BIOST 514/517 Biostatistics I / Applied Biostatistics I

Kathleen Kerr, Ph.D.
Associate Professor of Biostatistics
University of Washington

Lecture 6: Descriptive Statistics for (Right) Censored data

October 11-14, 2013

2003

Probability Distribution Function

- · For ordered variables, we define
 - Cumulative distribution function (cdf):
 - $F(x) \equiv F_X(x) \equiv P(X \le x)$
 - Survivor function:
 - $S(x) \equiv S_x(x) \equiv P(X > x) = 1 F_x(x)$

Lecture Outline

- Probability distribution function, cumulative distribution function, and survivor curves
- · Setting for censored data
- · Standard notation for censored data
- Motivating example
- · Kaplan-Meier "math" explanation
- Kaplan-Meier "redistribute to the right" explanation
- · RMST Restricted Mean Survival Time

Empirical Distribution Function

- Sample cumulative distribution function or survivor function can be used as an estimate of the population cdf or survivor function
- These functions can sometimes be estimated for censored data (unlike histograms, densities, etc.)

Empirical CDF: No Censoring

· Definition:

For uncensored data $\{X_1, X_2, ..., X_n\}$

Empirical cumulative distribution function

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} 1_{[X_i \le x]} = \frac{\text{\#observations} \le x}{n}$$

Empirical survivor function

$$\hat{S}(x) = 1 - \hat{F}(x)$$

STATA: Empirical CDF

- "cumul var, gen(Fvar) equal"
 - Generates a new variable named Fvar with empirical CDF
 - (Note the need to use the "equal" option to handle ties)
- "line Fvar var, sort connect(stairstep)"
 - Produces empirical CDF (as a step function)
 - (Note the need to use the "sort" option)

Empirical CDF: Properties

- The empirical cdf assigns probability mass of 1/n at each observation
 - Step function:
 - · jumps at each observation
 - · level between observations
- · The empirical cdf can be graphed for an ordered variable
 - Because we draw conclusions from the spacing of the x-axis, this makes most sense when the measurements are quantitative (not just ordered categorical)

STATA Ex: Age CDF (FEV data)

• cumul age, gen(Fage) equal

 line Fage age, connect(stairstp) sort xtitle("Age (years)") ytitle("Empirical CDF") t1("Empirical CDF for Age in FEV Data")

STATA Ex: Age CDF (FEV data)

Survival Curves

- Curves that estimate the probability of surviving for a Time > t
 - horizontal axis is time
 - vertical axis is P(Survival > t)

LIFESPAN/SURVIVAL CURVE

Survival Curves

- In biomedicine, we typically look at the "survivor" or "survival" curves for times to an event, rather than the CDF
- We use Kaplan-Meier methods to get a survival curve
- Note that we can "see" some common sample statistics from a survival curve
- Next slide example: survival in a clinical trial for advanced prostate cancer
 - 569 patients randomly assigned to new treatment or control 1:1
 - Journal of Clinical Oncology 2007

Kaplan Meier Survival Curve

Erlotinib/Gem vs Placebo/Gem (504 deaths)

Setting for Right Censored Data

Missing Data Classifications

- · Mechanistic classification
 - Missing completely at random (MCAR)
 - Missing at random (MAR)
 - Missingness can depend on other observed data
 - Missing not at random (MNAR)
- Functional classification
 - Ignorable (MCAR and sometimes MAR)
 - · Discarding cases with missing data does not bias results
 - Nonignorable (MNAR and most times MAR)
 - Omitting cases with missing data leads to erroneous conclusions

Censored Data

- · Special type of nonignorable missing data
 - The value is known to be in some interval, but the exact value is not always known
 - "Left censoring" can arise with measurement technologies that have a lower limit of detection
 - "Interval censoring" example: screening a cancer patient for recurrent tumors every year. If tumors are seen, the time of recurrence is known to be sometime between the detection visit and the previous visit
 - "right censoring" commonly arises when measuring time to some event

Censored Data

- · Special type of nonignorable missing data
 - "right censoring" commonly arises when measuring time to some event
 - Time to death (survival time)
 - Some patients live
 - · Time to relapse
 - Some patients don't relapse during the study
 - Among transplant patients, time to first ambulation
 - Some patients observed not to have walked for the study period

Example: Setting

- A clinical trial of aspirin in prevention of cardiovascular mortality
 - 10,000 subjects are randomized equally to receive either aspirin or placebo
 - Subjects are randomized over a three year period
 - Subjects are followed for fatal events for an additional three year period following accrual of the last subject

Right Censored Data

- If it weren't for censoring, we would almost certainly work with the "time to" variable as a continuous variable
 - Summaries using mean, SD, etc.
 - Visualize with scatterplot, histogram, etc.
- But, in the presence of censoring, we need special methods, and are somewhat limited to the kind of descriptives we can compute

Example: Right Censoring

- Problem:
 - At the end of the clinical trial, some subjects have been observed to die
 - · True time to death is known for these subjects
 - At the end of the clinical trial, most subjects are likely to be still alive
 - Death times of these subjects are only known to be longer than the observation time
 - "(Right) Censored observations"

Example: Wrong Approach

- Cannot ignore censored data
 - These are our treatment successes
 - If we throw these cases out of the dataset, we will underestimate the probability of longer survival

Example: Bad Solution #2

- To avoid this bias, we could analyze the outcome as binary (live/die) data at time of earliest censoring
 - This would be valid, BUT
 - Probably does not answer the scientific question
 - · Detecting short term versus long term effects
 - Statistically less efficient

Example: Bad Solution #1

- Cannot just treat as binary (live/die) data
 - Observation time differs across subjects
 - Potential for bias:
 - If pattern of censoring is different in the groups you will compare, then this approach can introduce bias
 - E.g. imagine if taking the aspirin made people sick; people in the aspirin group quickly dropped out the study. Can't just analyze them as "alive" – must account for observation time

Right Censored Data

Notation:

Unobserved:

True times to event: $\left\{T_1^0, T_2^0, ..., T_n^0\right\}$ Censoring Times: $\left\{C_1, C_2, ..., C_n\right\}$

Observed data:

Observation Times: $T_i = \min(T_i^0, C_i)$

Event indicators: $D_i = \begin{cases} 1 & \text{if } T_i = T_i^0 \\ 0 & \text{otherwise} \end{cases}$

Motivating Example

Data by Date (Real Time)

Staggered study entry by site							
		Accrual	Group				
Year	A	В	C				
1990 On study	100						
Died	43						
Surviving	57						
1991 On study	57	100					
Died	27	53					
Surviving	30	47					
1992 On study	30	47	100				
Died	13	22	55				
Surviving	17	25	45				

Motivating Example

- · Hypothetical study of subject survival
- Subjects accrued to study and followed until time of analysis
- Study done at three centers; each center started the studies in three successive years
- · Censoring time thus differs across centers
 - Only administrative censoring in this example, no other drop-outs

Data by Study Time

Reali	gn data acco	ording to	time on	study
	crual Gr	coup		
Year		A	В	C
1	On study	100	100	100
	Died	43	53	55
	Surviving	57	47	45
2	On study	57	47	
	Died	27	22	
	Surviving	30	25	
3	On study	30		
	Died	13		
	Surviving	17		

Combined Data

	7	ccrual Gr	oup		
Year		A	В	С	Combined
1	On study	100	100	100	300
	Died	43	53	55	151
	Surviving	57	47	45	149
2	On study	57	47		104
	Died	27	22		49
	Surviving	30	25		55
3	On study	30			30
	Died	13			13
	Surviving	17			17

Possible Remedies

- WRONG: Ignore missing
 - E.g., 17 of 300 subjects alive at three years
- RIGHT BUT WRONG QUESTION: Use data only up to earliest censoring time
 - E.g., 149 of 300 subjects alive at one year
- · RIGHT BUT INEFFICIENT: Use only center A
 - E.g., 17 of 100 subjects alive at three years

Problem Posed by Missing Data

- · Sampling scheme causes (informative) missing data
- Potentially, we might want to estimate three year survival probabilities
- Different centers contribute information for varying amounts of time
 - One year survival can be estimated at A, B, C
 - Two year survival can be estimated at A, B
 - Three year survival can be estimated at A

Best Approach

- RIGHT AND EFFICIENT
 - Use all available data to estimate that portion of survival for which it is informative
 - Use Centers A, B, and C to estimate one year survival
 - Use Centers A and B to estimate proportion of oneyear survivors who survive to two years
 - Use Center A to estimate proportion of two-year survivors who survive to three years

Theoretical Basis for Approach

- · Properties of probabilities
 - Probability of event A and B occurring is product of
 - · Probability that A occurs when B has occurred
 - · Probability that B has occurred

$$Pr(A \text{ and } B) = Pr(A \mid B) \times Pr(B)$$

 $Pr(A \cap B) = Pr(A \mid B) \times Pr(B)$

Estimate Conditional Survival

- Condition on surviving up until the start of the time interval
 - Denominator is number of subjects at start of interval
 - Numerator is deaths during the interval
- Requirement for validity
 - Subjects available at the start of each time interval are a random sample of the population surviving to that time
 - "Noninformative censoring"

Application of Theory to Survival

- For times T₁ < T₂, probability of surviving beyond time T₂ is the product of
 - Probability of surviving beyond time T₂ given survival beyond time T₁, and
 - Probability of surviving beyond time T₁

For
$$t_0 \le t_1 \le t_2 \le \cdots \le t_k$$

$$\Pr(T^0 \ge t_j) = \Pr(T^0 \ge t_j \cap T^0 \ge t_{j-1})$$

$$= \Pr(T^0 \ge t_j \mid T^0 \ge t_{j-1}) \Pr(T^0 \ge t_{j-1})$$
For $1 \le 2 \le 3 \le \cdots \le 100$

$$\Pr(T^0 \ge 2) = \Pr(T^0 \ge 2 \cap T^0 \ge 1)$$

$$= \Pr(T^0 \ge 2 \mid T^0 \ge 1) \Pr(T^0 \ge 1)$$

Estimate Survival Probability

- Estimate probability of survival at the endpoint of each time interval
- Multiply the conditional probabilities for all intervals prior to the time point of interest

Application to Example

- · Within interval conditional probabilities
 - Use A, B, C to estimate $Pr(T^0 \ge 1)$
 - Use A, B to estimate $Pr(T^0 \ge 2 \mid T^0 \ge 1)$
 - Use A to estimate $Pr(T^0 \ge 3 \mid T^0 \ge 2)$
- · Multiply to obtain unconditional cumulative survival
 - $Pr(T^0 \ge 1)$
 - $Pr(T^0 \ge 2) = Pr(T^0 \ge 2 \mid T^0 \ge 1) Pr(T^0 \ge 1)$
 - $Pr(T^0 \ge 3) = Pr(T^0 \ge 3 \mid T^0 \ge 2) Pr(T^0 \ge 2)$

Estimation of Survivor Functions

Motivating Example Results

Survival Probabilities

Yr Combin	ed	Each Year	Cumulative
	d 151	149/300 = 49.67%	49.67%
	d 49	55/104 = 52.88%	.4967*.5288 = 26.27%
3 On study Diec	d 13	17/ 30 = 56.67%	.2627*.5667 = 14.88%

Noninformative Censoring

- · When estimating survivor functions using censored data:
 - Censoring must not be informative
 - Censored subjects neither more nor less likely to have an event in the immediate future
 - Censored individuals must be a random sample of those at risk at time of censoring:

Informative Censoring Examples

- Subjects in a RCT are withdrawn due to treatment failure
 - (likely they would die sooner than those remaining)
- Subjects in a RCT in a fatal condition are lost to follow up when they go on vacation
 - (likely they are healthier than those remaining)

Kaplan-Meier Estimates

- · Kaplan-Meier (Product Limit) Estimates
- Extends the idea from the motivating example to precisely measured individual data
 - The time intervals are defined by unique observation times
 - N_i: Number of subjects at risk at start of interval
 - D_i: Number of events at end of interval
 - (If a censoring time is exactly the same as a death time, the convention is to treat the censoring as having occurred momentarily after the death)

Detecting Informative Censoring

- Guiding principle: it is impossible to use the data to detect informative censoring
 - The necessary data are almost certainly missing in the data set
- In some cases, it is impossible to ever observe the missing data: "Competing Risks"
 - Consider the aspirin example. Suppose the outcome is "death from MI."
 - Some people will die from other causes (e.g., cancer) and suppose these are treated as censored.
 - We cannot observe whether subjects dying of other causes are more or less likely to die of another if we cure them of the first cause

Kaplan-Meier Notation

· Definition of intervals, number at risk, failures

Ordered distinct observation times:

$$t_1 \le t_2 \le \dots \le t_k$$

Time interval: (t_{j-1}, t_j)

Number at risk at t_i : N_i

Number of events at t_j : D_j

Kaplan-Meier Hazard Estimates

Computation of hazard and conditional probability of survival in interval

Hazard for event in interval: $\frac{D_j}{N_j}$

Conditional probability of survival in interval:

$$\Pr(T^0 \ge t_j | T^0 \ge t_{j-1}) = 1 - \frac{D_j}{N_j}$$

If Last Observation Censored

- For an interval that ends in a censored observation with no observed events, the conditional probability of surviving within the interval is 1.
- Note also that if the largest observation time is censored, the KM (PLE) survivor function does not go to zero
 - We generally regard the KM (PLE) survivor function to be undefined for times beyond the largest observation (death) time in this situation

Kaplan-Meier Survival Estimate

· Estimating survival probability

$$S(t) = Pr(T^0 > t)$$

Cumulative probability of survival:

$$\begin{split} \Pr\left(\boldsymbol{T}^{0} > t_{j}\right) &= \Pr\left(\boldsymbol{T}^{0} > t_{j} \mid \boldsymbol{T}^{0} > t_{j-1}\right) \Pr\left(\boldsymbol{T}^{0} > t_{j-1}\right) \\ \hat{S}\left(t_{j}\right) &= \left(1 - \frac{D_{j}}{N_{j}}\right) \times \left(1 - \frac{D_{j-1}}{N_{j-1}}\right) \times \dots \times \left(1 - \frac{D_{1}}{N_{1}}\right) \\ &= \prod_{i=1}^{j} \left(1 - \frac{D_{i}}{N_{i}}\right) \end{split}$$

Kaplan-Meier Properties

- . The KM (PLE) survivor functions can be shown to be
 - Consistent: As sample sizes go to infinity, they estimate the true value
 - · Censoring must be noninformative

Redistribute to the Right

- The KM (PLE) survivor functions can also be derived as the "redistribute to the right" estimator
- · Basic idea
 - Recall the empirical CDF assigns probability 1/n to each observation
 - A censored observation should be equally likely to have event time like any of the remaining uncensored observations
 - Recursively redistribute the mass of each censored observation among the subjects remaining at risk

Ex: Redistribute to the Right

- Censored observation at 4
 - Divide the mass at 4 equally among the remaining subjects at risk
 - Now mass of 1/7 + 1/28 = 5/28 for each of 5, 7, 9, 10
- Determine probability of events at next observed (uncensored) event times

$$- Pr (T^0 = 5) = 5/28$$

Ex: Redistribute to the Right

- Data: 1, 3, 4+, 5, 7+, 9, 10
 - (plus sign means censored)
- Initially: each point has mass 1/7
- Determine probability of events at earliest observed (uncensored) event times

$$- Pr (T^0 = 1) = 1/7$$

$$- Pr (T^0 = 3) = 1/7$$

Ex: Redistribute to the Right

- Censored observation at 7
 - Divide the mass at 7 equally among the remaining subjects at risk
 - Now mass of 5/28 + 5/56 = 15/56 for each of 9, 10
- Determine probability of events at next observed (uncensored) event times

$$- Pr (T^0 = 9) = 15/56$$

$$- Pr (T^0 = 10) = 15/56$$

Ex: Redistribute to the Right

Kaplan-Meier estimate of Survival

<u>t</u> 0	$Pr (T^0 = t)$	$Pr(T^0 > t)$
0		1.000
1	1/7 = 0.143	.857
3	1/7 = 0.143	.714
4	0.000	.714
5	5/28 = 0.179	.536
7	0.000	.536
9	15/56 = 0.268	.268
10	15/56 = 0.268	.000

Comparing Survival Curves

- With censored data, we cannot use sample means, sample standard deviations, sample medians, etc.
- Using Kaplan-Meier methods, it is possible to compare population:
 - (horizontal difference) A. Median B. 25th and 75th Percentiles (horizontal difference) C. Prob of exceeding thresholds (vertical difference) (area under curve)

D. Restricted Mean E. Hazard ratio (related to slopes)

Median: Median survival is about 38 months in Group 2 and 16 months in Group 1

25th percentile: Almost identical in Group 1 and Group 2

Restricted Mean

- Can be shown that the area under S(t) is the mean of a positive random variable
- Select a time, t*, up to which we wish to compute the restricted mean survival time
- Formally: restricted mean survival time: $RMST = E[min(T, t^*)] = \int_0^t S(t) \ dt$
- Area under the survival curve up until time t*
- A patient might be told that "your life expectancy over the next 5 years with Z disease on this treatment regimen is 4 years"
- Area under the Kaplan-Meier curve up until time t* gives the RMST for the dataset

Proportion surviving 20 months: Roughly 60% in Group 2 and 45% in Group 1

STATA, R: Kaplan-Meier Commands

- First step is declaring data to be of censored survival type
- · Potentially three variables may be used
 - Start of interval
 - · Assumed to be at time 0 if nothing supplied
 - End of interval
 - Status at end of interval
 - 0 = censored
 - Nonzero = event occurred at end of interval

STATA: Kaplan-Meier Commands

- Syntax for "setting survival data"
 - "stset endtime eventind, t0(entrytime)"
 - endtime: name of the variable measuring the time at the end of the interval
 - eventind: name of an indicator (0 or 1) variable indicating event status at the end of the interval
 - entrytime: name of the variable specifying the time at the start of the interval
 - (does not need to be supplied)
 - "stset, clear" resets the data set

STATA: Kaplan-Meier Commands

- Syntax for getting estimates, plots
 - Plotting survival curves
 - "sts graph"
 - "sts graph, atrisk"
 - "sts graph, cens(s)"
 - Listing survival estimates
 - "sts list"
 - Listing restricted mean (up to maximum observation time)
 - "stci, rmean"

R: Kaplan-Meier Commands

Syntax for creating a "survival object"

```
"svarnm <- Surv(endtime, eventind)
"svarnm <- Surv(entrytime, endtime,
eventind)</pre>
```

- endtime: name of the variable measuring the time at the end of the interval
- eventind: name of an indicator (0 or 1) variable indicating event status at the end of the interval
- entrytime: name of the variable specifying the time at the start of the interval
 - (does not need to be supplied if 0)
- Any command will specify which survival data you will want to use

R: Kaplan-Meier Commands

- Syntax for getting estimates, plots
 - Creating a survfit object
 - sfitnm <- survfit(svarnm ~ 1)
 - Plotting survival estimates
 - "plot(sfitnm,...)"
 - Listing survival estimates
 - "summary(sfitnm)"
 - Listing restricted mean
 - "print(sfitnm,rmean=#)"

Example: PSA Data

PSA data set
 gen relapse = 0
 replace relapse = 1 if inrem=="no"
 stset obstime relapse
 sts graph, xtitle("Time from Treatment (months)")
 sts list
 sts gen estremt = s

Example: KM Graph

 sts graph, atrisk xtitle("Time (mos)") t1("Probability of Remaining in Remission")

Example: KM Graph

 sts graph, xtitle("Time (mos)") t1("Probability of Remaining in Remission")

Example: KM Graph

 sts graph, cens(s) xtitle("Time (mos)") t1("Probability of Remaining in Remission")

Example: KM Listing

sts list

--more--

	Beg.	Net Survivor St		Std.			
Time	Total	Fail	Lost	Function	Error	[95% Con	f. Int.]
1	50	1	0	0.9800	0.0198	0.8664	0.9972
3	49	3	0	0.9200	0.0384	0.8007	0.9692
6	46	3	0	0.8600	0.0491	0.7286	0.9307
7	43	1	0	0.8400	0.0518	0.7054	0.9166
8	42	1	0	0.8200	0.0543	0.6826	0.9020
9	41	1	0	0.8000	0.0566	0.6602	0.8870
10	40	1	0	0.7800	0.0586	0.6381	0.8716
12	39	2	0	0.7400	0.0620	0.5947	0.8399
14	37	1	0	0.7200	0.0635	0.5735	0.8236
15	36	1	0	0.7000	0.0648	0.5525	0.8070
16	35	2	0	0.6600	0.0670	0.5114	0.7730
17	33	1	0	0.6400	0.0679	0.4911	0.7557

Example: Restricted Means

- · STATA will give an estimate of the restricted mean
 - Appears not to be possible to give RMST for shorter times

(*) largest observed analysis time is censored, mean is underestimated

Example: KM Listing

• sts list, at(24 27 30 33 36)

Ti	me Tot	Beg. tal Fa		Survivor Function	Std. Error	[95% Conf.	Int.]
	24 27 30 33	28 27 25 22	22 2 1 2	0.5185 0.4978	0.0709	0.3725 0.3529	0.6842 0.6461 0.6267 0.5860
	36	20	1	0.4318	0.0711	0.2913	0.5645