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Preface

Physics courses for students in Nuclear Engineering at Università di Roma “La
Sapienza” were restructured following the reform of Italian University Curricula,
as well as the transformation of the previous Nuclear Engineering M. S. in one
of the Curricula of the Energy Engineering M.S. As a result, two previous one-
semester courses on Quantum Mechanics (actually named “Atomic Physics”)
and Nuclear Physics were merged into a single one-semester course on Principles
of Atomic and Nuclear Physics, now renamed Modern Physics for Engineers.
Students attending this course have previously attended General Physics and
Calculus courses, but were not thought any Modern Physics. Also, their Math
courses do not include such topics as Fourier transforms, vector spaces and
complex analysis.

Modern Physics for Engineers should provide the students an (at least)
qualitative understanding of the main nuclear physics relevant to fission (and
fusion) reactors, as well to applications of nuclear radiations in medicine and
non-destructive analysis. The first part of the course introduces modern physics
concepts (in particular elementary quantum mechanics), the second part con-
cerns nuclear physics. This manuscript collects my edited lecture notes on the
first part of the course.

Note:
This is just a draft. Parts of the text are still in Italian. Parts are just scans
of handwritten notes. I hope to improve these Lecture Notes, in particular
adding the examples and exercises discussed in the classroom (and possibly
many others). I also plan to add a few additional sections and appendices.
Some of these will deal with topics, such as Fermi golden rule and the proof
of the Lorentian shape of a decay line, which may help the students to read
introductory nuclear physics textbooks. Other planned sections, on the laser
and on applications of quantum statistics, may be useful to engineering students
interested in non-nuclear applications of Modern Physics.
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Chapter 1

Classical physics: success
and crisis

By classical physics we refer to Newton’s mechanics, Maxwell’s electromag-
netisms, thermodynamics and the kinetic theory of ideal gases. Classical physics
is neither applicable to the atomic and subatomic word, nor to bodies in motion
at velocity close to the speed of light.

We should not be too much surprised. Classical physics was developed to
explain (or to account for) phenomena observed by our senses, that do not allow
us to see the atomic world, and are only accustomed to velocities much smaller
than the speed of light.

We very briefly summarise successes and elements of crisis of classical physics.

• Netwon’s mechanics

– relativity principle

– the three principles of mechanics

– the law of gravitation

– the laws of some non-fundamental forces (e.g. the elastic force)

explains fall of bodies, Kepler’s laws, etc;
predicted, e. g. the existence of the planet Neptune (later found by
astronomers).

• Maxwell’s electromagnetism

– the four Maxwell’s equations

– Coulomb-Lorentz force

explains electrical, magnetic, optical phenomena;
predicted the existence of electromagnetic waves (later discovered by
Hertz).

1



2 CHAPTER 1. CLASSICAL PHYSICS: SUCCESS AND CRISIS

• thermodynamics

– the three laws

sets equivalence between heat and work explains limitation of heat en-
gines

• kinetic theory of gases1, a bridge between mechanics and thermodynamics

– Maxwell’s velocity distribution function

– Boltzmann’s factor

– Principle of equipartition of energy

explains laws of gases, specific heats of gases, chemical kinetics, Brownian
motion

Element of crisis at the end of the XIX century

• Maxwell’s equations are not covariant under Galilean transformations, but
are covariant under Lorentz transformations. Galileo’s law of velocity
addition does not apply.

• Classical physics cannot explain

– black-body spectrum;

– atomic spectra;

– atom stability;

– photoelectric effect;

– specific heats at low temperature;

– Compton effect (discovered in the 1920’s).

1See Appendix H



Chapter 2

Special relativity

Einstein developed special relativity in order to make the electrodynamics of
moving bodies consistent with Maxwell’s theory applying to bodies at rest.1

Indeed, as briefly mentioned in the preceding Chapter, it was known that
Maxwell’s equations are not covariant for Galilean transformations. In other
words, Galileo’s law of addition of velocity is not consistent with Maxwell’s
equations. Einstein showed that the inconsistency is due to the equations of
kinematics, not to electrodynamics. Indeed, when the concept of time is revised
and the new postulate of constancy of the speed of light c is introduced (see
below), the inconsistency is removed. Galileans transformations are replaced
by a new set of transformations (Lorentz transformations), which in the limit
of velocities v � c reduce to Galilean transformations. Here we only discuss
kinematics and dynamics aspects of relativity. In this chapter, we follow closely
the presentation in the textbook C. Mencuccini and V. Silvestrini, Fisica I,
Liguori, Napoli (1986, 1996), Chapter XI. I urge the students to refer to this
book for enlightening discussions of the postulates of special relativity, critiques
of simultaneity, and description of a few experiments confirming the accuracy
of special relativity.

2.1 The postulates

Special relativity is based on the following three postulates 2

1. The special principle of relativity
Physical laws should be the same in every inertial frame of reference.

2. Constancy of the speed of light
Light is always propagated in empty space with a definite velocity [speed]

1See the introduction to the original Einstein’s paper, Annalen der Physik, 17, 891 (1905);
English tr.: in A. Sommerfeld (Ed.) The Principle of Relativity, Dover, New York (1952)

2In fact, one also postulates that space is homogeneous and isotropic.

3



4 CHAPTER 2. SPECIAL RELATIVITY

c which is independent of the state of motion of the emitting body.3

3. Momentum and angular momentum conservation
In an inertial reference frame, momentum and angular momentum of an
isolated system are conserved.

Notice that:

• postulate 1 just extends the relativity principle, stated by Galileo for me-
chanical phenomena, to any physical process;

• postulate 2 is new (and, in a sense, replaces the assumption of absolute
time implicit in classical physics);

• postulate 3 is just the same as in classical mechanics.

2.2 Time and simultaneity

In classical mechanics we implicitly assume that time is universal. Clocks run
at the same speed in any reference system.

However, things are not so trivial. Events judged as simultaneous by an
observer are not simultaneous for another observer moving with respect to the
first one.

Let us consider a source S of light pulses placed at the middle of a ruler, at
distance ∆x/2 by both ruler ends, a and b. For an observer at rest with respect
to the ruler, the light signal emitted by S reaches a and b simultaneously. Let us
assume that the ruler moves with respect to another observer (see Fig. 2.1). Also
for this observer, at the time of signal emission points a and b are equidistant
from S. However, as light propagates, the ruler moves, and light reaches the
left hand side of the ruler (now in a′) before than the right hand side.

In the special theory of relativity, the idea of absolute time is abandoned. In-
stead, it is postulated that the speed of light (in vacuum) is a universal
constant. It is independent of the motion of the light source.

2.3 Consequences of the constancy of the speed
of light

In this section we show two simple, unexpected consequences of the constancy of
the speed of light. They concern particular cases of measurements of the same
quantity performed by observers sitting in different reference systems (in relative
motion). In the following Sec. 2.4 we shall deal with the general transformations
relating measurements in inertial systems in relative motion.
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Figure 2.1: Events which are simultaneous for an observer are not simultaneous
for another observer in motion relative to the first observer.

2.3.1 Time dilatation

We refer to Fig. 2.2, showing a device consisting of a pulsed light source, a
detector (just in the same position as the source) and a mirror, placed at distance
l from the source. We are interested in measuring the time a signal emitted by
the source takes to reach the detector. An observer sitting in the device’s frame
measures a proper time interval

∆t0 =
2l

c
. (2.1)

Let us assume that the device moves with velocity ~V = (V, 0), with respect to a
frame S = (XOY ) (see Fig. 2.3). For an observer sitting in S light has to cover
a longer path,

2
√
l2 + (V∆t/2)2

to reach the detector, because the detector moves as light propagates .
He therefore measures a time interval (see Fig. 2.3)

∆t =

2

√
l2 +

(
V

∆t

2

)2

c
=

2

√(
c
∆t0

2

)2

+

(
V

∆t

2

)2

c
, (2.2)

3English translation of the original statement in A. Einstein, Annalen der Physik 17, 891
(1905).
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Figure 2.2: Our measuring device: source, mirror, detector.

from which we obtain

∆t =
∆t0√

1− V 2

c2

: (2.3)

the observer moving with respect to the source-detector system measures a
longer time interval than the proper time measured by an observer sitting on
the device.

Equation (2.3) is often written in the form

∆t = ∆t0γ, (2.4)

with the function γ (known as the relativistic γ factor) defined by

γ =
1√

1− V 2

c2

≥ 1. (2.5)

An important experimental evidence (one of many): the elementary particle
µ is unstable, with measured (proper) mean lifetime of 2.2 µs. A µ moving with
velocity approaching that of light has an average path of 660 m. However, a
large number of µ’s is produced by interaction of cosmic rays with the upper
layers of the atmosphere, i.e. at tens of km above sea level, and is detected close
to the earth surface. Therefore they travel tens of km. This is possible because
they move at a velocity close to that of light and an observer sitting on earth
measures a strongly dilated time.

2.3.2 Length contraction

We consider a ruler of proper length L0, with mirrors at both ends (see Fig. 2.4).
We measure the time taken by a light signal to travel from mirror M1 to mirror
M2 and back to mirror M1.

For an observer sitting on the ruler

∆t0 = 2L0/c, (2.6)
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Figure 2.3: The primed frame moves towards the right hand side with velocity
V . For an observer in S=(yOx) a light signal emitted in O′ has to travel a path
longer than 2l to reach the detector.

with ∆t0 a proper time.
For an observer moving with speed V the ruler length is L, and the time

interval is

∆t = ∆t1 + ∆t2 =
L

c− V
+

L

c+ V
=

2cL

c2 − V 2
=

2L/c

1− V 2

c2

. (2.7)

Time intervals ∆t and ∆t0, in turn, are related by Eq. (2.3), and then

∆t =
∆t0√

1− V 2

c2

=
2L0/c√
1− V 2

c2

. (2.8)

We find the relation between the lengths by equating the right hand sides of
Eq. (2.7) and Eq. (2.8), which gives

L = L0

√
1− V 2

c2
= L0/γ : (2.9)

the ruler is shorter for the observer moving with respect to it.

2.4 Lorentz transformations

In special relativity, Lorentz transformations replace Galilean transformations.
Here we consider the simple case of measurements performed by observers in
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Figure 2.4: Experiment to evidence length contraction. The ruler with the
mirrors moves towards the right hand side with velocity V. The figure shows
the positions of the ruler at different times and the path travelled by light, as
seen by an observer sitting on the foil.

inertial frames, translating with respect to each other, with velocity V , parallel
to the x-axis (see Fig. 2.5). The relevant transformations, relating measurements
performed in the S (OXY Z) frame and in the S′ frame (X ′O′Y ′Z ′) are

x =
x′ + V t′√

1− V 2

c2

, (2.10)

y = y′, (2.11)

z = z′, (2.12)

t =
t′ +

V

c2
x′√

1− V 2

c2

, (2.13)

and, analogously,

x′ =
x− V t√
1− V 2

c2

, (2.14)

y′ = y, (2.15)

z′ = z, (2.16)

t′ =
t− V

c2
x√

1− V 2

c2

. (2.17)

We immediately see that we recover the usual Galilean transformations (x =
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Figure 2.5: Reference frames S = (yxz) and S′ = (x′y′z′)

x′ + V t; t = t′) as V/c→ 0.

2.4.1 Recovering time dilatation and length contraction

We now check that the expressions for time dilatation [Eq. (2.3)] and length
contraction [Eq. (2.9)] derived earlier are recovered from the Lorentz transfor-
mations.

Time dilatation

We consider a phenomenon occurring in the origin of system S′, i.e. at x′ =
0. For an observer in S′ it occurs in a time interval ∆t′. An observer in S,
moving with velocity V with respect to S′, measures a time interval ∆t given
by Eq. (2.13) with x′ = 0, i.e.

∆t =
∆t′√

1− V 2

c2

, (2.18)

which is just Eq. (2.3).

Length contraction

We assume that an observer in frame S measures a given length ∆x in a time
interval ∆t = 0. A length measured in S is related to a length measured in S′

by Eq. (2.10), which we write compactly as

∆x = γ(∆x′ + V∆t′). (2.19)
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To eliminate the dependence on ∆t′ we rewrite Eq. (2.13) as

∆t′ =
∆t

γ
− V∆x′

c2
, (2.20)

and insert this expression into Eq. (2.19), thus obtaining

∆x = γ∆x′ + γV

(
∆t

γ
− V∆x′

c2

)
= ∆x′γ

(
1− V 2

c2

)
+ V∆t. (2.21)

Setting ∆t = 0 and using the definition of γ we eventually have

∆x = ∆x′
√

1− V 2

c2
, (2.22)

which is just Eq. (2.9) for length contraction.

2.4.2 Transformation of velocities

Again, we assume that frame S′ moves with velocity ~V = (V, 0, 0) with respect
to frame S. In classical mechanics the x-components of the velocities in the
two frames would be related by vx = v′x + V . We now obtain the expressions
for relativistic transformation of velocities. The velocity components in the two
frames are defined by

vx =
dx

dt
, (2.23)

vy =
dy

dt
, (2.24)

vz =
dz

dt
, (2.25)

and

v′x =
dx′

dt′
, (2.26)

v′y =
dy′

dt′
, (2.27)

v′z =
dz′

dt′
. (2.28)

Notice that, unlike the classical case, time now depends on the reference system.
By differentiating the Lorentz transformations [Eqs. (2.10)–(2.13)] we obtain

dx = γ(dx′ + V dt′), (2.29)

dy = dy′, (2.30)

dz = dz′, (2.31)

dt = γ(dt′ +
V

c2
dx′), (2.32)
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and then we can write the velocity components in the S frame as

vx =
γ(dx′ + V dt′)

γ(dt′ +
V

c2
dx′)

, (2.33)

vy =
dy′

γ(dt′ +
V

c2
dx′)

, (2.34)

vz =
dz′

γ(dt′ +
V

c2
dx′)

, (2.35)

(2.36)

from which we obtain the desired velocity transformation by dividing numera-
tors and denominators by dt′:

vx =
v′x + V

1 +
V

c2
v′x

, (2.37)

vy =
v′y

γ(1 +
V

c2
v′x)

, (2.38)

vz =
v′z

γ(1 +
V

c2
v′x)

. (2.39)

As for the Lorentz transformations, we immediately see that we recover Galilean
transformations as V/c→ 0.

Let us now take V = c, i.e. assume that system S′ moves with the speed of
light. Equation (2.37) yields

vx =
v′x + c

1 +
c

c2
v′x

=
v′x + c

c+ v′x
c

= c. (2.40)

The observer in S measures a velocity vx = c, for any value of v′x (including
v′x = c).

2.4.3 Lorentz matrix

If we consider four-component space-time vectors

x = (x1, x2, x3, x4) = (x, y, z, ct) = (~x, ct) (2.41)

and analogously

x′ = (x′1, x
′
2, x
′
3, x
′
4) = (x′, y′, z′, ct′) = (~x′, ct′), (2.42)
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we can write the Lorentz transformations as

x′1 = γx1 − βγx4, (2.43)

x′2 = x2, (2.44)

x′3 = x3, (2.45)

x′4 = −βγx1 + γx4, (2.46)

where β = V/c, or
x′1
x′2
x′3
x′4

 =


γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ




x1

x2

x3

x4

 (2.47)

In compact vector form

(x′)T = AxT , or x′i =
∑
i,j

Ai,jxj (2.48)

where

A =


γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ

 (2.49)

is the Lorentz matrix. Analogously,

xT = A−1(x′)T , (2.50)

where

A−1 =


γ 0 0 βγ
0 1 0 0
0 0 1 0
βγ 0 0 γ

 (2.51)

is the inverse of matrix A.

2.4.4 Four-vectors

The four-component vectors x and x′ introduced in the previous section are just
two particular (and particularly important) relativistic four-component vectors
(4-vectors, in short). In general, a 4-vector a is a four-component vector

a = (a1, a2, a3, a4) (2.52)

that transforms according to Lorentz transformations, a′ = Aa, where A is
Lorentz matrix.

The inner product of two 4-vectors a and b is defined by

a · b = a1b1 + a2b2 + a3b3 − a4b4. (2.53)
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(Note the minus sign!)
One can verify that the inner product of two 4-vectors is relativistically

invariant, i.e. it takes the same value in any (inertial) frame. Hence, for instance,

(~x, ct)2 = (~x′, ct′)2, (2.54)

or
x2 + y2 + z2 − c2t2 = x′2 + y′2 + z′2 − ct′2. (2.55)

2.5 Momentum, mass, energy

In classical mechanics the momentum of a particle of mass m and velocity v is
~p = m~v. Total momentum of an isolated system is conserved. It can easily be
shown that total momentum (

∑
mj~vj) is not conserved if the velocities follow

the Lorentz transformations. Since we want total momentum to be conserved,
we have to modify the expression of the momentum.

2.5.1 Momentum-energy 4-vector

In analogy with the space-time 4-vector x = (x, y, z, ct) we define the 4-vector

p = (m0
dx

dt0
,m0

dy

dt0
,m0

dz

dt0
,m0

dct

dt0
) (2.56)

where t0 is the proper time, i.e. the time measured in the body’s frame, and m0

is the rest mass, i.e. the mass of the body in a system moving with the body
itself. The reason for the name rest mass will be apparent soon. The 4-vector
p can also be written as

p = (m0
dx

dt

dt

dt0
,m0

dy

dt

dt

dt0
,m0

dz

dt

dt

dt0
,m0

dct

dt0
) (2.57)

= (m0vx
dt

dt0
,m0vy

dt

dt0
,m0vz

dt

dt0
,m0c

dt

dt0
) (2.58)

The relation between the time differentials dt and dt0 is obtained from the
Lorentz transformation, as dt = dt0/(

√
1− v2/c2) or dt/dt0 = γ. We can then

write
p = (m0γvx,m0γvy,m0γvz,m0γc), (2.59)

or, in a form resembling the classical one (with spatial part equal to mass times
velocity),

p = (mvx,mvy,mvz,mc) = (m~v,mc) = (~p,mc). (2.60)

2.5.2 Momentum

We have then found that the expression of the momentum is just the same as
in classical mechanics, i. e.

~p = m~v, (2.61)
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but with the mass m depending on velocity:

m = m0γ =
m0√

1− v2

c2

. (2.62)

The mass tends to infinity as the velocity approaches the speed of light c.
Note that, using the definitions of ~β = ~v/c and of γ, the momentum is often

written as

~p = m0cγ~β. (2.63)

Both the spatial part and the temporal-part (fourth component) of the 4-
vector are conserved simultaneously in an isolated system.

As for any 4-vector, the square of the modulus of the momentum-energy
4-vector is relativistically invariant; indeed

|p|2 = |m~v|2 −m2c2 = (m0γv)2 − (m0γc)
2 = m2

0γ
2(−v2 + c2)

= −m2
0c

2γ2 1− v2

c2
= −m2

0c
2, (2.64)

independent of the reference system.

2.5.3 Energy

We can find the relativistic expression of a particle energy by proceeding as
follows. From the invariance of the momentum-energy 4-vector we have d|p|2 =

d(|~p|2 −m2c2) = 0, or
2~p · d~p− 2mc2dm = 0, (2.65)

from which
~v · d~p = c2dm. (2.66)

In classical mechanics the increment of momentum equals the instantaneous
impulse of the force d~p = ~Fdt. We assume this relation still holds relativistically,
and then write Eq. (2.66) as

~F · ~vdt = c2dm. (2.67)

The left hand side of this equation represents the work done on the particle,
i.e., its energy increment. We can then write

dE = c2dm, (2.68)

or

E = mc2 =
m0c

2√
1− v2

c2

= m0c
2γ. (2.69)
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Equation (2.69) also tells us that an energy release is associated to any reduction
of rest mass of a system of particles (viceversa energy is required to increase the
mass), according to

E = ∆m0c
2. (2.70)

Hence mass conservation is replaced by mass-energy conservation.
Note that using Eq. (2.69) the 4-vector p can be written as

p = (~p,
E

c
), (2.71)

hence the name of momentum-energy 4-vector.
Finally, from the definition of modulus of a 4-vector we can write

|p|2 = (~p)2 − E2

c2
, (2.72)

and using Eq. (2.64) we obtain an important relation between energy, momen-
tum and rest mass, namely

E2 = (pc)2 + (m0c
2)2 . (2.73)

Note that

for a photon (with zero mass), E = hν, and p = E/c = hν/c.

2.5.4 Kinetic energy

We go back to the Eq. (2.67), ~F · ~vdt = c2dm, and integrate assuming a body
at rest at time t = 0, thus obtaining

L = E − E0 = mc2 −m0c
2, (2.74)

where L is the work made by external forces on the body. On the other hand,
according to the kinetic energy theorem, such a work is equal to the increment
of the body’s kinetic energy T . Hence

T = mc2 −m0c
2 = m0c

2(γ − 1). (2.75)

For v/c� 1, we can Taylor expand

γ =
1√

1− v2

c2

' 1 +
1

2

(v
c

)2

− 3

8

(v
c

)4

, (2.76)

and

T ' 1

2
m0v

2 − 3

8
m0

v4

c2
. (2.77)

We see that the classical limit T = (1/2)m0v
2 is recovered when the velocity

v � c. As v → c, T grows indefinitely: see Fig. 2.6.
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Figure 2.6: Kinetic energy T vs v2.



Chapter 3

Particles, photons and
Old Quantum Theory

3.1 Introduction and summary

Old quantum theory refers to quantum concepts introduced ad-hoc in order to
overcome limitations of classical physics.

• The black body spectrum was recovered by Planck, introducing quanti-
zation of oscillator energy [E(ν) = nhν] and giving up the principle of
equipartition of energy in favour of level occupation according to the
Boltzmann factor exp(−E/kBT ).

• The photoelectric effect was explained by Einstein assuming that elec-
tromagnetic waves carry energy in packets of finite quantity. Light is
composed of particle-like photons, of zero mass, energy E = hν and mo-
mentum p = hν/c. The concept of photon also explains Compton effect.

• Atom emission and absorption spectra are recovered by Bohr’s atom model
and its subsequent extensions. Bohr’s model assumes that orbital mo-
mentum is quantized (l = nh̄ = nh/2π, with n = 1, 2, . . .) and that
orbiting electrons do not irradiate. The concepts of force and energy
are just the classical one. The electron orbits and energies turn out to be
quantized. In the Hydrogen atom the electrons with quantum number n
move in a circular orbit of radius rn and have total energy En,

rn = r0n
2, (3.1)

En = E0/n
2, (3.2)

with

r0 =
4πε0h̄

2

mee2
= 5.292× 10−11 m; Bohr′s radius (3.3)

17
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and

E0 = −1

2

mee
4

(4πε0)2h̄2 = −13.60 eV = −2.179× 10−18J, (3.4)

with ε0 the vacuum dielectric constant, me the electron mass, and −e
the electron charge. When excited electrons in level m return to a lower
energy state n they emit a photon with frequency νmn = (Em − En)/h̄).

Some notes on black body, photoelectric effect, Compton effect, and Bohr’s
atom, respectively, are presented in the next subsections.

3.2 Black body spectrum and energy quantiza-
tion

3.2.1 The black body

Radiation incident on a body can be absorbed, reflected, transmitted. We
call black body an ideal body that absorbs all incident radiation. Experience
however shows that many real bodies behave in a manner not too much different
from a black body. In turn, all bodies emit radiation.

In conditions of thermodynamic equilibrium a body must emit the same
amount of radiation it absorbs, at any frequency. Thermodynamics also tells
us that the black body spectral emissivity does not depend on the body shape
and material. [The spectral emissivity is defined as dη(ν) = η(ν)dν, power
emitted per unit surface in a frequency interval dν around ν or, equivalently,
dη(λ) = η(λ)dλ, power emitted per unit surface in a wavelength interval dλ
around λ.]

Experimental evidence:

• Total emissivity is proportional to the fourth power of the absolute tem-
perature of the black body (Stefan-Boltzmann law)

η =

∫ ∞
0

η(ν)dν = σT 4 (3.5)

with the Stefan-Boltzmann constant σ = 5.67× 10−8 W/(m2K4);

• The maximum of η(λ) occurs at a wavelength inversely proportional to
the black body temperature (Wien’s displacement law, see Fig. 3.1)

λm =
C

T
(3.6)

where C = 2.897× 10−3 m K;
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• at low frequencies (long wavelengths) the spectral emissivity η(ν)is pro-
portional to the square of the frequency (Rayleigh-Jeans law)

η(ν) ∝ ν2; (3.7)

• at any wavelength

η(λ, T2) > η(λ, T1), for any T2 > T1; (3.8)

as shown by Fig. 3.1.

Figure 3.1: Black body spectral emission vs wavelength at different tempera-
tures. From http://hyperphysics.phy-astr.gsu.edu/hbase/wien.html

3.2.2 Modelling the black body spectrum

Rather than considering an emitting surface, one can consider a cavity with a
very small hole, so small that practically all incoming radiation enters in the
cavity (see Fig. 3.3). Instead of computing the emissivity, one can compute
the spectral energy density u(ν) of the equilibrium radiation inside the cavity.
Indeed it can be shown1 that in this case emissivity and energy density are
related by

η(ν) =
cu(ν)

4
(3.9)

The analysis is made easier by choosing suitable cavity shape and material,
since the black body properties do not depend on a specific shape and materi-
als, but only on the temperature. We consider a parallelepiped with perfectly

1Note that in the case of a beam of collimated radiation, directed along the normal to the
hole one would have η = cu; the factor 1/4 arises from the isotropy of the radiation field.
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Figure 3.2: A conceptual realization of a black body is a cavity with a small
hole, such that practically all incoming radiation is trapped inside the body.
Adapted from http://www.electrical4u.com/black-body-radiation/

reflecting metallic surfaces, with lengths Lx, Ly and Lz, respectively. According
to electromagnetism such a cavity will contain radiation in the form of standing
waves (modes of oscillation) with nodes on the surfaces. We can then write the
spectral energy density as

u(ν)dν =
number of modes in [ν, ν + dν]

cavity volume
× ( average energy per mode).

(3.10)
The number of standing waves (modes) in a frequency interval du is

dN(ν) = 4πV ν2dν. (3.11)

A rigorous proof can be found in many textbooks on thermodynamics, statistical
thermodynamics, or statistical mechanics. We present here a simple argument.
Consider first a one-dimensional system, as a string which can support trans-
verse oscillations. Standing waves will have wavelengths

λ =
2L

n
, n = 1, 2, . . . (3.12)

with n a positive integer number. Corresponding wavevectors will be k =
2π/λ = nπ/L, so that we can write,

dN1D = dn =
L

π
dk (3.13)

for the number of modes in this 1D system. This result can be extended to a
3D cavity in a straightforward way:

dN =
Lx
π

Ly
π

Lz
π
dkxdkydkz =

V

π3
dkxdkydkz, (3.14)
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Figure 3.3: The spectral energy distribution of the radiation in equi-
librium inside the cavity is determined by measuring the emitted spec-
trum. From http://claesjohnson.blogspot.it/2011/11/blackbody-as-bottle-
with-peephole.html

where V is the volume of the cavity. Going from the discrete to the continuum,
using spherical coordinates, assuming isotropy, and integrating over the angular
we can write the volume element in k-space as 4πk2dk; actually we have to take
only (1/8) of it because we have only to take positive values of the k components.
Furthermore, we have to multiply the number of modes by 2, to account for two
polarizations for each wavelength, thus obtaining

dN =
V

π2
k2dk = V

8πν2

c3
dν, (3.15)

where we have used the relations k = 2π/λ = 2πν/c and then dk = 2πdν/c,
with c the speed of light.

We now turn to the average energy per mode. Attempts of classical inter-
pretation rely on the equipartition principle: each mode of oscillation, with two
degrees of freedom, has average energy kBT . This leads to

u(ν)dν =
8πν2

c3
kBTdν, (3.16)

and then

η(ν)dν =
2πν2

c2
kBTdν. (3.17)

This expression, known as Rayleigh-Jeans law, agrees with experimental data
at low frequency, but clearly fails at high frequency, where it diverges, leading
to infinite (frequency integrated) emissivity (see Fig. 3.4).
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3.2.3 Planck’s model and energy quantization

A result in excellent agreement with all experimental data is obtained by still us-
ing Eq. 3.10, but giving up with the equipartition principle. Planck showed that
one should replace equipartition with the assumption that modes of frequency
ν can only have energy

ε = nhν, n = 1, 2, . . . , (3.18)

i.e. equal to an integer multiple of hν, where h = is a constant, known as
Planck constant: energy levels are quantized. The probability distribution
of states as a function of their energy is proportional to the Boltzmann factor
exp−ε/kBT , so that the average energy of modes with frequency ν is

ε =

∑∞
0 nhνe−nhν/kBT∑∞

0 e−nhν/kBT
. (3.19)

With some algebra and calculus one finds 2

ε =
hν

ehν/kBT − 1
. (3.22)

Note that in the low frequency limit (more properly, when hν � kBT ), Eq. (3.22)
yields ε ' kBT , i.e the classical result. However, in the opposite limit ε ∼
hνe−hν/kBT � kTB.

The final expression of the black body spectral radiation energy is then
obtained by inserting Eqs. (3.22) and (3.17) into Eqs. (3.10):

u(ν)dν =
8π

c3
hν3

ehν/kBT − 1
dν . (3.23)

and is found to agree accurately with experimental data. A plot of such Planck
law is shown in Fig. 3.4. The Rayleigh-Jeans spectrum is also shown for com-
parison.

From the Planck spectral energy distribution, Eq. (3.23), one recovers Stefan-
Boltzmann law, Wien law and Rayleigh-Jeans limit (see the suggested exercises).

3.2.4 Exercises

1. Show that Stefan-Bolzmann law for the black body emissivity is recov-
ered from Planck distribution. Find the expression of the constant σ as

2Set β = 1/kBT ; then

ε =

∑∞
0 nhνe−βnhν∑∞

0 e−βν
= −

d

dβ

[
ln

∞∑
0

e−βnhν

]
(3.20)

= −
d

dβ

[
ln

1

1− e−βhν

]
=

hνe−βhν

1− e−βhν
=

hν

eβhν − 1
(3.21)
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Figure 3.4: Black body spectrum (Adapted from http://hyperphysics.phy-
astr.gsu.edu/hbase/imgmod/bb7b.gif)

a function of fundamental constants. Hint: in integrating the spectral
emissivity, set x = hν/kBT ; also, use∫ ∞

0

x3dx

ex − 1
=
π4

15
. (3.24)

2. Recover Wien displacement law.3

3. Show that η(ν, T2) > η(ν, T1), for any T2 > T1.

4. The Sun is a very powerful emitter of electromagnetic radiation. Estimate
the power released by the Sun in the form of electromagnetic radiation
knowing that a) the solar constant, i.e. the intensity of solar radiation
(power per unit surface orthogonal to the direction of solar radiation)
incident on the upper layers of the earth’s atmosphere is 1350 W/m2 and
b) the average distance Sun-earth is 150 million of kilometers.

5. Using the result of the previous exercise, and assuming that the Sun radi-
ates as a spherical black body of radius of 700 000 km, find the temperature
of the surface of the Sun. Next, find the wavelength at the maximum of
η(λ). [Answer: about 5700 K, as also shown by the plot in Fig. 3.5)

6. After crossing the earth atmosphere the intensity of solar radiation is
about 1000 W/m2. On average, 25% of the incoming radiation is reflected
by the earth surface. Find what would be the equilibrium temperature of
the surface if the atmosphere were transparent to the radiation emitted

3At some point you have to solve the equation x = 5(1 − e−x). It can easily be checked
that x ' 4.965
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Figure 3.5: Sun irradiance compared with that of a blackbody at T = 5800 K.
From https://www.quora.com/Why-is-the-Sun-considered-to-be-a-black-body)

by the earth. [Hint: balance absorbed solar radiation with the radiation
emitted by the earth, assumed to behave as a black body].
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3.3 Photoelectric effect
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3.4 Compton effect
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3.5 Bohr’s atom
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Chapter 4

Material waves

4.1 de Broglie associated wave

Louis de Broglie suggested that just as light has both wave-like and particle-like
properties, particles also have wave-like properties. The wavelength associated
to a particle of momentum p is

λ =
h

p
. (4.1)

Experiments on electrons, nuclei, nucleons, atoms, molecules have confirmed de
Broglie’s hypothesis.

4.1.1 Justification of de Broglie’s hypothesis

The relation (4.1) between wavelength and momentum is just the same as that
holding for photons

λ =
c

ν
= h

c

hν
=
h

p
. (4.2)

Another argument in support of Eq. (4.1) is as follows. We associate a wave
packet to a particle, and impose that the group velocity (see Appendix A) of
the wave packet coincides with the particle velocity. The kinetic energy of a
non relativistic particle of mass m and velocity v can be written as E = p2/2m,
which can be differentiated to yield dE = pdp/m = vdp, and then

v =
dE

dp
. (4.3)

On the other hand, as shown in Appendix A, the group velocity of a wave packet
is vg = dω/dk. If we write the angular frequency as ω = 2πν = 2πE/h and the
wavenumber as k = 2π/λ, we have

vg = −λ
2

h

dE

dλ
. (4.4)

35
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By imposing v = vg we obtain

dE

dp
= −λ

2

h

dE

dλ
, (4.5)

and then −(h/λ2)dλ = dp, from which Eq. (4.1) is immediately obtained.

4.1.2 Experimental confirmation

de Broglie hypothesis has been verified by a number of experiments, concerning,
e.g.

• electron diffraction by powders (Davidson & Germer, 1927), electron diffrac-
tion by crystals (Thomson & Reid, 1927);

• electron interference (Tomonura 1989), with a set-up analogous to that of
Young’s experiment with light;

• atom interference;

• neutron interference.

Elementary descriptions of the above experiments can be found in Halliday,
Resnick, Krane, Physics II, 5th Ed., John Wiley & Sons(2002), Chapter 46, and
in Feynmann, Leighton, Sands, The Feynmann Lectures on Physics, Addison-
Wesley (1962), Ch. 38.1

4.1.3 Discussion

Just as for photons, either particle behaviour alone or wave behaviour alone
cannot explain all experimental evidence. Wave and corpuscular nature
are complementary.

In is interesting to observe that de Broglie assumption is, in a sense, consis-
tent with Bohr’s postulated quantization of the electron angular momentum l.
For an electron moving with velocity v in a circular orbit of radius r, l = mvr.
If we associate a standing wave to an electron orbit or radius r we have (see
Fig. 4.1)

2πr = nλ = n
h

mv
, (4.6)

or

l = mvr = n
h

2π
= nh̄, (4.7)

which is just Bohr’s postulate.

A few words are in order to discuss the analogy between interference exper-
iments with light and with electrons (see Fig. 4.2). In experiments with light

1Free on-line edition: http://www.feynmanlectures.caltech.edu/
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Figure 4.1: Bohr’s electron orbit and standing de Broglie wavefunction.

the pattern shown in the figure represents the intensity of the electromagnetic
wave, which is proportional to the square of the amplitude of the electric (and
magnetic) field. In experiments with particles, we plot the number of counts,
i.e. the number of particles reaching the detecting screen at a certain position.
Therefore, we have an analogy between the density of counts and the square of
the wave amplitude. This analogy somehow supports the physical interpretation
of quantum mechanics wavefunctions, which will be discussed in Section 5.5.

Figure 4.2: Interference patterns in experiments with light and with particles.
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4.2 Heisenberg’s uncertainty principle

The principle states that certain pairs of quantities cannot be measured simul-
taneously with arbitrary precision. Uncertainties are unavoidable, whatever the
instrumental accuracy; the measurement of one quantity perturbs the status of
the system, so that the accuracy of the measurement of the conjugated quantity
is limited. In the following we indicate with ∆f the uncertainty in the mea-
surement of quantity f , defined as root mean square deviation of a sequence of
measurements,

∆f =
√
<f2> − <f>2, (4.8)

where the brackets denote average values.

4.2.1 Position and momentum

In particular, the principle concerns measurements of a coordinate (e.g. x)
and the homologous component of momentum (px). Heisenberg’s uncertainty
principle then states that in any case,

∆x ∆px ≥
h̄

2
, (4.9)

and analogously

∆y ∆py ≥ h̄

2
, (4.10)

∆z ∆pz ≥ h̄

2
, (4.11)

where h̄ = h/2π is the reduced Planck constant or, simply, h bar.

Justifications

The principle, as such, cannot be proved.2 However it can be justified on the
basis of arguments based on

1. the perturbation of the measurement of a quantity (e.g., px), induced by
the measurement of the other quantity (x);

2. the localization of the wave-packet associated to a particle.

Such arguments lead to inequalities of the form ∆x ∆px ≈ h or ∆x ∆px ≈ h̄,
qualitatively in agreement with Heisenberg’s principle.

2In Appendix C, we proof the principle using solutions of the Schrödinger equation. This
requires having established (as a postulate) Schrödinger equation itself.



4.2. HEISENBERG’S UNCERTAINTY PRINCIPLE 39

1. Uncertainties in a conceptual experiment

Figure 4.3: Uncertainties in a conceptual experiment for the measurement of
position and momentum.

2. Wave packets and uncertainty
Let us consider a plane harmonic wave

∼ ei(kx−ωt), (4.12)

with wave number k and wavelength λ = 2π/k. Such a wave

• has exactly defined wavenumber and wavelength: ∆k = 0

• occupies the whole space −∞ ≤ x ≤ ∞; hence ∆x =∞

A wave packet of reduced spatial extension (as a packet representing a parti-
cle), instead has a broad spectrum. Let us quantify the relation between spatial
extension and spectral width. We can write such wave-packet as

Ψ(x, t) =

∫ −∞
−∞

g(k)ei(kx−ωt)dk, (4.13)

with the k-spectrum g(k) given by the Fourier transform of Ψ(x, t) (actually,
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Figure 4.4: Wave-packet and its Fourier transform.

we take the transform at t = 0)

g(k) =
1

2π

∫ −∞
−∞

Ψ(x, 0)e−ikxdx. (4.14)

One can show that the widths of the two functions Ψ(x, 0) and g(k) are related
by ∆x ∆k ≥ 1, with the equal sign applying when Ψ(x, t) is Gaussian in x (see
Appendix B). If we apply this inequality to a de Broglie wave, with λ = h/p
(and then k = 2πpx/h, we find

∆x ∆px ≥ h̄. (4.15)

4.2.2 Energy and time

An uncertainty relation also applies to energy and time:

∆E ∆t ≥ h̄. (4.16)

In this case, however, E and t are not two variables to be measured simul-
taneously. Rather, Eq. (4.16) concerns the uncertainty of a measurement of
energy and the characteristic time of change of the status of the system being
measured. In principle such a time is the maximum length of the time interval
during which we can perform the energy measurement.

Equation (4.16) is of great importance for all radioactive processes or, more
in general, for all processes concerning excited states, with mean life τ . The
energy of the excited level, and then the energy of the emitted particle or photon
is affected by an uncertainty

∆E =
h̄

τ
. (4.17)

This is the natural width of the emission line.



Chapter 5

Quantum Mechanics:
Postulates and
Schrödinger equation

Quantum mechanics is a coherent theory, incorporating a few concepts/principles
that have been introduced in the previous chapters, namely

• energy quantization, E = hν = h̄ω;

• the principle of complementarity (particle - wave duality; ~p = h̄~k);

• the principle of correspondence:
classical theory as the large quantum number limit of quantum theory;
formal analogy between classical theory and quantum theory;

• the principle of superposition;

• following experiments on wave-like particles (e.g. electron diffraction) a
statistical interpretation is required.

We now outline the process leading to the establishment of the Schrödinger
equation as the fundamental equation of non-relativistic quantum mechanics.

5.1 Wavefunction and general properties of its
evolution equation

• We postulate that a physical system is fully described by its wavefunction.
For simplicity here we consider systems consisting of a single particle.
Therefore the wavefunction will be a function Ψ(~r, t) of particle position
~r and time t. In general, Ψ is a complex quantity.

41
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• The equation describing the time-evolution of Ψ must be linear and ho-
mogeneous (for the superposition) and must be a differential equation of
first order in t to guarantee the uniqueness of the solution for t > t0, once
Ψ(~r, t0) is known.

• We postulate that we can associate a linear operator Â acting on the
wavefunction to any measurable physical quantity a (an observable).

• For the principle of correspondence, the relations between quantum oper-
ators should be identical to the classical relations between the correspond-
ing observables. For instance, if we indicate with ~̂p and Ê the operators
of momentum ~p and kinetic energy E, respectively, then

Ê =
p̂2

2m
, (5.1)

since classically E = p2/2m.

5.2 Wave equation for a free particle

As a first step in the construction of an appropriate equation, we consider a
wavefunction describing a free particle. In general, we should consider a wave
packet of arbitrary shape, in three-dimensional space. However, to make treat-
ment simpler (and relying, anyhow, on linearity, and hence on superposition),
we consider a harmonic wavefunction in a one-dimensional space, i.e.

Ψ(x, t) = ei(kx−ωt), (5.2)

representing a free particle of momentum p = h̄k and energy E = h̄ω. We can
therefore also write

Ψ(x, t) = ei(px−Et)/h̄. (5.3)

Differentiating this expression with respect to x we obtain

∂Ψ(x, t)

∂x
= i

p

h̄
ei(px−Et)/h̄ = i

p

h̄
Ψ(x, t). (5.4)

We can rewrite this last equation as

−ih̄∂Ψ(x, t)

∂x
= pΨ(x, t), (5.5)

which states that applying the operator −ih̄ ∂
∂x to Ψ we obtain the product of p

times Ψ itself. Such a circumstance suggests us the expression of the operator
of momentum. We postulate

p̂x = −ih̄ ∂

∂x
. (5.6)
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(We have added the index x because this is the operator of the x-component of
the momentum.)

We now look for the evolution equation for the wavefunction of the consid-
ered free particle. We differentiate Eq. (5.4) again with respect to x:

∂2Ψ(x, t)

∂x2
= − p

2

h̄2 e
i(px−Et)/h̄ = − p

2

h̄2 Ψ(x, t) = −2mE

h̄2 Ψ(x, t). (5.7)

On the other hand, by differentiating Ψ(x, t) with respect to time we have

∂Ψ(x, t)

∂t
= −iE

h̄
ei(px−Et)/h̄ = −iE

h̄
Ψ(x, t). (5.8)

By comparing Eq. (5.7) and Eq. (5.8) we obtain

ih̄
∂Ψ(x, t)

∂t
= − h̄2

2m

∂2Ψ(x, t)

∂x2
. (5.9)

We now observe that, for the correspondence principle and the definition of the
momentum operator,

Ê =
p̂2
x

2m
=

1

2m
p̂x(p̂x) = − h̄2

2m

∂2

∂x2
. (5.10)

Equation (5.8) for the evolution of the wavefunction of a free particle can then
be written as

ih̄
∂Ψ(x, t)

∂t
= ÊΨ(x, t). (5.11)

5.3 Time-dependent Schrödinger equation

In real problems, particles are subjected to (conservative) forces. In addition to
kinetic energy we have to consider potential energy V (x). We then postulate
that the evolution equation takes just the same form as Eq. (5.11), but with the
kinetic energy operator replaced by the total energy operator Ĥ = Ê + V̂ . We
also postulate that the operator of the spatial coordinate x, is x̂ = x. We then
write

Ĥ =
p̂x

2

2m
+ V (x̂) = − h2

2m

∂2

∂x2
+ V (x). (5.12)

The time-dependent Schrödinger equation, ruling the evolution of the
wavefuntion Ψ = Ψ(x, t) is then

ih̄
∂Ψ(x, t)

∂t
=

[
− h2

2m

∂2

∂x2
+ V (x)

]
Ψ(x, t), (5.13)

or, more compactly,

ih̄
∂Ψ

∂t
= ĤΨ(x, t). (5.14)
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5.4 Time-independent Schrödinger equation

For a particle in a stationary state, i.e. when the energy E is time-independent,
the wavefunction Ψ(x, t) has a well defined, time independent, angular frequency
ω = E/h̄. We can then factorize the wavefunction as the product of the spatial
part and of the time-dependent part, by writing

Ψ(x, t) = ψ(x)e−iωt = ψ(x)e−iEt/h̄. (5.15)

Inserting this expression into the time-dependent Schrödinger equation (5.14)
we obtain

ih̄ψ(x)

(
−iE

h̄

)
e−iEt/h̄ = Ĥψ(x)e−iEt/h̄, (5.16)

and then

Ĥψ = Eψ, (5.17)

or, writing the operator and the independent variable explicitly,

[
− h2

2m

∂2

∂x2
+ V (x)

]
ψ(x) = Eψ(x). (5.18)

Equations (5.17) and (5.18) are two equivalent forms of the 1-D time-independent
Schrödinger equation.

Both time-dependent and time-independent Schrödinger equation are easily
extended to three dimension, by the following replacements

∂

∂x
→ ∇ =

(
∂

∂x
;
∂

∂y
;
∂

∂z

)
(5.19)

∂2

∂x2
→ ∇2 =

(
∂2

∂x2
;
∂2

∂y2
;
∂2

∂z2

)
(5.20)

Ψ(x, t) → Ψ(x, y, z, t) = Ψ(~r, t) (5.21)

ψ(x) → ψ(x, y, z) = ψ(~r) (5.22)

5.5 Interpretation of the wavefunction

So far, we have discussed the equation that rules the behaviour of the wavefunc-
tion, but we have not yet assigned any meaning to the wavefunction.
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An interpretative postulate tells us that the quantity

|Ψ(x, y, z, t)∗Ψ(x, y, z, t)| (5.23)

is proportional to the probability density of the particle at time t,
i.e. |Ψ∗Ψ|dxdydz is proportional to the probability of finding the
particle in an infinitesimal volume dxdydz around (x,y,z) at time
t.
In the following we will only consider time-independent problems.
In such cases the probability density is proportional to

|ψ(x, y, z)∗ψ(x, y, z)|, (5.24)

independent of time.

5.6 Wavefunction normalization

Solution of the Schrödinger equation does not allow to determine a multiplying
front factor. Such a factor is determined as follows. When the wavefunction
represents a particle the probability to find the particle everywhere in space
must be equal to 1. Therefore the wavefunction is normalized by requiring∫∫∫

whole space

|ψ(x, y, z)∗ψ(x, y, z)|dxdydz = 1. (5.25)

When the wavefunction is normalized the probability density p(P )
at point P(x,y,z) is

p(x, y, z, t) = |Ψ(x, y, z, t)∗Ψ(x, y, z, t)| (5.26)

If, instead, the wavefunction ψ(x) = Aeikx represents a parallel beam of
particles of mass m, with density n and velocity v, and hence current J = nv
(actually, current density, i.e. particles per unit surface per unit time)1

|A| =
√
mJ

h̄k
, (5.28)

as obtained by observing that n = |ψ∗ψ| = A2, and v = p/m = h̄k/m.

5.7 Eigenvalues and eigenfunctions

The time-independent Schrödinger equation is an eigenvalue equation: it admits
solutions [eigenfunctions ψ(~r), corresponding to physical eigenstates] for certain

1In general, the quantum mechanics probability current is

~J = −
ih̄

2m
(ψ∗∇ψ − ψ∇ψ∗) (5.27)
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values (eigenvalues) of E. Whether the eigenvalues have a continuous or a
discrete spectrum depends on the form of the potential and on the boundary
conditions. Typically, particles in finite size systems (such as electrons in atoms
and nucleons in nuclei) are characterized by a discrete spectrum.

One can show that the result of a measurement of an observable
A can only be an eigenvalue a, satisfying the eigenvalue equation

Âψ(~r) = aψ(~r). (5.29)

If a system is in an eigenstate ψn than the result of the measure-
ment will be the corresponding eigenvalue an. If it is not in an
eigenstate, the average value of a series of measurements is given
by

<A>=

∫∫∫
Ψ∗ÂΨdxdydz∫∫∫
Ψ∗Ψdxdydz

. (5.30)

If the wavefunction is normalized, then

<A>=

∫∫∫
Ψ∗ÂΨdxdydz. (5.31)

5.8 Operators and commutators

We have already encountered the definitions of the operators of the x-components
of position and momentum. The definitions of the other components are, of
course, analogous, e.g.

ŷ = y (5.32)

p̂y = −ih̄ ∂
∂y
. (5.33)

The operators of all other quantities are constructed using the correspon-
dence principle. We have already followed such a principle to write the kinetic
energy and total energy operators. Another example is given by the operator
of the z-component of the angular momentum:

l̂z = (~̂r × ~̂p)z = x̂p̂y − ŷp̂x = −ih̄
(
x
∂

∂y
− y ∂

∂x

)
. (5.34)

We have seen that according to the Heisenberg’s uncertainty principle certain
pairs of variables, such as, e.g., x and px, cannot be measured simultaneously
with arbitrary precision. One can show that the operators of two observables,
Â and B̂ which cannot be measured simultaneously do not commute, i.e.

Â(B̂ψ) 6= B̂(Âψ)
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or, in compact notation
[Â, B̂] 6= 0,

where [Â, B̂] = ÂB̂ − B̂Â. For instance,

[x̂, p̂x] = ih̄. (5.35)

In general, in quantum mechanics one can measure simultaneously only observ-
ables with commuting operators.

One can easily verify that

[l̂2, l̂z] = [l̂2, Ĥ] = [l̂z, Ĥ] = [x̂, Ĥ] = 0, (5.36)

while
[l̂x, l̂y] = ih̄l̂z; [l̂y, l̂z] = ih̄l̂x; [l̂z, l̂x] = ih̄l̂y. (5.37)

It is therefore possible to measure simultaneously energy and position, energy
and single component of the angolar momentum, energy and the modulus of the
angular momentum. Instead, it is not possible to measure simultaneously two
or three components of the angular momentum (unless they are all zero).
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Chapter 6

Quantum Mechanics:
One-dimensional problems

In this Chapter we will consider (time-independent) problems in one spatial
dimension. We will only consider cases in which the potential energy V (x) is
piecewise constant. In such cases Schrödinger equation becomes

∂2ψ(x)

∂x2
+

2m

h̄2 (E − V )ψ(x) = 0. (6.1)

In the portion of the x domain where the potential energy takes the constant
value V , the solutions of Eq. (6.1) take the form

ψ(x) =

{
A sin kx+B cos kx, E > V,
A′ekx +B′e−kx, E < V,

(6.2)

with

k =

√
2m

h̄2 |E − V |. (6.3)

The values of the constants appearing in Eq. (6.2) are determined according
to the following rules:

• ψ(x) must be everywhere finite, because |ψ∗ψ| ∝ probability density;

• ψ(x) must be continuous, because the probability density must be contin-
uous;

• ψ′(x) = dψ(x)/dx must be continuous, because otherwise ψ′′, appearing
in Eq. (5.18), would be undefined;

• ψ = 0 where V =∞, because the product V ψ must be finite everywhere.

In addition, the wavefunction has to be normalized as discussed in Sec. 5.6. In
the next sections we shall use the above rules to deal with a few simple problems
of great physical interest.

49
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6.1 Infinite potential well

Figure 6.1: Infinite potential well of width L.

As a first problem we consider the so-called infinite well, in which potential
energy is zero in a region 0 ≤ x ≤ L and is infinite elsewhere. Inside the well,
0 ≤ x ≤ L, Schröedinger equation (6.1) becomes

∂2ψ(x)

∂x2
+

2m

h̄2 Eψ(x) = 0, (6.4)

to be solved with the boundary conditions

ψ(0) = ψ(L) = 0. (6.5)

The general solution of Eq. (6.4) is

ψ(x) = A sin kx+B cos kx, 0 ≤ x ≤ L, (6.6)

with

k =

√
2m

h̄2 E. (6.7)

By imposing the boundary condition (6.5) at x = 0 we have A sin 0+B cos 0 = 0,
hence B = 0. The condition at x = L reads

A sin kL = 0, (6.8)

which admits non-trivial solutions if kL is a integral multiple of π, i.e. kL = nπ,
with n = 1, 2, . . .. It follows that k can only take values

kn = n
π

L
, (6.9)
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with quantum number n = 1, 2, . . .. The corresponding values of energy are

En =
h̄2k2

2m
= n2 π

2h̄2

2mL2
, (6.10)

and the corresponding wavefunctions (eigenfunctions) are

ψn(x) = An sin
nπ

L
x. (6.11)

Note that such eigenfunctions are just the standing waves on the interval [0, L].
(In fact the previous energy eigenvalues could have been simply found by im-
posing that the wavefunctions are standing waves with wavelength λn = 2L/n
and with momentum given by the de Broglie relation.)

The above result on the energy eigenvalues can be used for a rough estimate
of atomic and nuclear energies. For an electron in an atom we set m = me and L
of the order of the Bohr radius r0, for a nucleon in a nucleus, m = mp = 1836me

and L of the order of the nuclear radius rn ≈ 3× 10−5r0. We then have nucleon
energies of the order of MeV and

Enucleon
Eelectron

≈ mer
2
0

mpr2
n

≈ 6× 105. (6.12)

The normalization constant An in Eq. (6.11) is determined by imposing the
normalization condition (5.25), i.e.

1 =

∫ ∞
0

|ψ∗(x)ψ(x)|dx =

∫ L

0

A2
nsin

2(knx)dx = A2
n

(
L

nπ

)∫ nπ

0

sin2ydy.

(6.13)
Using ∫ nπ

0

sin2ydy =
n

2

∫ 2π

0

sin2ydy = n
π

2
, (6.14)

we obtain

An =

√
2

L
, (6.15)

independent of n. The shapes of the wavefunctions for n = 1–4 are shown in
the left column of Fig. 6.2. The figure also shows the corresponding shapes
of the probability density. It is apparent that the probability density is not
uniform. The probability of finding the particle is an interval [x, x + ∆x] is
therefore not uniform. However, as the quantum number n tends to infinite,
then the probability of finding the particle in an interval ∆x of finite size tends
to a constant value, as in the classical case.
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Figure 6.2: Infinite potential well: wavefunctions and probability density for
the first four quantum numbers.
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6.2 Finite potential well

We now refer to the symmetric potential well illustrated in Fig. 6.3, namely,

U(x) =

 U1 x ≤ 0 region 1
0 0 < x < L region 2
U1 x ≥ 0 region 3

(6.16)

Figure 6.3: Finite, symmetric potential well.

We only consider the case E < U1. In regions 1 and 3, Schrödinger equation
can be written in the form

∂2ψ(x)

∂x2
− χ2ψ(x) = 0, (6.17)

with

χ =

√
2m(U1 − E)

h̄2 , (6.18)

and has solutions of the form

ψ(x) ∼ e±χx (6.19)

Analogously, in region 2, the relevant equation becomes

∂2ψ(x)

∂x2
+ k2ψ(x) = 0, (6.20)

with

k =

√
2mE

h̄2 , (6.21)

and has solutions of the form

ψ(x) ∼ sin(kx+ δ). (6.22)
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By imposing that ψ(x) be finite for any value of x we can write the general
solution as

ψ(x) =

 ψ1(x) = A1e
χx x ≤ 0

ψ2(x) = A2 sin(kx+ δ) 0 ≤ x ≤ L
ψ3(x) = A3e

−χx x ≥ L.
(6.23)

Next, we impose continuity of the wavefunction and of its first derivative in
x = 0 and in x = L:

ψ1(0) = ψ2(0) → A1 = A2 sin δ,
ψ′1(0) = ψ′2(0) → A1χ = A2k cos δ,
ψ2(L) = ψ3(L) → A2 sin(kL+ δ) = A3e

−χL,

ψ′2(L) = ψ′3(L) → A2k cos(kL+ δ) = −A3χe
−χL.

(6.24)

From the first two equations we obtain tan δ = k/χ, or

δ = arctan
k

χ
+m1π, (6.25)

where m1 is an integer number. Analogously, from the third and fourth equation
(6.24), tan(kL+ δ) = −k/χ, and then

δ = −kL− arctan
k

χ
+m2π, (6.26)

with m2 integer. By equating the right hand sides of Eq. (6.25) and Eq. (6.26),
and setting m2 −m1 = n, we can write

nπ − kL = 2 arctan
k

χ
, (6.27)

with n an integer number. It is now convenient to express k and χ as functions
of two new quantities, K and ξ

K =

√
2mU1

h̄2 , (6.28)

ξ =

√
E

U1
, (6.29)

so that

k = Kξ, (6.30)

χ = K
√

1− ξ2, (6.31)

with 0 < ξ < 1. We then have

k

χ
=

ξ√
1− ξ2

, (6.32)
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Figure 6.4: Graphical solution of Eq. (6.33).

and Eq. (6.27) becomes

nπ −KξL = 2 arctan
ξ√

1− ξ2
= 2 arcsin ξ. (6.33)

We observe (see Fig. 6.4) that 2 arcsin ξ is an increasing function of ξ, with
maximum value ξmax = 1; the quantity nπ − KξL, instead, is a decreasing
function of ξ. It follows that there are solutions ξn = ξ(n) for integers n such
that nπ − ξmaxKL ≤ π, i.e.

n = 0, 1, . . . , nmax = bKL
π

+ 1c, (6.34)

with corresponding energy eigenvalues

En = ξ2
nU1; n = 0, 1, . . . , nmax (6.35)

Energy levels are quantized just as in the case of an infinite well, but the
number of bound states is finite.

As an example, we consider an electron in a well with U1 = 250 eV and L =
0.1 nm. In this case K = 8.13×1010 m−1, KL = 8.13 and nmax = bKLπ +1c = 3.
The three values of ξ are the solutions of the equation

nπ − 8.13ξ = 2 arcsin ξ,

which are easily found by the graphic construction shown in Fig. 6.5 or by
a straightforward numerical solution. The figure also shows the three eigen-
functions ψn(x), (n = 1, 2, 3), obtained as follows. First, the unnormalized
eigenfunction corresponding to the eigenvalue n (and then to ξn) is obtained by
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using the continuity conditions (6.24). We have

δn = arcsin ξn (6.36)

A2,n = A1,n/ sin δn (6.37)

A3,n = A2,ne
χnL sin(knL+ δn) (6.38)

and then

ψn(x) =


A1,ne

χnx x ≤ 0
[A1,n/ sin δn] sin(knx+ δn) 0 ≤ x ≤ L
[A1,n sin(knL+ δn)/ sin δn] e−χn(x−L) x ≥ L

(6.39)

Finally, each eigenfunction is normalized (and the coefficient A1,n is determined)
by imposing the normalization condition∫ ∞

−∞
|ψ∗n(x)ψn(x)|dx. (6.40)

A new feature, in contrast with classical physics, is apparent from Eqs. (6.23)
and (6.39): in regions 1 and 3, where the energy of the particle is smaller than
the potential energy U1 the wavefunction is different from zero, and therefore
the probability density is not zero. The particle can therefore be found outside
the well, with a probability

pout = 2

∫ 0

−∞
|ψ∗n(x)ψn(x)|dx. (6.41)

With lengthy but simple algebra, one finds

pout,n =
ξ3
n

ξ3
n + (1− ξ2

n)1/2 1
2KLξn + 1

4 sin(KLξn)
. (6.42)

In the case of Fig. 6.6)we obtain pout,n = 0.0224; 0.089; 0.289, for n = 1; 2; 3,
respectively. The greater the eigenvalue, the greater the particle energy, the
larger is the probability of finding the particle outside the potential well.
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Figure 6.5: Example of a finite potential well: eigenvalues; quantized energy
levels, wavefunctions.
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Figure 6.6: Probability densities for the three bound states of Fig. 6.5.
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6.3 Potential step

Figure 6.7: Potential step.

We now consider a potential step, as shown in Fig. 6.7. This is of course
an idealized situation, describing particles which move everywhere freely, and
are subjected to a force (F = −dU/dx) directed toward the left only near
x = 0. We assume that particles approach the step coming from the left.
Classically particles with energy E = (1/2)mv2 > V0 will proceed to the right
hand side of the step, with lower velocity v1, since, for energy conservation
(1/2)mv2

1 = E−V0. Particles with energy E < V0, instead do not have sufficient
energy to overcome the step, and are reflected. So, classically we have total
transmission for E > V0 and total reflection for E < V0.

In the quantum case, we have to solve Schrödinger equation

∂2ψ(x)

∂x2
+

2m[E − V ]

h̄2 ψ(x) = 0 (6.43)

in the two regions x < 0 (a), and x > 0 (b) and to properly match the solutions.
The solutions in each region will be oscillating if E > V , exponential if E < V .

Notice that, unlike the previous problems, concerning particles inside a well,
we are now dealing with beam of particles. In particular, incident particles
(i.e. particles coming from the left hand side) are represented by progressive
plane waves Ψ(x, t) = const × ei(kx−ωt). Since we are only considering time-
independent problems, we are simply interested in the spatial part, and then we
write

incident wave : ψ(x) ∝ eikx; (6.44)

reflected wave : ψ(x) ∝ e−ikx. (6.45)

We now consider separately the cases E > V0 and E < V0.
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Figure 6.8: Potential step; case E > V0.

6.3.1 E > V0

In this case the solution is oscillating in both regions (a) and (b). The general
solution has the form

ψ(x) = ψa(x) = Aeikax +Be−ikax, x < 0 (6.46)

ψ(x) = ψb(x) = Ceikbx +De−ikbx, x > 0 (6.47)

with

ka =

√
2mE

h̄2 (6.48)

kb =

√
2m(E − V0)

h̄2 = ka

√
1− V0

E
. (6.49)

Since we are considering a wave-particle coming from x < 0, there cannot be a
wave coming from the region x > 0, and then D = 0. The other three constants
are related by the matching conditions at x = 0:

ψa(0) = ψb(0) → A+B = C,
ψ′a(0) = ψ′b(0) → (A−B)ka = Ckb,

(6.50)

and then

B

A
=

ka − kb
ka + kb

=
1− kb/ka
1 + kb/ka

, (6.51)

C

A
= 1 +

B

A
=

2

1 + kb/ka
. (6.52)

Surprisingly (at least if we were expecting the classical result), the incoming
wave is partially reflected (B 6= 0) even when E > V0: transmission is incom-
plete. Note, however, that the classical limit is approached as E � V0. Indeed,
in this limit kb/ka → 1, and then B → 0 and C → 1.
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Figure 6.9: Potential step; case E > V0. Incoming and transmitted wavefunc-
tions.

One may also be surprised that C/A > 1, i. e. the amplitude of the trans-
mitted wave exceeds that of the incident wave, However, we have to recall that
the wavefunctions in this case represent free particles, and the relevant physical
quantity in our problems are particle currents. According to Eq. (5.28), incident
and transmitted currents, are

Ja = A2h̄ka/m, (6.53)

Jc = C2h̄kb/m, (6.54)

respectively. The ratio of transmitted to incident current is then given by

Jc

Ja
=

4kb/ka(
1 +

kb

ka

)2 , 0 <
kb

ka
< 1, (6.55)

which is always smaller than 1. Asymptotically, it approaches 1 in the classical
limit.

Another limiting case is of particular interest, again with a surprising result.
Let us consider a negative potential energy V0 < 0 and incident particles with
E � |V0| (see Fig. 6.10), i.e. a slow particle approaching a strongly attractive
potential. In this case, ka � kb and then, according to Eqs. (6.51 and (6.52))
we have

B → −1 (6.56)

C → 0 (6.57)

Contrary to classical physics, we have total reflection! Note that this highly
idealized problem qualitatively describes the scattering of a low energy neutron
by a nucleus.
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Figure 6.10: Potential step; case E > V0, with V0 < 0 and E � −V0

Figure 6.11: Potential step: case E < V0

6.3.2 E < V0

We proceed just as in the previous case. However, since now E − V0 < 0 the
general solution in region (b) is a combination of exponentials. We can write

ψ(x) = ψa(x) = Aeikax +Be−ikax, x < 0 (6.58)

ψ(x) = ψb(x) = Ce−χx +Deχx, x > 0 (6.59)

with

ka =

√
2mE

h̄2 , (6.60)

χ =

√
2m(V0 − E)

h̄2 . (6.61)

The coefficient D = 0 because ψ(x) must be everywhere finite.
As usual, we impose the conditions of continuity of ψ and ψ′ at x = 0:

ψa(0) = ψb(0) → A+B = C,
ψ′a(0) = ψ′b(0) → i(A−B)ka = −Cχ, , (6.62)
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Figure 6.12: Wavefunction for the potential step, when E < V0.

from which we obtain

B

A
=

1− iχ/ka
1 + iχ/ka

, (6.63)

C

A
= 1 +

B

A
=

2

1 + iχ/ka
. (6.64)

We see that there is a finite probability P of finding the particle at x > 0 in the
classically forbidden region (b). Indeed

P (x > 0)

P (x = 0)
=
|ψ∗(x)ψ(x)|
|ψ∗(0)ψ(0)|

=
|Ce−χx|2

|A+B|2
= e−2χx. (6.65)

6.4 Potential barrier and tunnel effect

We now consider a potential barrier of uniform height V and thickness L. Ac-
cording to the results of the previous section we expect that a particle coming
from the left can be found at x = L even if E < V , and can then propagate
freely again in the region at the right hand side of the barrier. In quantum me-
chanics jargon we say the particle tunnels the barrier. The rigorous calculation
of the probability of tunneling T , or penetrability of the barrier, requires solv-
ing the Schrödinger equation, matching the general solutions obtained in the
regions on the left of the barrier, inside the barrier and at the right hand side of
the barrier. The case E < V0 is dealt with in Appendix F. The full treatment
can be found in several textbooks.1 However, when χL� 1 [with χ defined by

1see, e.g., Messiah, Quantum Mechanics, Wiley, (1966) or Quantum Mechanics - Two
volumes bound as one, Dover Publ., (1999). The relevant solution also shows that even when
the energy E is slightly greater than V0 there is a finite probability of reflection. Of course, the
classical limits, of full transparency and full reflection are recovered as E � V0 and E � V0

respectively.
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Figure 6.13: Potential barrier, with sketch of the wavefunction.

Eq. (6.61)], a reasonably accurate approximation is simply obtained by the ratio
of the probability densities found for the potential step in the previous section
at x = L and x = 0, respectively,

T ' P (x = L)

P (x = 0)

∣∣∣∣
step

= exp

[
−2

(
2m

h̄2

)1/2

(V0 − E)1/2L

]
(6.66)

As an example, let us consider a barrier of V0 = 20 MeV and width L =
2.5× 10−14 m. The probability that an alpha-particle with energy E = 5 MeV
is transmitted through the barrier is e−85.3 ≈ ×10−38.

In practical cases the potential is varies in space, V = V (r). In this case,
theory shows that a good approximation of the barrier penetrability is obtained
by still using Eq. (6.65), and replacing the argument of the exponential with an
integral, according to2

−2

(
2m

h̄2

)1/2

(V0 − E)1/2L→ −2

(
2m

h̄2

)1/2 ∫ x2

x1

[V (x)− E]1/2dx (6.67)

where x1 and x2 are lower and upper bound of the region to be tunneled.
The tunnel effect plays a central role in alpha decay and fusion reactions,

and is at the basis of devices such as tunnel diode and Scanning Tunneling
Microscope.

2This is the so-called WKB approximation, discussed in many books on mathematical
physics or on quantum mechanics. A nice presentation, with both historical and pedagogical
references, can be found in Wikipedia: http://en.wikipedia.org/wiki/WKB approximation



Chapter 7

Elementary atomic physics

7.1 Operators in spherical coordinates

Atomic physics problems are most easily dealt with by using spherical coordi-
nate systems. Such coordinates are indeed convenient when the potential has a
central symmetry, i.e. is in the form V (r), with r the distance from the centre of
symmetry, as is the case of Coulomb potential. The use of spherical coordinates
(r, θ, φ) is also convenient to deal with angular momentum. Spherical coordi-

Figure 7.1: Sperical and Cartesian coordinates.

nates (r, θ, φ) are related to Cartesian coordinates (x, y, z) by (see Fig. 7.1)

r =
√
x2 + y2 + z2, (7.1)

θ = arctan

√
x2 + y2

z
, (7.2)

φ = arctan
y

x
, (7.3)

65
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and

x = r sin θ cosφ, (7.4)

y = r sin θ sinφ, (7.5)

z = r cos θ. (7.6)

The expressions of the operators in spherical coordinates are obtained from those
in Cartesian coordinates by using Eqs. (7.4)-(7.6) and writing the derivatives
using chain rules as

∂

∂z
=
∂r

∂z

∂

∂r
+
∂θ

∂z

∂

∂θ
+
∂φ

∂z

∂

∂φ
. (7.7)

Before solving Schrödinger equation with a Coulomb potential, we consider an-
gular momentum. Expressions of the angular momentum operators in spherical
coordinates are derived in Appendix D.

7.2 Angular momentum, z-component

Let us consider the operator of the z−component of angular momentum

l̂z = (~̂r × ~̂p)z = x̂× p̂y − ŷ × p̂x = −ih̄(x
∂

∂y
− y ∂

∂x
). (7.8)

Its expression in spherical coordinates is

l̂z = −ih̄ ∂

∂φ
, (7.9)

as shown in Appendix D.

The possible values of the z-component of the angular momentum are ob-
tained by solving the operator equation

l̂zψ(r, θ, φ) = lzψ(r, θ, φ), (7.10)

or

−ih̄∂ψ(φ)

∂φ
= lzψ(φ), (7.11)

which has solutions

ψ(φ) = const ei(lz/h̄)φ. (7.12)

Imposing the the boundary condition

ψ(φ) = ψ(φ+ 2π), (7.13)
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we find that lz/h̄ must be an integer.1 Therefore the z-component of the
angular momentum is quantized. It can take the values

lz = h̄m, m = 0,±1,±2, . . . . (7.16)

For historical reasons, this quantum number m is called magnetic quantum
number. The corresponding eigenfunctions are

ψ(φ) = const eimφ. (7.17)

7.3 Total angular momentum

We have seen in Sec. 5.8 that we cannot measure two components of the angular
momentum simultaneously. Instead, we can measure one component (e.g. the
z−component) and the square of the modulus, which has operator

l̂2 = l̂2x + l̂2z + l̂2z , (7.18)

or, in spherical coordinates,

l̂2 = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (7.19)

We then have to solve the eigenvalue equation

l̂2Y (θ, φ) = l2Y (θ, φ), (7.20)

with eigenvalues l2 and eigenfunctions Y . We solve Eq. (7.20) by separation of
variables, i.e. we factorize the wavefunction as the product of a function of θ
and a function of φ

Y (θ, φ) = Θ(θ)Φ(φ). (7.21)

We substitute this last expression into Eq. (7.20) and multiply by− sin2 θ/(Θ(θ)Φ(φ)).
We also set

l2 = h̄2β, (7.22)

where β is a dimensionless quantity, and obtain

sin θ

Θ(θ)

∂

∂θ

(
sin θ

∂Θ(θ)

∂θ

)
+ β sin2 θ︸ ︷︷ ︸

function of θ only

= − 1

Φ(φ)

∂2Φ(φ)

∂φ2︸ ︷︷ ︸
function of φ only

. (7.23)

1Equation (7.13) can be written

ei(lz/h̄)φ = ei(lz/h̄)(φ+2π). (7.14)

Dividing both members by ei(lz/h̄)φ, we obtain

1 = e2πi(lz/h̄), (7.15)

which is satisfied if lz/h̄ is 0,±1,±2, . . .
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We observe that the left hand side of this equation depends only on θ, while the
right hand side only on φ. Since the equality holds for any value of θ and φ, the
two sides have both to be constant, and then equal to the same constant, which
we call (m∗)2. We can then write two separate ordinary differential equations

− 1

Φ(φ)

∂2Φ(φ)

∂φ2
= (m∗)2, (7.24)

sin θ

Θ(θ)

∂

∂θ

(
sin θ

∂Θ(θ)

∂θ

)
+ β sin2 θ = (m∗)2. (7.25)

We first consider Eq. (7.24), which has solution

Φ(φ) = const eim
∗φ. (7.26)

This is just the same solution found in the previous section for the wavefunction
of the z-component of the angular momentum [Eq. (7.17)]. We recognize that
m∗ = m, with m the magnetic quantum number, and then

Φ(φ) = const eimφ (7.27)

We now consider the equation for Θ. Multiplying Eq. (7.25) by Θ(θ)/ sin2 θ
we have

1

sin θ

d

dθ

(
sin θ

dΘ(θ)

dθ

)
+ βΘ(θ)− m2Θ(θ)

sin2 θ
= 0. (7.28)

Next, we set w = cos θ and call Θ(θ) = P (w) and obtain

d

dw

[(
1− w2

) dP (w)

dw

]
+

(
β − m2

1− w2

)
P (w) = 0. (7.29)

The solution of this equation is rather long and requires considerable manip-
ulations. It can be found in most textbooks on quantum mechanics. Here we
simply report and discuss the solution.2. It is found that the solution P (w) is
everywhere finite only for

β = l(l + 1), l = 0, 1, 2, . . . and l ≥ |m|. (7.30)

The eigenvalues of l̂2 are then h̄2l(l+1), and the angular momentum is quantized:

|~l| = h̄
√
l(l + 1) (7.31)

The relation between angular momentum and the possible values of its z-
component are illustrated by the diagram of Fig. 7.2.

The angular momentum eigenfunctions are the associated Legendre polyno-

mials P
|m|
l (w) defined by

P
|m|
l (w) = (1− w2)|m|/2

(
d

dw

)|m|
Pl(w), (7.32)

2The solution procedure is analogous to that for the radial equation of the Hydrogen atom,
which we will describe in detail later
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Figure 7.2: The angular momentum diagram for angular quantum number l = 3

where Pl is the Legendre Polynomial of order l,

Pl(w) =
1

2ll!

(
d

dw

)l (
w2 − 1

)l
. (7.33)

The normalized angular momentum wavefunctions turn out to be

Y (θ, φ) = Y ml (θ, φ) = Θl(θ)Φ(φ) = Al,mP
|m|
l (cos θ)eimφ, (7.34)

with normalization constants

Al,m = il
[

2l + 1

4π

(l − |m|)!
(l + |m|)!

]1/2

×
{

(−1)m m > 0
1 m ≤ 0

(7.35)

Note that when m = 0, Pml (w) = P 0
l (w) = Pl(w). The expressions of the first

four Legendre polynmials are as follows

P0 = 1 (7.36)

P1 = cos θ (7.37)

P2 =
1

2
(3 cos2 θ − 1) (7.38)

P3 =
1

2
(5 cos3 θ − 3 cos θ) (7.39)

The l = 0 eigenfunction is therefore spherically symmetric.
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7.4 Angular momentum and parity

Electron wavefunctions in atoms, as well as nucleon wafefunctions in nuclei, are
also characterized by their parity, a property which has no classical analogue.
Parity concerns coordinate reflection about the origin

x→ x′ = −x; y → y′ = −y; , z → z′ = −z. (7.40)

One can show that when the potential is not changed by such a reflection of
coordinates [as in the case of a spherical potential V (r), or a 1-D potential
for which V (x) = V (−x)] then the solutions (eigenfunctions) of the Schrödinger

equation are either symmetric ψ(~x) = ψ(~x′) or anti-symmetric ψ(~x) = −ψ( ~−x′).
In the first case we say that the eigenfunction has positive parity (Π = 1), in
the second case it has negative parity (Π = −1).

Parity is an important property because the total parity of a system (i.e.
the product of the parities of all its components) is conserved in electromag-
netic and strong nuclear interactions. (It is not necessarily conserved in
the weak interactions responsible, e.g. of beta-deacy.)

It is useful to consider the parity Πl of angular momentum wavefunctions,
because it enters in the determination of the so-called selection rules, ruling pos-
sible (and forbidden) atomic transitions. It is found that Πl is only determined
by the angular quantum number l:3

Πl = (−1)l. (7.45)

3The proof is the following. When the coordinates are reflected according to Eq. (7.40),
the polar coordinates change as

r → r′ = r; θ → θ′ = π − θ; φ→ φ′ = φ+ π. (7.41)

Then, aside from normalization constants,

Y (θ′, φ′) = Yml (θ′, φ′) = P
|m|
l (cos(π − θ)eim(φ+π) (7.42)

=
[
(−1)|m|−lP

|m|
l (− cos θ)

]
eimφ(−1)l (7.43)

We also observe that the associate Legendre polynomials Pml (x) appearing in the angular
momentum eigenfunctions Yml (see Eq. [7.34)] are polynomials of even powers of x (and then
symmetric in x) if l − |m| is even, while are polynomials of odd powers of x (and then anti-
symmetric in x) if l − |m| is odd. Hence the term in square brackets is simply equal to

P
|m|
l (cos θ). It follows that

Yml (θ′, φ′) = (−1)lP
|m|
l (cos θ)eimφ = (−1)lYml (θ, φ). (7.44)
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7.5 Schrödinger equation for the hydrogen atom

We now consider a Hydrogen atom, i.e. the motion an electron in the field of a
proton. We determine the energy levels by solving Schrödinger equation

∇2ψ(r, θ, φ) +
2µ

h̄2 [E − V (r)]ψ(r, θ, φ) = 0, (7.46)

where

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(7.47)

and

V (r) = − e2

4πε0r
, (7.48)

Here r is the distance of the electron from the nucleus, µ is the reduced mass of
the electron in the Hydrogen atom, µ = memp/(me +mp), and me and mp are
the electron and proton mass, respectively.

Observing that the term in square brackets in Eq. (7.47) is just equal to

−l̂2/h̄2 [see Eq. (7.19)], we can write Eq. (7.46)] as 4{
1

r2

∂

∂r

(
r2 ∂

∂r

)
− 1

r2

l̂2

h̄2 +
2µ

h̄2 [E − V (r)]

}
ψ(r, θ, φ) = 0. (7.49)

Furthermore, in the previous section we have found that

l̂2Y (θ, φ) = h̄2l(l + 1)Y (θ, φ). (7.50)

We also notice that while the angular momentum term depends on θ and φ, the
other terms only depend on the radial variable r. This suggests to factorize

ψ(r, θ, φ) = R(r)Y (θ, φ), (7.51)

where R(r) is a function depending on r only, and Y (θ, φ) is the momentum
eigenfunction discussed in the previous section. Substituting Eq. (7.51) and
Eq. (7.50) in Eq. (7.49), and multiplying by r2/Y we have

∂

∂r

(
r2 ∂R(r)

∂r

)
+

2µr2

h̄2 [E − V (r)]R(r)− l(l + 1)R(r) = 0. (7.52)

Since we have obtained an equation in the single variable r we can replace partial
derivatives with ordinary derivatives. To proceed further, we note that

d

dr

(
r2 d

dr

)
= r2

(
d2

dr2
+

2

r

d

dr

)
. (7.53)

4Note that ∇2 can be written in a slightly different form, using the identity

1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
=

1

r

∂2(rψ)

∂r2
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We substitute this expression into Eq. (7.52) and divide by r2, to obtain{
d2

dr2
+

2

r

d

dr
+

2µ

h̄2 [E − V (r)]− l(l + 1)

r2

}
R(r) = 0 (7.54)

Note that this last equation can also be written as{
d2

dr2
+

2

r

d

dr
+

2µ

h̄2 [E − Veff(r)]

}
R(r) = 0 (7.55)

with an effective potential equal to the sum of the potential of the central force
and a centrifugal potential due to the angular momentum.5

Veff(r) = V (r) +
l(l + 1)h̄2

2µr2
(7.58)

We write r in units of Bohr radius r0 [Eq. (3.3)] and E in units of first Bohr’s
energy level E0 [Eq. (3.4)], i.e.

r = ρr0, r0 =
4πε0h̄

2

µe2
, (7.59)

E = εE0, E0 = −1

2

µe4

(4πε0)2h̄2 , (7.60)

and use Eq. (7.48) for the potential energy. Equation (7.54) becomes[
d2

dρ2
+

2

ρ

d

dρ
− ε+

2

ρ
− l(l + 1)

ρ2

]
R(r) = 0, (7.61)

which cannot be solved in closed form.
However, we can easily study the limiting cases for ρ → ∞ and ρ → 0,

respectively. As ρ→∞ Eq. (7.61) reduces to(
d2

dρ2
− ε
)
R(r) = 0, (7.62)

which has solutions R ∼ e±ρ
√
ε. The solution with the plus sign has to be

discarded because it diverges for large ρ. We are then left with

R(ρ) ∼ e−ρ
√
ε = R(∞)(ρ), (7.63)

5It is also interesting to observe that at large distance from the nucleus, where one can
neglect both the Coulomb potential and the centrifugal potential, Schrödinger equation be-
comes

∂2

∂r2
(rR) +

2µE

h̄2
rR = 0, (7.56)

with solutions

R(r) ∼
e±ikr

r
, k = (2µE/h̄)1/2 (7.57)

i. e. a combination of in-going and out-going spherical waves.
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In the limit ρ→ 0, we instead have[
d2

dρ2
+

2

ρ

d

dρ
− l(l + 1)

ρ2

]
R(r) = 0. (7.64)

We look for a solution of the form R ∼ ρb. By Substituting this last expression
into Eq. (7.64) we have

b(b+ 1) = l(l + 1),

which has solutions b = l and b = −l − 1. Discarding the solution ρ−l−1, that
diverges in the origin, we are left with

R(ρ) ∼ ρl = R(0)(ρ). (7.65)

Now, we notice that the product of the solutions R(0)(ρ)R(∞)(ρ) still has
the correct behaviour in both limits. We therefore search a solution, valid
everywhere, in the form

R(ρ) = R(0)(ρ)R(∞)(ρ)f(ρ) = ρle−ρ
√
εf(ρ), (7.66)

where f(ρ) is a function to be determined.
We substitute Eq. (7.66) forR in Eq. (7.61). Lengthy, but elementary algebra

(detailed in Appendix E) leads to the equation

d2f

dρ2
+

[
2(l + 1)

ρ
− 2
√
ε

]
df

dρ
+

2

ρ

[
1−
√
ε(l + 1)

]
f = 0 (7.67)

We assume f(ρ) can be written as a series of powers of ρ or, better, of x = 2
√
ερ,

f(ρ) =

∞∑
i=0

aix
i, (7.68)

and then substitute

R(ρ) = e−x/2R(x/2
√
ε)

∞∑
i=0

aix
i, (7.69)

into Eq. (7.61). Again with lengthy algebra (see Appendix E), we find that the
coefficients ai satisfy the recurrence relation

ai+1 = ai
i+ l + 1− (1/

√
ε)

(i+ 1)(i+ 2l + 1)
. (7.70)

The series so obtained diverges, because ai+1 → ai/i, for large i, and then
f(ρ) ∼ eρ. Since the solution has to remain finite, the series must terminate,
i.e. f(ρ) must be a polynomial of finite order σ, which occurs if aσ+1 = 0. From
Eq. (7.70) we see that this requires

σ + l + 1− 1√
ε

= 0, (7.71)
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with σ and l non negative integers (σ = 0, 1, 2, . . .) It follows that 1/
√
ε must

be a positive integer n = 1, 2, . . . (the principal quantum number). The
electron energy E = εE0 can then only take the discrete values

E(n) = En =
E0

n2
, n = 1, 2, . . . (7.72)

in agreement with Bohr’s model. Notice that the energy levels only depend on
n.6

From Eq. (7.71), which can now be written as σ+ l+ 1− n = 0, we also see
that l = n− σ − 1, and then

l = 0, 1, 2, . . . , n− 1. (7.73)

The radial eigenfunction then is

Rnl(ρ) = ρle−ρ/n
σ∑
i=0

ai

(
2

n

)i
ρi, (7.74)

with l = 0, 1, . . . , n− 1 and σ = n− l − 1 = 0, 1, . . ., and the wavefunction is

Ψ(r, θ, φ) = Ψnlm = AnlmRnl(ρ)P
|m|
l (cos θ)eimφ . (7.75)

For the fundamental state of the hydrogen atom, n = 1 (and then l = σ =
m = 0), we have

ψ(r, θ, φ) = ψ(r) = An00e
−ρ = const e−r/r0 (7.76)

Exercise: For the fundamental state of the Hydrogen atom (n, l,m) = (1, 0, 0),
find the normalization constant and the radius rmax at which the probability
density of finding the electron is maximum. [Answers: A1,0,0 = 1/

√
πa3

0 and
rmax = a0, with a0 the Bohr’s radius.]

The spatial distributions of the probability density of the (electron in the)
hydrogen atom are shown in Fig. 7.3.

6This is the case for Hydrogen only, and in absence of a magnetic field. The energy levels
of all other atoms also depend on the angular momentum.
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Figure 7.3: False colour probability density plots of the Hydrogen wavefunctions;
from http://en.wikipedia.org/wiki/Wave function
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7.6 Spin and Exclusion principle

In addition to (rest) mass and electric charge, elementary particles possess an-
other intrinsic property: spin or intrinsic angular momentum. Spin is repre-
sented by vector S, of magnitude

S =
√
s(s+ 1)h̄, (7.77)

where s, usually simply referred to as spin, is a non-negative, integer or semi-
integer number. The projection Sz of the vector S along an axis z is

Sz = msh̄, (7.78)

with ms the spin quantum number, which can take 2s + 1 (integer or semi-
integer) values −s,−s+ 1, . . . , s− 1, s. In particular

s = 0 => ms = 0

s =
1

2
=> ms = −1

2
;

1

2
s = 1 => ms = −1; 0; 1

s =
3

2
=> ms = −3

2
;−1

2
;

1

2
;

3

2

Particles with semi-integer spin are called fermions 7

Particles with integer spin are called bosons 8

Fermions

• electron, proton, neutron, neutrino (all with s = 1/2)

• . . .

• systems with an odd number of fermions (e.g. Deuterium atom, consisting
of one electron, and a nucleus with one proton and one neutron)

Bosons

• photon (s = 1)

• mesons, . . .

• systems with an even number of fermions (e.g. Hydrogen atom, consisting
of one electron and a nucleus with one proton)

7After E. Fermi, who studied their energy distribution function (Fermi-Dirac statistics)
8After S.N. Bose, who studied their energy distribution function (Bose-Einstein statistics)
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Fermions obey Pauli exclusion principle,9 stating that

No two fermions in a system can have the same quantum numbers
or

A quantum state can be occupied by at most one fermion.

For electrons in an atom, Pauli exclusion principle is often stated in a slightly
different way, taking into account that electron spin quantum number can take
two values (ms = ±1/2, or, simply spin up and spin down) and an orbital is
defined by the quantum numbers n, l, and m. The principle then states that
an orbital can be occupied at most by two electrons, with opposite spin quan-
tum numbers.

Bosons are not subject to the Pauli exclusion principle: any number of
identical bosons can occupy the same quantum state.

9stated by W. Pauli for electrons in 1925, and extended to all fermions in 1940
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7.7 Electrons in the atom

From the previous sections:
electrons in the atom are characterized by four quantum numbers:

• principal quantum number: n = 0, 1, 2, . . .

• angular quantum number: l = 0, 1, . . . , n− 1

• azimuthal or magnetic quantum number: m = 0,±1, . . . ,±l

• spin quantum number: ms = ± 1
2

The disposition of electrons in the atom follows from the above numbers and
Pauli’s exclusion principle. The structure of the periodic table of the elements
then follows. (We do not deal wit this topic, which is part of any basic course
of Chemistry).

We only recall some notation frequently used in atomic spectroscopy.

• The electron shells with principal quantum numbers n = 1, 2, 3, and 4 are
also called K,L,M , and N shells, respectively.

• The orbitals with angular quantum numbers l = 0, 1, 2, 3 are identified by
lower case letters s, p, d, and f , respectively.
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7.8 Indistinguishability

We have already seen that the development of quantum mechanics relies on a
few postulates which do not have a classical analogue. An additional postulate
concerns the indistinguishability of identical particles: as a consequence

Systems obtained from each other by exchanging particles are
indistinguishable, i.e. are the same system

This principle finds application, e.g. in the computation of thermodynamic
multiplicity (and hence of entropy of quantum systems), as well as when study-
ing collisions between identical particles.
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Chapter 8

Quantum statistics

In questo capitolo descriviamo il procedimento per ottenere le funzioni di dis-
tribuzione di equilibrio per particelle che obbediscono alle leggi della meccanica
quantistica. Ricaveremo le espressioni della funzione di distribuzione di Bose-
Einstein, che si applica ai bosoni, cioè alle particelle con spin intero (fra cui
i fotoni, gli atomi di elio e le coppie di elettroni nei superconduttori), e della
funzione di distribuzione di Fermi-Dirac, che si applica ai fermioni, cioè alle par-
ticelle con spin semintero (fra cui gli elettroni). Vedremo inoltre in quale limite
la distribuzione (classica) di Boltzmann approssima le distribuzioni quantistiche.

Le configurazioni di un qualsiasi sistema in equilibrio macroscopico in effetti
variano nel tempo, fluttuando in prossimità della configurazione più probabile.
Si verifica comunque che, poiché i sistemi considerati sono costituiti da un gran-
dissimo numero di particelle, le fluttuazioni (relative alla configurazione più
probabile) sono estremamente piccole. Le proprietà fisiche medie di un sistema
macroscopico si possono allora descrivere, con ottima precisione, tramite le pro-
prietà della configurazione più probabile. Ciò giustifica il procedimento che
seguiremo, con cui anzichè determinare la distribuzione media, determineremo
la più probabile.

Per quanto riguarda quest’ultima, abbiamo visto (cfr. Mencuccini-Silvestrini,
Vol. I, §XVII.4 e XVII.5; Sette-Alippi, vol. I, § 17.12), che un sistema termodina-
micos isolato tende a raggiungere, all’equilibrio, lo stato che corrisponde al valore
massimo della probabilità termodinamica W , definita come numero di micro-
stati distinguibili con cui può essere realizzato un dato stato macroscopico. In
condizioni di equilibrio termodinamico, la probabilità termodinamica è legata
all’entropia tramite la relazione

S = kB lnW, (8.1)

dove kB = 1.3807× 10−23J/K è la costante di Boltzmann.
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8.1 Descrizione del sistema

Il primo passo nello studio del sistema di cui si vuole determinare la funzione
di distribuzione consiste nella descrizione dei livelli energetici e della loro oc-
cupazione da parte delle particelle (particelle nel senso classico o fotoni) che
costituiscono il sistema stesso. Osserviamo che i sistemi oggetto di studio sono
costituiti da un grandissimo numero di particelle, distribuite su un gran numero
di livelli energetici (o stati). Ai fini del calcolo della funzione di distribuzione,
piuttosto che considerare i singoli livelli, conviene considerare (vedi la Fig. 8.1)
raggruppamenti di livelli (o shell), abbastanza grandi da contenere un elevato
numero di stati, con energie molto prossime fra loro, e un elevato numero di
particelle. Inoltre, le energie dei vari stati della shell possono essere considerate
coincidenti. Indichiamo con il pedice s la generica shell, con gs il suo numero
di stati (o peso), con εs l’energia di ciascuno degli stati e con ns il numero di
particelle contenute nella shell. Il numero totale di particelle N e l’energia totale
E del sistema possono allora essere espresse rispettivamente come

N =
∑
s

ns, (8.2)

E =
∑
s

nsεs, (8.3)

dove le sommatorie sono estese a tutte le shell del sistema. I passi successivi
del procedimento consistono nella determinazione del peso e della probabilità
termodinamica di ciascuna shell. Scopo finale è ottenere il valore più probabile
della popolazione ns(gs) di ciascuna shell e quindi la funzione di distribuzione

f(εs) =
ns
gs

(8.4)

Si può dimostrare (non lo facciamo qui) che il risultato ottenuto è indipendente
dal modo in cui si raccolgono i livelli nelle shell; il procedimento fornisce quindi
la funzione di distribuzione f(ε) per qualsiasi valore di ε.

8.2 Statistica di Bose-Einstein

In questa sezione descriviamo la statistica di Bose-Einstein. Iniziamo con-
siderando un sistema costituito da fotoni, in numero non assegnato e non vin-
colato, in equilibrio alla temperatura T .

8.2.1 Statistica di Bose-Einstein per i fotoni

Consideriamo particelle (fotoni) indistinguibili, con energia e quantità di moto
legate alla frequenza tramite le relazioni

ε = hν, (8.5)

p =
hν

c
, (8.6)



8.2. STATISTICA DI BOSE-EINSTEIN 83

energia 

ε ε + dε

Raggruppamento (o shell), 
contenente gs stati, 
occupati da ns particelle.

shell s
z1

stati

z2 z3 zgs-1 zgs

Figure 8.1: Stati e raggruppamenti.

dove h è la costante di Planck e c è la velocità della luce.

Pesi - Modi di vibrazione

Per esprimere il peso gs della shell s sfruttiamo un risultato che abbiamo già uti-
lizzato nella trattazione classica del corpo nero. Abbiamo infatti visto che in una
cavità di volume V il numero di modi di vibrazione indipendenti con frequenza
compresa fra ν e ν + dν, per ciascuna delle due possibili polarizzazioni delle
onde elettromagnetiche, è dato da (Mencuccini-Silvestrini, Vol. II, Eq. XII.11;
Sette-Alippi, Vol. I, § 16.5 e 21.15)

dN (ν) = N (ν)dν =
4πV

c3
ν2dν. (8.7)

Il peso gs della shell relativa a fotoni con energia compresa fra ε = hν e ε+dε =
h(ν + dν) è allora

gs = 2N (ν)dν =
8πV

c3
ν2dν (8.8)

Probabilità termodinamica

Calcoliamo ora la probabilità termodinamicaW .1 Ricordiamo che per i postulati
della meccanica quantistica i fotoni sono indistinguibili; inoltre, non c’è limite
al numero di fotoni che possono occupare un dato stato.

Consideriamo la s-sima shell, che ha peso gs e contiene ns particelle. In-
dichiamo gli stati con

z1, z2, z3, . . . , zgs (8.9)

1Seguiamo l’elegante e semplice presentazione di M. Born, Atomic Physics, 8th Ed., Dover,
New York, 1989, Cap. 7; trad. it.: Fisica Atomica, 2a Ed., Bollati Boringhieri, Torino, 1976.
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e le particelle con
a1, a2, a3, . . . , ans . (8.10)

Per valutare il numero di configurazioni possibili, procediamo nel modo seguente.
Indichiamo una possibile configurazione con una stringa costituita da sequenze
stato-particelle nello stato. Per esempio, con

z1 a1 a2 z2 a3 z3 a4 a5 a6 z4 z5 a7 . . . . zgs−1 zgs ans−1 ans (8.11)

rappresentiamo la configurazione della Fig. 8.2, in cui lo stato z1 contiene le
particelle a1 e a2, lo stato z2 contiene la particella a3, lo stato z3 le particelle
a4, a5 e a6, lo stato z4 non contiene nessuna particella, lo stato z5 contiene la
particella a7 .... , lo stato zgs−1 non contiene nessuna particella e lo stato zgs
contiene le particelle aans−1 e ans

. Osserviamo che tutte le possibili stringhe

z1 z2 z3

a1 a2 a3 a4 a5 a6

zgs-1 zgsz4 z5

a7 ans-1

z1  a1  a2  z2  a3  a4  a5  a6  z4  z5  a7  . . . zgs-1  zgs  ans-1 ans

ans

Figure 8.2: Esempio di configurazione di una shell e stringa che la rappresenta.

che descrivono la shell considerata sono costituite da gs + ns elementi. Il primo
elemento è sempre una z, e può quindi essere scelto in gs modi diversi. Una
volta scelto il primo elemento, gli altri gs + ns − 1 possono essere ordinati in
(gs+ns−1)! modi diversi. Tuttavia, per i postulati della meccanica quantistica,
le configurazioni ottenute l’una dall’altra per permutazione degli stati o per
permutazione delle particelle sono indistinguibili. Poiché il numero di queste
permutazioni è gs!ns!, il numero di configurazioni distinguibili di una shell risulta

Ws =
gs(gs + ns − 1)!

gs!ns!
=

(gs + ns − 1)!

(gs − 1)!ns!
. (8.12)

Inoltre, essendo per ipotesi ns � 1 e gs � 1, possiamo scrivere

Ws '
(gs + ns)!

gs!ns!
. (8.13)

Il numero di configurazioni possibili dell’intero sistema è pari al prodotto del
numero di configurazioni di tutte le shell, ovvero

W =
∏
s

Ws '
∏
s

(gs + ns)!

gs!ns!
, (8.14)

e quindi si ha

lnW '
∑
s

[ln(gs + ns)!− ln gs!− lnns!]. (8.15)
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Usando la formula di Stirling, lnn! ' n lnn− n, possiamo infine scrivere

lnW '
∑
s

[(gs + ns) ln(gs + ns)− gs ln gs − ns lnns]. (8.16)

Configurazione più probabile e funzione di distribuzione

Cerchiamo ora la configurazione che rende massima la funzione lnW , con il
vincolo, imposto dalla conservazione dell’energia,∑

s

nsεs = E, (8.17)

ovvero
E −

∑
s

nsεs = 0. (8.18)

A tale scopo usiamo il metodo dei moltiplicatori di Lagrange (vedi Appedice
G). Cerchiamo cioè i massimi non condizionati della funzione

F = lnW + β(E −
∑
s

nsεs), (8.19)

dove β è un moltiplicatore di Lagrange. Riscriviamo l’Eq. (8.19) esprimendo
lnW tramite l’Eq. (8.16), ottenendo

F =
∑
s

[(gs + ns) ln(gs + ns)− gs ln gs − ns lnns] + β(E −
∑
s

nsεs)

=
∑
s

[(gs + ns) ln(gs + ns)− gs ln gs − ns lnns − βnsεs] + βE.

(8.20)

Il massimo di F si ottiene imponendo che si annullino le derivate parziali rispetto
a tutte le ns:

∂F

∂ns
= ln(gs + ns) + 1− 0− lnns − 1− βεs = 0, (8.21)

da cui si ha

ln
gs + ns
ns

= βεs, (8.22)

e quindi
ns
gs

=
1

eβεs − 1
. (8.23)

β = 1/kBT

La relazione fra il moltiplicatore di Lagrange β e i parametri macroscopici del
sistema (in realtà un solo parametro, come si vedrà fra poco) si trova nel modo
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seguente. Consideriamo una variazione infinitesima dell’energia del sistema at-
torno all’equilibrio. Differenziando la condizione∑

s

nsεs = E (8.24)

otteniamo ∑
s

nsδεs +
∑
s

δnsεs = δE. (8.25)

Il primo addendo a primo membro di questa equazione rappresenta il lavoro
−δL compiuto sul sistema a seguito dello scostamento dall’equilibrio. Infatti, se
i livelli energetici non dipendono dalla temperatura (come ragionevole pensando
ai modi di vibrazione in una cavità), si ha∑

s

nsδεs =
∑
s

ns
∂εs
∂V

δV = −pδV = −δL. (8.26)

Allora, per il primo principio della termodinamica, applicato a una trasfor-
mazione infinitesima reversibile (δE = δQ − δL), il secondo addendo a primo
membro dell’Eq. (8.25) rappresenta il calore δQ scambiato dal sistema:∑

s

εsδns = δQ (8.27)

D’altra parte, nell’intorno di uno stato di equilibrio δF = 0, quindi, utilizzando
l’Eq. (8.19), possiamo scrivere

δ lnW = β
∑
s

εsδns (8.28)

e ancora, confrontando le equazioni (8.27) e (8.28)

δ lnW = βδQ. (8.29)

Esprimendo la probabilità termodinamica W tramite l’Eq. (8.1), S = kB lnW ,
e la quantità di calore scambiata nella trasformazione infinitesima tramite la
definizione di entropia (δS = δQ/T ), si ha

β =
1

kBT
. (8.30)

Introducendo quest’ultima relazione e la condizione di quantizzazione [Eq. (8.5)]
nell’Eq. (8.23) otteniamo la funzione di distribuzione di Bose-Eintein per
i fotoni

ns
gs

=
1

ehν/kBT − 1
, (8.31)

dove abbiamo scritto la frequenza ν omettendo il pedice s.
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Lo spettro del corpo nero

Ricordiamo che nelle formule precedenti il pedice s si riferisce all’intervallo di
energia [ε, ε + dε] (e frequenza [ν, ν + dν]); quindi ns rappresenta il numero di
fotoni con frequenza compresa fra ν e ν+dν, mentre gs, espressa dall’Eq. (8.8),
rappresenta il numero di stati compresi nello stesso intervallo. La densità di
energia (energia per unità di volume) dei fotoni con frequenza fra ν e ν + dν è
quindi data da2

u(ν)dν =
nshν

V
=

1

V

gs

ehν/kBT − 1
=

8πhν3dν

ehν/kBT − 1
, (8.32)

che fornisce il noto spettro del corpo nero. Utilizzeremo questa espressione nel
seguito del corso anche per studiare il laser e il rumore termico nei componenti
circuitali ohmici.

8.2.2 Statistica di Bose-Einstein per un sistema di N par-
ticelle

La dimostrazione illustrata nella sezione precedente si riferisce a una popo-
lazione di fotoni, di numero non assegnato. L’espressione della funzione di
distribuzione nel caso sia assegnato il numero totale N di particelle (bosoni), si
ottiene procedendo in modo del tutto analogo, ma imponendo il vincolo aggiun-
tivo che N =

∑
s ns sia costante. In questo caso la funzione da massimizzare

è

F = lnW + α(N −
∑
s

ns) + β(E −
∑
s

nsεs), (8.33)

dove α è un altro moltiplicatore di Lagrange3. Eseguendo calcoli analoghi a
quelli della precedente sezione si giunge all’espressione della funzione di dis-
tribuzione di Bose-Einstein:

f(ε) =
ns
gs

=
1

eαeε/kBT − 1
. (8.34)

In questo caso il peso gs va calcolato tenendo conto che [vedi Eq. (2), pag. 50]
il volume minimo di una cella nello spazio delle fasi d3xd3p è pari a h3. Si ha
quindi

gs =
4πV p2dp

h3
. (8.35)

La quantità α = α(N/V, T ) si determina imponendo la condizione di conser-
vazione del numero totale di particelle; vedi più sotto.

2cfr. Mencuccini-Silvestrini, vol. II, Eq. XII.20, dove si usa il simbolo f in luogo di u.
3Si noti che alcuni testi definiscono α con segno opposto a quello usato in questo capitolo.
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8.3 Statistica di Fermi-Dirac

Mentre per i fotoni (e, più in generale per tutti i bosoni, cioè le particelle con
numero quantico di spin intero) non esistono limiti alla popolazione degli stati
quantici, per gli elettroni (e, più in generale per tutti i fermioni, cioè le particelle
con numero quantico di spin semi-intero) vale il principio di esclusione. Quindi
due fermioni con uguali numeri quantici non possono occupare uno stesso stato.

La funzione di distribuzione dei fermioni si ricava in modo del tutto analogo
a quella dei bosoni, ma tenendo conto del principio di esclusione. In questo caso
la probabilità termodinamica della s-sima shell, cioè il numero di modi in cui si
possono disporre ns particelle nei gs stati della shell stessa, è pari al numero di
disposizioni di gs oggetti in gruppi di ns oggetti, ovvero

Ws =
gs!

ns!(gs − ns)!
. (8.36)

Utilizzando la formula di Stirling possiamo scrivere

lnWs ' gs ln gs − ns lnns − (gs − ns) ln(gs − ns). (8.37)

Procedendo come nel caso della statistica di Bose-Einstein, applichiamo il
metodo dei moltiplicatori di Lagrange per determinare il massimo della W , con i
vincoli posti dalla costanza del numero totale di particelle e dalla conservazione
dell’energia. Cerchiamo quindi i massimi della funzione

F =
∑
s

[gs ln gs − ns lnns − (gs − ns) ln(gs − ns)]

+α(N −
∑
s

ns) + β(E −
∑
s

nsεs). (8.38)

Derivando rispetto a ciascuna ns otteniamo

∂F

∂ns
= − lnns − 1 + ln(gs − ns) +

gs − ns
gs − ns

− α− βεs

= ln
gs − ns
ns

− α− βεs. (8.39)

Imponendo l’annullamento di ciascuna derivata, ∂F/∂ns = 0, si ha

ln
gs − ns
ns

= α+ βεs, (8.40)

da cui è immediato ricavare l’espressione della funzione di distribuzione:

f(ε) =
ns
gs

=
1

eα+βεs + 1
. (8.41)

Rimuovendo il pedice s e utilizzando la relazione β = 1/kBT (che si dimostra
valere anche in questo caso), possiamo finalmente scrivere della funzione di
distribuzione di Fermi-Dirac:

f(ε) =
ns
gs

=
1

eαeε/kBT + 1
, (8.42)
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8.4 Limite classico: statistica di Boltzmann

L’espressione (8.42) differisce da quella relativa alla distribuzione di Bose-Einstein
solo per il segno che precede l’unità nel denominatore. Possiamo riassumere le
espressioni delle funzioni di distribuzione quantistiche tramite la relazione

f(ε) =
ns
gs

=
1

eαeε/kBT ± 1
, (8.43)

dove il segno + si riferisce alla statistica di Fermi-Dirac e il segno − alla statistica
di Bose-Einstein. Nel caso di una popolazione di fotoni di numero non vincolato,
α = 0. Altrimenti, α si determina imponendo la conservazione del numero di
particelle, N =

∑
s ns = f(ε)gs. Per esplicitare questa relazione sostituiamo

la sommatoria sulle shell con un integrale sull’energia e scriviamo il peso gs in
funzione di ε, ottenendo

N =

∫ ∞
0

g(ε)

e[α+(ε/kBT )] ± 1
dε, (8.44)

con g(ε)dε dato dall’ Eq. (3), pag. 50.
L’equazione (8.44) definisce implicitamente α = α(N/V, T ). Si dimostra che

essa può essere posta nella forma

α = −ε0/kBT, (8.45)

dove ε0 è un’energia caratteristica, che dipende dalla densità di particelle N/V
e, molto debolmente, dalla temperatura. Si ha allora

f(ε) =
1

e(ε−ε0)/kBT ± 1
. (8.46)

Nel caso della statistica di Fermi-Dirac, ε0 prende il nome di energia di Fermi
e si indica usualmente con il simbolo εF. La statistica di Fermi verrà discussa e
utilizzata nel seguito del corso per studiare alcune proprietà di metalli e semi-
conduttori (vedi Sette-Bertolotti, Vol. II, § 16.3–16.5 e Mencuccini-Silvestrini,
Vol. II, § XII.9.2).

Quando il termine exp[α+(ε/kBT )] nel denominatore dell’Eq. (8.43) è molto
maggiore dell’unità, l’Eq. (8.43) stessa può essere scritta

f(ε) ' e−αe−ε/kBT . (8.47)

Ritroviamo cos̀ı la funzione di distribuzione di Boltzmann, che quindi
costituisce un’ottima approssimazione delle distribuzioni quantistiche quando
l’occupazione dei livelli energetici è molto bassa; vedi la Fig. 8.3.

Osserviamo che all’Eq. (8.47) si giunge anche applicando il procedimento
variazionale seguito per ricavare le espressioni delle funzioni di distribuzioni
quantistiche. In questo caso nel calcolare la probabilità termodinamica W si
deve tenere conto della distinguibilità delle particelle. Si scrive quindi

W = N !
∏
s

gns
s

ns!
. (8.48)
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Bose-Einstein

Fermi-Dirac
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ε/kBT
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Figure 8.3: Confronto fra le funzioni di distribuzione di Fermi-Dirac, Bose-
Einstein e Boltzmann, per ε0 = 10kBT .

Nell’Eq. (8.48) fattore N ! rappresenta le permutazioni delle N particelle; il
fattore gns

s i modi diversi in cui ns particelle contenute in una shell possono essere
distribuite nei gs stati della shell stessa, il fattoriale ns! a denominatore tiene
conto dell’equivalenza delle configurazioni realizzate permutando le particelle
contenute in una stessa shell. Per calcolare la distribuzione più probabile si
massimizza quindi la funzione lnW rispetto alle occupazioni ns, imponendo la
conservazione del numero totale di particelle e dell’energia totale. Utilizzando,
come in precedenza, il metodo dei moltiplicatori di Lagrange, si massimizza il
funzionale

F = lnW + α(N −
∑
s

ns) + β(E −
∑
s

nsεs), . (8.49)

Inserendo l’espressione (8.48) nell’Eq. (8.49), usando la formula di Stirling per i
logaritmi dei fattoriali e uguagliando a zero la derivata rispetto a ns, si ottiene,
per ogni s,

ln
gs
ns
− α− βεs = 0 (8.50)

e quindi l’espressione della funzione di distribuzione

f(εs) =
ns
gs

= e−αe−βεs = e−αe−εs/kBT . (8.51)



Chapter 9

s-wave scattering

In this Chapter we present a few basic elements of scattering theory. General
scattering theory is extremely complex and outside the scope of the present
introductory course. The goal of our treatment is to recover qualitative features
of important nuclear reaction cross sections. Indeed, we shall find the nearly
constant behaviour of potential scattering (e.g. elastic scattering far away from
resonances), the Breit-Wigner resonant cross-section, and the 1/v behaviour of
many absorption cross-sections.

9.1 Partial wave expansion

Figure 9.1: Geometrical interpretation of partial wave expansion.

We consider a beam of particles with momentum p = h̄k interacting with
a particle (a scatterer) at rest in the origin of a coordinate system. Particles
in the beam with impact parameter b have angular moment L = pb = h̄kb.
According to quantum mechanics angular momentum can only take values L =
h̄
√
l(l + 1) ' h̄l, with l = 0, 1, . . .. Therefore, in a semi-classical picture (see

Fig. 9.1), particles with angular quantum number between l and l + 1 have
impact parameters l/k ≤ b ≤ (l + 1)/k. If we indicate with a the distance
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from the scatterer at which the interaction potential vanishes (i.e. V (r) = 0 for
r > 0) particles with b > a, i.e. with l > ka are not affected by the potential
and do not suffer any scatter (nor other reactions). It follows that if ka � 1
even particles with l = 1 are unaffected by the potential: only l = 0 particles
matter. We can then consider the interaction as due only to such particles, i.e.
to waves with l = 0 (angular momentum s-waves).

Figure 9.2: We study scattering in a reference frame centred on the scatterer.

We start by observing that the beam of incident particles is represented by a
plane wave ψ0(z) = Aeikz or, in the spherical coordinate system centred around
the scatterer, ψ0(r, θ) = Aeikr cos θ. This wavefunction can be expanded in a
series of angular momentum wavefunctions 1 2

ψ0 = Aeikr cos θ = A

∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ). (9.1)

Here Pl is the Legendre polynomial of order l [Eq. (7.33)] and jl is the spherical
Bessel function of order l, which asymptotically, for kr � 1 approaches

jl(kr) '
sin(kr − lπ/2)

kr
. (9.2)

Each term of the expansion, i.e. each partial wave corresponds to a specific
angular momentum l. Following the discussion above, we only retain the first
term (l = 0, or s-wave) of the expansion. We then have

ψ0(r) = −Ae
−ikr

2ikr
+
Aeikr

2ikr
, (9.3)

where the first term on the right hand side represents an entering spherical wave,
and the second one an outgoing spherical wave.

9.2 General expression of the cross-sections

After the interaction with the particle in the origin, the s-wave component at
large distance from the scatterer will again be given by the sum of an entering

1See, e.g. K. S. Krane, Introduction to Nuclear Physics, Wiley (1988), Sec. 11.8.
2The dependence on the other angle φ is omitted, assuming cylindrical symmetry around

the z-axis.
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Figure 9.3: The wavefunction at large distance from the scatterer is the sum of
an entering spherical wave and an outgoing one.

spherical wave (left unchanged by the interaction) and and an outgoing spherical
wave,3 and can then be written as

ψ(r) = −Ae
−ikr

2ikr
+Aη

eikr

2ikr
, (9.4)

where η is a complex quantity. While in general η depends on θ and φ, in the
l = 0 approximation η is a (complex) constant. It is useful to write such a wave
in a slightly different way, i.e.

ψ(r) = A
eikr − e−ikr

2ikr︸ ︷︷ ︸
ψ0(r)

+ A(η − 1)
eikr

2ikr︸ ︷︷ ︸
scattered or absorbed

, (9.5)

which highlights the difference between incoming wave and scattered wave.
The knowledge of η is sufficient to compute both the scattering cross-section

and the reaction cross-section. In general, scattering is fully characterized by the
differential cross-section σ(θ) = dσ/dΩ, with the (integrated) scattering cross-
section given by σsc =

∫
Ω
dΩσ(θ). However s-wave scattering is symmetric in

the centre-of-mass system, and then we simply have σsc = 4πσ(θ). By definition

σsc =
particles scattered per unit time

incident particles per unit time and area
=

(dN/dt)sc

Jinc
, (9.6)

where the current of the incident beam is (see Eq. (5.28)

Jinc =
h̄k

m
|A|2. (9.7)

3See footnote 2 of Sec. 7.5.
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The scattering rate can instead be written by observing that the same number
of particles will cross any sphere centred in the origin. Therefore the scattering
rate is equal to the product of the particle density (i.e. the square of the modulus
of the wavefunction) at distance r multiplied by the volume V spanned by the
particles in the unit of time, i.e. V = 4πr2 × v × 1, where v = p/m = h̄k/m is
the particle velocity. We can then write(

dN

dt

)
sc

=

∣∣∣∣(η − 1)A
eikr

2ikr

∣∣∣∣2 × 4πr2 × h̄k

m
= (9.8)

= A2|η − 1|2 1

4k2r2
4πr2 h̄k

m
(9.9)

= A2|η − 1|2π h̄

mk
, (9.10)

and finally

σsc = πλ− 2|η − 1|2, (9.11)

where we have introduced λ− = λ/2π = 1/k.
So far we have considered elastically scattered particles. Particles can also

be absorbed or scattered inelastically. Such processes are taken into account by
the reaction cross-section σreaction. It can be shown that

σreaction = πλ−2(1− |η|2) , (9.12)

and the total cross-section is

σtot = σsc + σreaction = 2πλ−2[1−<(η)]. (9.13)
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9.3 Scattering from a hard sphere
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9.4 Potential scattering and Breit-Wigner cross-
section
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9.5 Absorption cross-section



Appendices
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Appendix A

Wave packets and group
velocity
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Appendix B

Fourier transform of a
Gaussian

We show that the Fourier transform of a Gaussian is still a Gaussian and that
the product of the standard deviation of a Gaussian and of its Fourier transform
is 1. We consider the Fourier-transform F (ω)

F (ω) =

∫ ∞
−∞

f(t)e−iωtdt (B.1)

of a function f(t), which can be recovered by anti-transforming F (ω), according
to

f(t) =
1

2π

∫ ∞
−∞

F (ω)eiωtdω. (B.2)

Let us assume that F (ω) is given by

F (ω) = e−ω
2

, (B.3)

i.e. it is a Gaussian exp (−ω2/2σ2
ω) , with standard deviation σω = 1/

√
2. We

now use Eq. (B.2) to obtain f(t);

f(t) =
1

2π

∫ ∞
−∞

e−ω
2+iωtdω =

=
1

2π

∫ ∞
−∞

e−(ω−it/2)2−t2/4dω =

=
1

2π

∫ ∞
−∞

e−x
2−t2/4dx =

e−t
2/4

2π

√
π

=
1

2
√
π
e−t

2/4, (B.4)

which is a Gaussian in t, with standard deviation σt =
√

2, so that σt σω = 1.
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Appendix C

A proof of the uncertainty
relations
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Appendix D

Angular momentum
operators in spherical
coordinates

Figure D.1: Spherical and Cartesian coordinates.

We introduce spherical coordinates r, θ, φ, related to the Cartesian coordi-
nates x, y, z by

r =
√
x2 + y2 + z2 (D.1)

θ = arctan

√
x2 + y2

z
(D.2)

z = arctan
y

x
(D.3)
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x = r sin θ cosφ (D.4)

y = r sin θ sinφ (D.5)

z = r cos θ (D.6)

We want to obtain the expressions of the angular momentum operators

l̂x = ŷp̂z − ẑp̂y = −ih̄(y
∂

∂z
− z ∂

∂y
) (D.7)

l̂y = ẑp̂x − x̂p̂z = −ih̄(z
∂

∂x
− x ∂

∂z
) (D.8)

l̂z = x̂p̂y − ŷp̂x = −ih̄(x
∂

∂y
− y ∂

∂x
) (D.9)

in spherical coordinates. To express derivatives with respect to Cartesian coor-
dinates in terms of derivatives with respect to spherical coordinates we have to
use expressions such as

∂

∂z
=
∂r

∂z

∂

∂r
+
∂θ

∂z

∂

∂θ
+
∂φ

∂z

∂

∂φ
. (D.10)

As an example, we detail the derivation of the expression of l̂z:

l̂z = −ih̄
[
x

(
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
+
∂φ

∂y

∂

∂φ

)
+

−y
(
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ

)]
, (D.11)

and reordering the terms on the right hand side,

l̂z = −ih̄
[(
x
∂r

∂y
− y ∂r

∂x

)
∂

∂r

+

(
x
∂θ

∂y
− y ∂θ

∂x

)
∂

∂θ

+

(
x
∂φ

∂y
− y ∂φ

∂x

)
∂

∂φ

]
, (D.12)
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where, using Eqs. (D.4)–(D.6), we can write

∂r

∂y
=

1

2
√
x2 + y2 + z2

2y =
y

r
(D.13)

∂r

∂x
=

x

r
(D.14)

∂θ

∂y
=

1

1 +
x2 + y2

z2

1

z

1

2
√
x2 + y2

2y =
zy

r2
√
x2 + y2

=
y

r2 tan θ
(D.15)

∂θ

∂x
=

y

r2 tan θ
(D.16)

∂φ

∂x
=

1

1 +
y2

x2

−y
x2

= − y

x2 + y2
(D.17)

∂φ

∂y
=

1

x

x

x2 + y2
(D.18)

Substituting Eqs. (D.13)–(D.18) into Eq. (D.12) we finally obtain

l̂z = −ih̄
[
0 · ∂

∂r
+ 0 · ∂

∂θ
+

(
x

x

x2 + y2
+ y

y

x2 + y2

)
∂

∂φ

]
, (D.19)

and then

l̂z = −ih̄ ∂

∂φ
. (D.20)

By proceeding analogously, one obtains

l̂x = ih̄

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
(D.21)

and

l̂y = −ih̄
(

cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ

)
. (D.22)



112 APPENDIX D. ANGULAR MOMENTUM OPERATORS



Appendix E

Hydrogen atom - solution
of the radial equation

We give here all details of the solution of the radial equation for the electron
wavefunction in the hydrogen atom [Eq. (7.54)], which we write again here:[

d2

dr2
+

2

r

d

dr
+

2µ

h̄2 [E − V (r)]− l(l + 1)

r2

]
R(r) = 0 (E.1)
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Appendix F

Potential Barrier and
Tunnel Effect
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Appendix G

Metodo dei moltiplicatori
di Lagrange

Il metodo dei moltiplicatori di Lagrange consente di trovare i massimi di una
funzione

y = f(x1, x2, . . . , xn, )

soggetta alle m condizioni

gk(x1, x2, . . . , xn) = 0, k = 1, 2, . . . ,m.

Si dimostra che i massimi condizionati di f si trovano fra quelli non condizionati
di

F = f + α1g1 + α2g2 + α3g3 + . . .+ αmgm.

Soddisfano quindi le condizioni

∂F/∂xi = ∂F/∂αk = 0, i = 1, 2, . . . , n; k = 1, 2, . . . ,m.

Le xi estremanti si trovano allora risolvendo le i equazioni

∂F

∂xi
= 0.

I moltiplicatori di Lagrange αk si trovano poi imponendo che i vincoli gk = 0
siano soddisfatti.
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Appendix H

Kinetic theory of the ideal
gas

This Appendix contains sketchy notes, summarizing the main results of elemen-
tary kinetic theory. The students who are not familiar with these topics should
refer to General Physics textbooks for undergraduates.1

H.1 From the macroscopic to the microscopic -
Thermodynamics vs kinetic models

Thermodynamics concerns macroscopic systems (pieces of matter containing a
very large number of atoms/molecules) at equilibrium 2, defined by state vari-
ables, such as volume V , mass m or number of moles n, pressure p, temperature
T (as well as internal energy U , entropy S, enthalpy H, etc.)

In fact, pressure, temperature, internal energy, entropy are related to the
microscopic behaviour of atoms/molecules (e.g. the molecules of a gas).

Kinetic theory looks for a microscopic interpretation of such properties.
In a sense, kinetic theory is a link between the macroscopic world and the
atomic/molecular world.

Even in a very small macroscopic quantity of matter there are very large
number of atoms/molecules. E.g. in 1 mm3 of air there are about 2.5 ×
1016 molecules. [Check this number as an exercise]. Of course, we cannot
study the motion of each molecule. We can only take a statistical approach,
and consider distributionfunctions and appropriately averaged quantities.

In the following, we consider a very simple kinetic model of an ideal gas,
leading to a few very important and general results. Before doing this, let us

1E.g. Halliday, Resnick and Krane, Physics (2 volumes), Wiley (2001); for the Italian
speaking students, any of the textbook covering the programmes of the traditional courses of
Fisica I and Fisica II.)

2Thermodynamic equilibrium: mechanical equilibrium and thermal equilibrium and chem-
ical equilibrium
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summarize well know ideal gas properties.

H.2 Ideal gas - Experimental facts and results
from thermodynamics

An ideal gas is a gas obeying the law

pV = nRT, (H.1)

where p is the pressure, V the volume occupied by the gas, n the number
of moles, T the absolute temperature, and R is the so-called gas constant.
Using SI units (i.e. pressure in pascal, volume in m3, temperature in K), R =
8.31 J/(mol K).

At normal conditions, i.e. atmospheric pressure and temperature of 288.15 K,3

real gases can be treated like ideal gases within reasonable tolerances. Actually,
a gas behaves more like an ideal gas at higher temperature and lower pressure.
In practice (e.g. for engineering applications) gases at temperatures well above
boiling point and at pressures about or smaller than atmospheric pressure can
be considered as ideal gases.

Summary of results from experiments and thermodynamics:

• internal energy

U = nCvT + constant, (H.2)

• molar heat at constant volume

Cv =


3
2R, monoatomic gas

5
2R, diatomic gas

3R polyatomic gas

(H.3)

• molar heat at constant pressure

Cp = Cv +R (H.4)

• entropy

S = nR ln
(
V TCv/R

)
+ constant (H.5)

= n (Cv lnT +R lnV ) + constant. (H.6)

3More precisely, these are the International Standard Metric Conditions. Other standards
refer to temperatures of 273.15 K, or 293.15 K, or 298.15 K.
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H.3 Microscopic model

Basic assumptions:

• the gas consists of identical molecules, of mass m, which behave as rigid
spheres, and collide elastically with each other;

• the total volume occupied by the molecules is negligible with respect to
the volume V of the container;

• the molecules do not interact with each other, but when they collide,
nor are subjected to any external force; therefore their path between two
subsequent collisions is a straight path;

• the walls of the container have mass much larger than that of a molecule;
the collisions between molecules and wall are elastic; there is no friction
during the collision, so that no tangential force arises;

• the gas is homogeneous and isotropic, i.e. the average density of the
molecules is everywhere the same, and molecule motion is (statistically)
independent of the direction.

Exercise: justify the above assumptions, using knowledge available at the time
(2nd half of the nineteenth century) the kinetic model of the ideal gas was
developed.

H.4 Pressure

We know from hydrostatics that pressure in a point of a fluid is independent of
the orientation of the surface we take to measure the pressure. We also know
that the difference of pressure between two points of a homogeneous fluid is
given by ∆p = ρgh, with ρ the fluid mass density, g gravitational acceleration,
and h difference of height. Given the low density, in many cases we can neglect
this difference when considering gases.

To compute the pressure of a gas consisting of N molecules in a rigid con-
tainer of volume V we can then consider what happens at the walls of the
container. Consider, for simplicity, a wall element of area S orthogonal to the
x-axis of a Cartesian system. When a molecule hits this surface, the surface
receives a small impulse. The pressure just results from the impulses delivered
to the wall by the very large number of collisions occurring at the wall. (We
will be more quantitative later.)

Let us start by considering a single collision of a molecule with velocity
v = (vx, vy, vz) with the wall element. Since the collision is elastic, there is no
friction and the mass of wall is extremely larger than the mass of the molecule,
the molecule will not change its speed: its x-component will simply change sign,
while the other two components will not change; the velocity immediately after
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Figure H.1: Collision of a molecule with a wall element.

the collision will be v′ = (−vx, vy, vz). Momentum of the molecule will therefore
change by

∆px = −2mvx (H.7)

∆py = 0 (H.8)

∆pz = 0 (H.9)

For the impulse-momentum theorem, the particle will suffer an impulse Ix =
−2mvx. The wall will suffer an opposite impulse,

Ix =

∫ t1

t0

fdt = 2mvx, (H.10)

with f a force directed toward the normal to the surface, and t0 and t1 = t0 +∆t
are times just before and just after the collision. The average force during the
collision can than be estimated as

f =
2mvx

∆t
(H.11)

In the same time interval the element of area S will be hit by many other
molecules. Assume for the moment that all molecules have velocities with the
same x−component vx. The number of collisions in the interval ∆t is equal
to the number of molecules within a prism of basis S and height vx∆t, i.e.
(1/2)(N/V )Svx∆t. (The factor 1/2 is there because in our simplified picture
half of the molecules move in one direction, half in the opposite one.) The total
force normal to the surface is then

F =
2mvx

∆t

N

2V
Svx∆t =

N

V
Smv2

x (H.12)
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To account that, in fact, molecules move with different velocities we have to
replace v2

x with the corresponding quantity averaged over all particles, i.e. the
mean square velocity v2

x. In addition, the assumption of isotropy allows us to
write

v2 = v2
x + v2

y + v2
z = v2

x + v2
y + v2

z = 3v2
x, (H.13)

hence v2
x = v2/3. In conclusion, the pressure, i.e. the normal force acting on a

unit surface is

p =
F

S
=

1

3

N

V
mv2 (H.14)

or

p =
1

3
ρv2 , (H.15)

where ρ is the mass density.

H.5 Temperature

Compare Eq. (H.14) with the ideal gas Equation-of-state (H.1):

1

3

N

V
mv2 =

nRT

V
. (H.16)

Writing N = nNAv, where NAv = 6.022 × 1023 is the Avogradro number. we
immediately find that the average kinetic energy of a molecule is proportional
to the temperature:

1

2
mv2 =

3

2
kBT , (H.17)

where

kB =
R

NAv
= 1.3806× 10−23 J/K (H.18)

is the Boltzmann constant.

H.6 Internal energy and equipartition of energy

The assumption of non-interacting molecules implies the absence of forces be-
tween molecules (except when they collide), and hence the absence of any po-
tential energy. The only form of energy is kinetic energy of the molecules, and
then

U = N
1

2
mv2 = N

3

2
kBT = n

(
3

2
R

)
T. (H.19)

We have then recovered the classical expression of the energy of an ideal monoatomic
gas; see Eqs. (H.2) and (H.3). This confirms that the energy of the gas is just
the kinetic energy of the molecules.
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Equation (H.17) also shows that the average kinetic energy of a point-like
molecule, with three degrees of freedom is three times (1/2)kBT . This result
suggests that the average kinetic energy of a molecule is (1/2)kBT for each degree
of freedom. Indeed this would explain the molar heats at constant volume of
ideal mono-atomic gases (molecules with three degrees of freedom), diatomic
gases (five degrees of freedom) and polyatomic gases (six degrees of freedom).

This observation led to a more general statement, known as principle of
equipartition of energy: in a system with a large number of particles, the
average energy per particle and per degree of freedom is equal to 1

2kBT .

Figure H.2: Molar heat of Hydrogen vs temperature. In the temperature interval
200–600 K Cv ' (5/2R), at higher temperatures, when molecular vibrations
occur (with two additional degrees of freedom), Cv approaches (7/2)R.

The equipartition principle explains, e.g., the behaviour of specific heats of
gases at moderate-to-high temperatures and of not-too-cold solids.4. However,
we shall see that it is not universal: e.g. it does not apply at very low temper-
atures, and for photons of energy much larger than kBT .

H.7 Entropy

To be written

H.8 Maxwell velocity distribution

Temperature is related to the average square velocity, but of course individual
molecules have different velocities. Here we determine how velocity are dis-
tributed, i.e how many particles have velocity close to a certain value, or within

4The Dulong-Petit law, according to which the molar heat of solids is 3R, is recovered since
atoms in a crystalline solids can be considered as oscillators in a 3D space, and each oscillator
has three degrees of freedom associated to kinetic energy and three associated to potential
energy.
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a certain interval, or laying in a certain volume in velocity space. In particular,

dN(v) = NP (v)dv = NP (v) dvx dvy dvz (H.20)

tells us how many particles have velocities in a phase space element of volume
dvx dvy dvz centred about the velocity v = (vx, vy, vz).

For the isotropy of the gas (i.e equivalence of all directions):

• P must be a function of the magnitude of the velocity only, hence P =
P (v) or P = P (v2) or P = P (E);

• dvx dvy dvz = 4πv2dv

The number of molecules with velocity between v and v + dv is then

dN(v) = NP (E)4πv2dv (H.21)

An expression for P (E) is obtained by analyzing the collisions between parti-
cles, taking into account that collisions are elastic and the gas is in equilibrium.
This means that energy is conserved in each collision and that the energy (or ve-
locity) distribution of particles cannot be changed by collisions. Let us consider
a collision between two particles A and B, with energy Ea and Eb, respectively,
before the collision and energy E′a and E′b, respectively, after the collision. The
probability of such a collision is proportional to the product of the densities of
the two species, i.e.

Rab→a′b′ = Cab→a′b′P (Ea)P (Eb), (H.22)

where Cab→a′b′ is a constant. Let us also consider the probability of the opposite
process, i.e. the collision between particles with energies E′a and E′b prior to the
collision and Ea and Eb after the collision:

Ra′b′→ab = Ca′b′→abP (E′a)P (E′b). (H.23)

The two rates must be equal, otherwise the system would not be in equilibrium;
furthermore, for micro-reversibility (i.e. reversibility at the microscopic level),
Ca′b′→ab = Cab→a′b′ . In addition, for energy conservation E′a + E′b = Ea + Eb,
which allow us to write

E′a = Ea + ∆E; E′b = Eb −∆E. (H.24)

Equating the rates (H.22) and (H.23) we then obtain

P (Ea)P (Eb) = P (Ea + ∆E)P (Eb −∆E) (H.25)

It is easily checked that the only allowable form of the function P (E) is

P (E) = Ae−βE = Ae−β
1
2mv

2

, (H.26)



134 APPENDIX H. KINETIC THEORY OF THE IDEAL GAS

where both A and β are positive constants. They are determined by requiring
particle and energy conservation, i.e.,

N =

∫
dN(v) =

∫ ∞
0

NAe−β
1
2mv

2

4πv2dv, (H.27)

3

2
NkBT =

∫
1

2
mv2dN(v) =

∫ ∞
0

N
1

2
mv2Ae−β

1
2mv

2

4πv2dv. (H.28)

With some algebra (do it as an excercise 5) one obtains

β =
1

kBT
, (H.29)

A = N

(
m

2πkBT

)3/2

, (H.30)

so that the final expression of the velocity distribution function, first obtained
by Maxwell, is

dN(v) = N

(
m

2πkBT

)3/2

e
−mv2

kBT 4πv2dv (H.31)

Figure H.3: Maxwell distribution function

The Maxwell velocity distribution function is plotted in Fig. H.3. We see
that F (v) ∝ v2 as v → 0, while F (v) ∝ e−mv

2/2kBT at large velocities. The
most probable velocity (i.e. the velocity at the maximum of the distribution
is)

vp =

√
2kBT

m
. (H.32)

5Use
∫∞
0 x2e−ax

2
dx = (1/4a)

√
π/a, and

∫∞
0 x4e−ax

2
dx = (3/8a2)

√
π/a,
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[Excercise: proof this last result]

The figure also shows that as the temperature increases,

• vp increases;

• the peak of the distribution lowers;

• the peak broadens.

The area below the distribution, instead, remains constant, because the total
number of particles is constant.

Maxwell distribution of velocities finds application in a number of areas
of physics and chemistry. It explains Arrhenius law of chemical kinetics, the
temperature dependence of certain types of electrical polarization, of certain
magnetic properties, the temperature dependence of the rate of thermonuclear
fusion reactions, etc.

H.9 Boltzmann factor

According to Eqs. (H.26) and (H.29) the probability P (E) is proportional to
exp(−E/kBT ), where E is the molecule kinetic energy. (Quantum) statistical
mechanics indeed shows that this is a particular case of a more general result,
applying to any form of energy (kinetic, gravitational, electrical, chemical, etc.):
the ratio of the probabilities of two states of energy E1 and E2, respectively, is

P (E1)

P (E2)
=
e
− E1

kBT

e
− E2

kBT

, (H.33)

with

e
− E

kBT : Boltzmann factor (H.34)

H.10 Examples and exercises

1. Compute the average square velocity of nitrogen molecules in air at stan-
dard conditions. This velocity turns out to be about 30% larger than
sound speed. Is there any connection between the two velocities?

2. Compute the molecular density of air at standard conditions.

3. Consider a container with air at standard conditions. Estimate the number
of molecular collisions in one second onto a piece of wall with surface of
1 mm2.

4. What is the average interparticle d distance in air?
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5. Cross-section and mean-free-path
Molecules move randomly and collide with each other. Their path consists
in straight segments of different length and direction. We call mean-free-
path the average path between two collisions, i.e. the average length of
the above segments.

Figure H.4: Cross-section for the collision between two identical molecules.

A useful related concept is that of cross-section. Two identical spherical
molecules collide if their centers come to a distance smaller than their
diameter 2r. The cross-section for such hard-sphere collisions6 is then
σ = π(2r)2. For computing the mean-free-path, we can either think of
identical molecules of radius r or of projectile molecules of radius 2R and
target point-like molecules with vanishing radius. Using this last picture,
the mean-free-path is equal to the length l of a cylinder of cross-sectional
area A = σ containing, on average, 1 molecule. Since 1 molecule occupies,
on average a volume V1 = V/N = 1/n (here n is the molecule density7),
then V1 = Al = σl, and

l =
1

nσ
=

1

nπ(2r)2
. (H.35)

Use this last result to estimate the mean free path of a molecule in air.
(Assume r = 1.5× 10−10 m)

6. Next, show that, in air, 2r � d� l.

7. Finally, compute the average number of collisions suffered by a molecule
of nitrogen in air at standard conditions.

6A more general definition of cross-section will be discussed later in this course.
7Note that in other sections we have used the same symbol n to denote the number of

moles.


