Problem 2.88 is ? Why?

2.90. In Problem 2.86 find the density function (a) of X2, (b) of X � Y.

2.91. Let X and Y have joint density function

(a) Determine whether X and Y are independent, (b) Find (c) Find (d) Find

2.92. Generalize (a) Problem 2.74 and (b) Problem 2.75 to three or more variables.

P(X � Y �
1
2).

P(X �
1
2, Y �

1
3).P(X �

1
2).

f (x, y) � e1>y 0 � x � y, 0 � y � 1

0 otherwise

P(X �
1
2, Y �

3
2) � P(X �

1
2)P(Y �

3
2)

P(X �
1
2, Y �

3
2),

f (x, y) � e c(2x � y) 0 � x � 1, 0 � y � 2

0 otherwise

��

g( y) � e c2 ye�3y  y � 0

0 y �  0
f (x) � e c1e�2x  x � 0

0 x �  0

f (x) � e 3
2(1 � x2) 0 �  x � 1

0 otherwise

F(x) � e0 x � 0

c(1 � e�x)2 x � 0

�

f (x) � μ
2p x � 1

p x � 2

4p x � 3

0 otherwise
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2.93. Let X and Y be identically distributed independent random variables having density function
Find the density function of Z � X2 � Y 2.

2.94. The joint probability function for the random variables X and Y is given in Table 2-9. (a) Find the marginal
probability functions of X and Y. (b) Find P(l X � 3, Y 1). (c) Determine whether X and Y are
independent.

��

f (u) � (2p)�1> 2e�u2> 2, �` � u � `.

Y
X 0 1 2

0 1 18 1 9 1 6

1 1 9 1 18 1 9

2 1 6 1 6 1 18>>>
>>>
>>>

Table 2-9

2.95. Suppose that the joint probability function of random variables X and Y is given by

(a) Determine whether X and Y are independent. (b) Find (c) Find P(Y 1). (d) Find

2.96. Let X and Y be independent random variables each having density function

where . Prove that the density function of X � Y is

2.97. A stick of length L is to be broken into two parts. What is the probability that one part will have a length of
more than double the other? State clearly what assumptions would you have made. Discuss whether you
believe these assumptions are realistic and how you might improve them if they are not.

2.98. A floor is made up of squares of side l. A needle of length a � l is to be tossed onto the floor. Prove that the
probability of the needle intersecting at least one side is equal to .

2.99. For a needle of given length, what should be the side of a square in Problem 2.98 so that the probability of
intersection is a maximum? Explain your answer.

2.100. Let

be the joint density function of three random variables X, Y, and Z. Find (a) 
(b) P(Z � X � Y ).

2.101. A cylindrical stream of particles, of radius a, is directed toward a hemispherical target ABC with center at O as
indicated in Fig. 2-26. Assume that the distribution of particles is given by

f (r) � e1>a 0 � r � a

0 otherwise

P(X �
1
2, Y �

1
2, Z �

1
2),

f (x, y, z) � e24xy2z3 0 � x � 1, 0 � y � 1, 0 � z � 1

0 otherwise 

a(4l � a)>pl2

g(u) �
(2l)ue�2l

u!   u � 0, 1, 2,c

l � 0

f (u) �
lue�l

u   u � 0, 1, 2,c

P(1
2 � X � 1, Y �  1).

�P(1
2 � X � 1).

f (x, y) � e cxy 0 � x � 2, 0 � y � x

0 otherwise
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where r is the distance from the axis OB. Show that the distribution of particles along the target is given by

where is the angle that line OP (from O to any point P on the target) makes with the axis.u

g(u) � e cos  u 0 � u � p>2
0 otherwise

Fig. 2-26

2.102. In Problem 2.101 find the probability that a particle will hit the target between � 0 and � .

2.103. Suppose that random variables X, Y, and Z have joint density function

Show that although any two of these random variables are independent, i.e., their marginal density function
factors, all three are not independent.

ANSWERS TO SUPPLEMENTARY PROBLEMS

2.38. 2.39.

f (x, y, z) � e1�cospx cospy cospz 0 � x � 1, 0 � y � 1, 0 � z � 1

0 otherwise

p>4uu

x 0 1 2 3

f (x) 1 8 3 8 3 8 1 8>>>>
x 0 1 2

f (x) 3 28 15 28 5 14>>>
2.40.

2.42.

2.43.

2.46. (a) (b) 3 4 (c) 7 8 (d) 3 8 (e) 7 8 >>>>

x 0 1 2

f (x) 9 64 15 32 25 64>>>

x 0 1 2 3 4

f (x)
1

270,725
192

270,725
6768

270,725
69,184

270,725
194,580
270,725

x 0 1 2 3

f (x) 1 8 1 2 7 8 1>>>

x 1 2 3 4

f (x) 1 8 1 4 3 8 1 4>>>>
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2.47. (a) 3 (b) (c) (d) 2.48.

2.49. (a) 6 29 (b) 15 29 (c) 19 116 2.50.

2.51. (a) 1/27 (b) (c) 26 27 (d) 7 27

2.53. (a) 1 2 (b) 1 2 (c) 3 4 (d) 

2.54. (a) 1 36 (b) 1 6 (c) 1 4 (d) 5 6 (e) 1 6 (f) 1 6 (g) 1 2

2.55. (a) (b)

2.56. (a) 3 2 (b) 1 4 (c) 29 64 (d) 5 16

2.57. (a) (b)

2.58. (a) for y � 1, 2, 3 (see Problem 2.55)

(b) for x � 1, 2, 3 (see Problem 2.55)

2.59. (a)

(b)

2.60. (a)

(b)

2.61. (a) (b) 

2.62. 2.64. for y 0; 0 otherwise

2.66. for otherwise

2.68. (a) (b) 

2.70. for otherwiseu � 0, v � 0; 0ve�v>(1 � u)2

g( y) � •
1
6 (1 � y)�2>3 0 � y � 1
1
6 ( y � 1)�2>3 1 � y � 2

0 otherwise

g( y) � e
1
6 �5 � y � 1

0 otherwise

�p>2 � y � p>2; 01>p

�(2p)�1> 2y�1> 2 e�y> 2e�1y>2!y for y � 0; 0 otherwise

f (y u  x) � e e�y x � 0, y � 0

0 x � 0, y � 0
f (x uy) � e e�x x � 0, y � 0

0 x � 0, y � 0

f (y ux) � e (x 2 � y2)>(x 2 �
1
3) 0 � x � 1, 0 � y � 1

0 0 � x � 1, other y

f (x uy) � e (x2 � y2)>(y2 �
1
3) 0 � x � 1, 0 � y � 1

0 other x, 0 � y � 1

f (y ux) � e (x � y)>(x �
1
2) 0 � x � 1, 0 � y � 1

0 0 � x � 1, other y

f (x uy) � e (x � y)>( y �
1
2) 0 � x � 1, 0 � y � 1

0 other x, 0 � y � 1

f ( y u x) � f2(y)

f (x u y) � f1(x)

F2( y) � •
0 y � 0
1
2 (y3 � y) 0 � y � 1

1 y � 1

F1(x) � •
0 x � 0
1
2 (x 3 � x) 0 � x � 1

1 x � 1

>>>>

f2( y) � e y>6 y � 1, 2, 3

0 other y
f1(x) � e x>6 x � 1, 2, 3

0 other x

>>>>>>>

F(x) � •
0 x � 0

x 2>4 0 � x � 2

1 x � 2

>>>

>>f (x) � e x 2/9 0 �  x � 3

0  otherwise

F (x) � μ
0 x � 1

(2x 3 � 2)>29 1 � x � 2

(3x 2 � 2)>29 2 � x � 3

1 x � 3

>>>

F (x) � e1 � e�3x x �  0

0 x �  0
1 � e�3e�9e�3 � e�6
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2.73. 2.77.

2.74. 2.78. 1 4

2.75. 2.79. 61 72

2.81. (a) 2 (b) (d) 26 81 (e) 1 9

2.82. (a) 4 (b) (d) (e) 

2.83. (a) 3 7 (b) 5 7 2.84. (a) c � 1 (b) 

2.86. (a) c1 � 2, c2 � 9 (b) (c) (d) (e) 

2.88. (a) 1 4 (b) 27 64 (c) (d) 

2.90. (a) (b)

2.91. (b) (c) (d) 2.95. (b) 15 256 (c) 9 16 (d) 0

2.93. 2.100. (a) 45 512 (b) 1 14

2.94. (b) 7 18 2.102. !2>2>

>>g(z) � e 1
2 e�z> 2 z � 0

0 z � 0

>>1
2 ln 2

1
6 �

1
2 ln 2

1
2  (1 � ln 2)

e18e�2u u � 0

0 otherwise
e e�2y/!y y � 0

0 otherwise

f2(y) � e 1
4  (y � 1) 0 � y � 2

0 otherwise
f1(x) � e x �

1
2 0 � x � 1

0 otherwise
>>

4e�3e�2 � e�44e�5 � 4e�79e�2 � 14e�3

e�4 � 3e�2 � 2e�1>>
5e�4 � 7e�63e�2F(x) � e1 � e�2x (2x � 1) x � 0

0 x � 0

>>F(x) � e0 x � 1

1 � 3�y y � x � y � 1; y � 1, 2, 3,c

>g(u) � eue�u u � 0

0 u � 0

>g(u) � •
u 0 � u � 1

2 � u 1 � u � 2

0 otherwise

g(x) � e x 3e�x/6 x � 0

0 x � 0
g(z) � e�ln z 0 � z � 1

0 otherwise
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Mathematical Expectation

Definition of Mathematical Expectation
A very important concept in probability and statistics is that of the mathematical expectation, expected value, or
briefly the expectation, of a random variable. For a discrete random variable X having the possible values x1, , xn,
the expectation of X is defined as

(1)

or equivalently, if P(X � xj) � f (xj),

(2)

where the last summation is taken over all appropriate values of x. As a special case of (2), where the probabil-
ities are all equal, we have

(3)

which is called the arithmetic mean, or simply the mean, of x1, x2, , xn.
If X takes on an infinite number of values x1, x2, , then provided that the infinite se-

ries converges absolutely.
For a continuous random variable X having density function f (x), the expectation of X is defined as

(4)

provided that the integral converges absolutely.
The expectation of X is very often called the mean of X and is denoted by X, or simply , when the partic-

ular random variable is understood.
The mean, or expectation, of X gives a single value that acts as a representative or average of the values of X,

and for this reason it is often called a measure of central tendency. Other measures are considered on page 83.

EXAMPLE 3.1 Suppose that a game is to be played with a single die assumed fair. In this game a player wins $20 if
a 2 turns up, $40 if a 4 turns up; loses $30 if a 6 turns up; while the player neither wins nor loses if any other face turns
up. Find the expected sum of money to be won.

Let X be the random variable giving the amount of money won on any toss. The possible amounts won when the die
turns up 1, 2 6 are x1, x2 x6, respectively, while the probabilities of these are f(x1), f (x2), . . . , f (x6). The prob-
ability function for X is displayed in Table 3-1. Therefore, the expected value or expectation is

E(X) � (0)¢1
6 ≤ � (20)¢1

6 ≤ � (0)¢ 1
6 ≤ � (40)¢ 1

6 ≤ � (0)¢ 1
6 ≤ � (�30)¢ 1

6 ≤ � 5

,c,,c,

mm

E(X) � 3
`

�`
x f (x) dx

E(X) � g`
j�1 xj f (xj)c

c

E(X) �
x1 � x2 � c� xn

n

E(X) � x1 f (x1) � c� xn f (xn) � a
n

j�1
 xj f (xj) � ax f (x)

E(X) � x1P(X � x1) � c� xnP(X � xn ) � a
n

j�1
 xj P(X � xj)

c
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It follows that the player can expect to win $5. In a fair game, therefore, the player should be expected to pay $5 in order
to play the game.

EXAMPLE 3.2 The density function of a random variable X is given by

The expected value of X is then

Functions of Random Variables
Let X be a discrete random variable with probability function f (x). Then Y � g(X) is also a discrete random vari-
able, and the probability function of Y is

If X takes on the values x1, x2, , xn, and Y the values  y1, y2, , ym (m n), then 
Therefore,

(5)

Similarly, if X is a continuous random variable having probability density f (x), then it can be shown that

(6)

Note that (5) and (6) do not involve, respectively, the probability function and the probability density function
of Y � g(X).

Generalizations are easily made to functions of two or more random variables. For example, if X and Y are two
continuous random variables having joint density function f(x, y), then the expectation of g(X, Y) is given by

(7)

EXAMPLE 3.3 If X is the random variable of Example 3.2,

Some Theorems on Expectation

Theorem 3-1 If c is any constant, then

E(cX) � cE(X) (8)

E(3X2 � 2X) � 3
`

�`
(3x2 � 2x) f (x) dx � 3

2

0 

(3x2 � 2x)¢ 1
2  x≤  dx �

10
3

E[g(X, Y)] � 3
`

�`
3
`

�`
g(x, y) f (x, y) dx dy

E[g(X)] � 3
`

�`
g(x) f (x) dx

� a
n

j�1
 g(xj) f (xj) � a  g(x) f (x)

E[g(X)] � g(x1) f (x1) � g(x2) f (x2) � c� g(xn)f (xn)

ymh(ym) � g(x1)f (x1) � g(x2) f (x2) � c� g(xn) f (xn).
y1h(y1) � y2h(y2) � c��cc

h(y) � P(Y � y) � a5xZg(x)�y6
P(X � x) � a5xZg(x)�y6 

 f (x)

E(X) � 3
`

�`
xf (x) dx � 3

2

0
x ¢ 1

2  x≤  dx � 3
2

0
  
x2

2   dx �
x3

6  2 2
0

�
4
3

f (x) � e
1
2x  0 � x � 2

0 otherwise
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xj 0 �20 0 �40 0 �30

f (xj) 1 6 1 6 1 6 1 6 1 6 1 6>>>>>>

Table 3-1



Theorem 3-2 If X and Y are any random variables, then

E(X � Y) � E(X) � E(Y) (9)

Theorem 3-3 If X and Y are independent random variables, then

E(XY) � E(X)E(Y ) (10)

Generalizations of these theorems are easily made.

The Variance and Standard Deviation
We have already noted on page 75 that the expectation of a random variable X is often called the mean and
is denoted by . Another quantity of great importance in probability and statistics is called the variance and is
defined by

Var(X) � E[(X � )2] (11)

The variance is a nonnegative number. The positive square root of the variance is called the standard deviation
and is given by

(12)

Where no confusion can result, the standard deviation is often denoted by instead of X, and the variance in
such case is 2.

If X is a discrete random variable taking the values x1, x2, . . . , xn and having probability function f (x), then
the variance is given by

(13)

In the special case of (13) where the probabilities are all equal, we have

(14)

which is the variance for a set of n numbers x1, . . . , xn.
If X takes on an infinite number of values x1, x2, . . . , then provided that the series

converges.
If X is a continuous random variable having density function f (x), then the variance is given by

(15)

provided that the integral converges.
The variance (or the standard deviation) is a measure of the dispersion, or scatter, of the values of the ran-

dom variable about the mean . If the values tend to be concentrated near the mean, the variance is small; while
if the values tend to be distributed far from the mean, the variance is large. The situation is indicated graphically
in Fig. 3-1 for the case of two continuous distributions having the same mean .m

m

s2
X � E[(X � m)2] � 3

`

�`
(x � m)2 f (x) dx

s2
X � g`

j�1 (xj � m)2f (xj),

s2 � [(x1 � m)2 � (x2 � m)2 � c� (xn � m)2]>n

s2
X � E[(X � m)2] � a

n

j�1
(xj � m)2f (xj) � a(x � m)2 f (x)

s

ss

sX � 2Var (X) � 2E[(X � m)2]

m

m
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Fig. 3-1



EXAMPLE 3.4 Find the variance and standard deviation of the random variable of Example 3.2. As found in Example 3.2,
the mean is � E(X) � 4 3. Then the variance is given by

and so the standard deviation is 

Note that if X has certain dimensions or units, such as centimeters (cm), then the variance of X has units cm2

while the standard deviation has the same unit as X, i.e., cm. It is for this reason that the standard deviation is
often used.

Some Theorems on Variance

Theorem 3-4 2 � E[(X � )2] � E(X2) � 2 � E(X2) � [E(X)]2 (16)

where � E(X).

Theorem 3-5 If c is any constant,

Var(cX) � c2 Var(X) (17)

Theorem 3-6 The quantity E[(X � a)2] is a minimum when a � � E(X).

Theorem 3-7 If X and Y are independent random variables,

(18)

(19)

Generalizations of Theorem 3-7 to more than two independent variables are easily made. In words, the vari-
ance of a sum of independent variables equals the sum of their variances.

Standardized Random Variables
Let X be a random variable with mean and standard deviation ( � 0). Then we can define an associated stan-
dardized random variable given by

(20)

An important property of X* is that it has a mean of zero and a variance of 1, which accounts for the name stan-
dardized, i.e.,

E(X*) � 0, Var(X*) � 1 (21)

The values of a standardized variable are sometimes called standard scores, and X is then said to be expressed
in standard units (i.e., is taken as the unit in measuring X – ).

Standardized variables are useful for comparing different distributions.

Moments
The rth moment of a random variable X about the mean , also called the rth central moment, is defined as

r � E [(X � )r] (22)mm

m

ms

X* �
X � m
s

ssm

Var (X � Y) � Var (X) � Var (Y)  or  s2
X�Y � s2

X � s2
Y

Var (X � Y) � Var (X) � Var (Y)  or  s2
X�Y � s2

X � s2
Y 

m

m

mms

s � A2
9 �

22
3

s2 � E B ¢X �
4
3 ≤ 2R � 3

`

�`
¢x �

4
3 ≤ 2

 f (x) dx � 3
2

0
¢x �

4
3 ≤ 2¢ 1

2  x≤  dx �
2
9

>m

CHAPTER 3 Mathematical Expectation78



where r � 0, 1, 2, . . . . It follows that 0 � 1, 1 � 0, and 2 � 2, i.e., the second central moment or second
moment about the mean is the variance. We have, assuming absolute convergence,

(23)

(24)

The rth moment of X about the origin, also called the rth raw moment, is defined as

(25)

where r � 0, 1, 2, . . . , and in this case there are formulas analogous to (23) and (24) in which � 0.
The relationship between these moments is given by

(26)

As special cases we have, using and 

(27)

Moment Generating Functions
The moment generating function of X is defined by

MX(t) � E(etX) (28)

that is, assuming convergence,

(29)

(30)

We can show that the Taylor series expansion is [Problem 3.15(a)]

(31)

Since the coefficients in this expansion enable us to find the moments, the reason for the name moment gener-
ating function is apparent. From the expansion we can show that [Problem 3.15(b)]

(32)

i.e., is the rth derivative of MX(t) evaluated at t � 0. Where no confusion can result, we often write M(t) in-
stead of MX(t).

Some Theorems on Moment Generating Functions
Theorem 3-8 If MX(t) is the moment generating function of the random variable X and a and b (b 0) are con-

stants, then the moment generating function of (X � a) b is

(33)M(X�a)>b(t) � eat>bMX ¢ t
b
≤ > 2

mrr

mrr �
dr

dtr  MX(t) 2
t�0

MX(t) � 1 � mt � mr2 
t2

2!
� c� mrr  

tr

r!
� c

MX(t) � 3
`

�`
etx  f (x) dx   (continuous variable)

MX(t) � a  etx  f (x)  (discrete variable)

m2 � mr2 � m2

m3 � mr3 � 3mr2 m � 2m3

m4 � mr4 � 4mr3 m � 6mr2 m
2 � 3m4

mr0 � 1,mr1 � m

mr � mrr � ¢ r

1
≤mrr�1 m � c� (�1) j¢ r

j
≤mrr�j  m

j � c� (�1)rmr0mr

m

mrr � E(Xr)

mr � 3
`

�`
(x � m)r f (x) dx   (continuous variable)

mr � a(x � m)r f (x)  (discrete variable)

smmm
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Theorem 3-9 If X and Y are independent random variables having moment generating functions MX(t) and
MY(t), respectively, then

MX � Y (t) � MX (t) MY (t) (34)

Generalizations of Theorem 3-9 to more than two independent random variables are easily made. In words, the
moment generating function of a sum of independent random variables is equal to the product of their moment
generating functions.

Theorem 3-10 (Uniqueness Theorem) Suppose that X and Y are random variables having moment generat-
ing functions MX (t) and MY (t), respectively. Then X and Y have the same probability distribu-
tion if and only if MX (t) � MY (t) identically.

Characteristic Functions
If we let t � i , where i is the imaginary unit, in the moment generating function we obtain an important func-
tion called the characteristic function. We denote this by

(35)

It follows that

(36)

(37)

Since the series and the integral always converge absolutely.
The corresponding results (31) and (32) become

(38)

where (39)

When no confusion can result, we often write ( ) instead of X( ).
Theorems for characteristic functions corresponding to Theorems 3-8, 3-9, and 3-10 are as follows.

Theorem 3-11 If X( ) is the characteristic function of the random variable X and a and b (b 0) are con-2vf

vfvf

mrr � (�1)rir 
dr

dvr  fX(v) 2
v�0

fX(v) � 1 � imv � mr2 
v2

2!
� c� irmrr 

vr

r!
� c

ueivx u � 1,

fX(v) � 3
`

�`
eivx  f (x) dx   (continuous variable)

fX(v) � aeivx  f (x)  (discrete variable)

fX(v) � MX(iv) � E(eivX)

v
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only if X ( ) � Y ( ) identically.vfvf

stants, then the characteristic function of (X � a) b is

(40)

Theorem 3-12 If X and Y are independent random variables having characteristic functions X( ) and Y ( ),
respectively, then

(41)

More generally, the characteristic function of a sum of independent random variables is equal to the product
of their characteristic functions.

Theorem 3-13 (Uniqueness Theorem) Suppose that X and Y are random variables having characteristic func-
tions X( ) and Y( ), respectively. Then X and Y have the same probability distribution if andvfvf

fX�Y (v) � fX (v) fY (v)

vfvf

f(X�a)>b(v) � eaiv>bfX¢vb ≤>



An important reason for introducing the characteristic function is that (37) represents the Fourier transform
of the density function f (x). From the theory of Fourier transforms, we can easily determine the density function
from the characteristic function. In fact,

(42)

which is often called an inversion formula, or inverse Fourier transform. In a similar manner we can show in the
discrete case that the probability function f(x) can be obtained from (36) by use of Fourier series, which is the
analog of the Fourier integral for the discrete case. See Problem 3.39.

Another reason for using the characteristic function is that it always exists whereas the moment generating
function may not exist.

Variance for Joint Distributions. Covariance
The results given above for one variable can be extended to two or more variables. For example, if X and Y are
two continuous random variables having joint density function f (x, y), the means, or expectations, of X and Y are

(43)

and the variances are

(44)

Note that the marginal density functions of X and Y are not directly involved in (43) and (44).
Another quantity that arises in the case of two variables X and Y is the covariance defined by

(45)

In terms of the joint density function f (x, y), we have

(46)

Similar remarks can be made for two discrete random variables. In such cases (43) and (46) are replaced by

(47)

(48)

where the sums are taken over all the discrete values of X and Y. 
The following are some important theorems on covariance.

Theorem 3-14 (49)

Theorem 3-15 If X and Y are independent random variables, then

(50)

Theorem 3-16 (51)

or (52)

Theorem 3-17 (53)ZsXY Z � sX sY

s2
XY � s2

X � s2
Y  2sXY

Var (X  Y ) � Var (X) � Var (Y )  2 Cov (X, Y )

sXY � Cov (X, Y ) � 0

sXY � E(XY ) � E(X)E(Y ) � E(XY ) � mXmY

sXY � a
x
a
y

 (x � mX)(y � mY) f (x, y)

mX � a
x
a
y

 xf (x, y)   mY � a
x
a
y

yf(x, y)

sXY � 3
`

�`
3
`

�`
(x � mX)(y � mY) f (x, y) dx dy

sXY � Cov (X, Y ) � E[(X � mX)(Y � mY)]

s2
X � E[(X � mX)2] � 3

`

�`
3
`

�`
(x � mX)2  f (x, y) dx dy

s2
Y � E[(Y � mY)2] � 3

`

�`
3
`

�`
( y � mY)2  f (x, y) dx dy

mX � E(X) � 3
`

�`
3
`

�`
xf (x, y) dx dy,  mY � E(Y) � 3

`

�`
3
`

�`
yf (x, y) dx dy

f (x) �
1

2p3
`

�`
e�ivx fX (v) dv
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The converse of Theorem 3-15 is not necessarily true. If X and Y are independent, Theorem 3-16 reduces to
Theorem 3-7.

Correlation Coefficient
If X and Y are independent, then Cov(X, Y) � XY � 0. On the other hand, if X and Y are completely dependent,
for example, when X � Y, then Cov(X, Y) � XY � . From this we are led to a measure of the dependence
of the variables X and Y given by

(54)

We call the correlation coefficient, or coefficient of correlation. From Theorem 3-17 we see that .�1 � r � 1r

r �
sXY

sX sY

sX sYs

s

CHAPTER 3 Mathematical Expectation82

In the case where � 0 (i.e., the covariance is zero), we call the variables X and Y uncorrelated. In such cases,
however, the variables may or may not be independent. Further discussion of correlation cases will be given in
Chapter 8.

Conditional Expectation, Variance, and Moments
If X and Y have joint density function f (x, y), then as we have seen in Chapter 2, the conditional density function
of Y given X is � f (x, y) f1 (x) where f1 (x) is the marginal density function of X. We can define the con-
ditional expectation, or conditional mean, of Y given X by

(55)

where “X � x” is to be interpreted as x � X x � dx in the continuous case. Theorems 3-1 and 3-2 also hold
for conditional expectation.

We note the following properties:

1. E(Y X � x) � E(Y) when X and Y are independent.

2.

It is often convenient to calculate expectations by use of Property 2, rather than directly.

EXAMPLE 3.5 The average travel time to a distant city is c hours by car or b hours by bus. A woman cannot decide
whether to drive or take the bus, so she tosses a coin. What is her expected travel time?

Here we are dealing with the joint distribution of the outcome of the toss, X, and the travel time, Y, where Y � Ycar if
X � 0 and Y � Ybus if X � 1. Presumably, both Ycar and Ybus are independent of X, so that by Property 1 above

E(Y X � 0) � E(Ycar X � 0) � E(Ycar) � c

and E(Y X � l) � E(Ybus X � 1) � E(Ybus) � b

Then Property 2 (with the integral replaced by a sum) gives, for a fair coin,

In a similar manner we can define the conditional variance of Y given X as

(56)

where 2 � E(Y X � x). Also we can define the rth conditional moment of Y about any value a given X as

(57)

The usual theorems for variance and moments extend to conditional variance and moments.

E[(Y � a)r uX � x] � 3
`

�`
(y � a)r f (y u x) dy

um

E[(Y � m2)2 uX � x] � 3
`

�`
(y � m2)2 f (y ux) dy

E(Y) � E(Y uX � 0)P(X � 0) � E(Y uX � 1)P(X � 1) �
c � b

2

uu

uu

E(Y) � 3
`

�`
E(Y uX � x) f1(x) dx.

u

�

E(Y uX � x) � 3
`

�`
y f (y ux) dy

>f (y u x)

r



Chebyshev’s Inequality
An important theorem in probability and statistics that reveals a general property of discrete or continuous ran-
dom variables having finite mean and variance is known under the name of Chebyshev’s inequality.

Theorem 3-18 (Chebyshev’s Inequality) Suppose that X is a random variable (discrete or continuous) having
mean and variance 2, which are finite. Then if P is any positive number,

(58)

or, with P � k ,

(59)

EXAMPLE 3.6 Letting k � 2 in Chebyshev’s inequality (59), we see that

P ( X � 2 ) 0.25 or P( X � � 2 ) 0.75

In words, the probability of X differing from its mean by more than 2 standard deviations is less than or equal to 0.25;
equivalently, the probability that X will lie within 2 standard deviations of its mean is greater than or equal to 0.75. This
is quite remarkable in view of the fact that we have not even specified the probability distribution of X.

Law of Large Numbers
The following theorem, called the law of large numbers, is an interesting consequence of Chebyshev’s inequality.

Theorem 3-19 (Law of Large Numbers): Let X1, X2, . . . , Xn be mutually independent random variables (dis-
crete or continuous), each having finite mean and variance 2. Then if

(60)

Since Sn n is the arithmetic mean of X1, . . . , Xn, this theorem states that the probability of the arithmetic
mean Sn n differing from its expected value by more than P approaches zero as . A stronger result,
which we might expect to be true, is that but this is actually false. However, we can prove thatlim S

nS` n>n � m,
n S `m> >

lim
nS`

P¢ 2 Sn

n � m 2  � P≤ � 0

Xn(n � 1, 2, c),
Sn � X1 � X2 � c�sm

�sumu�s�umu

P(uX � m u �  ks) �
1
k2

s

P( uX � m u � P) �  
s2

P2

sm
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with probability one. This result is often called the strong law of large numbers, and, by contrast,lim S
nS` n>n � m

that of Theorem 3-19 is called the weak law of large numbers. When the “law of large numbers” is referred to
without qualification, the weak law is implied.

Other Measures of Central Tendency
As we have already seen, the mean, or expectation, of a random variable X provides a measure of central ten-
dency for the values of a distribution. Although the mean is used most, two other measures of central tendency
are also employed. These are the mode and the median.

1. MODE. The mode of a discrete random variable is that value which occurs most often or, in other words,
has the greatest probability of occurring. Sometimes we have two, three, or more values that have relatively
large probabilities of occurrence. In such cases, we say that the distribution is bimodal, trimodal, or multi-
modal, respectively. The mode of a continuous random variable X is the value (or values) of X where the
probability density function has a relative maximum.

2. MEDIAN. The median is that value x for which and In the case of a con-P(X � x) �
1
2.P(X � x) �

1
2

tinuous distribution we have and the median separates the density curve into
two parts having equal areas of 1 2 each. In the case of a discrete distribution a unique median may not
exist (see Problem 3.34).

>P(X � x) �
1
2 � P(X � x),



Percentiles
It is often convenient to subdivide the area under a density curve by use of ordinates so that the area to the left
of the ordinate is some percentage of the total unit area. The values corresponding to such areas are called per-
centile values, or briefly percentiles. Thus, for example, the area to the left of the ordinate at in Fig. 3-2 is .
For instance, the area to the left of x0.10 would be 0.10, or 10%, and x0.10 would be called the 10th percentile
(also called the first decile). The median would be the 50th percentile (or fifth decile).

axa
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Fig. 3-2

Other Measures of Dispersion
Just as there are various measures of central tendency besides the mean, there are various measures of disper-
sion or scatter of a random variable besides the variance or standard deviation. Some of the most common are
the following.

1. SEMI-INTERQUARTILE RANGE. If x0.25 and x0.75 represent the 25th and 75th percentile values, the
difference x0.75 � x0.25 is called the interquartile range and is the semi-interquartile range.

2. MEAN DEVIATION. The mean deviation (M.D.) of a random variable X is defined as the expectation
of i.e., assuming convergence,

(discrete variable) (61)

(continuous variable) (62)

Skewness and Kurtosis
1. SKEWNESS. Often a distribution is not symmetric about any value but instead has one of its tails longer

than the other. If the longer tail occurs to the right, as in Fig. 3-3, the distribution is said to be skewed to the right,
while if the longer tail occurs to the left, as in Fig. 3-4, it is said to be skewed to the left. Measures describing
this asymmetry are called coefficients of skewness, or briefly skewness. One such measure is given by

(63)

The measure 3 will be positive or negative according to whether the distribution is skewed to the right or left,
respectively. For a symmetric distribution, 3 � 0.s

s

a3 �
E[(X � m)3]

s3
�
m3

s3

M.D.(X) � E [uX � mu] � 3
`

�`
u x � m u f (x) dx

M.D.(X) � E [uX � mu] � a ux � mu f (x)

uX � m u ,

1
2  (x0.75 � x0.25)

Fig. 3-3 Fig. 3-4 Fig. 3-5

2. KURTOSIS. In some cases a distribution may have its values concentrated near the mean so that the dis-
tribution has a large peak as indicated by the solid curve of Fig. 3-5. In other cases the distribution may be



relatively flat as in the dashed curve of Fig. 3-5. Measures of the degree of peakedness of a distribution are
called coefficients of kurtosis, or briefly kurtosis. A measure often used is given by

(64)

This is usually compared with the normal curve (see Chapter 4), which has a coefficient of kurtosis equal to 3.
See also Problem 3.41.

SOLVED PROBLEMS

Expectation of random variables
3.1. In a lottery there are 200 prizes of $5, 20 prizes of $25, and 5 prizes of $100. Assuming that 10,000 tickets

are to be issued and sold, what is a fair price to pay for a ticket?

Let X be a random variable denoting the amount of money to be won on a ticket. The various values of X together
with their probabilities are shown in Table 3-2. For example, the probability of getting one of the 20 tickets
giving a $25 prize is 20 10,000 � 0.002. The expectation of X in dollars is thus

E(X) � (5)(0.02) � (25)(0.002) � (100)(0.0005) � (0)(0.9775) � 0.2

or 20 cents. Thus the fair price to pay for a ticket is 20 cents. However, since a lottery is usually designed to raise
money, the price per ticket would be higher.

>

a4 �
E[(X � m)4]

s4 �
m4

s4
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Table 3-2

x (dollars) 5 25 100 0

P(X � x) 0.02 0.002 0.0005 0.9775

3.2. Find the expectation of the sum of points in tossing a pair of fair dice.

Let X and Y be the points showing on the two dice. We have

Then, by Theorem 3-2,

E(X � Y) � E(X) � E(Y) � 7

3.3. Find the expectation of a discrete random variable X whose probability function is given by

We have

To find this sum, let

Then

Subtracting,

Therefore, S � 2.

1
2  S �

1
2 �  1

4 �
1
8 �  1

16 � c� 1

1
2  S �    1

4 � 2¢1
8 ≤ � 3¢ 1

16≤ � c

S �
1
2 � 2¢ 1

4 ≤ � 3¢ 1
8 ≤ � 4¢ 1

16 ≤ � c

E(X) � a
`

x�1
 x ¢1

2 ≤ x

�
1
2 � 2¢ 1

4 ≤ � 3¢ 1
8 ≤ � c

f (x) � ¢1
2
≤ x

   (x � 1, 2, 3, c)

E(X) � E(Y) � 1¢ 1
6 ≤ � 2¢ 1

6 ≤ � c� 6¢ 1
6 ≤ �

7
2



3.4. A continuous random variable X has probability density given by

Find (a) E(X), (b) E(X2).

(a)

(b)

3.5. The joint density function of two random variables X and Y is given by

Find (a) E(X), (b) E(Y), (c) E(XY), (d) E(2X � 3Y).

(a)

(b)

(c)

(d)

Another method
(c) Since X and Y are independent, we have, using parts (a) and (b),

(d) By Theorems 3-1 and 3-2, pages 76–77, together with (a) and (b),

3.6. Prove Theorem 3-2, page 77.

Let f (x, y) be the joint probability function of X and Y, assumed discrete. Then

If either variable is continuous, the proof goes through as before, with the appropriate summations replaced by
integrations. Note that the theorem is true whether or not X and Y are independent.

� E(X) � E(Y)

� a
x
a
y

xf (x, y) � a
x
a
y

yf (x, y)

E(X � Y) � a
x
a
y

(x � y) f (x, y)

E(2X � 3Y) � 2E(X) � 3E(Y) � 2¢ 8
3 ≤ � 3¢ 31

9 ≤ �
47
3

E(XY) � E(X)E(Y) � ¢ 8
3 ≤ ¢ 31

9 ≤ �
248
27

E(2X � 3Y) � 3
`

�`
3
`

�`
(2x � 3y) f (x, y) dx dy � 3

4

x�0
3

5

y�1
(2x � 3y)¢ xy

96 ≤  dx dy �
47
3

E(XY) � 3
`

�`
3
`

�`
(xy) f (x, y) dx dy � 3

4

x�0
3

5

y�1
(xy)¢ xy

96 ≤  dx dy �
248
27

E(Y) � 3
`

�`
3
`

�`
yf (x, y) dx dy � 3

4

x�0
3

5

y�1
y¢ xy

96 ≤  dx dy �
31
9

E(X) � 3
`

�`
3
`

�`
xf (x, y) dx dy � 3

4

x�0
3

5

y�1
x¢ xy

96 ≤  dx dy �
8
3

f (x, y) � e xy>96 0 � x � 4, 1 � y � 5

0 otherwise

� 2B (x2)¢ e�2x

�2 ≤ � (2x)¢ e�2x

4 ≤ � (2)¢ e�2x

�8 ≤ R  2 `
0

�
1
2

E(X2) � 3
`

�`
x2f (x) dx � 23

`

0 

x2e�2x dx

� 2B (x)¢ e�2x

�2 ≤ � (1)¢ e�2x

4 ≤ R  2 `
0

�
1
2

E(X) � 3
`

�`
xf (x) dx � 3

`

0
x(2e�2x) dx � 23

`

0
xe�2x dx

f (x) � e2e�2x  x � 0

0 x � 0

CHAPTER 3 Mathematical Expectation86



3.7. Prove Theorem 3-3, page 77.

Let f (x, y) be the joint probability function of X and Y, assumed discrete. If the variables X and Y are independent,
we have f (x, y) � f1 (x) f2 (y). Therefore,

If either variable is continuous, the proof goes through as before, with the appropriate summations replaced by
integrations. Note that the validity of this theorem hinges on whether f (x, y) can be expressed as a function of x
multiplied by a function of y, for all x and y, i.e., on whether X and Y are independent. For dependent variables it
is not true in general.

Variance and standard deviation
3.8. Find (a) the variance, (b) the standard deviation of the sum obtained in tossing a pair of fair dice.

(a) Referring to Problem 3.2, we have E(X) � E(Y) � 1 2. Moreover,

Then, by Theorem 3-4,

and, since X and Y are independent, Theorem 3-7 gives

(b)

3.9. Find (a) the variance, (b) the standard deviation for the random variable of Problem 3.4. 

(a) As in Problem 3.4, the mean of X is Then the variance is

Another method
By Theorem 3-4,

(b) s � 2Var (X) � A1
4 �

1
2

Var (X) � E[(X � m)2] � E(X2) � [E(X)]2 �
1
2 � ¢ 1

2 ≤ 2

�
1
4

Var (X) � E[(X � m)2] � E B¢X �
1
2 ≤ 2R � 3

`

�`
¢x �

1
2 ≤ 2

 f (x) dx

� 3
`

0
¢x �

1
2 ≤ 2

(2e�2x) dx �
1
4

m � E(X) �
1
2.

sX�Y � 2Var (X � Y) � A35
6

Var (X � Y) � Var (X) � Var (Y) �
35
6

Var (X) � Var (Y) �
91
6 � ¢ 7

2 ≤ 2

�
35
12

E(X2) � E(Y2) � 12¢ 1
6 ≤ � 22¢ 1

6 ≤ � c� 62¢ 1
6 ≤ �

91
6

>

E(XY) � a
x
a
y

 xyf (x, y) � a
x
a
y

 xyf1(x) f2 (y)

� a
x
Bxf1(x)a

y
yf2(y)R

� a
x

[(xf1(x)E(y)]

� E(X)E(Y)
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3.10. Prove Theorem 3-4, page 78.

We have

3.11. Prove Theorem 3-6, page 78.

since E(X � ) � E(X ) � � 0. From this we see that the minimum value of E[(X � a)2] occurs when mm

� E [(X � m)2] � (m � a)2

� E [(X � m)2] � 2(m � a)E(X � m) � (m � a)2

� E [(X � m)2 � 2(X � m)(m � a) � (m � a)2]

E [(X � a)2] � E [5(X � m) � (m � a)62]

� E(X2) � [E(X)]2

� E(X2) � 2m2 � m2 � E(X2) � m2

E[(X � m)2] � E(X2 � 2mX � m2) � E(X2) � 2mE(X ) � m2
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( � a)2 � 0, i.e., when a � .

3.12. If X* � (X � ) is a standardized random variable, prove that (a) E(X*) � 0, (b) Var(X*) � 1.

(a)

since E(X) � .

(b)

using Theorem 3-5, page 78, and the fact that E[(X � )2] � 2.

3.13. Prove Theorem 3-7, page 78.

using the fact that

since X and Y, and therefore X � X and Y � Y, are independent. The proof of (19), page 78, follows onmm

E[(X � mX)(Y � mY)] � E(X � mX)E(Y � mY) � 0

� Var (X ) � Var(Y )

� E [(X � mX)2] � 2E[(X � mX)(Y � mY)] � E[(Y � mY)2]

� E [(X � mX)2 � 2(X � mX)(Y � mY) � (Y � mY)2]

� E [5(X � mX) � (Y � mY)62]

Var (X � Y ) � E [5(X � Y ) � (mX � mY)62]

sm

Var (X*) � Var ¢X � m
s ≤ �

1
s2  E[(X � m)2] � 1

m

E(X*) � E ¢X � m
s ≤ �

1
s  [E(X � m)] �

1
s  [E(X) � m] � 0

s>m
mm

replacing Y by �Y and using Theorem 3-5.

Moments and moment generating functions
3.14. Prove the result (26), page 79.

� c� (�1)r�1 ¢ r

r � 1
≤Xmr�1 � (�1)rmrR� E BXr � ¢ r

1
≤Xr�1m � c� (�1) j ¢ r

j
≤Xr�j m j

mr � E[(X � m)r]



where the last two terms can be combined to give (�l)r�1(r � 1) r.

3.15. Prove (a) result (31), (b) result (32), page 79.

(a) Using the power series expansion for eu (3., Appendix A), we have

(b) This follows immediately from the fact known from calculus that if the Taylor series of f (t) about t � a is

then

3.16. Prove Theorem 3-9, page 80.

Since X and Y are independent, any function of X and any function of Y are independent. Hence,

3.17. The random variable X can assume the values 1 and �1 with probability each. Find (a) the moment gen-
erating function, (b) the first four moments about the origin.

(a)

(b) We have

Then (1)

But (2)

Then, comparing (1) and (2), we have

The odd moments are all zero, and the even moments are all one.

m � 0,  mr2 � 1,   mr3 � 0,   mr4 � 1,c

MX(t) � 1 � mt � mr2  
t2

2! � mr3  
t3

3! � mr4  
t4

4! � c

1
2  (et � e�t) � 1 �

t2

2! �
t4

4! � c

e�t � 1 � t �
t2

2! �
t3

3! �
t4

4! � c

et � 1 � t �
t2

2! �
t3

3! �
t4

4! � c

E(etX) � et(1)¢1
2 ≤ � et(�1)¢ 1

2 ≤ �
1
2  (et � e�t)

1
2

MX�Y (t) � E[et(X�Y )] � E(etXetY ) � E(etX )E(etY ) � MX(t)MY (t)

cn �
1
n!

dn

dtn   f (t) 2
t�a

f (t) � a
`

n�0
 cn(t � a)n

� 1 � mt � mr2 
t2

2! � mr3 
t3

3! � c

� 1 � tE(X ) �
t2

2!  E(X2) �
t3

3!  E(X3) � c

MX(t) � E(etX) � E ¢1 � tX �
t2X2

2! �
t3X3

3! � c≤
m

� c� (�1)r�1rmr � (�1)�rmr

� mrr � ¢ r

1
≤mrr�1m � c� (�1) j¢r

j
≤mrr�j m   

j

� c� (�1)r�1¢ r

r � 1
≤E(X )mr�1 � (�1)rmr

� E(Xr) � ¢ r

1
≤E(Xr�1)m � c� (�1) j ¢r

j
≤E(Xr�j)m j
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3.18. A random variable X has density function given by

Find (a) the moment generating function, (b) the first four moments about the origin.

(a)

(b) If | t | � 2 we have

But

Therefore, on comparing terms,

3.19. Find the first four moments (a) about the origin, (b) about the mean, for a random variable X having den-
sity function

(a)

(b) Using the result (27), page 79, we have

Characteristic functions
3.20. Find the characteristic function of the random variable X of Problem 3.17.

The characteristic function is given by

E(eivX ) � eiv(1)¢1
2 ≤ � eiv(�1)¢ 1

2 ≤ �
1
2  (eiv � e�iv) � cosv

m4 �
27
2 � 4¢216

35 ≤ ¢ 8
5 ≤ � 6(3)¢ 8

5 ≤ 2

� 3¢ 8
5 ≤ 4

�
3693
8750

m3 �
216
35 � 3(3)¢ 8

5 ≤ � 2¢ 8
5 ≤ 3

� �
32

875

m2 � 3 � ¢8
5 ≤ 2

�
11
25 � s2

m1 � 0

mr4 � E(X4) �
4

813
3

0 

x5(9 � x2) dx �
27
2

mr3 � E(X3) �
4

813
3

0 

x4(9 � x2) dx �
216
35

mr2 � E(X2) �
4

813
3

0 

x3(9 � x2) dx � 3

mr1 � E(X) �
4

813
3

0 

x2(9 � x2) dx �
8
5 � m

f (x) � e4x(9 � x2)>81 0 � x �  3

0 otherwise

m �
1
2, mr2 �

1
2, mr3 �

3
4, mr4 �

3
2.

M(t) � 1 � mt � mr2  
t2

2! � mr3  
t3

3! � mr4  
t4

4! � c

2
2 � t �

1
1 � t>2 � 1 �

t
2 �

t2

4 �
t3

8 �
t4

16 � c

�
2e(t�2)x

t � 2  2 `
0

�
2

2 � t,  assuming t � 2

� 3
`

0
etx(2e�2x) dx � 23

`

0
e(t�2)x dx

M(t) � E(etX ) � 3
`

�`
etx f (x) dx

f (x) � e2e�2x x � 0

0 x � 0
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using Euler’s formulas,

with . The result can also be obtained from Problem 3.17(a) on putting t � i .

3.21. Find the characteristic function of the random variable X having density function given by

The characteristic function is given by

using Euler’s formulas (see Problem 3.20) with .

3.22. Find the characteristic function of the random variable X having density function f (x) � ce–a|x|,
, where a � 0, and c is a suitable constant.

Since f (x) is a density function, we must have

so that

Then c � a 2. The characteristic function is therefore given by

Covariance and correlation coefficient
3.23. Prove Theorem 3-14, page 81.

By definition the covariance of X and Y is

� E(XY ) � E(X )E(Y )

� E(XY ) � mXmY

� E(XY ) � mXmY � mYmX � mXmY

� E(XY ) � mXE(Y ) � mYE(X ) � E(mXmY)

� E[XY � mXY � mYX � mXmY]

sXY � Cov (X, Y ) � E[(X � mX)(Y � mY)]

�
a

2(a � iv) �
a

2(a � iv) �
a2

a2 � v2

�
a
2

e(a�iv)x

a � iv
2 0
�`

� a 
e�(a�iv)x

�(a � iv)  2 `
0

�
a
2  B 30

�`
e(a�iv)x dx � 3

`

0
e�(a�iv)x dxR�

a
2  B 30

�`
eivxe�a(�x) dx � 3

`

0
eivxe�a(x) dxRE(eivX) � 3

`

�`
eivx  f (x) dx

>
� c 

eax

a  2 0
�`

� c 
e�ax

�a  2 `
0

�
2c
a � 1

c3
`

�`
e�aZxZ dx � c B 30

�`
e�a(�x) dx � 3

`

0
e�a(x) dxR

3
`

�`
 f (x) dx � 1

�` � x � `

u � av

�
1

2a
eivx

iv  2 a
�a

�
eiav � e�iav

2iav �
sin av

av

E(eivX) � 3
`

�`
eivx f (x) dx �

1
2a3

a

�a
eivx dx

f (x) � e1>2a Z x Z � a

0 otherwise

vu � v

eiu � cos u � i sin u  e�iu � cos u � i sin u
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3.24. Prove Theorem 3-15, page 81.

If X and Y are independent, then E(XY) � E(X )E(Y). Therefore, by Problem 3.23,

3.25. Find (a) E(X), (b) E(Y), (c) E(XY), (d) E(X2), (e) E(Y2), (f ) Var (X), (g) Var (Y), (h) Cov (X, Y), (i) , if the
random variables X and Y are defined as in Problem 2.8, pages 47–48.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

3.26. Work Problem 3.25 if the random variables X and Y are defined as in Problem 2.33, pages 61–63.

Using c � 1 210, we have:

(a)

(b)

(c) E(XY ) �
1

2103
6

x�2
3

5

y�0
(xy)(2x � y) dx dy �

80
7

E(Y ) �
1

2103
6

x�2
3

5

y�0
(y)(2x � y) dx dy �

170
63

E(X ) �
1

2103
6

x�2
3

5

y�0
(x)(2x � y) dx dy �

268
63

>

r �
sXY

sXsY
�

�20>147

2230>441255>49
�

�20

2230255
� �0.2103 approx.

sXY � Cov (X, Y ) � E(XY ) � E(X )E(Y ) �
17
7 � ¢ 29

21 ≤ ¢ 13
7 ≤ � �

20
147

s2
Y � Var (Y ) � E(Y2) � [E(Y )]2 �

32
7 � ¢ 13

7 ≤ 2

�
55
49

s2
X � Var (X) � E(X2) � [E(X)]2 �

17
7 � ¢ 29

21 ≤ 2

�
230
441

� (0)2(6c) � (1)2(9c) � (2)2(12c) � (3)2(15c) � 192c �
192
42 �

32
7

E(Y2) � a
x
a
y

 y2 f (x, y) � a
y

y2Ba
x

 f (x, y)R� (0)2(6c) � (1)2(14c) � (2)2(22c) � 102c �
102
42 �

17
7

E(X2) � a
x
a
y

 x2 f(x, y) � a
x

 x2Ba
y

  f (x, y)R� 102c �
102
42 �

17
7

� (2)(0)(4c) � (2)(1)(5c) � (2)(2)(6c) � (2)(3)(7c)

� (1)(0)(2c) � (1)(1)(3c) � (1)(2)(4c) � (1)(3)(5c)

� (0)(0)(0) � (0)(1)(c) � (0)(2)(2c) � (0)(3)(3c)

E(XY ) � a
x
a
y

 xy f (x, y)

� (0)(6c) � (1)(9c) � (2)(12c) � (3)(15c) � 78c �
78
42 �

13
7

E(Y ) � a
x
a
y

 yf (x, y) � a
y

 yBa
x

  f (x, y)R� (0)(6c) � (1)(14c) � (2)(22c) � 58c �
58
42 �

29
21

E(X ) � a
x
a
y

xf (x, y) � a
x

xBa
y

  f (x, y)R r

sXY � Cov (X, Y ) � E(XY ) � E(X )E(Y ) � 0
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(d)

(e)

(f)

(g)

(h)

(i)

Conditional expectation, variance, and moments
3.27. Find the conditional expectation of Y given X � 2 in Problem 2.8, pages 47–48.

As in Problem 2.27, page 58, the conditional probability function of Y given X � 2 is

Then the conditional expectation of Y given X � 2 is

where the sum is taken over all y corresponding to X � 2. This is given by

3.28. Find the conditional expectation of (a) Y given X, (b) X given Y in Problem 2.29, pages 58–59.

(a)

(b)

3.29. Find the conditional variance of Y given X for Problem 2.29, pages 58–59.

The required variance (second moment about the mean) is given by

where we have used the fact that from Problem 3.28(a).

Chebyshev’s inequality
3.30. Prove Chebyshev’s inequality.

We shall present the proof for continuous random variables. A proof for discrete variables is similar if integrals
are replaced by sums. If f(x) is the density function of X, then

s2 � E[(X � m)2] � 3
`

�`
(x � m)2f (x) dx

m2 � E(Y uX � x) � 2x>3
E[(Y � m2)2 uX � x] � 3

`

�`
(y � m2)2f2(y u x)dy � 3

x

0 

¢y �
2x
3 ≤ 2¢ 2y

x2 ≤  dy �
x2

18

�
2(1 � y3)

3(1 � y2)
�

2(1 � y � y2)
3(1 � y)

E(X uY � y) � 3
`

�`
xf1(x u y) dx � 3

1

y 

x¢ 2x
1 � y2 ≤  dx

E(Y uX � x)3
`

�`
 yf2(y u x) dy � 3

x

0  

y¢ 2y

x2 ≤  dy �
2x
3

E(Y uX � 2) � (0)¢ 4
22 ≤ � 1¢ 5

22 ≤ � 2¢ 6
22 ≤ � 3¢ 7

22 ≤ �
19
11

E(Y uX � 2) � a
y

 y¢ 4 � y
22 ≤

f (y u2) �
4 � y

22

r �
sXY

sXsY
�

�200>3969

25036>3969216,225>7938
�

�200

22518216,225
� �0.03129 approx.

sXY � Cov(X, Y ) � E(XY ) � E(X )E(Y) �
80
7 � ¢ 268

63 ≤ ¢170
63 ≤ � �

200
3969

s2
Y � Var (Y) � E(Y2) � [E(Y )]2 �

1175
126 � ¢ 170

63 ≤ 2

�
16,225
7938

s2
X � Var (X ) � E(X2) � [E(X )]2 �

1220
63 � ¢ 268

63 ≤ 2

�
5036
3969

E(Y2) �
1

2103
6

x�2
3

5

y�0
(y2)(2x � y) dx dy �

1175
126

E(X2) �
1

2103
6

x�2
3

5

y�0
(x2)(2x � y) dx dy �

1220
63
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Since the integrand is nonnegative, the value of the integral can only decrease when the range of integration is
diminished. Therefore,

But the last integral is equal to . Hence,

3.31. For the random variable of Problem 3.18, (a) find . (b) Use Chebyshev’s inequality to ob-
tain an upper bound on and compare with the result in (a).

(a) From Problem 3.18, � 1 2. Then

Therefore

(b) From Problem 3.18, . Chebyshev’s inequality with P � 1 then gives

Comparing with (a), we see that the bound furnished by Chebyshev’s inequality is here quite crude. In practice,
Chebyshev’s inequality is used to provide estimates when it is inconvenient or impossible to obtain exact values.

Law of large numbers
3.32. Prove the law of large numbers stated in Theorem 3-19, page 83.

We have

Then

so that

where we have used Theorem 3-5 and an extension of Theorem 3-7.
Therefore, by Chebyshev’s inequality with X � Sn n, we have

Taking the limit as , this becomes, as required,

Other measures of central tendency
3.33. The density function of a continuous random variable X is

(a) Find the mode. (b) Find the median. (c) Compare mode, median, and mean.

f (x) � e4x(9 � x2)>81 0 �  x � 3

0 otherwise

lim
nS`  P¢ 2  Sn

n � m 2 � P ≤ � 0

n S `

P¢ 2  Sn

n � m 2 � P≤  �
s2

nP 2

>

Var ¢ Sn

n ≤ �
1
n2   Var (Sn) �

s2

n

Var (Sn) � Var (X1 � c� Xn) � Var (X1) � c� Var (Xn) � ns2

E ¢Sn

n ≤ � E ¢X1 � c� Xn

n ≤ �
1
n  [E(X1) � c� E(Xn)] �

1
n  (nm) � m

Var (X1) � Var (X2) � c � Var (Xn) � s2

E(X1) � E(X2) � c � E(Xn) � m

P( uX � m u � 1) � s2 � 0.25

s2 � mr2 � m2 � 1>4
P¢ 2  X �

1
2  2 � 1≤ � 1 � (1 � e�3) � e�3 � 0.04979

� 3
3>2
0

2e�2x dx � 1 � e�3

P( uX � m u � 1) � P¢ 2  X �
1
2  2 � 1≤ � P¢�

1
2 � X �

3
2 ≤>m

P( uX � m u � 1)
P( uX � m u � 1)

P( uX � m u � P) �  
s2

P2

P( uX � m u � P)

s2 � 3
ux�mu �P

(x � m)2f (x) dx � 3
ux�mu �P

P2f (x) dx � P23
ux�mu �P

f (x) dx
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(a) The mode is obtained by finding where the density f (x) has a relative maximum. The relative maxima of
f (x) occur where the derivative is zero, i.e.,

Then approx., which is the required mode. Note that this does give the maximum since
the second derivative, �24x 81, is negative for 

(b) The median is that value a for which . Now, for ,

Setting this equal to 1 2, we find that

2a4 � 36a2 � 81 � 0

from which

Therefore, the required median, which must lie between 0 and 3, is given by

from which a � 1.62 approx.

(c)

which is practically equal to the median. The mode, median, and mean are shown in Fig. 3-6.

E(X ) �
4

813
3

0
x2(9 � x2) dx �

4
81  ¢3x3 �

x5

5 ≤ 2
0

3

� 1.60

a2 � 9 �
9
222

a2 �
36  2(36)2 � 4(2)(81)

2(2) �
36  2648

4 � 9 
9
222

>

P(X � a) �
4

813
a

0 

x(9 � x2) dx �
4

81  ¢ 9a2

2 �
a4

4 ≤0 � a � 3P(X � a) � 1>2
x � !3.>

x � !3 � 1.73

d
dx  B4x(9 � x2)

81 R �
36 � 12x2

81 � 0
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3.34. A discrete random variable has probability function f(x) � 1 2x where x � 1, 2, . . . . Find (a) the mode,
(b) the median, and (c) compare them with the mean.

(a) The mode is the value x having largest associated probability. In this case it is x � 1, for which the
probability is 1 2.

(b) If x is any value between 1 and 2, and Therefore, any number between 1 and
2 could represent the median. For convenience, we choose the midpoint of the interval, i.e., 3 2.

(c) As found in Problem 3.3, � 2. Therefore, the ordering of the three measures is just the reverse of that in
Problem 3.33.

m

>
P(X � x) �

1
2.P(X � x) �

1
2

>

>



Percentiles
3.35. Determine the (a) 10th, (b) 25th, (c) 75th percentile values for the distribution of Problem 3.33.

From Problem 3.33(b) we have

(a) The 10th percentile is the value of a for which P(X a) � 0.10, i.e., the solution of (18a2 � a4) 81 � 0.10.
Using the method of Problem 3.33, we find a � 0.68 approx.

(b) The 25th percentile is the value of a such that (18a2 � a4) 81 � 0.25, and we find a � 1.098 approx.

(c) The 75th percentile is the value of a such that (18a2 � a4) 81 � 0.75, and we find a � 2.121 approx.

Other measures of dispersion
3.36. Determine, (a) the semi-interquartile range, (b) the mean deviation for the distribution of Problem 3.33.

(a) By Problem 3.35 the 25th and 75th percentile values are 1.098 and 2.121, respectively. Therefore,

(b) From Problem 3.33 the mean is . Then

Skewness and kurtosis
3.37. Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 3.19.

From Problem 3.19(b) we have

(a) Coefficient of skewness 

(b) Coefficient of kurtosis 

It follows that there is a moderate skewness to the left, as is indicated in Fig. 3-6. Also the distribution is
somewhat less peaked than the normal distribution, which has a kurtosis of 3.

Miscellaneous problems
3.38. If M(t) is the moment generating function for a random variable X, prove that the mean is � M (0) and

the variance is 2 � M (0) � [M (0)]2.

From (32), page 79, we have on letting r � 1 and r � 2,

Then from (27)

m2 � s2 � Ms(0) � [Mr(0)]2m � Mr(0)

mr2 � Ms(0)mr1 � Mr(0)

rss

rm

� a4 �
m4

s4 � 2.172

� a3 �
m3

s3 � �0.1253

m4 �
3693
8750m3 � �

32
875s2 �

11
25

� 0.555 approx.

� 3
8>5
0
¢8

5 � x≤ B 4x
81  (9 � x2)R  dx � 3

3

8>5¢x �
8
5 ≤ B 4x

81  (9 � x2)R  dx

� 3
3

0 

2  x �
8
5   2 B 4x

81  (9 � x2)R  dx

Mean deviation � M.D.5E(uX � m u) � 3
`

�`
u x � mu f (x) dx

m � 1.60 � 8>5
Semi-interquartile range �

2.121 � 1.098
2 � 0.51 approx.

>
>

>�

P(X � a) �
4

81  ¢ 9a2

2 �
a4

4 ≤ �
18a2 � a4

81
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3.39. Let X be a random variable that takes on the values xk � k with probabilities pk where k � 1, . . . ,  n.
(a) Find the characteristic function ( ) of X, (b) obtain pk in terms of ( ).

(a) The characteristic function is

(b) Multiply both sides of the expression in (a) by and integrate with respect to from 0 to 2 . Then

since

Therefore,

or, replacing j by k,

We often call (where n can theoretically be infinite) the Fourier series of ( ) and pk the
Fourier coefficients. For a continuous random variable, the Fourier series is replaced by the Fourier integral
(see page 81).

3.40. Use Problem 3.39 to obtain the probability distribution of a random variable X whose characteristic func-
tion is .

From Problem 3.39

If k � 1, we find if k � �1, we find For all other values of k, we have pk � 0. Therefore, the
random variable is given by

As a check, see Problem 3.20.

3.41. Find the coefficient of (a) skewness, (b) kurtosis of the distribution defined by the normal curve, having
density

(a) The distribution has the appearance of Fig. 3-7. By symmetry, and . Therefore the
coefficient of skewness is zero.

mr3 � 0mr1 � m � 0

f (x) �
1

22p
 e�x2>2  �` � x � `

X � e 1 probability 1>2
�1 probability 1>2

p�1 �
1
2.p1 �

1
2;

�
1

4p3
2p

v�0
ei(1�k)v dv �

1
4p3

2p

v�0 

e�i(1�k)v dv

�
1

2p3
2p

v�0
e�ikv B eiv � e�iv

2 R  dv

pk �
1

2p3
2p

v�0
e�ikv cosv dv

f(v) � cos v

vfgn
k��n  pkeikv

pk �
1

2p3
2p

v�0
e�ikvf(v) dv

pj �
1

2p3
2p

v�0
e�ijvf(v) dv

3
2p

v�0
ei(k�j)v dv � •

ei(k�j)v

i(k � j)  2 2p
0

� 0 k 2 j

2p k � j

3
2p

v�0
e�ijvf(v) dv � a

n

k��n
 pk3

2p

v�0 

ei(k�j)v dv � 2ppj

pve�ijv

f(v) � E(eivX) � a
n

k��n
eivxk pk � a

n

k��n
pkeikv

vfvf
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(b) We have

where we have made the transformation x2 2 � v and used properties of the gamma function given in (2) and
(5) of Appendix A. Similarly we obtain

Now

Thus the coefficient of kurtosis is

3.42. Prove that �1 1 (see page 82).

For any real constant c, we have

E[{Y � Y � c(X � )}2] 0

Now the left side can be written

�
s2

Xs
2
Y � s2

XY

s2
X

� s2
X¢c �

sXY

s2
X

≤ 2

� s2
Y � s2

X¢c2 �
sXY

s2
X

≤ 2

�
s2

XY

s2
X

� s2
Y � s2

X¢c2 �
2csXY

s2
X

≤E[(Y � mY)2] � c2E[(X � mX)2] � 2cE[(X � mX)(Y � mY)] � s2
Y � c2s2

X � 2csXY

�mm

�r�

m4

s4 � 3

m4 � E[(X � m)4] � E(X4) � mr4 � 3

s2 � E[(X � m)2] � E(X )2 � mr2 � 1

�
4

2p
 � ¢ 5

2 ≤ �
4

2p
?

3
2 ?

1
2  � ¢ 1

2 ≤ � 3

�
4

2p
3
`

0
v3>2e�v  dv

mr4 � E(X4) �
1

22p
3
`

�`
x4e�x2>2  dx �

2

22p
3
`

0
x4e�x2>2  dx

>
�

2

2p
 �¢ 3

2 ≤ �
2

2p
?

1
2  �¢ 1

2 ≤ � 1

�
2

2p
3
`

0
v1>2e�v  dv

mr2 � E(X2) �
1

22p
3
`

�`
x2e�x2>2  dx �

2

22p
3
`

0
x2e�x2>2  dx
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In order for this last quantity to be greater than or equal to zero for every value of c, we must have

which is equivalent to or .

SUPPLEMENTARY PROBLEMS

Expectation of random variables

3.43. A random variable X is defined by 

3.44. Let X be a random variable defined by the density function 

Find (a) E(X ), (b) E(3X � 2), (c) E(X2).

3.45. The density function of a random variable X is

Find (a) E(X ), (b) E(X2), (c) E[(X � 1)2].

3.46. What is the expected number of points that will come up in 3 successive tosses of a fair die? Does your answer
seem reasonable? Explain.

3.47. A random variable X has the density function . Find E(e2X 3).

3.48. Let X and Y be independent random variables each having density function

Find (a) E(X � Y ), (b) E(X2 � Y2), (c) E(XY ).

3.49. Does (a) E(X � Y ) � E(X ) � E(Y), (b) E(XY ) � E(X)E(Y), in Problem 3.48? Explain.

3.50. Let X and Y be random variables having joint density function

Find (a) E(X), (b) E(Y ), (c) E(X � Y ), (d) E(XY ).

3.51. Does (a) E(X � Y ) � E(X ) � E(Y), (b) E(XY ) � E(X)E(Y), in Problem 3.50? Explain.

3.52. Let X and Y be random variables having joint density

Find (a) E(X), (b) E(Y ), (c) E(X � Y ), (d) E(XY ).

f (x, y) � e4xy 0 � x � 1, 0 � y � 1

0 otherwise

f (x, y) � e 3
5 x(x � y) 0 � x � 1, 0 � y � 2

0 otherwise

f (u) � e2e�2u u � 0

0 otherwise

>f (x) � e e�x x � 0

0 x � 0

f (x) � e e�x x � 0

0 otherwise
.

f (x) � e3x2 0 � x � 1

0 otherwise
.

X � •
�2 prob. 1>3
 3 prob. 1>2. Find (a) E(X ), (b) E(2X � 5), (c) E(X2).

1 prob. 1>6

�1 � r � 1r2 � 1

s2
Xs

2
Y � s2

XY � 0 or 
s2

XY

s2
X s

2
Y

 � 1
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3.53. Does (a) E(X � Y ) � E(X ) � E(Y), (b) E(XY ) � E(X )E(Y ), in Problem 3.52? Explain.

3.54. Let . Find (a) E(X ), (b) E(Y ), (c) E(X2), (d) E(Y2),

(e) E(X � Y ), (f ) E(XY).

3.55. Let X and Y be independent random variables such that

Find (a) E(3X � 2Y ), (b) E(2X2 � Y2), (c) E(XY ), (d) E(X2Y ).

3.56. Let X1, X2, . . . , Xn be n random variables which are identically distributed such that

Find (a) E(Xl � X2 � � Xn), (b) 

Variance and standard deviation
3.57. Find (a) the variance, (b) the standard deviation of the number of points that will come up on a single toss of a

fair die.

3.58. Let X be a random variable having density function

Find (a) Var(X ), (b) X.

3.59. Let X be a random variable having density function

Find (a) Var(X ), (b) X.

3.60. Find the variance and standard deviation for the random variable X of (a) Problem 3.43, (b) Problem 3.44.

3.61. A random variable X has E(X ) � 2, E(X2) � 8. Find (a) Var(X ), (b) X.

3.62. If a random variable X is such that E[(X � 1)2] � 10, E[(X � 2)2] � 6 find (a) E(X ), (b) Var(X ), (c) X.

Moments and moment generating functions
3.63. Find (a) the moment generating function of the random variable

and (b) the first four moments about the origin.

X � e 1>2 prob. 1>2
�1>2 prob. 1>2

s

s

s

f (x) � e e�x x � 0

0 otherwise

s

f (x) � e1>4 �2 � x � 2

0 otherwise

E(X2
1 � X2

2 � c� X2
n).c

Xk � •
1 prob. 1>2
2 prob. 1>3

�1 prob. 1>6

X � e1 prob. 1>3
0 prob. 2>3  Y � e 2 prob. 3>4

�3 prob. 1>4

f (x, y) � e 1
4  (2x � y) 0 �  x � 1, 0 � y � 2

0 otherwise
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3.64. (a) Find the moment generating function of a random variable X having density function

(b) Use the generating function of (a) to find the first four moments about the origin.

3.65. Find the first four moments about the mean in (a) Problem 3.43, (b) Problem 3.44.

3.66. (a) Find the moment generating function of a random variable having density function

and (b) determine the first four moments about the origin.

3.67. In Problem 3.66 find the first four moments about the mean.

3.68. Let X have density function . Find the kth moment about (a) the origin,

(b) the mean.

3.69. If M(t) is the moment generating function of the random variable X, prove that the 3rd and 4th moments about
the mean are given by

Characteristic functions

3.70. Find the characteristic function of the random variable .

3.71. Find the characteristic function of a random variable X that has density function

3.72. Find the characteristic function of a random variable with density function

3.73. Let be independent random variables (k � 1, 2, . . . , n). Prove that the characteristic

function of the random variable

is

3.74. Prove that as the characteristic function of Problem 3.73 approaches (Hint: Take the logarithm of
the characteristic function and use L’Hospital’s rule.)

e�v2>2.n S `

[cos (v>!n)]n.

X1 � X2 � c � Xn

2n

Xk � e 1 prob. 1>2
�1 prob. 1>2

f (x) � e x>2 0 � x � 2

0 otherwise

f (x) � e1>2a u x u �  a

0 otherwise

X � ea prob. p

b prob. q � 1 � p

m3 � M-(0) � 3Ms(0)Mr(0) � 2[Mr(0)]3

m4 � M(iv)(0) � 4M-(0)Mr(0) � 6Ms(0)[Mr(0)]2 � 3[Mr(0)]4

f (x) � e1>(b � a) a � x �  b

0 otherwise

f (x) � e e�x x � 0

0 otherwise

f (x) � e x>2 0 �  x � 2

0 otherwise
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Covariance and correlation coefficient
3.75. Let X and Y be random variables having joint density function

Find (a) Var(X ), (b) Var(Y ), (c) X, (d) Y, (e) XY, (f ) .

3.76. Work Problem 3.75 if the joint density function is .

3.77. Find (a) Var(X), (b) Var(Y ), (c) X, (d) Y, (e) XY, (f ) , for the random variables of Problem 2.56.

3.78. Work Problem 3.77 for the random variables of Problem 2.94.

3.79. Find (a) the covariance, (b) the correlation coefficient of two random variables X and Y if E(X ) � 2, E(Y ) � 3,
E(XY) � 10, E(X2) � 9, E(Y2) � 16.

3.80. The correlation coefficient of two random variables X and Y is while their variances are 3 and 5. Find the
covariance.

Conditional expectation, variance, and moments
3.81. Let X and Y have joint density function

Find the conditional expectation of (a) Y given X, (b) X given Y.

3.82. Work Problem 3.81 if 

3.83. Let X and Y have the joint probability function given in Table 2-9, page 71. Find the conditional expectation of
(a) Y given X, (b) X given Y.

3.84. Find the conditional variance of (a) Y given X, (b) X given Y for the distribution of Problem 3.81.

3.85. Work Problem 3.84 for the distribution of Problem 3.82.

3.86. Work Problem 3.84 for the distribution of Problem 2.94.

Chebyshev’s inequality
3.87. A random variable X has mean 3 and variance 2. Use Chebyshev’s inequality to obtain an upper bound for 

(a) P( X �3 2), (b) P( X � 3 1).

3.88. Prove Chebyshev’s inequality for a discrete variable X. (Hint: See Problem 3.30.)

3.89. A random variable X has the density function (a) Find P( X � � 2). (b) Useumuf (x) �
1
2  e�|x|, �` � x � `.

�uu�uu

f (x, y) � e2e�(x�2y) x � 0, y �  0

0 otherwise

f (x, y) � e x � y 0 � x � 1,  0 �  y � 1

0 otherwise

�
1
4

rsss

f (x, y) � e e�(x�y) x � 0, y �  0

0 otherwise

rsss

f (x, y) � e x � y 0 � x � 1,  0 � y �  1

0 otherwise
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Law of large numbers
3.90. Show that the (weak) law of large numbers can be stated as

and interpret.

3.91. Let Xk (k = 1, . . . , n) be n independent random variables such that

(a) If we interpret Xk to be the number of heads on the kth toss of a coin, what interpretation can be given to 
Sn � X1 � � Xn?

(b) Show that the law of large numbers in this case reduces to

and interpret this result.

Other measures of central tendency
3.92. Find (a) the mode, (b) the median of a random variable X having density function

and (c) compare with the mean.

3.93. Work Problem 3.100 if the density function is

3.94. Find (a) the median, (b) the mode for a random variable X defined by

and (c) compare with the mean.

3.95. Find (a) the median, (b) the mode of the set of numbers 1, 3, 2, 1, 5, 6, 3, 3, and (c) compare with the mean.

Percentiles
3.96. Find the (a) 25th, (b) 75th percentile values for the random variable having density function

3.97. Find the (a) 10th, (b) 25th, (c) 75th, (d) 90th percentile values for the random variable having density function

where c is an appropriate constant.

Other measures of dispersion
3.98. Find (a) the semi-interquartile range, (b) the mean deviation for the random variable of Problem 3.96.

3.99. Work Problem 3.98 for the random variable of Problem 3.97.

f (x) � e c(x � x3) 0 � x � 1

0 otherwise

f (x) � e2(1 � x) 0 � x � 1

0 otherwise

X � e 2 prob. 1>3
�1 prob. 2>3

f (x) � e4x(1 � x2) 0 � x � 1

0 otherwise

f (x) � e e�x x � 0

0 otherwise

lim
nS`

 P¢ 2  Sn

n � p 2  � P≤ � 0

c

Xk � e1 prob. p

0 prob. q � 1 � p

lim
nS`

P¢ 2  Sn

n � m 2 �  P≤ � 1
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3.100. Find the mean deviation of the random variable X in each of the following cases.

(a) (b) 

3.101. Obtain the probability that the random variable X differs from its mean by more than the semi-interquartile
range in the case of (a) Problem 3.96, (b) Problem 3.100(a).

Skewness and kurtosis
3.102. Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 3.100(a).

3.103. If

where c is an appropriate constant, is the density function of X, find the coefficient of (a) skewness,
(b) kurtosis.

3.104. Find the coefficient of (a) skewness, (b) kurtosis, for the distribution with density function

Miscellaneous problems
3.105. Let X be a random variable that can take on the values 2, 1, and 3 with respective probabilities 1 3, 1 6, and

1 2. Find (a) the mean, (b) the variance, (c) the moment generating function, (d) the characteristic function,
(e) the third moment about the mean.

3.106. Work Problem 3.105 if X has density function

where c is an appropriate constant.

3.107. Three dice, assumed fair, are tossed successively. Find (a) the mean, (b) the variance of the sum.

3.108. Let X be a random variable having density function

where c is an appropriate constant. Find (a) the mean, (b) the variance, (c) the moment generating function,
(d) the characteristic function, (e) the coefficient of skewness, (f ) the coefficient of kurtosis.

3.109. Let X and Y have joint density function

Find (a) E(X2 � Y2), (b) 

3.110. Work Problem 3.109 if X and Y are independent identically distributed random variables having density
function f (u) � (2p)�1>2e�u2>2, �` � u � `.

E(!X2 � Y2).

f (x, y) � e cxy 0 � x � 1, 0 � y � 1

0 otherwise

f (x) � e cx 0 � x �  2

0 otherwise

f (x) � e c(1 � x) 0 � x � 1

0 otherwise

>
>>

f (x) � e  le� lx x � 0

0 x � 0

f (x) � • c Q1 �
ux u
a R ux u  � a

0 ux u � a

f (x) �
1

p(1 � x2)
, �` � x � `.f (x) � e e�x x � 0

0 otherwise
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3.111. Let X be a random variable having density function

and let Y � X2. Find (a) E(X), (b) E(Y), (c) E(XY).

ANSWERS TO SUPPLEMENTARY PROBLEMS

3.43. (a) 1 (b) 7 (c) 6 3.44. (a) 3 4 (b) 1 4 (c) 3 5

3.45. (a) 1 (b) 2 (c) 1 3.46. 10.5 3.47. 3

3.48. (a) 1 (b) 1 (c) 1 4

3.50. (a) 7 10 (b) 6 5 (c) 19 10 (d) 5 6

3.52. (a) 2 3 (b) 2 3 (c) 4 3 (d) 4 9

3.54. (a) 7 12 (b) 7 6 (c) 5 12 (d) 5 3 (e) 7 4 (f) 2 3

3.55. (a) 5 2 (b) –55 12 (c) 1 4 (d) 1 4

3.56. (a) n (b) 2n 3.57. (a) 35 12 (b) 

3.58. (a) 4 3 (b) 3.59. (a) 1 (b) 1

3.60. (a) Var(X) = 5, (b) Var(X) = 3 80,

3.61. (a) 4 (b) 2 3.62. (a) 7 2 (b) 15 4 (c) 

3.63. (a) (b) 

3.64. (a) (1 � 2te2t – e2t) 2t2 (b)

3.65. (a) 1 � 0, 2 � 5, 3 � �5, 4 � 35 (b) 1 � 0, 2 � 3 80, 3 � �121 160, 4 � 2307 8960

3.66. (a) 1 (1 � t), | t | � 1 (b) 

3.67.

3.68. (a) (bk�1 – ak�1) (k � 1)(b � a) (b) [1 � (�1)k](b � a)k 2k � 1(k � 1)

3.70. 3.71. 3.72. (e2iv � 2ive2iv � 1)>2v2( sin av)>avpeiva � qeivb

>>

m1 � 0, m2 � 1, m3 � 2, m4 � 33

m � 1, mr2 � 2, mr3 � 6, mr4 � 24>

>m>m>mmmmmm

m � 4>3, mr2 � 2, mr3 � 16>5, mr4 � 16>3>

m � 0, mr2 � 1, mr3 � 0, mr4 � 11
2(e

t>2 � e�t>2) � cosh(t>2)

!15>2>>

sX � 215>20>sX � !5

!4>3>

!35>12>

>>>>

>>>>>>

>>>>

>>>>

>

>>>

f (x) � e 1
2 �1 � x � 1

0 otherwise
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3.75. (a) 11 144 (b) 11 144 (c) (d) (e) –1 144 (f) –1 11

3.76. (a) 1 (b) 1 (c) 1 (d) 1 (e) 0 (f) 0

3.77. (a) 73 960 (b) 73 960 (c) (d) (e) –1 64 (f) –15 73

3.78. (a) 233 324 (b) 233 324 (c) (d) (e) –91 324 (f) –91 233

3.79. (a) 4 (b) 3.80.

3.81. (a) (3x � 2) (6x � 3) for 0 x 1 (b) (3y � 2) (6y � 3) for 0 y 1

3.82. (a) 1 2 for x 0 (b) 1 for y 0

3.83. (a) (b)

��>

��>��>

�!15>44>!35

>>!233>18!233>18>>

>>!73>960!73>960>>

>>!11>12!11>12>>
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X 0 1 2

E(Y X) 4 3 1 5 7>>u

Y 0 1 2

E(X Y) 4 3 7 6 1 2>>>u

3.84. (a) for 0 x 1 (b) for 0 y 1

3.85. (a) 1 9 (b) 1

3.86. (a) (b)

>

��
6y2 � 6y �1

18(2y � 1)2��
6x2 � 6x � 1
18(2x � 1)2

X 0 1 2

Var(Y X) 5 9 4 5 24 49>>>u

Y 0 1 2

Var(X Y) 5 9 29 36 7 12>>>u

3.87. (a) 1 2 (b) 2 (useless) 3.89. (a) e–2 (b) 0.5

3.92. (a) � 0 (b) ln 2 (c) 1 3.93. (a) (b) (c) 8 15

3.94. (a) does not exist (b) –1 (c) 0 3.95. (a) 3 (b) 3 (c) 3

3.96. (a) (b) 1 2

3.97. (a) (b) (c) (d) 

3.98. (a) 1 (b) (c) 16 81

3.99. (a) 1 (b) 0.17 (c) 0.051 3.100. (a) 1 � 2e–1 (b) does not exist

3.101. (a) (b) 

3.102. (a) 2 (b) 9 3.103. (a) 0 (b) 24 5a 3.104. (a) 2 (b) 9>

(3 � 2e�1!3)>3(5 � 2!3)>3

>(!3 � 1)>4

#1 � (1>!10)!1>2#1 � (23>2)#1 � (3>!10)

>1 �
1
2!3

>#1 � (1>!2)1>!3

>



3.105. (a) 7 3 (b) 5 9 (c) (et � 2e2t � 3e3t) 6 (d) (e) �7 27

3.106. (a) 1 3 (b) 1 18 (c) 2(et � 1 � t) t2 (d) (e) 1 135

3.107. (a) 21 2 (b) 35 4

3.108. (a) 4 3 (b) 2 9 (c) (1 � 2te2t � e2t) 2t2 (d)
(e) (f ) 12 5

3.109. (a) 1 (b) 

3.110. (a) 2 (b) 

3.111. (a) 0 (b) 1 3 (c) 0>

!2p>2

8(2!2 � 1)>15

>�2!18>15
�(1 � 2ive2iv � e2iv)>2v2>>>

>>

>�2(eiv � 1 � iv)>v2>>>

>(eiv � 2e2iv � 3e3iv)>6>>>
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Unit – 3 & 4 
Test of Hypothesis 

 
1. Define Sample.  

Solution:    A  Sample is a part of the statistical population (i.e) it is a subset which 
is collected to draw an inference about the population. 

2. Define Sample size.  
Solution:The number of individuals in a sample is called the sample size 

3. Define Null hypotheses and Alternative hypothesis. 
Solution:  For applying the test of significance, we first set up of a hypothesis, a 
definite statement about the population parameter, such a hypothesis is usually 
called as null hypothesis and it is denoted by H0. 

                   Any hypothesis which is complementary to the null hypothesis is called 
an alternative hypothesis and it is denoted byH1. 

4. A random sample of 200 tins of coconut oil gave an average weight of 4.95 kgs 
with SD of 0.21 kg.  Do we accept the hypothesis of net weight 5 kgs per tin at 
1% level ? Explain. (L6) 
Solution: 
Sample size n=200 
                   Sample mean�̅�=4.95kg 
                   Sample SD s=0.21kg 
                  Population mean µ=5kg. 
The sample is a large sample and so apply z-test. 
H0 : µ=5kg 
H1 : µ≠5kg 

The test statistic is z=
�̅�−µ

𝑠 √𝑛⁄
 

=
4.95 − 5

0.21 200⁄
=

−.05 × √200

0.21
= −3.37 

∴ |𝑧|=3.37 
𝐴𝑡 1% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑖𝑠 2.58. 

𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧: H0 is rejected at 1% 𝑙𝑒𝑣𝑒𝑙 since calculated value of |𝑧| is greater 
than the table value of z.Therefore the net weight tin is not equal to 5 kg. 

5. A sample of 900 items has mean 3.4 and SD 2.61.  Test weather the sample be 
regarded as drawn from a population with mean 3.25 at 5% level of 
significance? (L4) 
Solution: 
Sample size n=900 



                   Sample mean�̅�=3.4 
                   Sample SD s=2.61 
                  Population mean µ=3.25 
The sample is a large sample and so apply z-test. 
H0 : µ=3.25 
H1 : µ≠3.25 

The test statistic is z=
�̅�−µ

𝑠 √𝑛⁄
 

=
3.4 − 3.25

2.61 √900⁄
=

0.15

2.61 30⁄
= 1.72 

∴ |𝑧|=1.72 
𝐴𝑡 1% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑖𝑠 2.58. 

𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧: H0 is accepted at 1% 𝑙𝑒𝑣𝑒𝑙 since calculated value of |𝑧| is less than 
the table value of z.Therefore H0  is accepted. 

6. A Sample of 400 male  students is found to have a mean height of 171.38 cms.  
Can it be reasonable regarded as a sample from a large population with mean 
height 171.17 cms and standard deviation 3.30 cms? Justify? (L6) 
Solution: 
                 Sample size n=400 
                   Sample mean�̅�=171.38cm 
                   Population SD𝜎=3.30cm 
                  Population mean µ=171.17cm 
The sample is a large sample and so apply z-test. 
H0 : µ=171.17cm 
H1 : µ≠171.17cm 

The test statistic is z=
�̅�−µ

𝑠 √𝑛⁄
 

=
171.38 − 171.17

3.30 √400⁄
=

0.21 × 20

3.30
= 1.27 

∴ |𝑧|=1.72 
𝐴𝑡 5% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑖𝑠 1.96. 

𝑪𝒐𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏: H0 is accepted at 5% 𝑙𝑒𝑣𝑒𝑙 since calculated value of |𝑧| is less than 
the table value of z.Therefore H0 is accepted andµ=171.17cm. 

7. The mean of two samples of 1000 and 2000 numbers are respectively 67.5 and 
68 inches.  Can they be regarded as draws from the same population with SD 2.5 
inches? Justify? (L6) 
Solution: 
�̅�1=67.5, �̅�2=68 



𝑛1=1000, 𝑛2=2000 
                     Population SD𝜎=2.5 
The two given samples are large samples. 
 H0 : µ1=µ2 
H1 :µ1 ≠ µ2 

The test statistic is z=
�̅�1−�̅�2

𝜎 √
1

𝑛1
+

1

𝑛2
⁄

  = 
67.5−68

2.5 √
1

1000
+

1

2000
⁄

 =−6.25 

∴ |𝑧|=6.25 
𝐴𝑡 1% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑖𝑠 2.58. 

𝑪𝒐𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏: H0 is rejected at 1% 𝑙𝑒𝑣𝑒𝑙 since calculated value of |𝑧| is greater 
than the table value of z. 
∴H0 is rejected at 1% 𝑙𝑒𝑣𝑒𝑙 of significance and so the two samples cannot be 
regarded as belonging to the same population. 

8. The random samples of sizes 400 and 500 have mean 10.9 and 11.5 respectively.  
Can the samples be regarded as drawn from the same population with variance 
25? Justify? (L6) 
Solution: 
�̅�1=10.9, �̅�2=11.5 
𝑛1=400, 𝑛2=500 
𝜎2=25 
The two given samples are large samples. 
 H0 : µ1=µ2 
H1 :µ1 ≠ µ2 

The test statistic is z=
�̅�1−�̅�2

𝜎 √
1

𝑛1
+

1

𝑛2
⁄

  = 
10.9−11.5

5 √
1

400
+

1

500
⁄

 =−2.38 

∴ |𝑧|=2.38 
𝐴𝑡 1% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑖𝑠 2.58. 

𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧: H0 is accepted at 1% 𝑙𝑒𝑣𝑒𝑙 since calculated value of |𝑧| is less than 
the table value of z. 
Therefore the samples come from the population with variance 25. 

9. A sample of 26 bulbs given a mean life of 990 hours with a SD of 20 hours.  The 
manufactures claims that the mean life of bulbs is 1000 hours. Is the sample not 
upto the standard? Justify? (L6) 
Solution: 
Sample size n=26< 30(𝑠𝑚𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒) 
                   Sample mean�̅�=990 
                   Sample SD s=20 



                  Population mean µ=1000 
                 Degrees of freedom=n-1=26-1=25 
Here we know �̅�,µ,SD and n.Therefore, we use student’s ‘t’ test. 
H0 : The sample is upto the standard. 
H1 : The sample is not upto the standard. 

The test statistic is t=
�̅�−µ

𝑠 √𝑛−1⁄
 

=
990 − 1000

20 √25⁄
= −2.5 

∴ |𝑡|=2.5  (i.e) Calculated t=2.5 
𝐴𝑡 5% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑎𝑡 25𝑑. 𝑓 𝑖𝑠 2.06 

𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧:H0is rejected as calculated value is greater than the tabulated 
value. ∴The sample is not upto the standard. 

10.In one sample of 8 observations the sum of the squares of deviations of the 
sample values from the sample mean was 84.4 and it the other sample of 10 
observations it was 102.6.  Test whether this difference is significant at 5% 
level? (L4) 
Solution: 
𝑛1=8, 𝑛2=10 

𝑆1
2 = ∑

(𝑥−�̅�)2

𝑛1−1
=

84.4

7
=12.057 

𝑆2
2 = ∑

(𝑦−�̅�)2

𝑛2−1
=

102.6

9
 =11.4 

H0 :𝑆1
2 = 𝑆2

2 

Now F=
𝑆1

2

𝑆2
2 = 

12.057

11.4
 = 1.057 

(i.e) calculated F=1.057 
Tabulated value of F for(7,9) degrees of freedom is 3.29. 
Calculated value F<Tabulated value F 
∴We accept the null hypothesis. 

11.A sample of size 13 gave an estimates population variance of 3.0, while another 
sample of size 15 gave an estimate of 2.5.  Could both samples be from 
populations with the same variance. Justify? (L6) 
Solution: 
𝑛1=13, 𝑛2=15 

𝑆1
2 = ∑

(𝑥 − �̅�)2

𝑛1 − 1
 

𝑆2
2 = ∑

(𝑦 − 𝑦)2

𝑛2 − 1
 



H0 :𝑆1
2 = 𝑆2

2.The two samples have come from populations with same variance.  
∴The test statistic is 

F=
𝑆1

2

𝑆2
2 = 

(𝐺𝑟𝑒𝑎𝑡𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

(𝑆𝑚𝑎𝑙𝑙𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)
 = 

3.0

2.5
=1.2 

(i.e) calculated F=1.2 
Tabulated value of F for(12,14) degrees of freedom is 2.53 
Calculated value F<Tabulated value F 
∴We accept the null hypothesis H0 

(𝑖. 𝑒) Both samples have come from the  populations with the same variance. 
12.Write the test procedure of Chi-square test? (L5) 

Solution: 
(i)  Write down the null hypothesis 
(ii) Write down the alternative hypothesis. 
(iii) Calculate the theoretical frequencies for the contingency. 

(iv) Calculate ℵ2=∑
(𝑂−𝐸)2

𝐸
 

(v) Write down the number of degress of freedom. 
(vi) Write the conclusion on the hypothesis by comparing the calculated values of 
ℵ2with table value of ℵ2 

13.Write the uses of ℵ2 – test? (L1) 
Solution: 
(i) It is used to test the goodness of a distribution. 
(ii) It is used to test the significance of the difference between the observed 
frequencies in a sample and the expected frequencies,obtained from the 
theoretical distribution. 
(iii)It is also used to test the independence of attributes. 
(iv)In case of small samples(where the population standard deviation is not 
known)  ℵ2 statistic is used to test whether a specified value can be the population 
variance 𝜎2. 

14.A machine is designed to produce insulation washers for electrical devices of 
average thickness of 0.025cm. A random sample of 10 washers was found to 
have a thickness of 0.024cm with a S.D of 0.002 cm. Test the significance of the 
deviation value of t for 9 degrees of freedom at  5% 𝒍𝒆𝒗𝒆𝒍 is 2.262. (L4) 
Solution: 
Sample size n=10< 30(𝑠𝑚𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒) 
                   Sample mean�̅�=0.024cm 
                   Sample SD s=0.002cm 
                  Population mean µ=0.025cm 



                 Degrees of freedom=n-1=10-1=9 
Here we know �̅�,µ,SD and n.Therefore, we use student’s ‘t’ test. 
H0 : The difference between �̅� and µ is not significant 

The test statistic is t=
�̅�−µ

𝑠 √𝑛−1⁄
= −1.5 

∴ |𝑡|=1.5  (i.e) Calculated t=1.5 
𝐴𝑡 5% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑎𝑡 9𝑑. 𝑓 𝑖𝑠 2.06 

𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧:H0 is accepted as calculated value is less than the tabulated value. 
 

PART-B 
1. Find student’s  t, for  the following  variate value in a sample of eight -4, -2,-

2,0,2,2,3,3 taking the  mean of the universe to be zero.(L1) 
Solution: 
                Number of samples=8 
∴n=8 
                Mean of universe is zero 
∴ µ=0 
�̅�=average value of X 

                     =
(−4)+(−2)+(−2)+0+2+2+3+3

8
 

                     =0.25 
                  To calculate S,we have the formula 

S =√
∑(𝑋−�̅�)2

𝑛−1
 

Hypothesis: There is no significant difference between sample mean and 
population mean 
 
 

𝑋 𝑋 − �̅� (𝑋 − �̅�)2 
−4 −4.25 18.06 

−2 −2.25 5.06 

−2 −2.25 5.06 

       0 −0.25 0.06 

       2 1.75 3.06 

      2 1.75 3.06 

      3       2.75 7.56 

     3       2.75 7.56 



∑(𝑋 − �̅�)2 = 49.98 

               S =√
∑(𝑋−�̅�)2

𝑛−1
= √

49,48

8−1
 =√5.497 =2.658 

  t=
�̅�−µ

𝑆 √𝑛−1⁄
=

0.25−0

2.658 √7⁄
 =0.248 

            Table value=2.26 
∴calculated value <tabulated value 
∴ Hypothesis is accepted and so there is no significant difference between sample 
mean and population mean. 

2. Ten students are selected at random in a university and their heights are 
measured in inches as 64,65,65,67,67,69,69,70,72 and 72.Using these data, 
Discuss the suggestion that the mean height of the students in the university is 
66.(At 5% level of significance the value of t for 9 d.f is 2.262).(L2) 
 
Solution: 

t=
�̅�−µ

𝑆 √𝑛⁄
 

S =√
∑(𝑋−�̅�)2

𝑛−1
 

�̅�=average value of X 

  =
64+65+65+67+67+69+69+70+72+72

10
     =68                  

Hypothesis: There is no significant difference between sample height and 
population height. 
 

𝑋 𝑋 − �̅� (𝑋 − �̅�)2 
64 −4 16 

65 −3 9 

65 −3 9 

67 −1 1 

67 −1 1 

69            1 1 

69            1 1 

70           2 4 

72           4 16 

72           4 16 

∑(𝑋 − �̅�)2 = 74 



S=√
74

10−1
=√

74

9
 =2.867 

Here �̅�=68, µ = 66, n = 10 

𝑡 =
68−66

2.867 √10⁄
=2.205 

Table value=2.26 
∴calculated value <tabulated value,therefore Hypothesis is accepted and the 
height of population group can be taken as 66. 

3. A fertilizer mixing machine is set to give 12kg of nitrate for every quintal bag of 
fertilizer.Ten 100kg bags are examined.The percentages of nitrate are as follows 
11,14,13,12,13,12,13,14,11,12.Is there reason to belive that the machines is 
defective? (value of t for 9 d.f is 2.262). Justify? (L6) 
Solution: 
Hypothesis: There is no significant difference between sample percentage and 
population percentage. 
 Here  n=10 

µ = 12 
 �̅�=average value of X 

               =
11+14+13+12+13+12+13+14+11+12

10
   =12.5 

 

𝑋 𝑋 − �̅� (𝑋 − �̅�)2 
11 −1.5 2.25 

14 1.5 2.25 

13 0.5 0.25 

12 −0.5 0.25 

13 0.5 0.25 

12 −0.5 0.25 

13      0.5 0.25 

14     1.5 2.25 

11 −1.5 2.25 

12 −0.5 0.25 

∑(𝑋 − �̅�)2 = 10.5 

To calculate S,we have the formula 

                        S =√
∑(𝑋−�̅�)2

𝑛−1
=√

10.5

10−1
 

                        S=1.08 



                       t=
�̅�−µ

𝑆 √𝑛⁄
=

12.5−12

1.08
× 3 

                      t=1.389 
Table value=2.26 
∴calculated value <tabulated value 
∴ Hypothesis is accepted and the machine cannot be believed to be defective. 

4. Two random samples drawn from two normal populations are given below.Test 
whether the two populations have the same variances (L4) 

Samples I 20 16 26 27 23 22 18 24 25 19   

Samples II 17 23 32 25 22 24 28 6 31 20 33 27 

Solution: 
Hypothesis: There is no significant difference between variances of the two 
samples. 
By Formula 

F=
𝑆1

2

𝑆2
2 if 𝑆1

2 > 𝑆2
2 

             = 
𝑆2

2

𝑆1
2 if 𝑆2

2 > 𝑆1
2 

𝑤ℎ𝑒𝑟𝑒 𝑆1
2 = ∑

(𝑋1 − 𝑋1
̅̅ ̅)2

𝑛1 − 1
 

𝑆2
2 = ∑

(𝑋2 − 𝑋2
̅̅ ̅)2

𝑛2 − 1
 

Here 𝑛1 = 10, 𝑛2=12 
Calculating the averages of two samples we get, 

𝑋1
̅̅ ̅ = 22, 𝑋2

̅̅ ̅ = 24 
 

𝑋1 𝑋1 − 𝑋1
̅̅ ̅ (𝑋1 − 𝑋1

̅̅ ̅)2 𝑋2 𝑋2 − 𝑋2
̅̅ ̅ (𝑋2 − 𝑋2

̅̅ ̅)2 
20 −2 4 17 −7 49 

16 −6 36 23 −1 1 

26 4 16 32 8 64 

27 5 25 25 1 1 

23 1 1 22 −2 4 

22 0 0 24 0 0 

18 −4 16 28 4 16 

24 2 4 6 −18 324 

25 3 9 31 7 49 

19 −3 9 33 9 81 

   20 −4 16 



   27 3 9 
∑(𝑋1 − 𝑋1

̅̅ ̅)2 = 120 ∑(𝑋2 − 𝑋2
̅̅ ̅)2 =614 

             𝑆1
2 = ∑

(𝑋1 − 𝑋1
̅̅ ̅)2

𝑛1 − 1
=

120

9
= 13.33 

            𝑆2
2 = ∑

(𝑋2 − 𝑋2
̅̅ ̅)2

𝑛2 − 1
=

614

11
= 55.81              ⇒ 𝑆2

2 > 𝑆2
2 

                ∴F=
𝑆2

2

𝑆1
2=

55.81

13.33
=4.18 

               Degrees of freedom 𝛾1 = 12 − 1 = 11,      𝛾2 = 10 −1 = 9 
              Table value=3.10 
             Calculated value > Table value 
∴  Hypothesis is rejected. 
∴  There is significant difference between the variance.  

5.  In  two groups of ten children each increases in weight  due to  two       different  
diets  in the same period were in pounds. 

 8 5 7 8 3 2 7 6 5 7 

3 7 5 6 5 4 4 5 3 6 

Find  whether  the variance  are  significantly  different . (L1) 
Solution :  
Ho : there is no significant Diffenence between the variance of the two  
samples  

F = 
𝑆1

2

𝑆2
2      If  𝑆1

2 > 𝑆2
2=   

𝑆2
2

𝑆1
2   𝑖𝑓   𝑆2

2 > 𝑆1
2 

Where     𝑆1
2 =

∑(𝑋1−𝑋1̅̅̅̅ )2

𝑛1−1
 Here  𝑛1=10 𝑛2= 10 

                            𝑆2
2 =

∑(𝑋2−𝑋2̅̅̅̅ )2

𝑛2−1
𝑋1
 ⃐    =5.8𝑋1

 ⃐   =4.8 

𝑋1                   𝑋1- 𝑋1
 ⃐    (𝑋1 − 𝑋1

 ⃐   )
2

 𝑋2                   𝑋2- 𝑋2
 ⃐    (𝑋2 − 𝑋2

 ⃐   )
2
 

3 
5 
7 
8 
3 
2 
7 
6 
5 
7 

2.2 
-0.8 
1.2 
2.2 
-2.8 
-3.8 
1.2 
0.2 
-0.8 
1.2 

4.84 
0.64 
1.44 
4.84 
7.84 

14.44 
1.44 
0.04 
1.64 
1.44 

3 
7 
5 
6 
5 
4 
4 
5 
3 
6 

-1.8 
2.2 
0.2 
1.2 
0.2 
-0.8 
-0.8 
0.2 
-1.8 
1.2 

3.24 
4.84 
0.04 
1.44 
0.04 
0.64 
0.64 
0.04 
3.24 
1.44 



  ∑(𝑋1 − 𝑋1
 ⃐   )

2
 =37.6               ∑(𝑋2 − 𝑋2

 ⃐   )
2

=15.6 

𝑆1
2 =

∑(𝑋1−𝑋1̅̅̅̅ )2

𝑛1−1
  =

37.6

9
=4.18 

𝑆2
2 =

∑(𝑋2−𝑋2̅̅̅̅ )2

𝑛2−1
=

15.6

9
=1.73 

      𝐻𝑒𝑟𝑒      𝑆1
2 > 𝑆2

2 

F = 
𝑆1

2

𝑆2
2      =

4.18

1.73
 =2.42 

      𝐻𝑒𝑟𝑒               
𝑣1=10-1=9       𝑣2=10-1=9 
Degrees of freedom =9.9 
Table value for the Degrees of freedom  9.9 at 5% level =3.23 
Calculated value =2.42 < 𝑇𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 
∴ 𝐻0 =Accepted 
There is no significant deffeerence between the variance . 

6. The nicotine contents in milligrams in two samples of tobacco were found  
    to be as follows.      

Samples A 24 27 26 21 25  

Samples B 27 30 28 31 22 36 

      Can it be said that the two samples have same variance.Justify?(L6) 
Solution :   
𝐻0 = There is no significant deffeerence between the variance of the two samples  

 
 
 
 
 
 
 
 
 

�̅�=
∑ 𝑋

𝑛 
=

123

5
 =24.6  

�̅�=
∑ 𝑌

𝑛 
=

174

6
 =29 

𝑆1
2 =

∑(𝑋−�̅�)2

𝑛1−1
  =

21.2

4
=5.3 

𝑆2
2 =

∑(𝑌−�̅�)2

𝑛2−1
=

108

5
=21.6 

𝑋 𝑋- �̅� (𝑋 − X̅)2 𝑌  𝑌- �̅� (𝑌 − Y̅)2 

24 
27 
26 
21 
25 
 

0.6 
2.4 
1.4 
3.6 
0.4 
 

0.36 
5.76 
1.96 
12.96 
0.16 

27 
30 
28 
31 
22 
36 

-2 
1 
-1 
2 
-7 
7 

4 
1 
1 
4 
49 
49 

123  21.2 174  108 



F=   
𝑆2

2

𝑆1
2=

21.6

5.3
 =4.07  

Calculated value =4.07 
Table value of F for (5,4 ) d,f at 5% level  is 6.26  
∴  calculated value  calculated value < Table value.  
∴  We accept 𝐻0   𝑖e  ;     The variance  are equal .     

7. Two random samples were drawn from two normal populations and their  
    values are  

  A 66 67 75 76 82 84 88 90 92   

B 64 66 74 78 82 85 87 92 93 95 97 

 
Test whether the two populations have the same variance at 5% level of   
Significance. (L4) 
Solution : 
There is no significant difference between the variance of the sample . 

𝑋 𝑋- �̅� (𝑋 − X̅)2 𝑌  𝑌- �̅� (𝑌 − Y̅)2 

66 
67 
75 
76 
82 
84 
88 
90 
92 
 

-14 
-13 
-5 
-4 
2 
4 
8 
10 
12 
 

196 
169 
25 
16 
4 
16 
64 
100 
144 

64 
66 
74 
78 
82 
85 
87 
92 
93 
95 
97 

-19 
-17 
-9 
-5 
-1 
2 
4 
9 
10 
12 
14 

361 
289 
81 
25 
1 
4 
16 
81 
100 
144 
196 

720 0 734 913 0 1298 

𝑆1
2 =

∑(𝑋−�̅�)2

𝑛1−1
  =

734

8
=91.                     𝑆2

2 =
∑(𝑌−�̅�)2

𝑛2−1
=

1298

10
=129.8            

𝑆2
2 > 𝑆1

2 

F=   
𝑆2

2

𝑆1
2=

129.8

91.75
 =1.41 

Degree of freedom is (10,8) 
Table value of F =3.34   AT  5% LEVEL  
∴  calculated value  < Table value.  
∴  WE Accepted  𝐻0. 
There is no significant difference between the variance of the two population .  



8. Do the following data give evidence of the effectiveness of 
inoculation?Justify?(L6) 

 Attacked Not attacked 

Inoculated 20 300 

Not inoculated 80 600 

Solution : 
𝐻0 : There is no effect inoculation . 
Table of observed frequencies is formed from the given data . 
 

   TOTAL  

 20 
80 

300 
600 

320 
680 

TOTAL 100 900 1000 

 Table of expected frequencies     

Total 
100×320

1000
=32 

900×320

1000
=288 320  

100×6800

1000
=68 

900×680

1000
=612 680 

Total 100 900   1000 

𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

O E O-E (𝑂 − 𝐸)2 (𝑂 − 𝐸)2

𝐸
 

20 
300 
80 
600 

32 
288 
68 
612 

-12 
12 
12 
-12 

144 
144 
144 
144 

4.5 
0.50 
2.12 
0.24 

    
∑

(𝑂 − 𝐸)2

𝐸
 = 7.36 

 
Degrees of freedom =(𝑟 − 1)(𝑐 − 1)   =(2 − 1)(2 − 1)   =1 
Table value of ℵ2  for 1 d.f at 5% Level   Is  3.841  
c.v= 7.36     T.V =3.841   C.V>T.V 
∴  Hypothesis is rejected  ..There is effect of inoculation. 

9. The following data are collected on two characters 

 Smokers Non smokers 

Literates 83 57 



Illiterates 45 68 

Based on this ,can you say there is no relation between smoking and  literacy. 
Justify?  (L6) 
Solution : 
𝐻0 : There is no relation between smoking and literacy . 
Table of observed frequencies   
 

   Total 

 83 
45 

57 
68 

140 
113 
 

Total 128 125 253 

Table of expected frequencies 

Total 
 

128×140

253
=70.83 

125×140

253
=69.17 140 

 
100×6800

1000
=57.17 

900×680

1000
=55.83 113 

 

Total 128 125     253   

𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

O E O-E (𝑂 − 𝐸)2 (𝑂 − 𝐸)2

𝐸
 

83 
57 
45 
68 

70.83 
69.17 
57.17 
55.83 

12.17 
-12.17 
-12.17 
12.17 

148.11 
148.11 
148.11 
148.11 

2.09 
2.14 
2.59 
2.65 

    
∑

(𝑂 − 𝐸)2

𝐸
 = 9. .47 

 Degrees of freedom =(𝑟 − 1)(𝑐 − 1)   =(2 − 1)(2 − 1)   =1 
Table value of ℵ2  for 1 d.f at 5% Level   Is  3.841  
c.v= 7.36     T.V =3.841   C.V>T.V 
∴  Hypothesis is rejected  ..There is a relation between smoking and literacy. 

10.The following table gives the number of good and bad parts produced by  
     each of three shifts in a factory. 

        Shifts Good Bad 

Day 900 130 



Evening 700 170 

Night 400 200 

Test if there is any association between shifts and quality. (L4) 
 Solution : 
𝐻0 : There is no sognificant association  between shifts and literacy quality. 
Table of observed frequencies   

   Total 

 900 
700 
400 

130 
170 
200 

1030 
870 
600 

Total 2000 500 2500 

 Table of expected frequencies.      

Total 
    2000×1030

2500
  =824 

500×1030

2500
  =206 1030 

 
     2000×870

2500
  =696 

500×870

2500
  =174 870 

 
     2000×600

2500
  =480   

500×600

2500
  =120 600 

 

Total 2000 500   2500 

𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

O E O-E (𝑂 − 𝐸)2 (𝑂 − 𝐸)2

𝐸
 

900 
130 
700 
170 
400 
200 

824 
206 
696 
174 
480 
120 

76 
-76 
4 
-4 
-80 
-80 

5776 
5776 
16 
16 
6400 
6400 

7.01 
28.04 
0.02 
0.09 
13.33 
53.33 

    
∑

(𝑂 − 𝐸)2

𝐸
 = 9. .47 

Degrees of freedom =(𝑟 − 1)(𝑐 − 1)   =(3 − 1)(2 − 1)   =2 
Table value of ℵ2  for 2 d.f at 5% Level   Is  5.99  
c.v= 101.83    T.V =5.99   C.V>T.V 
∴  Hypothesis is rejected  ..There is a  association between shifts and quality. 

11.The number of students in each category is given following table. 

 Ability in Mathematics 



Such in Medical school  Low Average High 

Low 14 8 5 

Average 12 51 11 

High 7 24 18 

       On the basis of contingency table,should we conclude that success in  
       medical  school is related to ability in Mathematics? Test at  0.05 level  of  
significant.    (L4) 
Solution : 
𝐻0 : There is no sognificant relation  between success and  abilityTable of  
observed frequencies   
 

    Total 

 14 
12 
7 

8 
51 
24 

5 
11 
18 

27 
74 
49 

Total 33 83 34 150 

 Table ofexpected frequencies.      

Total 
33×27

150
  =5.94 

83×27

150
  =14.9 

34×27

150
  =6.12 27   

  33×74

150
  =16.2   

83×74

150
   =40.9 

34×74

150
  =16.7 74 

  33×49

150
  =10.7 

83×49

150
  =27.1 

34×49

150
  =11.1 49 

Total                33                  83                      34 150 

𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

O E O-E (𝑂 − 𝐸)2 (𝑂 − 𝐸)2

𝐸
 

14 
8 
5 
12 
51 
11 
7 
24 
18 

5.94 
14.9 
6.12 
16.2 
40.9 
16.7 
10.7 
27.1 
11.1 

8.06 
-6.90 
-1.12 
-4.20 
10.10 
-5.7 
-3.7 
-3.10 
6.90 

64.96 
47.61 
1.25 
17.64 
102.01 
32.49 
13.69 
9.61 
47.61. 

10.94 
3.20 
0.20 
1.09 
2.49 
1.95 
1.28 
0.35 
4.29 



    
∑

(𝑂 − 𝐸)2

𝐸
 = 9. .47 

 
Degrees of freedom =(𝑟 − 1)(𝑐 − 1)   =(3 − 1)(3 − 1)   =4 
Table value of ℵ2  for 4 d.f at 5% Level   is  9.488  
c.v= 25.79    T.V =9.488 C.V>T.V 
∴  Hypothesis is rejected. There is a relation between success and ability. 

12.A  sample analysis of examination results of 500 students was made.It  was 
found that 220 students had failed,170 had secured a third class,90 were placed 
in second class and 20 got a first class.Do these figures  commensurate  with the 
general examination result which is in the ratio of 4:3:2:1 for the various 
categories respectively.Explain? (L6) 
Solution:  
Null hypothesis H0: The observed results commensurate with the general 
examination results. 
Expected frequencies are in the ratio of 4: 3: 2: 1 
      Total frequency=500 
If we divide the total frequency 500 in the ratio 4: 3: 2: 1 we get the expected 
frequencies as 200,150,100,50 
𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

class Observed frequency 
    (O) 

Expected frequencies 
     (E)  

  O−E (𝑂 − 𝐸)2

𝐸
 

Failed 
Third 
Second 
first 

220 
170 
90 
20 

200 
150 
100 
50 

20 
20 

−10 
−30 

2.00 
2.667 
1.000 
18.000 

Total 500 500  23.667 

 

Calculated ℵ2 = ∑
(𝑂−𝐸)2

𝐸
 = 23.667 

Degrees of freedom = 4-1 
(i.e) 𝛾 = 3 
∴table value of ℵ2 at 5% level for 3 d.f=7.81 
∴calculated value>table value 
∴We reject the null hypothesis (i.e) The observed results are not commensurate 
with the general examination results. 



13.On the basis of information given below about the treatment of 200     patients 
suffering from a disease,state whether the new treatment is       comparatively 
superior to the conventional treatment. (L1) 

 Favourable Not favourable Total 

New 60 30 90 

Conventional 40 70 110 

 
Solution: 
Null hypothesis H0:No difference between new and conventional treatment (or) 
New and conventional treatment are independent. 
The no. of d.f is (2−1)(2−1)=1 
Expected Frequency table: 

Total 
90×100

100
  =45 

90×100

200
  =45 90 

100×110

100
  =55 

100×110

200
  =55 110 

Total 100                  100   200 

 
𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

Observed frequency 
(O) 

Expected frequencies 
(E) 

(𝑂 − 𝐸)2 (𝑂 − 𝐸)2

𝐸
 

60 
30 
40 
70 

45 
45 
55 
55 

225 
225 
225 
225 

2.00 
2.667 
1.000 
18.000 

   18.18 

 

Calculated ℵ2 = ∑
(𝑂−𝐸)2

𝐸
 = 18.18 

∴Table value of ℵ2 at 5% level for 1 d.f=3.841 
∴calculated value>table value and so we reject the null hypothesis. 
(𝑖. 𝑒)New and conventional treatment are not independent. 

14.Give the table for hair colour and eye colour.Find the value of 𝝍𝟐.Is there  good 
association between the two. (L1) 

 Hair colour 

Eye colour 
 Fair Brown Black Total 

Blue 15 5 20 40 



Grey 20 10 20 50 

Brown 25 15 20 60 

Total 60 30 60 150 

Solution: 
Null hypothesis H0:The two attributes Hair colour and Eye colour are independent.  
 
Expected Frequency table: 

Total 
60×40

150
  =16 

30×40

150
  =8 

60×40

150
  =16 40 

60×50

150
  =20 

30×50

150
  =10 

60×50

150
  =20 50 

 60×60

150
=24 

30×60

150
  =12 

60×60

150
  =24 60 

Total              60                30              60 150 

𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

Observed frequency 
(O) 

Expected frequencies 
(E) 

(𝑂 − 𝐸)2 (𝑂 − 𝐸)2

𝐸
 

15 16 1 0.0625 

5 8 9 1.125 

20 16 16 1 

20 20 0 0 

10 10 0 0 

20 20 0 0 

25 24 1 0.042 

15 12 9 0.75 

20 24 16 0.666 

Calculated ℵ2 = ∑
(𝑂−𝐸)2

𝐸
 = 3.6458 

∴Table value of ℵ2 at 5% level for 4 d.f=9.488 
∴calculated value<table value and so we accept the null hypothesis. 
(𝑖. 𝑒) The two attributes Hair colour and Eye colour are independent.  
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Describe categories of statistical quality control (SQC).
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Identify and describe causes of variation.

Describe the use of control charts.
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� Statistica1 quality control
(SQC)
The general category of
statistical tools used to
evaluate organizational
quality.

� Descriptive statistics
Statistics used to describe
quality characteristics and
relationships.

We have all had the experience of purchasing a prod-

uct only to discover that it is defective in some way

or does not function the way it was designed to. This

could be a new backpack with a broken zipper or an “out

of the box” malfunctioning computer printer. Many of us

have struggled to assemble a product the manufacturer

has indicated would need only “minor” assembly, only to

find that a piece of the product is missing or defective. As

consumers, we expect the products we purchase to func-

tion as intended. However, producers of products know

that it is not always possible to inspect every product and

every aspect of the production process at all times. The challenge is to design ways to

maximize the ability to monitor the quality of products being produced and eliminate

defects.

One way to ensure a quality product is to build quality into the process. Consider

Steinway & Sons, the premier maker of pianos used in concert halls all over the world.

Steinway has been making pianos since the 1880s. Since that time the company’s

manufacturing process has not changed significantly. It takes the company nine

months to a year to produce a piano by fashioning some 12,000-hand crafted parts,

carefully measuring and monitoring every part of the process. While many of Stein-

way’s competitors have moved to mass production, where pianos can be assembled in

20 days, Steinway has maintained a strategy of quality defined by skill and craftsman-

ship. Steinway’s production process is focused on meticulous process precision and

extremely high product consistency. This has contributed to making its name synony-

mous with top quality.

In Chapter 5 we learned that total quality management (TQM) addresses organiza-
tional quality from managerial and philosophical viewpoints. TQM focuses on
customer-driven quality standards, managerial leadership, continuous improvement,
quality built into product and process design, quality identified problems at the
source, and quality made everyone’s responsibility. However, talking about solving
quality problems is not enough. We need specific tools that can help us make the right
quality decisions. These tools come from the area of statistics and are used to help
identify quality problems in the production process as well as in the product itself.
Statistical quality control is the subject of this chapter.

Statistica1 quality control (SQC) is the term used to describe the set of statistical
tools used by quality professionals. Statistical quality control can be divided into three
broad categories:

1. Descriptive statistics are used to describe quality characteristics and relation-
ships. Included are statistics such as the mean, standard deviation, the range,
and a measure of the distribution of data.

WHAT IS STATISTICAL QUALITY CONTROL?

Marketing, Management,
Engineering



WHAT IS STATISTICAL QUALITY CONTROL? • 173

2. Statistical process control (SPC) involves inspecting a random sample of the
output from a process and deciding whether the process is producing products
with characteristics that fall within a predetermined range. SPC answers the
question of whether the process is functioning properly or not.

3. Acceptance sampling is the process of randomly inspecting a sample of goods
and deciding whether to accept the entire lot based on the results. Acceptance
sampling determines whether a batch of goods should be accepted or rejected.

The tools in each of these categories provide different types of information for use in
analyzing quality. Descriptive statistics are used to describe certain quality characteris-
tics, such as the central tendency and variability of observed data. Although descriptions
of certain characteristics are helpful, they are not enough to help us evaluate whether
there is a problem with quality. Acceptance sampling can help us do this. Acceptance
sampling helps us decide whether desirable quality has been achieved for a batch of
products, and whether to accept or reject the items produced. Although this informa-
tion is helpful in making the quality acceptance decision after the product has been pro-
duced, it does not help us identify and catch a quality problem during the production
process. For this we need tools in the statistical process control (SPC) category.

All three of these statistical quality control categories are helpful in measuring and
evaluating the quality of products or services. However, statistical process control
(SPC) tools are used most frequently because they identify quality problems during
the production process. For this reason, we will devote most of the chapter to this
category of tools. The quality control tools we will be learning about do not only
measure the value of a quality characteristic. They also help us identify a change or
variation in some quality characteristic of the product or process. We will first see
what types of variation we can observe when measuring quality. Then we will be able
to identify specific tools used for measuring this variation.

Variation in the production process
leads to quality defects and lack of
product consistency. The Intel Cor-
poration, the world’s largest and
most profitable manufacturer of
microprocessors, understands this.
Therefore, Intel has implemented a
program it calls “copy-exactly” at all
its manufacturing facilities. The
idea is that regardless of whether
the chips are made in Arizona, New
Mexico, Ireland, or any of its other
plants, they are made in exactly the
same way. This means using the same equipment, the same exact materials, and workers
performing the same tasks in the exact same order. The level of detail to which the
“copy-exactly” concept goes is meticulous. For example, when a chipmaking machine
was found to be a few feet longer at one facility than another, Intel made them match.
When water quality was found to be different at one facility, Intel instituted a purifica-
tion system to eliminate any differences. Even when a worker was found polishing
equipment in one direction, he was asked to do it in the approved circular pattern. Why
such attention to exactness of detail? The reason is to minimize all variation. Now let’s
look at the different types of variation that exist.

� Acceptance sampling
The process of randomly
inspecting a sample of goods
and deciding whether to
accept the entire lot based on
the results.

� Statistical process 
control (SPC)
A statistical tool that involves
inspecting a random sample
of the output from a process
and deciding whether the
process is producing products
with characteristics that fall
within a predetermined
range.

LINKS TO PRACTICE

Intel Corporation
www.intel.com
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� Common causes of
variation
Random causes that cannot
be identified.

� Assignable causes of
variation
Causes that can be identified
and eliminated.

� Mean (average)
A statistic that measures the
central tendency of a set of
data.

If you look at bottles of a soft drink in a grocery store, you will notice that no two
bottles are filled to exactly the same level. Some are filled slightly higher and some
slightly lower. Similarly, if you look at blueberry muffins in a bakery, you will notice
that some are slightly larger than others and some have more blueberries than others.
These types of differences are completely normal. No two products are exactly alike
because of slight differences in materials, workers, machines, tools, and other factors.
These are called common, or random, causes of variation. Common causes of varia-
tion are based on random causes that we cannot identify. These types of variation are
unavoidable and are due to slight differences in processing.

An important task in quality control is to find out the range of natural random
variation in a process. For example, if the average bottle of a soft drink called Cocoa
Fizz contains 16 ounces of liquid, we may determine that the amount of natural vari-
ation is between 15.8 and 16.2 ounces. If this were the case, we would monitor the
production process to make sure that the amount stays within this range. If produc-
tion goes out of this range — bottles are found to contain on average 15.6 ounces —
this would lead us to believe that there is a problem with the process because the vari-
ation is greater than the natural random variation.

The second type of variation that can be observed involves variations where the
causes can be precisely identified and eliminated. These are called assignable causes
of variation. Examples of this type of variation are poor quality in raw materials, an
employee who needs more training, or a machine in need of repair. In each of these
examples the problem can be identified and corrected. Also, if the problem is allowed
to persist, it will continue to create a problem in the quality of the product. In the ex-
ample of the soft drink bottling operation, bottles filled with 15.6 ounces of liquid
would signal a problem. The machine may need to be readjusted. This would be an
assignable cause of variation. We can assign the variation to a particular cause (ma-
chine needs to be readjusted) and we can correct the problem (readjust the machine).

SOURCES OF VARIATION: COMMON AND ASSIGNABLE CAUSES

Descriptive statistics can be helpful in describing certain characteristics of a product
and a process. The most important descriptive statistics are measures of central ten-
dency such as the mean, measures of variability such as the standard deviation and
range, and measures of the distribution of data. We first review these descriptive sta-
tistics and then see how we can measure their changes.

The Mean
In the soft drink bottling example, we stated that the average bottle is filled with
16 ounces of liquid. The arithmetic average, or the mean, is a statistic that measures
the central tendency of a set of data. Knowing the central point of a set of data is highly
important. Just think how important that number is when you receive test scores!

To compute the mean we simply sum all the observations and divide by the total
number of observations. The equation for computing the mean is

x �
�
n

i�1

x i

n

DESCRIPTIVE STATISTICS
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where � the mean
xi � observation i, i � 1, . . . , n
n � number of observations

The Range and Standard Deviation
In the bottling example we also stated that the amount of natural variation in the
bottling process is between 15.8 and 16.2 ounces. This information provides us with
the amount of variability of the data. It tells us how spread out the data is around the
mean. There are two measures that can be used to determine the amount of variation
in the data. The first measure is the range, which is the difference between the largest
and smallest observations. In our example, the range for natural variation is 0.4
ounces.

Another measure of variation is the standard deviation. The equation for comput-
ing the standard deviation is

where � � standard deviation of a sample
� the mean

xi � observation i, i � 1, . . . , n
n � the number of observations in the sample

Small values of the range and standard deviation mean that the observations are
closely clustered around the mean. Large values of the range and standard deviation
mean that the observations are spread out around the mean. Figure 6-1 illustrates the
differences between a small and a large standard deviation for our bottling operation.
You can see that the figure shows two distributions, both with a mean of 16 ounces.
However, in the first distribution the standard deviation is large and the data are
spread out far around the mean. In the second distribution the standard deviation is
small and the data are clustered close to the mean.

x

� � √ �
n

i�1

(x i � x)2

n � 1

x

� Range
The difference between the
largest and smallest
observations in a set of data.

� Standard deviation
A statistic that measures the
amount of data dispersion
around the mean.

FIGURE 6-1 Normal distributions with varying
standard deviations

Mean
15.7 15.8 15.9 16.0 16.1 16.2 16.3

Large standard deviationSmall standard deviation Symmetric distribution
Skewed distribution

Mean
15.7 15.8 15.9 16.0 16.1 16.2 16.3

FIGURE 6-2 Differences between symmetric and
skewed distributions
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Distribution of Data
A third descriptive statistic used to measure quality characteristics is the shape of the
distribution of the observed data. When a distribution is symmetric, there are the
same number of observations below and above the mean. This is what we commonly
find when only normal variation is present in the data. When a disproportionate
number of observations are either above or below the mean, we say that the data has a
skewed distribution. Figure 6-2 shows symmetric and skewed distributions for the bot-
tling operation.

� Out of control
The situation in which a plot
of data falls outside preset
control limits.

Statistical process control methods extend the use of descriptive statistics to monitor
the quality of the product and process. As we have learned so far, there are common
and assignable causes of variation in the production of every product. Using statistical
process control we want to determine the amount of variation that is common or nor-
mal. Then we monitor the production process to make sure production stays within
this normal range. That is, we want to make sure the process is in a state of control. The
most commonly used tool for monitoring the production process is a control chart.
Different types of control charts are used to monitor different aspects of the produc-
tion process. In this section we will learn how to develop and use control charts.

Developing Control Charts
A control chart (also called process chart or quality control chart) is a graph that
shows whether a sample of data falls within the common or normal range of varia-
tion. A control chart has upper and lower control limits that separate common from
assignable causes of variation. The common range of variation is defined by the use of
control chart limits. We say that a process is out of control when a plot of data reveals
that one or more samples fall outside the control limits.

Figure 6-3 shows a control chart for the Cocoa Fizz bottling operation. The x axis
represents samples (#1, #2, #3, etc.) taken from the process over time. The y axis rep-
resents the quality characteristic that is being monitored (ounces of liquid). The cen-
ter line (CL) of the control chart is the mean, or average, of the quality characteristic
that is being measured. In Figure 6-3 the mean is 16 ounces. The upper control limit
(UCL) is the maximum acceptable variation from the mean for a process that is in a
state of control. Similarly, the lower control limit (LCL) is the minimum acceptable
variation from the mean for a process that is in a state of control. In our example, the

STATISTICAL PROCESS CONTROL METHODS

� Control chart
A graph that shows whether a
sample of data falls within the
common or normal range of
variation.

Observation out of control
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Variation due
to normal causes

Variation due to
assignable causes

Variation due
to assignable causes

LCL = (15.8)

CL = (16.0)

UCL = (16.2)

#1 #2 #3 #4
Sample Number

#5 #6

FIGURE 6-3

Quality control chart for
Cocoa Fizz
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upper and lower control limits are 16.2 and 15.8 ounces, respectively. You can see that
if a sample of observations falls outside the control limits we need to look for assigna-
ble causes.

The upper and lower control limits on a control chart are usually set at �3 stan-
dard deviations from the mean. If we assume that the data exhibit a normal distribu-
tion, these control limits will capture 99.74 percent of the normal variation. Control
limits can be set at �2 standard deviations from the mean. In that case, control limits
would capture 95.44 percent of the values. Figure 6-4 shows the percentage of values
that fall within a particular range of standard deviation.

Looking at Figure 6-4, we can conclude that observations that fall outside the set range
represent assignable causes of variation. However, there is a small probability that a value
that falls outside the limits is still due to normal variation. This is called Type I error, with
the error being the chance of concluding that there are assignable causes of variation
when only normal variation exists. Another name for this is alpha risk (�), where alpha
refers to the sum of the probabilities in both tails of the distribution that falls outside the
confidence limits. The chance of this happening is given by the percentage or probability
represented by the shaded areas of Figure 6-5. For limits of �3 standard deviations from
the mean, the probability of a Type I error is .26% (100% � 99.74%), whereas for limits
of �2 standard deviations it is 4.56% (100% � 95.44%).

Types of Control Charts
Control charts are one of the most commonly used tools in statistical process control.
They can be used to measure any characteristic of a product, such as the weight of a
cereal box, the number of chocolates in a box, or the volume of bottled water. The
different characteristics that can be measured by control charts can be divided into
two groups: variables and attributes. A control chart for variables is used to monitor
characteristics that can be measured and have a continuum of values, such as height,
weight, or volume. A soft drink bottling operation is an example of a variable mea-
sure, since the amount of liquid in the bottles is measured and can take on a number
of different values. Other examples are the weight of a bag of sugar, the temperature
of a baking oven, or the diameter of plastic tubing.

–3σ +3σ–2σ +2σMean

95.44%

99.74%

FIGURE 6-4 Percentage of values captured by different
ranges of standard deviation

–3σ +3σ–2σ +2σMean

99.74%

Type 1 error is .26%

FIGURE 6-5 Chance of Type I error for �3�
(sigma-standard deviations)

� Variable
A product characteristic that
can be measured and has a
continuum of values (e.g.,
height, weight, or volume).

� Attribute
A product characteristic that
has a discrete value and can
be counted.
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A control chart for attributes, on the other hand, is used to monitor characteristics
that have discrete values and can be counted. Often they can be evaluated with a sim-
ple yes or no decision. Examples include color, taste, or smell. The monitoring of
attributes usually takes less time than that of variables because a variable needs to be
measured (e.g., the bottle of soft drink contains 15.9 ounces of liquid). An attribute
requires only a single decision, such as yes or no, good or bad, acceptable or unaccept-
able (e.g., the apple is good or rotten, the meat is good or stale, the shoes have a defect
or do not have a defect, the lightbulb works or it does not work) or counting the
number of defects (e.g., the number of broken cookies in the box, the number of
dents in the car, the number of barnacles on the bottom of a boat).

Statistical process control is used to monitor many different types of variables and
attributes. In the next two sections we look at how to develop control charts for vari-
ables and control charts for attributes.

Control charts for variables monitor characteristics that can be measured and have a
continuous scale, such as height, weight, volume, or width. When an item is inspected,
the variable being monitored is measured and recorded. For example, if we were produc-
ing candles, height might be an important variable. We could take samples of candles and
measure their heights. Two of the most commonly used control charts for variables mon-
itor both the central tendency of the data (the mean) and the variability of the data (ei-
ther the standard deviation or the range). Note that each chart monitors a different type
of information. When observed values go outside the control limits, the process is as-
sumed not to be in control. Production is stopped, and employees attempt to identify the
cause of the problem and correct it. Next we look at how these charts are developed.

Mean (x-Bar) Charts
A mean control chart is often referred to as an x-bar chart. It is used to monitor
changes in the mean of a process. To construct a mean chart we first need to construct
the center line of the chart. To do this we take multiple samples and compute their
means. Usually these samples are small, with about four or five observations. Each
sample has its own mean, . The center line of the chart is then computed as the mean
of all � sample means, where � is the number of samples:

�

�

To construct the upper and lower control limits of the chart, we use the following
formulas:

Upper control limit (UCL) �

Lower control limit (LCL) �

where � the average of the sample means
z � standard normal variable (2 for 95.44% confidence, 3 for 99.74%

confidence)
� standard deviation of the distribution of sample means, computed as 

� � population (process) standard deviation
n � sample size (number of observations per sample)

Example 6.1 shows the construction of a mean (x-bar) chart.

�/√n�x

x

x � z�x

x � z�x

x �
x 1 � x 2 � � � �  x

  

x

CONTROL CHARTS FOR VARIABLES

� x-bar chart
A control chart used to
monitor changes in the mean
value of a process.
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EXAMPLE 6.1

Constructing a
Mean (x-Bar)
Chart

A quality control inspector at the Cocoa Fizz soft drink company has taken twenty-five samples with
four observations each of the volume of bottles filled. The data and the computed means are shown
in the table. If the standard deviation of the bottling operation is 0.14 ounces, use this information
to develop control limits of three standard deviations for the bottling operation.

Observations
Sample (bottle volume in ounces) Average Range
Number 1 2 3 4 R

1 15.85 16.02 15.83 15.93 15.91 0.19
2 16.12 16.00 15.85 16.01 15.99 0.27
3 16.00 15.91 15.94 15.83 15.92 0.17
4 16.20 15.85 15.74 15.93 15.93 0.46
5 15.74 15.86 16.21 16.10 15.98 0.47
6 15.94 16.01 16.14 16.03 16.03 0.20
7 15.75 16.21 16.01 15.86 15.96 0.46
8 15.82 15.94 16.02 15.94 15.93 0.20
9 16.04 15.98 15.83 15.98 15.96 0.21

10 15.64 15.86 15.94 15.89 15.83 0.30
11 16.11 16.00 16.01 15.82 15.99 0.29
12 15.72 15.85 16.12 16.15 15.96 0.43
13 15.85 15.76 15.74 15.98 15.83 0.24
14 15.73 15.84 15.96 16.10 15.91 0.37
15 16.20 16.01 16.10 15.89 16.05 0.31
16 16.12 16.08 15.83 15.94 15.99 0.29
17 16.01 15.93 15.81 15.68 15.86 0.33

18 15.78 16.04 16.11 16.12 16.01 0.34
19 15.84 15.92 16.05 16.12 15.98 0.28
20 15.92 16.09 16.12 15.93 16.02 0.20
21 16.11 16.02 16.00 15.88 16.00 0.23
22 15.98 15.82 15.89 15.89 15.90 0.16
23 16.05 15.73 15.73 15.93 15.86 0.32
24 16.01 16.01 15.89 15.86 15.94 0.15
25 16.08 15.78 15.92 15.98 15.94 0.30

Total 398.75 7.17

• Solution
The center line of the control data is the average of the samples:

The control limits are

LCL � x � z�x � 15.95 � 3 � .14

√4 � � 15.74

UCL � x � z�x � 15.95 � 3 � .14

√4 � � 16.16

 x � 15.95

 x �
398.75

25

x



The resulting control chart is:

This can also be computed using a spreadsheet as shown.
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X-Bar Chart: Cocoa Fizz

Sample Num Obs 1 Obs 2 Obs 3 Obs 4 Average Range
1 15.85 16.02 15.83 15.93 15.91 0.19
2 16.12 16.00 15.85 16.01 16.00 0.27
3 16.00 15.91 15.94 15.83 15.92 0.17
4 16.20 15.85 15.74 15.93 15.93 0.46
5 15.74 15.86 16.21 16.10 15.98 0.47
6 15.94 16.01 16.14 16.03 16.03 0.20
7 15.75 16.21 16.01 15.86 15.96 0.46
8 15.82 15.94 16.02 15.94 15.93 0.20
9 16.04 15.98 15.83 15.98 15.96 0.21
10 15.64 15.86 15.94 15.89 15.83 0.30
11 16.11 16.00 16.01 15.82 15.99 0.29
12 15.72 15.85 16.12 16.15 15.96 0.43
13 15.85 15.76 15.74 15.98 15.83 0.24
14 15.73 15.84 15.96 16.10 15.91 0.37
15 16.20 16.01 16.10 15.89 16.05 0.31
16 16.12 16.08 15.83 15.94 15.99 0.29
17 16.01 15.93 15.81 15.68 15.86 0.33
18 15.78 16.04 16.11 16.12 16.01 0.34
19 15.84 15.92 16.05 16.12 15.98 0.28
20 15.92 16.09 16.12 15.93 16.02 0.20
21 16.11 16.02 16.00 15.88 16.00 0.23
22 15.98 15.82 15.89 15.89 15.90 0.16
23 16.05 15.73 15.73 15.93 15.86 0.32
24 16.01 16.01 15.89 15.86 15.94 0.15
25 16.08 15.78 15.92 15.98 15.94 0.30

15.95 0.29
Number of Samples 25 Xbar-bar R-bar

Number of Observations per Sample 4

Bottle Volume in Ounces

F7: =AVERAGE(B7:E7) G7: =MAX(B7:E7)-MIN(B7:E7)

F32: =AVERAGE(F7:F31) G32: =AVERAGE(G7:G31)
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40
41
42
43
44
45
46
47

A B C D E F G
Computations for X-Bar Chart

Overall Mean (Xbar-bar) = 15.95
Sigma for Process = 0.14 ounces

Standard Error of the Mean = 0.07
Z-value for control charts = 3

CL: Center Line = 15.95
LCL: Lower Control Limit = 15.74
UCL: Upper Control Limit = 16.16

D40: =F32

D42: =D41/SQRT(D34)

D45: =D40

D46: =D40-D43*D42

D47: =D40+D43*D42
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Another way to construct the control limits is to use the sample range as an
estimate of the variability of the process. Remember that the range is simply the dif-
ference between the largest and smallest values in the sample. The spread of the range
can tell us about the variability of the data. In this case control limits would be
constructed as follows:

where � average of the sample means
� average range of the samples

A2 � factor obtained from Table 6-1.

Notice that A2 is a factor that includes three standard deviations of ranges and is de-
pendent on the sample size being considered.

R
x

 Lower control limit (LCL) � x � A2  R

 Upper control limit (UCL) � x � A2  R

EXAMPLE 6.2

Constructing 
a Mean (x-Bar)
Chart from the
Sample Range

A quality control inspector at Cocoa Fizz is using the data from Example 6.1 to develop control
limits. If the average range for the twenty-five samples is .29 ounces (computed as ) and the
average mean of the observations is 15.95 ounces, develop three-sigma control limits for the
bottling operation.

• Solution

The value of A2 is obtained from Table 6.1. For n � 4, A2 � .73. This leads to the following
limits:

The center of the control chart � CL � 15.95 ounces

 LCL � x � A2  R � 15.95 � (.73)(.29) � 15.74

 UCL � x � A2  R � 15.95 � (.73)(.29) � 16.16

R � .29x � 15.95 ounces

(x)

7.17
25(R)



Range (R) Charts
Range (R) charts are another type of control chart for variables. Whereas x-bar
charts measure shift in the central tendency of the process, range charts monitor
the dispersion or variability of the process. The method for developing and using
R-charts is the same as that for x-bar charts. The center line of the control chart
is the average range, and the upper and lower control limits are computed as fol-
lows:

where values for D4 and D3 are obtained from Table 6-1.

 LCL � D3  R

 UCL � D4   
R

 CL � R
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2 1.88 0 3.27

3 1.02 0 2.57

4 0.73 0 2.28

5 0.58 0 2.11

6 0.48 0 2.00

7 0.42 0.08 1.92

8 0.37 0.14 1.86

9 0.34 0.18 1.82

10 0.31 0.22 1.78

11 0.29 0.26 1.74

12 0.27 0.28 1.72

13 0.25 0.31 1.69

14 0.24 0.33 1.67

15 0.22 0.35 1.65

16 0.21 0.36 1.64

17 0.20 0.38 1.62

18 0.19 0.39 1.61

19 0.19 0.40 1.60

20 0.18 0.41 1.59

21 0.17 0.43 1.58

22 0.17 0.43 1.57

23 0.16 0.44 1.56

24 0.16 0.45 1.55

25 0.15 0.46 1.54

TABLE 6-1

Factors for three-sigma control
limits of and R-charts

Source: Factors adapted from the
ASTM Manual on Quality
Control of Materials.

x

Factor for -Chart Factors for R-Chart
Sample Size n A2 D3 D4

x

� Range (R) chart
A control chart that monitors
changes in the dispersion or
variability of process.
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EXAMPLE 6.3

Constructing a
Range (R) Chart

The quality control inspector at Cocoa Fizz would like to develop a range (R) chart in order to mon-
itor volume dispersion in the bottling process. Use the data from Example 6.1 to develop control
limits for the sample range.

• Solution
From the data in Example 6.1 you can see that the average sample range is:

From Table 6-1 for n � 4:

D4 � 2.28

D3 � 0

The resulting control chart is:

LCL � D3   
R � 0 (0.29) � 0

UCL � D4  R � 2.28 (0.29) � 0.6612

 n � 4

 R � 0.29

 R �
7.17

25

LCL CL UCL Sample Mean
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Using Mean and Range Charts Together
You can see that mean and range charts are used to monitor different variables.
The mean or x-bar chart measures the central tendency of the process, whereas the
range chart measures the dispersion or variance of the process. Since both vari-
ables are important, it makes sense to monitor a process using both mean and



range charts. It is possible to have a shift in the mean of the product but not a
change in the dispersion. For example, at the Cocoa Fizz bottling plant the ma-
chine setting can shift so that the average bottle filled contains not 16.0 ounces, but
15.9 ounces of liquid. The dispersion could be the same, and this shift would be
detected by an x-bar chart but not by a range chart. This is shown in part (a) of
Figure 6-6. On the other hand, there could be a shift in the dispersion of the prod-
uct without a change in the mean. Cocoa Fizz may still be producing bottles with
an average fill of 16.0 ounces. However, the dispersion of the product may have in-
creased, as shown in part (b) of Figure 6-6. This condition would be detected by a
range chart but not by an x-bar chart. Because a shift in either the mean or the
range means that the process is out of control, it is important to use both charts to
monitor the process.
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15.8 15.9 16.0 16.1 16.2
Mean

15.8 15.9 16.0 16.1 16.2
Mean

UCL

LCL

x-chart
UCL

LCL

R-chart

(a) Shift in mean detected by x-chart but not by R-chart

15.8 15.9 16.0 16.1 16.2
Mean

15.8 15.9 16.0 16.1 16.2
Mean

UCL

LCL

x-chart
UCL

LCL

R-chart

(b) Shift in dispersion detected by R-chart but not by x-chart

–

–

–

–

FIGURE 6-6

Process shifts captured by -charts
and R-charts

x

Control charts for attributes are used to measure quality characteristics that are
counted rather than measured. Attributes are discrete in nature and entail simple
yes-or-no decisions. For example, this could be the number of nonfunctioning
lightbulbs, the proportion of broken eggs in a carton, the number of rotten ap-
ples, the number of scratches on a tile, or the number of complaints issued. Two

CONTROL CHARTS FOR ATTRIBUTES
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of the most common types of control charts for attributes are p-charts and
c-charts.

P-charts are used to measure the proportion of items in a sample that are
defective. Examples are the proportion of broken cookies in a batch and the pro-
portion of cars produced with a misaligned fender. P-charts are appropriate when
both the number of defectives measured and the size of the total sample can be
counted. A proportion can then be computed and used as the statistic of mea-
surement.

C-charts count the actual number of defects. For example, we can count the num-
ber of complaints from customers in a month, the number of bacteria on a petri dish,
or the number of barnacles on the bottom of a boat. However, we cannot compute the
proportion of complaints from customers, the proportion of bacteria on a petri dish,
or the proportion of barnacles on the bottom of a boat.

Problem-Solving Tip: The primary difference between using a p-chart and a c-chart is as follows.
A p-chart is used when both the total sample size and the number of defects can be computed.
A c-chart is used when we can compute only the number of defects but cannot compute the propor-
tion that is defective.

P-Charts
P-charts are used to measure the proportion that is defective in a sample. The com-
putation of the center line as well as the upper and lower control limits is similar to
the computation for the other kinds of control charts. The center line is computed as
the average proportion defective in the population, . This is obtained by taking a
number of samples of observations at random and computing the average value of p
across all samples.

To construct the upper and lower control limits for a p-chart, we use the following
formulas:

where z � standard normal variable
� the sample proportion defective
� the standard deviation of the average proportion defective

As with the other charts, z is selected to be either 2 or 3 standard deviations, depend-
ing on the amount of data we wish to capture in our control limits. Usually, however,
they are set at 3.

The sample standard deviation is computed as follows:

where n is the sample size.

�p � √ p(1 � p)

n

�p

p

 LCL � p � z�p

 UCL � p � z�p

p

� P-chart
A control chart that monitors
the proportion of defects in a
sample.
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EXAMPLE 6.4

Constructing a
p-Chart

A production manager at a tire manufacturing plant has inspected the number of defective tires in
twenty random samples with twenty observations each. Following are the number of defective tires
found in each sample:

Number of Number of
Sample Defective Observations Fraction
Number Tires Sampled Defective

1 3 20 .15
2 2 20 .10
3 1 20 .05
4 2 20 .10
5 1 20 .05
6 3 20 .15
7 3 20 .15
8 2 20 .10
9 1 20 .05

10 2 20 .10
11 3 20 .15
12 2 20 .10
13 2 20 .10
14 1 20 .05
15 1 20 .05
16 2 20 .10
17 4 20 .20
18 3 20 .15
19 1 20 .05
20 1 20 .05

Total 40 400

Construct a three-sigma control chart (z � 3) with this information.

• Solution
The center line of the chart is

In this example the lower control limit is negative, which sometimes occurs because the computa-
tion is an approximation of the binomial distribution. When this occurs, the LCL is rounded up to
zero because we cannot have a negative control limit.

 LCL � p � z (�p) � .10 � 3(.067) � �.101 9: 0

 UCL � p � z (�p) � .10 � 3(.067) � .301

  �p � √ p(1 � p)

n
� √ (.10)(.90)

20
� .067

 CL � p �
total number of defective tires

total number of observations
�

40

400
� .10
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The resulting control chart is as follows:

This can also be computed using a spreadsheet as shown below.

1

2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

A B C D

Constructing a p-Chart

Size of Each Sample 20
Number Samples 20

Sample #
# Defective 

Tires
Fraction 

Defective
1 3 0.15
2 2 0.10
3 1 0.05
4 2 0.10
5 1 0.05
6 3 0.15
7 3 0.15
8 2 0.10
9 1 0.05
10 2 0.10
11 3 0.15
12 2 0.10
13 2 0.10
14 1 0.05
15 1 0.05
16 2 0.10
17 4 0.20
18 3 0.15
19 1 0.05
20 1 0.05

C8: =B8/C$4

29
30
31
32
33
34
35
36

A B C D E F
Computations for p-Chart

p bar = 0.100
Sigma_p = 0.067

Z-value for control charts = 3

CL: Center Line = 0.100
LCL: Lower Control Limit = 0.000
UCL: Upper Control Limit = 0.301

C29: =SUM(B8:B27)/(C4*C5)

C30: =SQRT((C29*(1-C29))/C4)

C33: =C29

C34: =MAX(C$29-C$31*C$30,0)

C35: =C$29+C$31*C$30

LCL CL UCL p

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sample Number

F
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n 
D
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ec
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e 

(p
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� C-chart
A control chart used to
monitor the number of
defects per unit.

C-charts are used to monitor the number of defects per unit. Examples are the
number of returned meals in a restaurant, the number of trucks that exceed their
weight limit in a month, the number of discolorations on a square foot of carpet,
and the number of bacteria in a milliliter of water. Note that the types of units of
measurement we are considering are a period of time, a surface area, or a volume of
liquid.

The average number of defects, is the center line of the control chart. The upper
and lower control limits are computed as follows:

 LCL � c � z √c

 UCL � c � z √c

c,

C-CHARTS

EXAMPLE 6.5

Computing a
C-Chart

The number of weekly customer complaints are monitored at a large hotel using a c-chart. Com-
plaints have been recorded over the past twenty weeks. Develop three-sigma control limits using the
following data:

Tota
Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No. of
Complaints 3 2 3 1 3 3 2 1 3 1 3 4 2 1 1 1 3 2 2 3 44

• Solution
The average number of complaints per week is . Therefore,

As in the previous example, the LCL is negative and should be rounded up to zero. Following is the
control chart for this example:

 LCL � c � z √c � 2.2 � 3√2.2 � �2.25 9: 0

 UCL � c � z √c � 2.2 � 3√2.2 � 6.65

c � 2.2.44
20 � 2.2

LCL CL UCL p

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Week

C
om

pl
ai

nt
s 

P
er

 W
ee

k



This can also be computed using a spreadsheet as shown below.

1

2

3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B

Computing a C-Chart

Week
Number of 
Complaints

1 3
2 2
3 3
4 1
5 3
6 3
7 2
8 1
9 3
10 1
11 3
12 4
13 2
14 1
15 1
16 1
17 3
18 2
19 2
20 3

26
27
28
29
30
31

32
33
34

A B C D E F G
Computations for a C-Chart

c bar = 2.2
Z-value for control charts = 3

Sigma_c = 1.4832397

CL: Center Line = 2.20
LCL: Lower Control Limit = 0.00
UCL: Upper Control Limit = 6.65

C31: =C26

C32: =MAX(C$26-C$27*C$29,0)

C33: =C$26+C$27*C$29

C27: =AVERAGE(B5:B24)

C30: =SQRT(C27)
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Before You Go On

We have discussed several types of statistical quality control (SQC) techniques. One category of SQC techniques
consists of descriptive statistics tools such as the mean, range, and standard deviation. These tools are used to
describe quality characteristics and relationships. Another category of SQC techniques consists of statistical
process control (SPC) methods that are used to monitor changes in the production process. To understand SPC
methods you must understand the differences between common and assignable causes of variation. Common



causes of variation are based on random causes that cannot be identified. A certain amount of common or
normal variation occurs in every process due to differences in materials, workers, machines, and other factors.
Assignable causes of variation, on the other hand, are variations that can be identified and eliminated. An im-
portant part of statistical process control (SPC) is monitoring the production process to make sure that the
only variations in the process are those due to common or normal causes. Under these conditions we say that a
production process is in a state of control.

You should also understand the different types of quality control charts that are used to monitor the produc-
tion process: x-bar charts, R-range charts, p-charts, and c-charts.

� Process capability
The ability of a production
process to meet or exceed
preset specifications.

190 • CHAPTER 6 STATISTICAL QUALITY CONTROL

� Product specifications
Preset ranges of acceptable
quality characteristics.

So far we have discussed ways of monitoring the production process to ensure that it is
in a state of control and that there are no assignable causes of variation. A critical aspect
of statistical quality control is evaluating the ability of a production process to meet or
exceed preset specifications. This is called process capability. To understand exactly
what this means, let’s look more closely at the term specification. Product specifica-
tions, often called tolerances, are preset ranges of acceptable quality characteristics,
such as product dimensions. For a product to be considered acceptable, its characteris-
tics must fall within this preset range. Otherwise, the product is not acceptable. Prod-
uct specifications, or tolerance limits, are usually established by design engineers or
product design specialists.

For example, the specifications for the width of a machine part may be specified as
15 inches �.3. This means that the width of the part should be 15 inches, though it is
acceptable if it falls within the limits of 14.7 inches and 15.3 inches. Similarly, for
Cocoa Fizz, the average bottle fill may be 16 ounces with tolerances of �.2 ounces.
Although the bottles should be filled with 16 ounces of liquid, the amount can be as
low as 15.8 or as high as 16.2 ounces.

Specifications for a product are preset on the basis of how the product is going to
be used or what customer expectations are. As we have learned, any production
process has a certain amount of natural variation associated with it. To be capable of
producing an acceptable product, the process variation cannot exceed the preset spec-
ifications. Process capability thus involves evaluating process variability relative to
preset product specifications in order to determine whether the process is capable of
producing an acceptable product. In this section we will learn how to measure process
capability.

Measuring Process Capability
Simply setting up control charts to monitor whether a process is in control does not
guarantee process capability. To produce an acceptable product, the process must be
capable and in control before production begins. Let’s look at three examples
of process variation relative to design specifications for the Cocoa Fizz soft drink
company. Let’s say that the specification for the acceptable volume of liquid is preset
at 16 ounces �.2 ounces, which is 15.8 and 16.2 ounces. In part (a) of Figure 6-7 the
process produces 99.74 percent (three sigma) of the product with volumes between
15.8 and 16.2 ounces. You can see that the process variability closely matches the pre-
set specifications. Almost all the output falls within the preset specification range.

PROCESS CAPABILITY
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In part (b) of Figure 6-7, however, the process produces 99.74 percent (three
sigma) of the product with volumes between 15.7 and 16.3 ounces. The process vari-
ability is outside the preset specifications. A large percentage of the product will fall
outside the specified limits. This means that the process is not capable of producing
the product within the preset specifications.

Part (c) of Figure 6-7 shows that the production process produces 99.74 percent
(three sigma) of the product with volumes between 15.9 and 16.1 ounces. In this case
the process variability is within specifications and the process exceeds the minimum
capability.

Process capability is measured by the process capability index, Cp, which is com-
puted as the ratio of the specification width to the width of the process variability:

where the specification width is the difference between the upper specification limit
(USL) and the lower specification limit (LSL) of the process. The process width is

Cp �
specification width

process width
�

USL � LSL

6�

15.7 15.8 15.9 16.0 16.1 16.2 16.3

15.7 15.8 15.9 16.0 16.1 16.2 16.3

Mean

Process
Variability

±3σ

Process Variability ±3σ

Specification Width

LSL USL

Specification Width

LSL USL

(b) Process variability outside specification width

(c) Process variability within specification width

15.7 15.8 15.9 16.0 16.1 16.2 16.3
Mean

Specification Width
LSL USL

Process Variability ±3σ

(a) Process variability meets specification width

FIGURE 6-7

Relationship between process variability and
specification width

� Process capability index
An index used to measure
process capability.



computed as 6 standard deviations (6�) of the process being monitored. The reason
we use 6� is that most of the process measurement (99.74 percent) falls within �3
standard deviations, which is a total of 6 standard deviations.

There are three possible ranges of values for Cp that also help us interpret its
value:

Cp � 1: A value of Cp equal to 1 means that the process variability just meets speci-
fications, as in Figure 6-7(a). We would then say that the process is minimally
capable.

Cp 	 1: A value of Cp below 1 means that the process variability is outside the
range of specification, as in Figure 6-7(b). This means that the process is not ca-
pable of producing within specification and the process must be improved.

Cp 
 1: A value of Cp above 1 means that the process variability is tighter 
than specifications and the process exceeds minimal capability, as in Figure 
6-7(c).

A Cp value of 1 means that 99.74 percent of the products produced will fall within
the specification limits. This also means that .26 percent (100% � 99.74%) of the
products will not be acceptable. Although this percentage sounds very small, when we
think of it in terms of parts per million (ppm) we can see that it can still result in a lot
of defects. The number .26 percent corresponds to 2600 parts per million (ppm) de-
fective (0.0026 � 1,000,000). That number can seem very high if we think of it in
terms of 2600 wrong prescriptions out of a million, or 2600 incorrect medical proce-
dures out of a million, or even 2600 malfunctioning aircraft out of a million. You can
see that this number of defects is still high. The way to reduce the ppm defective is to
increase process capability.
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EXAMPLE 6.6

Computing the CP
Value at Cocoa

Fizz

Three bottling machines at Cocoa Fizz are being evaluated for their capability:

Bottling Machine Standard Deviation
A .05
B .1
C .2

If specifications are set between 15.8 and 16.2 ounces, determine which of the machines are capable
of producing within specifications.

• Solution
To determine the capability of each machine we need to divide the specification width 
(USL � LSL � 16.2 � 15.8 � .4) by 6� for each machine:

Bottling Machine � USL�LSL 6�
A .05 .4 .3 1.33
B .1 .4 .6 .67
C .2 .4 1.2 .33

Looking at the Cp values, only machine A is capable of filling bottles within specifications, because it
is the only machine that has a Cp value at or above 1.

Cp �
USL � LSL

6�
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Cp is valuable in measuring process capability. However, it has one shortcoming: it
assumes that process variability is centered on the specification range. Unfortunately,
this is not always the case. Figure 6-8 shows data from the Cocoa Fizz example. In the
figure the specification limits are set between 15.8 and 16.2 ounces, with a mean of
16.0 ounces. However, the process variation is not centered; it has a mean of
15.9 ounces. Because of this, a certain proportion of products will fall outside the
specification range.

The problem illustrated in Figure 6-8 is not uncommon, but it can lead to mistakes
in the computation of the Cp measure. Because of this, another measure for process
capability is used more frequently:

where � � the mean of the process
� � the standard deviation of the process

This measure of process capability helps us address a possible lack of centering of the
process over the specification range. To use this measure, the process capability of
each half of the normal distribution is computed and the minimum of the two is
used.

Looking at Figure 6-8, we can see that the computed Cp is 1:

Process mean: � � 15.9

Process standard deviation � � 0.067

LSL � 15.8

USL � 16.2

The Cp value of 1.00 leads us to conclude that the process is capable. However,
from the graph you can see that the process is not centered on the specification range

Cp �
0.4

6(0.067)
� 1

Cpk � min � USL � �

3�
, 

� � LSL

3� �

Mean
15.7 15.8 15.9 16.0 16.1 16.2 16.3

Specification Width
LSL USL

Process Variability ±3

FIGURE 6-8

Process variability not centered across
specification width



and is producing out-of-spec products. Using only the Cp measure would lead to an
incorrect conclusion in this case. Computing Cpk gives us a different answer and leads
us to a different conclusion:

The computed Cpk value is less than 1, revealing that the process is not capable.

 Cpk �
.1

.3
� .33

 Cpk � min (1.00, 0.33)

 Cpk � min � 16.2 � 15.9

3(.1)
, 

15.9 � 15.8

3(.1) �

 Cpk � min � USL � �

3�
, 

� � LSL

3� �
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EXAMPLE 6.7

Computing the
Cpk Value

Compute the Cpk measure of process capability for the following machine and interpret the findings.
What value would you have obtained with the Cp measure?

Machine Data: USL � 110

LSL � 50

Process � � 10

Process � � 70

• Solution
To compute the Cpk measure of process capability:

This means that the process is not capable. The Cp measure of process capability gives us the
following measure,

leading us to believe that the process is capable. The reason for the difference in the measures is that
the process is not centered on the specification range, as shown in Figure 6-9.

Cp �
60

6(10)
� 1

 � 0.33

 � min (1.67, 0.33)

 � min � 110 � 60

3(10)
, 

60 � 50

3(10) �

 Cpk � min � USL � �

3�
, 

� � LSL

3� �
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30 50 60 75 90 110

Specification Width
LSL USL

Process Variability
Process capability of machines
is a critical element of
statistical process control.

FIGURE 6-9

Process variability not centered across specification width for
Example 6.7

Six Sigma Quality
The term Six Sigma® was coined by the Motorola Corporation in the 1980s to
describe the high level of quality the company was striving to achieve. Sigma (�)
stands for the number of standard deviations of the process. Recall that �3 sigma (�)
means that 2600 ppm are defective. The level of defects associated with Six Sigma is
approximately 3.4 ppm. Figure 6-10 shows a process distribution with quality levels of
�3 sigma (�) and �6 sigma (�). You can see the difference in the number of defects
produced.

� Six sigma quality
A high level of quality
associated with
approximately 3.4 defective
parts per million.

LSL
Number of defects

USL

2600 ppm

3.4 ppm

Mean

±3

±6

FIGURE 6-10

PPM defective for �3� versus �6�
quality (not to scale)



To achieve the goal of Six Sigma, Motorola
has instituted a quality focus in every aspect
of its organization. Before a product is de-
signed, marketing ensures that product char-
acteristics are exactly what customers want.
Operations ensures that exact product char-
acteristics can be achieved through product
design, the manufacturing process, and the
materials used. The Six Sigma concept is an
integral part of other functions as well. It is
used in the finance and accounting depart-
ments to reduce costing errors and the time
required to close the books at the end of the
month. Numerous other companies, such as
General Electric and Texas Instruments, have
followed Motorola’s leadership and have also
instituted the Six Sigma concept. In fact, the
Six Sigma quality standard has become a
benchmark in many industries.

There are two aspects to implementing the Six Sigma concept. The first is the use
of technical tools to identify and eliminate causes of quality problems. These technical
tools include the statistical quality control tools discussed in this chapter. They also
include the problem-solving tools discussed in Chapter 5, such as cause-and-effect di-
agrams, flow charts, and Pareto analysis. In Six Sigma programs the use of these tech-
nical tools is integrated throughout the entire organizational system.

The second aspect of Six Sigma implementation is people involvement. In Six
Sigma all employees have the training to use technical tools and are responsible for
rooting out quality problems. Employees are given martial arts titles that reflect their
skills in the Six Sigma process. Black belts and master black belts are individuals who
have extensive training in the use of technical tools and are responsible for carrying
out the implementation of Six Sigma. They are experienced individuals who oversee
the measuring, analyzing, process controlling, and improving. They achieve this by
acting as coaches, team leaders, and facilitators of the process of continuous improve-
ment. Green belts are individuals who have sufficient training in technical tools to
serve on teams or on small individual projects.

Successful Six Sigma implementation requires commitment from top company
leaders. These individuals must promote the process, eliminate barriers to implemen-
tation, and ensure that proper resources are available. A key individual is a champion
of Six Sigma. This is a person who comes from the top ranks of the organization and
is responsible for providing direction and overseeing all aspects of the process.
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LINKS TO PRACTICE

Motorola, Inc.
www.motorola.com

Acceptance sampling, the third branch of statistical quality control, refers to the
process of randomly inspecting a certain number of items from a lot or batch in or-
der to decide whether to accept or reject the entire batch. What makes acceptance

ACCEPTANCE SAMPLING
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sampling different from statistical process control is that acceptance sampling is per-
formed either before or after the process, rather than during the process. Acceptance
sampling before the process involves sampling materials received from a supplier,
such as randomly inspecting crates of fruit that will be used in a restaurant, boxes of
glass dishes that will be sold in a department store, or metal castings that will be
used in a machine shop. Sampling after the process involves sampling finished items
that are to be shipped either to a customer or to a distribution center. Examples in-
clude randomly testing a certain number of computers from a batch to make sure
they meet operational requirements, and randomly inspecting snowboards to make
sure that they are not defective.

You may be wondering why we would only inspect some items in the lot and not
the entire lot. Acceptance sampling is used when inspecting every item is not physi-
cally possible or would be overly expensive, or when inspecting a large number of
items would lead to errors due to worker fatigue. This last concern is especially im-
portant when a large number of items are processed in a short period of time. An-
other example of when acceptance sampling would be used is in destructive testing,
such as testing eggs for salmonella or vehicles for crash testing. Obviously, in these
cases it would not be helpful to test every item! However, 100 percent inspection does
make sense if the cost of inspecting an item is less than the cost of passing on a defec-
tive item.

As you will see in this section, the goal of acceptance sampling is to determine
the criteria for acceptance or rejection based on the size of the lot, the size of the
sample, and the level of confidence we wish to attain. Acceptance sampling can be
used for both attribute and variable measures, though it is most commonly used
for attributes. In this section we will look at the different types of sampling plans
and at ways to evaluate how well sampling plans discriminate between good and
bad lots.

Sampling Plans
A sampling plan is a plan for acceptance sampling that precisely specifies the parame-
ters of the sampling process and the acceptance/rejection criteria. The variables to be
specified include the size of the lot (N), the size of the sample inspected from the lot
(n), the number of defects above which a lot is rejected (c), and the number of sam-
ples that will be taken.

There are different types of sampling plans. Some call for single sampling, in
which a random sample is drawn from every lot. Each item in the sample is exam-
ined and is labeled as either “good” or “bad.” Depending on the number of defects or
“bad” items found, the entire lot is either accepted or rejected. For example, a lot size
of 50 cookies is evaluated for acceptance by randomly inspecting 10 cookies from the
lot. The cookies may be inspected to make sure they are not broken or burned. If 4
or more of the 10 cookies inspected are bad, the entire lot is rejected. In this exam-
ple, the lot size N � 50, the sample size n � 10, and the maximum number of
defects at which a lot is accepted is c � 4. These parameters define the acceptance
sampling plan.

Another type of acceptance sampling is called double sampling. This provides an op-
portunity to sample the lot a second time if the results of the first sample are
inconclusive. In double sampling we first sample a lot of goods according to preset crite-
ria for definite acceptance or rejection. However, if the results fall in the middle range,

� Sampling plan
A plan for acceptance
sampling that precisely
specifies the parameters of
the sampling process and the
acceptance/rejection criteria.

Sampling involves randomly
inspecting items from a lot.



they are considered inconclusive and a second sample is taken. For example, a water
treatment plant may sample the quality of the water ten times in random intervals
throughout the day. Criteria may be set for acceptable or unacceptable water quality,
such as .05 percent chlorine and .1 percent chlorine. However, a sample of water con-
taining between .05 percent and .1 percent chlorine is inconclusive and calls for a sec-
ond sample of water.

In addition to single and double-sampling plans, there are multiple sampling plans.
Multiple sampling plans are similar to double sampling plans except that criteria are
set for more than two samples. The decision as to which sampling plan to select has a
great deal to do with the cost involved in sampling, the time consumed by sampling,
and the cost of passing on a defective item. In general, if the cost of collecting a sam-
ple is relatively high, single sampling is preferred. An extreme example is collecting a
biopsy from a hospital patient. Because the actual cost of getting the sample is high,
we want to get a large sample and sample only once. The opposite is true when the
cost of collecting the sample is low but the actual cost of testing is high. This may be
the case with a water treatment plant, where collecting the water is inexpensive but
the chemical analysis is costly. In this section we focus primarily on single sampling
plans.

Operating Characteristic (OC) Curves
As we have seen, different sampling plans have different capabilities for discriminat-
ing between good and bad lots. At one extreme is 100 percent inspection, which has
perfect discriminating power. However, as the size of the sample inspected decreases,
so does the chance of accepting a defective lot. We can show the discriminating power
of a sampling plan on a graph by means of an operating characteristic (OC) curve.
This curve shows the probability or chance of accepting a lot given various propor-
tions of defects in the lot.

Figure 6-11 shows a typical OC curve. The x axis shows the percentage of items
that are defective in a lot. This is called “lot quality.” The y axis shows the probability
or chance of accepting a lot. You can see that if we use 100 percent inspection we are
certain of accepting only lots with zero defects. However, as the proportion of defects
in the lot increases, our chance of accepting the lot decreases. For example, we have a
90 percent probability of accepting a lot with 5 percent defects and an 80 percent
probability of accepting a lot with 8 percent defects.

Regardless of which sampling plan we have selected, the plan is not perfect. That
is, there is still a chance of accepting lots that are “bad” and rejecting “good” lots.
The steeper the OC curve, the better our sampling plan is for discriminating be-
tween “good” and “bad.” Figure 6-12 shows three different OC curves, A, B, and C.
Curve A is the most discriminating and curve C the least. You can see that the
steeper the slope of the curve, the more discriminating is the sampling plan. When
100 percent inspection is not possible, there is a certain amount of risk for con-
sumers in accepting defective lots and a certain amount of risk for producers in re-
jecting good lots.

There is a small percentage of defects that consumers are willing to accept. This is
called the acceptable quality level (AQL) and is generally in the order of 1 – 2 percent.
However, sometimes the percentage of defects that passes through is higher than the
AQL. Consumers will usually tolerate a few more defects, but at some point the num-
ber of defects reaches a threshold level beyond which consumers will not tolerate
them. This threshold level is called the lot tolerance percent defective (LTPD). The
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� Operating characteristic
(OC) curve
A graph that shows the
probability or chance of
accepting a lot given various
proportions of defects in the
lot.

� Acceptable quality level
(AQL)
The small percentage of
defects that consumers are
willing to accept.

� Lot tolerance percent
defective (LTPD)
The upper limit of the
percentage of defective items
consumers are willing to
tolerate.
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LTPD is the upper limit of the percentage of defective items consumers are willing to
tolerate.

Consumer’s risk is the chance or probability that a lot will be accepted that con-
tains a greater number of defects than the LTPD limit. This is the probability of mak-
ing a Type II error — that is, accepting a lot that is truly “bad.” Consumer’s risk or
Type II error is generally denoted by beta (). The relationships among AQL, LTPD,
and  are shown in Figure 6-13. Producer’s risk is the chance or probability that a lot
containing an acceptable quality level will be rejected. This is the probability of mak-
ing a Type I error — that is, rejecting a lot that is “good.” It is generally denoted by
alpha (�). Producer’s risk is also shown in Figure 6-13.

We can determine from an OC curve what the consumer’s and producer’s risks
are. However, these values should not be left to chance. Rather, sampling plans are
usually designed to meet specific levels of consumer’s and producer’s risk. For
example, one common combination is to have a consumer’s risk () of 10 percent
and a producer’s risk (�) of 5 percent, though many other combinations are
possible.

Developing OC Curves
An OC curve graphically depicts the discriminating power of a sampling plan. To
draw an OC curve, we typically use a cumulative binomial distribution to obtain

90% probability of accepting
a lot  with 5% defective items
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Example of an operating characteristic (OC) curve

FIGURE 6-12

OC curves with different steepness levels and different levels of
discrimination

� Producer’s risk
The chance that a lot
containing an acceptable
quality level will be rejected.

� Consumer’s risk
The chance of accepting a lot
that contains a greater
number of defects than the
LTPD limit.



probabilities of accepting a lot given varying levels of lot defects.1 The cumulative
binomial table is found in Appendix C. A small part of this table is reproduced in
Table 6-2. The top of the table shows values of p, which represents the proportion
of defective items in a lot (5 percent, 10 percent, 20 percent, etc.). The left-hand
column shows values of n, which represent the sample size being considered, and x
represents the cumulative number of defects found. Let’s use an example to illus-
trate how to develop an OC curve for a specific sampling plan using the informa-
tion from Table 6-2.
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An OC curve showing producer’s risk (�) and
consumer’s risk ()

n x

5 0 .7738 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0313

1 .9974 .9185 .8352 .7373 .6328 .5282 .4284 .3370 .2562 .1875

2 .9988 .9914 .9734 .9421 .8965 .8369 .7648 .6826 .5931 .5000

TABLE 6-2

Partial Cumulative Binomial
Probability Table

Proportion of Items Defective (p)
.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

1For n 
 20 and p 	 .05 a Poisson distribution is generally used.
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EXAMPLE 6.8

Constructing an
OC Curve

Let’s say that we want to develop an OC curve for a sampling plan in which a sample of n � 5 items
is drawn from lots of N � 1000 items. The accept/reject criteria are set up in such a way that we
accept a lot if no more than one defect (c � 1) is found.

• Solution
Let’s look at the partial binomial distribution in Table 6-2. Since our criteria require us to sample
n � 5, we will go to the row where n equals 5 in the left-hand column. The “x” column tells us the
cumulative number of defects found at which we reject the lot. Since we are not allowing more than
one defect, we look for an x value that corresponds to 1. The row corresponding to n � 5 and x � 1
tells us our chance or probability of accepting lots with various proportions of defects using this
sampling plan. For example, with this sampling plan we have a 99.74% chance of accepting a lot
with 5% defects. If we move down the row, we can see that we have a 91.85% chance of accepting a
lot with 10% defects, a 83.52% chance of accepting a lot with 15% defects, and a 73.73% chance of
accepting a lot with 20% defects. Using these values and those remaining in the row, we can con-
struct an OC chart for n � 5 and c � 1. This is shown in Figure 6-14.

.05

.10

.20

.30

.40

.50

.60

.70

.80

.90

1.00

.10 .15 .20 .25 .30 .35 .40 .450
Proportion of Defective Items in Lot

(Lot Quality)

Probability or Chance
of Accepting a Lot

OC Curve with n = 5, c = 1
.9974

.9185

.8352

.7373

.6328

.5282

.4284

.3370

.2562

FIGURE 6-14

OC curve with n � 5 and c � 1

Average Outgoing Quality
As we observed with the OC curves, the higher the quality of the lot, the higher is the
chance that it will be accepted. Conversely, the lower the quality of the lot, the greater
is the chance that it will be rejected. Given that some lots are accepted and some
rejected, it is useful to compute the average outgoing quality (AOQ) of lots to get a
sense of the overall outgoing quality of the product. Assuming that all lots have the

� Average outgoing quality
(AOQ)
The expected proportion of
defective items that will be
passed to the customer under
the sampling plan.



same proportion of defective items, the average outgoing quality can be computed as
follows:

where Pac � probability of accepting a given lot
p � proportion of defective items in a lot

N � the size of the lot
n � the sample size chosen for inspection

Usually we assume the fraction in the previous equation to equal 1 and simplify the
equation to the following form:

AOQ � (Pac)p

We can then use the information from Figure 6-14 to construct an AOQ curve for dif-
ferent levels of probabilities of acceptance and different proportions of defects in a
lot. As we will see, an AOQ curve is similar to an OC curve.

 AOQ � (Pac)p� N � n

N �
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EXAMPLE 6.9

Constructing an
AOQ Curve

Let’s go back to our initial example, in which we sampled 5 items (n � 5) from a lot of 1000 (N �
1000) with an acceptance range of no more than 1(c � 1) defect. Here we will construct an AOQ
curve for this sampling plan and interpret its meaning.

• Solution
For the parameters N � 1000, n � 5, and c � 1, we can read the probabilities of Pac from Figure
6-14. Then we can compute the value of AOQ as AOQ � (Pac) p.

p .05 .10 .15 .20 .25 .30 .35 .40 .45 .50
Pac .9974 .9185 .8352 .7373 .6328 .5282 .4284 .3370 .2562 .1875
AOQ .0499 .0919 .1253 .1475 .1582 .1585 .1499 .1348 .1153 .0938

Figure 6–15 shows a graphical representation of the AOQ values. The AOQ varies, depending on the
proportion of defective items in the lot. The largest value of AOQ, called the average outgoing qual-
ity limit (AOQL), is around 15.85%. You can see from Figure 6-15 that the average outgoing quality 
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The AOQ for n � 5 and c � 1



will be high for lots that are either very good or very bad. For lots that have close to 30% of defective
items, the AOQ is the highest. Managers can use this information to compute the worst possible
value of their average outgoing quality given the proportion of defective items (p). Then this infor-
mation can be used to develop a sampling plan with appropriate levels of discrimination.

In this chapter we have learned about a variety of different statistical quality control
(SQC) tools that help managers make decisions about product and process quality.
However, to use these tools properly managers must make a number of decisions. In
this section we discuss some of the most important decisions that must be made
when implementing SPC.

How Much and How Often to Inspect
Consider Product Cost and Product Volume As you know, 100 percent inspection
is rarely possible. The question then becomes one of how often to inspect in order to
minimize the chances of passing on defects and still keep inspection costs manage-
able. This decision should be related to the product cost and product volume of what is
being produced. At one extreme are high-volume, low-cost items, such as paper, pen-
cils, nuts and bolts, for which 100 percent inspection would not be cost justified. Also,
with such a large volume 100 percent inspection would not be possible because
worker fatigue sets in and defects are often passed on. At the other extreme are low-
volume, high-cost items, such as parts that will go into a space shuttle or be used in a
medical procedure, that require 100 percent inspection.

Most items fall somewhere between the two extremes just described. For these
items, frequency of inspection should be designed to consider the trade-off between
the cost of inspection and the cost of passing on a defective item. Historically, inspec-
tions were set up to minimize these two costs. Today, it is believed that defects of any
type should not be tolerated and that eliminating them helps reduce organizational
costs. Still, the inspection process should be set up to consider issues of product cost
and volume. For example, one company will probably have different frequencies of
inspection for different products.

Consider Process Stability Another issue to consider when deciding how much to
inspect is the stability of the process. Stable processes that do not change frequently
do not need to be inspected often. On the other hand, processes that are unstable and
change often should be inspected frequently. For example, if it has been observed that
a particular type of drilling machine in a machine shop often goes out of tolerance,
that machine should be inspected frequently. Obviously, such decisions cannot be
made without historical data on process stability.

Consider Lot Size The size of the lot or batch being produced is another factor to
consider in determining the amount of inspection. A company that produces a small
number of large lots will have a smaller number of inspections than a company that
produces a large number of small lots. The reason is that every lot should have some
inspection, and when lots are large, there are fewer lots to inspect.

IMPLICATIONS FOR MANAGERS
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Where to Inspect
Since we cannot inspect every aspect of a process all the time, another important
decision is to decide where to inspect. Some areas are less critical than others. Follow-
ing are some points that are typically considered most important for inspection.

Inbound Materials Materials that are coming into a facility from a supplier or distri-
bution center should be inspected before they enter the production process. It is impor-
tant to check the quality of materials before labor is added to it. For example, it would
be wasteful for a seafood restaurant not to inspect the quality of incoming lobsters only
to later discover that its lobster bisque is bad. Another reason for checking inbound ma-
terials is to check the quality of sources of supply. Consistently poor quality in materials
from a particular supplier indicates a problem that needs to be addressed.

Finished Products Products that have been completed and are ready for shipment
to customers should also be inspected. This is the last point at which the product is in
the production facility. The quality of the product represents the company’s overall
quality. The final quality level is what will be experienced by the customer, and an in-
spection at this point is necessary to ensure high quality in such aspects as fitness for
use, packaging, and presentation.

Prior to Costly Processing During the production process it makes sense to check
quality before performing a costly process on the product. If quality is poor at that
point and the product will ultimately be discarded, adding a costly process will simply
lead to waste. For example, in the production of leather armchairs in a furniture fac-
tory, chair frames should be inspected for cracks before the leather covering is added.
Otherwise, if the frame is defective the cost of the leather upholstery and workman-
ship may be wasted.

Which Tools to Use
In addition to where and how much to inspect, managers must decide which tools to
use in the process of inspection. As we have seen, tools such as control charts are best
used at various points in the production process. Acceptance sampling is best used for
inbound and outbound materials. It is also the easiest method to use for attribute
measures, whereas control charts are easier to use for variable measures. Surveys of
industry practices show that most companies use control charts, especially x-bar and
R-charts, because they require less data collection than p-charts.
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Statistical quality control (SQC) tools have been widely used in manufacturing
organizations for quite some time. Manufacturers such as Motorola, General Electric,
Toyota, and others have shown leadership in SQC for many years. Unfortunately, ser-
vice organizations have lagged behind manufacturing firms in their use of SQC. The
primary reason is that statistical quality control requires measurement, and it is diffi-
cult to measure the quality of a service. Remember that services often provide an in-
tangible product and that perceptions of quality are often highly subjective. For
example, the quality of a service is often judged by such factors as friendliness and
courtesy of the staff and promptness in resolving complaints.

STATISTICAL QUALITY CONTROL IN SERVICES
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A way to measure the quality of services is to devise quantifiable measurements of
the important dimensions of a particular service. For example, the number of com-
plaints received per month, the number of telephone rings after which a response is
received, or customer waiting time can be quantified. These types of measurements
are not subjective or subject to interpretation. Rather, they can be measured and
recorded. As in manufacturing, acceptable control limits should be developed and the
variable in question should be measured periodically.

Another issue that complicates quality control in service organizations is that the
service is often consumed during the production process. The customer is often
present during service delivery, and there is little time to improve quality. The work-
force that interfaces with customers is part of the service delivery. The way to manage
this issue is to provide a high level of workforce training and to empower workers to
make decisions that will satisfy customers.

One service organization that has
demonstrated quality leadership is
The Ritz-Carlton Hotel Company.
This luxury hotel chain caters to trav-
elers who seek high levels of customer
service. The goal of the chain is to be
recognized for outstanding service
quality. To this end, computer records
are kept of regular clients’ preferences.
To keep customers happy, employees
are empowered to spend up to $2,000
on the spot to correct any customer complaint. Consequently, The Ritz-Carlton has re-
ceived a number of quality awards including winning the Malcolm Baldrige National
Quality Award twice. It is the only company in the service category to do so.

Another leader in service quality that uses the strategy of high levels of employee
training and empowerment is Nordstrom Department Stores. Outstanding customer
service is the goal of this department store chain. Its organizational chart places the
customer at the head of the organization. Records are kept of regular clients’ prefer-
ences, and employees are empowered to make decisions on the spot to satisfy cus-
tomer wants. The customer is considered to always be right.

Service organizations, must also use statisti-
cal tools to measure their processes and
monitor performance. For example, the
Marriott is known for regularly collecting
data in the form of guest surveys. The com-
pany randomly surveys as many as a million
guests each year. The collected data is stored
in a large database and continually exam-
ined for patterns, such as trends and
changes in customer preferences. Statistical
techniques are used to analyze the data and
provide important information, such as identifying areas that have the highest impact
on performance, and those areas that need improvement. This information allows
Marriott to provide a superior level of customer service, anticipate customer de-
mands, and put resources in service features most important to customers.

LINKS TO PRACTICE

The Ritz-Carlton Hotel
Company, L.L.C.
www.ritzcarlton.com

Nordstrom, Inc.
www.nordstrom.com

LINKS TO PRACTICE

Marriott International,
Inc.
www.marriott.com
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It is easy to see how operations managers can use the
tools of SQC to monitor product and process quality.
However, you may not readily see how these statistical
techniques affect other functions of the organization. In
fact, SQC tools require input from other functions, influ-
ence their success, and are actually used by other organi-
zational functions in designing and evaluating their tasks.

Marketing plays a critical role in setting up prod-
uct and service quality standards. It is up to marketing
to provide information on current and future quality
standards required by customers and those being of-
fered by competitors. Operations managers can incor-
porate this information into product and process de-
sign. Consultation with marketing managers is
essential to ensure that quality standards are being
met. At the same time, meeting quality standards
is essential to the marketing department, since sales
of products are dependent on the standards being met.

Finance is an integral part of the statistical quality
control process, because it is responsible for placing fi-
nancial values on SQC efforts. For example, the finance
department evaluates the dollar costs of defects, mea-
sures financial improvements that result from tighten-
ing of quality standards, and is actively involved in ap-
proving investments in quality improvement efforts.

Human resources becomes even more important
with the implementation of TQM and SQC methods, as
the role of workers changes. To understand and utilize
SQC tools, workers need ongoing training and the ability
to work in teams, take pride in their work, and assume
higher levels of responsibility. The human resources de-
partment is responsible for hiring workers with the right
skills and setting proper compensation levels.

Information systems is a function that makes
much of the information needed for SQC accessible to
all who need it. Information systems managers need to
work closely with other functions during the imple-
mentation of SQC so that they understand exactly what
types of information are needed and in what form. As
we have seen, SQC tools are dependent on information,
and it is up to information systems managers to make
that information available. As a company develops ways
of using TQM and SQC tools, information systems
managers must be part of this ongoing evolution to en-
sure that the company’s information needs are being
met.

All functions need to work closely together in the
implementation of statistical process control. Everyone

benefits from this collaborative relationship: opera-
tions is able to produce the right product effi-

ciently; marketing has the exact product cus-
tomers are looking for; and finance can boast of an

improved financial picture for the organization.
SQC also affects various organizational functions

through its direct application in evaluating quality per-
formance in all areas of the organization. SQC tools are
not used only to monitor the production process and
ensure that the product being produced is within speci-
fications. As we have seen in the Motorola Six Sigma ex-
ample, these tools can be used to monitor both quality
levels and defects in accounting procedures, financial
record keeping, sales and marketing, office administra-
tion, and other functions. Having high quality stan-
dards in operations does not guarantee high quality in
the organization as a whole. The same stringent stan-
dards and quality evaluation procedures should be used
in setting standards and evaluating the performance of
all organizational functions.

OM ACROSS THE ORGANIZATION

The decision to increase the level of quality standard and reduce the number of product

defects requires support from every function within operations management. Two areas

of operations management that are particularly affected are product and process design.

Process design needs to be modified to incorporate customer-defined quality and simpli-

fication of design. Processes need to be continuously monitored and changed to build

quality into the process and reduce variation. Other areas that are affected are job design,

INSIDE OM
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Chapter Highlights
Statistical quality control (SQC) refers to statistical
tools that can be used by quality professionals.
Statistical quality control can be divided into three
broad categories: descriptive statistics, acceptance
sampling, and statistical process control (SPC).

Descriptive statistics are used to describe quality
characteristics, such as the mean, range, and vari-
ance. Acceptance sampling is the process of
randomly inspecting a sample of goods and deciding
whether to accept or reject the entire lot. Statistical
process control (SPC) involves inspecting a random
sample of output from a process and deciding
whether the process is producing products with
characteristics that fall within preset specifications.

There are two causes of variation in the quality of a
product or process: common causes and assignable
causes. Common causes of variation are random causes
that we cannot identify. Assignable causes of variation
are those that can be identified and eliminated.

A control chart is a graph used in statistical process
control that shows whether a sample of data falls
within the normal range of variation. A control chart
has upper and lower control limits that separate
common from assignable causes of variation. Con-
trol charts for variables monitor characteristics that
can be measured and have a continuum of values,
such as height, weight, or volume. Control charts for

4

3

2

1 attributes are used to monitor characteristics that
have discrete values and can be counted.

Control charts for variables include x-bar charts and
R-charts. X-bar charts monitor the mean or average
value of a product characteristic. R-charts monitor
the range or dispersion of the values of a product
characteristic. Control charts for attributes include
p-charts and c-charts. P-charts are used to monitor
the proportion of defects in a sample. C-charts are
used to monitor the actual number of defects in a
sample.

Process capability is the ability of the production
process to meet or exceed preset specifications. It is
measured by the process capability index, Cp, which
is computed as the ratio of the specification width to
the width of the process variability.

The term Six Sigma indicates a level of quality in
which the number of defects is no more than 3.4
parts per million.

The goal of acceptance sampling is to determine
criteria for acceptance or rejection based on lot size,
sample size, and the desired level of confidence.
Operating characteristic (OC) curves are graphs that
show the discriminating power of a sampling plan.

It is more difficult to measure quality in services than
in manufacturing. The key is to devise quantifiable
measurements for important service dimensions.
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Key Terms

as we expand the role of employees to become responsible for monitoring quality levels

and to use statistical quality control tools. Supply chain management and inventory con-

trol are also affected as we increase quality standard requirements from our suppliers and

change the materials we use. All areas of operations management are involved when in-

creasing the quality standard of a firm.
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Formula Review

1. Mean

2. Standard Deviation

3. Control Limits for x-Bar Charts Upper control limit

Lower control limit

4. Control Limits for x-Bar Charts Using Sample Range as an
Estimate of Variability

Upper control limit

Lower control limit
(LCL) � x � A2  R

(UCL) � x � A2  R

�x �
�

√n

(LCL) � x � z�x

(UCL) � x � z�x

 � � √ �
n

i�1

(x i � x)2

n � 1

x �
�
n

i�1

x i

n

5. Control Limits for R-Charts

6. Control Limits for p-Charts

7. Control Limits for c-Charts

8. Measures for Process Capability

9. Average Outgoing Quality AOQ � (Pac)p

Cpk � min� USL �  �

3�
, 

� � LSL

3� �

Cp �
specification width

process width
�

USL � LSL

6�

LCL � c � z √c

UCL � c � z √c

LCL � p � z (�p)

UCL � p � z (�p)

LCL � D3  R

UCL � D4  R

Solved Problems
• Problem 1
A quality control inspector at the Crunchy Potato Chip Com-
pany has taken 3 samples with 4 observations each of the vol-
ume of bags filled. The data and the computed means are
shown in the following table:

Sample of Potato Chip Bag Volume in Ounces
Sample Observations
Number 1 2 3 4

1 12.5 12.3 12.6 12.7
2 12.8 12.4 12.4 12.8
3 12.1 12.6 12.5 12.4
4 12.2 12.6 12.5 12.3
5 12.4 12.5 12.5 12.5
6 12.3 12.4 12.6 12.6
7 12.6 12.7 12.5 12.8
8 12.4 12.3 l2.6 12.5
9 12.6 12.5 l2.3 12.6

10 12.1 12.7 12.5 12.8
Mean 12.4 12.5 12.5 12.6x

If the standard deviation of the bagging operation is 0.2
ounces, use the information in the table to develop control lim-
its of 3 standard deviations for the bottling operation.

• Solution
The center line of the control data is the average of the samples:

The control limits are:

LCL � x � z�x � 12.5 � 3� .2

√4 � � 12.20

UCL � x � z�x � 12.5 � 3� .2

√4 � � 12.80

 x �
12.4 � 12.5 � 12.5 � 12.6

4
� 12.5 ounces
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X-Bar Chart (Based on Known Sigma)
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Following is the associated control chart:

The problem can also be solved using a spreadsheet.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A B C D E F G

Crunchy Potato Chips Company

Sample Num Obs 1 Obs 2 Obs 3 Obs 4 Average
1 12.50 12.30 12.60 12.70 12.53
2 12.80 12.40 12.40 12.80 12.60
3 12.10 12.60 12.50 12.40 12.40
4 12.20 12.60 12.50 12.30 12.40
5 12.40 12.50 12.50 12.50 12.48
6 12.30 12.40 12.60 12.60 12.48
7 12.60 12.70 12.50 12.80 12.65
8 12.40 12.30 12.60 12.50 12.45
9 12.60 12.50 12.30 12.60 12.50
10 12.10 12.70 12.50 12.80 12.53

12.50
Number of Samples 10 Xbar-bar

Number of Observations per Sample 4

Computations for X-Bar Chart
Overall Mean (Xbar-bar) = 12.50

Sigma for Process = 0.2 ounces
Standard Error of the Mean = 0.1

Z-value for control charts = 3

CL: Center Line = 12.50
LCL: Lower Control Limit = 12.20
UCL: Upper Control Limit = 12.80

Bottle Volume in Ounces

F7: =AVERAGE(B7:E7)

F17: =AVERAGE(F7:F16)

D23: =F17

D25: =D24/SQRT(D19)

D28: =D23

D29: =D23-D26*D25

D30: =D23+D26*D25
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• Problem 4
A production manager at a light bulb plant has inspected the
number of defective light bulbs in 10 random samples with 30
observations each. Following are the numbers of defective light
bulbs found:

Number of
Number Observations

Sample Defective in Sample
1 1 30
2 3 30
3 3 30
4 1 30
5 0 30
6 5 30
7 1 30
8 1 30
9 1 30

10 1 30

Total 17 300

Construct a three-sigma control chart (z � 3) with this infor-
mation.

• Solution
The center line of the chart is:

 LCL � p � z(�p) � .057 � 3(.042) � �.069 9: 0

 UCL � p � z(�p) � .057 � 3(.042) � .183

 �p � √ p(1 � p)

n
� √ (.057)(.943)

30
� .042

 CL � p �
number defective

number of observations
�

17

300
� .057

2 4 6 8 10
Sample Number

P
ro

po
rt

io
n 

D
ef

ec
tiv

e

UCL = .183

CL = .057

LCL = 0

• Problem 2
Use of the sample range to estimate variability can also be ap-
plied to the Crunchy Potato Chip operation. A quality control
inspector has taken 4 samples with 5 observations each, mea-
suring the volume of chips per bag. If the average range for the
4 samples is .2 ounces and the average mean of the observa-
tions is 12.5 ounces, develop three-sigma control limits for the
bottling operation.

• Solution

R � .2

x  � 12.5 ounces

The value of A2 is obtained from Table 6-1. For n � 5, A2 �
.58. This leads to the following limits:

The center of the control chart is CL � 12.5 ounces

 LCL � x � A2 R � 12.5 � (.58)(.2) � 12.38

 UCL � x � A2 R � 12.5 � (.58)(.2) � 12.62

• Problem 3 
Ten samples with 5 observations each have been taken from the
Crunchy Potato Chip Company plant in order to test for vol-
ume dispersion in the bagging process. The average sample
range was found to be .3 ounces. Develop control limits for the
sample range.

• Solution

n � 5

R � .3 ounces

From Table 6-1 for n � 5:

D4 � 2.11

D3 � 0

Therefore,

LCL � D3  R � 0(.3) � 0

UCL � D4  R � 2.11(.3) � .633
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• Problem 5 
Kinder Land Child Care uses a c-chart to monitor the number
of customer complaints per week. Complaints have been
recorded over the past 20 weeks. Develop a control chart with
three-sigma control limits using the following data:

Number of Number of
Week Complaints Week Complaints

1 0 11 4
2 3 12 3
3 4 13 1
4 1 14 1
5 0 15 1
6 0 16 0
7 3 17 2
8 1 18 1
9 1 19 2

10 0 20 2
Total 30

• Solution

The average weekly number of complaints is 

Therefore,

The resulting control chart is:

 LCL � c � z√c � 1.5 � 3√1.5 � �2.17 9: 0

 UCL � c � z√c � 1.5 � 3√1.5 � 5.17

30

20
� 1.5

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A B C D E F G

p-Chart for Light Bulb Quality

Sample Size 30
Number Samples 10

Sample # # Defectives p
1 1 0.03333333
2 3 0.1
3 3 0.1
4 1 0.03333333
5 0 0
6 5 0.16666667
7 1 0.03333333
8 1 0.03333333
9 1 0.03333333
10 1 0.03333333

p bar = 0.05666667
Sigma_p = 0.04221199

Z-value for control charts = 3

CL: Center Line = 0.05666667
LCL: Lower Control Limit = 0
UCL: Upper Control Limit = 0.18330263

C8: =B8/C$4

C19: =SUM(B8:B17)/(C4*C5)

C20: =SQRT((C19*(1-C19))/C4)

C23: =C19

C24: =MAX(C$19-C$21*C$20,0)

C25: =C$19+C$21*C$20

This is also solved using a spreadsheet.



212 • CHAPTER 6 STATISTICAL QUALITY CONTROL

• Problem 7
Compute the Cpk measure of process capability for the follow-
ing machine and interpret the findings. What value would you
have obtained with the Cp measure?

Machine Data: USL � 80
LSL � 50
Process � � 5
Process � � 60

• Solution
To compute the Cpk measure of process capability:

This means that the process is not capable. The Cp measure of
process capability gives us the following measure:

which leads us to believe that the process is capable.

Cp �
30

6(5)
� 1.0

 � 0.67

 �  min(1.33, 0.67)

 � min� 80 � 60

3(5)
, 

60 � 50

3(5) �

Cpk � min� USL � �

3�
, 

� � LSL

3� �

• Problem 6
Three bagging machines at the Crunchy Potato Chip Company
are being evaluated for their capability. The following data are
recorded:

Bagging Machine Standard Deviation
A .2
B .3
C .05

If specifications are set between 12.35 and 12.65 ounces, deter-
mine which of the machines are capable of producing within
specification.

• Solution
To determine the capability of each machine we need to divide
the specification width (USL � LSL � 12.65 � 12.35 � .3) by
6� for each machine:

Bagging
Machine � USL � LSL 6�

A .2 .3 1.2 0.25
B .3 .3 1.8 0.17
C .05 .3 .3 1.00

Looking at the Cp values, only machine C is capable of bagging
the potato chips within specifications, because it is the only
machine that has a Cp value at or above 1.

Cp �
USL � LSL

6�

LCL CL UCL p

Week
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Discussion Questions
1. Explain the three categories of statistical quality control

(SQC). How are they different, what different information do
they provide, and how can they be used together?

2. Describe three recent situations in which you were directly
affected by poor product or service quality.

3. Discuss the key differences between common and assigna-
ble causes of variation. Give examples.

4. Describe a quality control chart and how it can be used.
What are upper and lower control limits? What does it mean if
an observation falls outside the control limits?

5. Explain the differences between x-bar and R-charts. How

can they be used together and why would it be important to use
them together?

6. Explain the use of p-charts and c-charts. When would you
use one rather than the other? Give examples of measurements
for both p-charts and c-charts.

7. Explain what is meant by process capability. Why is it im-
portant? What does it tell us? How can it be measured?

8. Describe the process of acceptance sampling. What types of
sampling plans are there? What is acceptance sampling used for?

9. Describe the concept of Six Sigma quality. Why is such a
high quality level important?

Problems
1. A quality control manager at a manufacturing facility has

taken 4 samples with 4 observations each of the diameter of a part.
(a) Compute the mean of each sample.
(b) Compute an estimate of the mean and standard devia-

tion of the sampling distribution.
(c) Develop control limits for 3 standard deviations of the

product diameter.

Samples of Part Diameter in Inches
1 2 3 4

5.8 6.2 6.1 6.0
5.9 6.0 5.9 5.9
6.0 5.9 6.0 5.9
6.1 5.9 5.8 6.1

2. A quality control inspector at the Beautiful Shampoo
Company has taken 3 samples with 4 observations each of the
volume of shampoo bottles filled. The data collected by the in-
spector and the computed means are shown here:

Samples of Shampoo Bottle
Volume in Ounces

Observation 1 2 3
1 19.7 19.7 19.7
2 20.6 20.2 18.7
3 18.9 18.9 21.6
4 20.8 20.7 20.0

Mean 20.0 19.875 20.0

If the standard deviation of the shampoo bottle filling oper-
ation is .2 ounces, use the information in the table to develop
control limits of 3 standard deviations for the operation.

3. A quality control inspector has taken 4 samples with 5 ob-
servations each at the Beautiful Shampoo Company, measuring
the volume of shampoo per bottle. If the average range for the
4 samples is .4 ounces and the average mean of the observations
is 19.8 ounces, develop three sigma control limits for the bot-
tling operation.

4. A production manager at Ultra Clean Dishwashing company
is monitoring the quality of the company’s production process.
There has been concern relative to the quality of the operation to
accurately fill the 16 ounces of dishwashing liquid. The product is
designed for a fill level of 16.00 � 0.30. The company collected the
following sample data on the production process:

Observations
Sample 1 2 3 4

1 16.40 16.11 15.90 15.78
2 15.97 16.10 16.20 15.81
3 15.91 16.00 16.04 15.92
4 16.20 16.21 15.93 15.95
5 15.87 16.21 16.34 16.43
6 15.43 15.49 15.55 15.92
7 16.43 16.21 15.99 16.00
8 15.50 15.92 l6.12 16.02
9 16.13 16.21 16.05 16.01

10 15.68 16.43 16.20 15.97

(a) Are the process mean and range in statistical control?
(b) Do you think this process is capable of meeting the de-

sign standard?
5. Ten samples with 5 observations each have been taken

from the Beautiful Shampoo Company plant in order to test for
volume dispersion in the shampoo bottle filling process. The av-
erage sample range was found to be .3 ounces. Develop control
limits for the sample range.

6. The Awake Coffee Company produces gourmet instant cof-
fee. The company wants to be sure that the average fill of coffee
containers is 12.0 ounces. To make sure the process is in control, a
worker periodically selects at random a box containing 6 containers
of coffee and measures their weight. When the process is in control,
the range of the weight of coffee samples averages .6 ounces.

(a) Develop an R-chart and an -chart for this process.
(b) The measurements of weight from the last five samples

taken of the 6 containers are shown below:

x
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Is the process in control? Explain your answer.

Sample R
1 12.1 .7
2 11.8 .4
3 12.3 .6
4 11.5 .4
5 11.6 .9

7. A production manager at a Contour Manufacturing plant
has inspected the number of defective plastic molds in 5 ran-
dom samples of 20 observations each. Following are the number
of defective molds found in each sample:

Number of
Number of Observations

Sample Defects in Sample
1 1 20
2 2 20
3 2 20
4 1 20
5 0 20

Total 6 100

Construct a three-sigma control chart (z � 3) with this infor-
mation.

8. A tire manufacturer has been concerned about the num-
ber of defective tires found recently. In order to evaluate the true
magnitude of the problem, a production manager selected ten
random samples of 20 units each for inspection. The number of
defective tires found in each sample are as follows:

(a) Develop a p-chart with a z � 3.
(b) Suppose that the next 4 samples selected had 6, 3, 3, and

4 defects. What conclusion can you make?

Sample Number Defective
1 1
2 3
3 2
4 1
5 4
6 1
7 2
8 0
9 3

10 1

9. U-learn University uses a c-chart to monitor student com-
plaints per week. Complaints have been recorded over the past
10 weeks. Develop three-sigma control limits using the follow-
ing data:

x

Week Number of Complaints
1 0
2 3
3 1
4 1
5 0
6 0
7 3
8 1
9 1

10 2

10. University Hospital has been concerned with the number
of errors found in its billing statements to patients. An audit of
100 bills per week over the past 12 weeks revealed the following
number of errors:

Week Number of Errors
1 4
2 5
3 6
4 6
5 3
6 2
7 6
8 7
9 3

10 4
11 4
12 4

(a) Develop control charts with z � 3.
(b) Is the process in control?
11. Three ice cream packing machines at the Creamy Treat

Company are being evaluated for their capability. The following
data are recorded:

Packing Machine Standard Deviation
A .2
B .3
C .05

If specifications are set between 15.8 and 16.2 ounces, determine
which of the machines are capable of producing within specifi-
cations.

12. Compute the Cpk measure of process capability for the
following machine and interpret the findings. What value would
you have obtained with the Cp measure?

Machine Data: USL � 100
LSL � 70
Process � � 5
Process � � 80
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13. Develop an OC curve for a sampling plan in which a
sample of n � 5 items is drawn from lots of N � 1000 items.
The accept/reject criteria are set up in such a way that we accept
a lot if no more than one defect (c � 1) is found.

14. Quality Style manufactures self-assembling furniture. To
reduce the cost of returned orders, the manager of its quality
control department inspects the final packages each day using
randomly selected samples. The defects include wrong parts,
missing connection parts, parts with apparent painting prob-
lems, and parts with rough surfaces. The average defect rate is
three per day.

(a) Which type of control chart should be used? Construct a
control chart with three-sigma control limits.

(b) Today the manager discovered nine defects. What does
this mean?

15. Develop an OC curve for a sampling plan in which a
sample of n � 10 items is drawn from lots of N � 1000. The
accept/reject criteria is set up in such a way that we accept a lot
if no more than one defect (c � 1) is found.

16. The Fresh Pie Company purchases apples from a local
farm to be used in preparing the filling for their apple pies.
Sometimes the apples are fresh and ripe. Other times they can
be spoiled or not ripe enough. The company has decided that
they need an acceptance sampling plan for the purchased ap-
ples. Fresh Pie has decided that the acceptable quality level is
5 defective apples per 100, and the lot tolerance proportion de-
fective is 5%. Producer’s risk should be no more than 5% and
consumer’s risk 10% or less.

(a) Develop a plan that satisfies the above requirements.
(b) Determine the AOQL for your plan, assuming that the

lot size is 1000 apples.
17. A computer manufacturer purchases microchips from a

world-class supplier. The buyer has a lot tolerance proportion
defective of 10 parts in 5000, with a consumer’s risk of 15%. If
the computer manufacturer decides to sample 2000 of the mi-
crochips received in each shipment, what acceptance number, c,
would they want?

18. Joshua Simms has recently been placed in charge of pur-
chasing at the Med-Tech Labs, a medical testing laboratory. His
job is to purchase testing equipment and supplies. Med-Tech
currently has a contract with a reputable supplier in the indus-
try. Joshua’s job is to design an appropriate acceptance sampling
plan for Med-Tech. The contract with the supplier states that
the acceptable quality level is 1% defective. Also, the lot toler-
ance proportion defective is 4%, the producer’s risk is 5%, and
the consumer’s risk is 10%.

(a) Develop an acceptance sampling plan for Joshua that
meets the stated criteria.

(b) Draw the OC curve for the plan you developed.
(c) What is the AOQL of your plan, assuming a lot size of

1000?
19. Breeze Toothpaste Company makes tubes of toothpaste.

The product is produced and then pumped into tubes and
capped. The production manager is concerned whether the fill-

ing process for the tubes of toothpaste is in statistical control.
The process should be centered on 6 ounces per tube. Six sam-
ples of 5 tubes were taken and each tube was weighed. The
weights are:

Ounces of Toothpaste per Tube
Sample 1 2 3 4 5

1 5.78 6.34 6.24 5.23 6.12
2 5.89 5.87 6.12 6.21 5.99
3 6.22 5.78 5.76 6.02 6.10
4 6.02 5.56 6.21 6.23 6.00
5 5.77 5.76 5.87 5.78 6.03
6 6.00 5.89 6.02 5.98 5.78

(a) Develop a control chart for the mean and range for the
available toothpaste data.

(b) Plot the observations on the control chart and comment
on your findings.

20. Breeze Toothpaste Company has been having a problem
with some of the tubes of toothpaste leaking. The tubes are
packed in containers with 100 tubes each. Ten containers of
toothpaste have been sampled. The following number of tooth-
paste tubes were found to have leaks:

Number of Number of
Sample Leaky Tubes Sample Leaky Tubes

1 4 6 6
2 8 7 10
3 12 8 9
4 11 9 5
5 12 10 8

Total 85

Develop a p-chart with three-sigma control limits and evaluate
whether the process is in statistical control.

21. The Crunchy Potato Chip Company packages potato
chips in a process designed for 10.0 ounces of chips with an up-
per specification limit of 10.5 ounces and a lower specification
limit of 9.5 ounces. The packaging process results in bags with
an average net weight of 9.8 ounces and a standard deviation of
0.12 ounces. The company wants to determine if the process is
capable of meeting design specifications.

22. The Crunchy Potato Chip Company sells chips in boxes
with a net weight of 30 ounces per box (850 grams). Each box
contains 10 individual 3-ounce packets of chips. Product design
specifications call for the packet-filling process average to be set
at 86.0 grams so that the average net weight per box will be 860
grams. Specification width is set for the box to weigh 850 � 12
grams. The standard deviation of the packet-filling process is
8.0 grams. The target process capability ratio is 1.33. The pro-
duction manager has just learned that the packet-filling process
average weight has dropped down to 85.0 grams. Is the packag-
ing process capable? Is an adjustment needed?
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CASE: Scharadin Hotels
Scharadin Hotels are a national hotel chain started in 1957 by
Milo Scharadin. What started as one upscale hotel in New York
City turned into a highly reputable national hotel chain. Today
Scharadin Hotels serve over 100 1ocations and are recognized
for their customer service and quality. Scharadin Hotels are typ-
ically located in large metropolitan areas close to convention
centers and centers of commerce. They cater to both business
and nonbusiness customers and offer a wide array of services.
Maintaining high customer service has been considered a prior-
ity for the hotel chain.

A Problem with Quality
The Scharadin Hotel in San Antonio, Texas, had recently been
experiencing a large number of guest complaints due to billing
errors. The complaints seem to center around guests disputing
charges on their final hotel bill. Guest complaints ranged from
extra charges, such as meals or services that were not purchased,
to confusion for not being charged at all. Most hotel guests use
express checkout on their day of departure. With express check-
out the hotel bill is left under the guest’s door in the early morn-
ing hours and, if all is in order, does not require any additional
action on the guest’s part. Express checkout is a welcome service
by busy travelers who are free to depart the hotel at their conve-
nience. However, the increased number of billing errors began
creating unnecessary delays and frustration for the guests who
unexpectedly needed to settle their bill with the front desk. The
hotel staff often had to calm frustrated guests who were rushing
to the airport and were aggravated that they were getting
charged for items they had not purchased.

Identifying the Source of the
Problem
Larraine Scharadin, Milo Scharadin’s niece, had recently been
appointed to run the San Antonio hotel. A recent business
school graduate, Larraine had grown up in the hotel business.
She was poised and confident, and understood the importance
of high quality for the hotel. When she became aware of the
billing problem, she immediately called a staff meeting to un-
cover the source of the problem.

During the staff meeting discussion quickly turned to prob-
lems with the new computer system and software that had been
put in place. Tim Coleman, head of MIS, defended the system,
stating that the system was sound and the problems were exag-
gerated. Tim claimed that a few hotel guests made an issue of a

few random problems. Scott Schultz, head of operations, was
not so sure. Scott said that he noticed that the number of com-
plaints seem to have significantly increased since the new system
was installed. He said that he had asked his team to perform an
audit of 50 random bills per day over the past 30 days. Scott
showed the following numbers to Larraine, Tim, and the other
staff members.

Number of Number of Number of
Incorrect Incorrect Incorrect

Day Bills Day Bills Day Bills
1 2 11 1 21 3
2 2 12 2 22 3
3 1 13 3 23 3
4 2 14 3 24 4
5 2 15 2 25 5
6 3 16 3 26 5
7 2 17 2 27 6
8 2 18 2 28 5
9 1 19 1 29 5

10 2 20 3 30 5

Everyone looked at the data that had been presented. Then Tim
exclaimed: “Notice that the number of errors increases in the
last third of the month. The computer system had been in place
for the entire month so that can’t be the problem. Scott, it is
probably the new employees you have on staff that are not en-
tering the data properly.” Scott quickly retaliated: “The employ-
ees are trained properly! Everyone knows the problem is the
computer system!”

The argument between Tim and Scott become heated, and
Larraine decided to step in. She said, “Scott, I think it is best if
you perform some statistical analysis of that data and send us
your findings. You know that we want a high-quality stan-
dard. We can’t be Motorola with six-sigma quantity, but let’s
try for three-sigma. Would you develop some control charts
with the data and let us know if you think the process is in
control?”

Case Questions
1. Set up three-sigma control limits with the given data.
2. Is the process in control? Why?
3. Based on your analysis do you think the problem is the

new computer system or something else?
4. What advice would you give to Larraine based on the

information that you have?
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CASE: Delta Plastics, Inc. (B)
Jose De Costa, Director of Manufacturing at Delta Plastics, sat
at his desk looking at the latest production quality report, show-
ing the number and type of product defects per week (see the
quality report in Delta Plastics, Inc. Case A, Chapter 5). He was
faced with the task of evaluating production quality for prod-
ucts made with two different materials. One of the materials
was new and called “super plastic” due to its ability to sustain
large temperature changes. The other material was the standard
plastic that had been successfully used by Delta for many years.

The company had started producing products with the new
“super plastic” material only a month earlier. Jose suspected that
the new material could result in more defects during the pro-
duction process than the standard material they had been using.

Jose was opposed to starting production until R&D had fully
completed testing and refining the new material. However, the
CEO of Delta ordered production despite objections from man-
ufacturing and R&D. Jose carefully looked at the report in front
of him and prepared to analyze the results.

Case Questions
1. Prepare a three-sigma control chart for both production

processes, using the new and standard material (use the quality
report in Delta Plastics, Inc. Case A, Chapter 5). Are both
processes in control? What can you conclude?

2. Are both materials equally subject to the defects?
3. Given your findings, what advice would you give Jose?

Interactive Learning
Enhance and test your knowledge of Chapter 6. Use the CD and visit our Web site, www.wiley.com/college/reid,
for additional resources and information.
1. Spreadsheets Solved Problems 1 and 4

2. Company Tours
Rickenbacker International Corporation
Genesis Technologies, Inc.
Canadian Springs Water Company

3. Additional Web Resources
American Society for Quality Control, www.asqc.org
Australian Quality Council, www.aqc.org.au

4. Internet Challenge Safe-Air

To gain business experience, you have volunteered to work at
Safe-Air, a nonprofit agency that monitors airline safety records
and customer service. Your first assignment is to compare three
airlines based on their on-time arrivals and departures. Your
manager has asked you to get your information from the Inter-
net. Select any three airlines. For an entire week check the daily
arrival and departure schedules of the three airlines from your
city or closest airport. Remember that it is important to com-
pare the arrivals and departures from the same location and
during the same time period to account for factors such as the
weather. Record the data that you collect for each airline. Then

decide which types of statistical quality control tools you are
going to use to evaluate the airlines’ performances. Based on
your findings, draw a conclusion regarding the on-time arrivals
and departures of each of the airlines. Which is best and which
is worst? Are there large differences in performance among the
airlines? Also describe the statistical quality control tools you
have decided to use to monitor performance. If you have cho-
sen to use more than one tool, are you finding the tools equally
useful or is one better at capturing differences in performance?
Finally, based on what you have learned so far, how would you
perform this analysis differently in the future?

Virtual Company: Valley Memorial Hospital
Assignment: Statistical Quality Control This assignment involves controlling nursing hours at Valley
Memorial Hospital. Lee Jordan, director of the hospital’s Medical/Surgical Nursing Unit, has already told you
that VMH employs more than 500 nurses, with an annual nursing budget of $5,000,000. “We’re trying for a five
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percent reduction in nursing FTEs — full-time equivalents,” he says. “I’ve been personally record-
ing the nursing hours per patient per day for over three months in Med/Surg. I would like you to
look at the numbers and see if you can tell me how to meet our goals.

To complete this assignment, go to www.wiley.com/college/reid to get more details on the fol-
lowing projects:

1. Develop upper and lower limits for FTEs within which the Medical/Surgical Nursing Unit will be efficient
and will maintain quality at least 95 percent of the time.

2. Look at the data and determine whether Jordan is really in control of nursing hours. If he isn’t, tell him
why.

3. Determine how the Medical/Surgical Nursing Unit can bring nursing hours per patient day (NHPPD) down
to 8.00. Also, provide some advice on how Jordan can get his staff to buy into the concept of an NHPPD tar-
get of 8.00.

4. Jot down your thoughts on the three statistical problems, which are contained in memos Jordan received
from other VMH staff:

• Will Hartmann, in the Business Office has kept track of billing errors for the past 21 weeks. Based on this
data, determine control limits for billing errors. Also, is the percentage of defective bills a valid measure for
this analysis?

• Analyze trends in patient surveys about the meals served at VMH. Doug Jennings, in Dietary, thinks the
number of OUTSTANDING responses has been declining, but he’s not sure if that decline is statistically
significant.

• Margot Hamilton, in Housekeeping, has been keeping track of defects in room cleaning. Based on her
data, develop some recommendations on how she can get better results.

To access the Web site:

• Go to www.wiley.com/college/reid

• Click Student Companion Site

• Click Virtual Company

• Click Kaizen Consulting, Inc.

• Click Consulting Assignments

• Click Statistical Quality Control
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