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Lecture Outline

• Probability distribution function, cumulative distribution 
function, and survivor curves

• Setting for censored data
• Standard notation for censored data
• Motivating example
• Kaplan-Meier “math” explanation
• Kaplan-Meier “redistribute to the right” explanation
• RMST – Restricted Mean Survival Time
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Probability Distribution Function

• For ordered variables, we define
– Cumulative distribution function (cdf):

• F(x) ≡ FX(x) ≡ P(X ≤ x)

– Survivor function: 
• S(x) ≡ SX(x) ≡  P(X > x) = 1 – FX(x)

44

Empirical Distribution Function

• Sample cumulative distribution function or survivor 
function can be used as an estimate of the population 
cdf or survivor function

• These functions can sometimes be estimated for 
censored data (unlike histograms, densities, etc.)
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Empirical CDF: No Censoring

• Definition:
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Empirical CDF: Properties

• The empirical cdf assigns probability mass of 1/n at each 
observation
– Step function: 

• jumps at each observation
• level between observations

• The empirical cdf can be graphed for an ordered variable
– Because we draw conclusions from the spacing of the 

x-axis, this makes most sense when the 
measurements are quantitative (not just ordered 
categorical)

77

STATA: Empirical CDF

• “cumul var, gen(Fvar) equal”

– Generates a new variable named Fvar with empirical 
CDF

– (Note the need to use the “equal” option to handle 
ties)

• “line Fvar var, sort connect(stairstep)”

– Produces empirical CDF (as a step function)
– (Note the need to use the “sort” option)

88

STATA Ex: Age CDF (FEV data)

• cumul age, gen(Fage) equal

• line Fage age, connect(stairstp) sort 
xtitle(“Age (years)”) ytitle(“Empirical 
CDF”) t1(“Empirical CDF for Age in FEV 
Data”)
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STATA Ex: Age CDF (FEV data)

0
.2

.4
.6

.8
1

E
m

pi
ric

al
 C

D
F

0 5 10 15 20
Age (years)

Empirical CDF for Age in FEV Data

1010

Survival Curves

• Curves that estimate the probability of surviving for a 
Time > t
– horizontal axis is time
– vertical axis is P(Survival > t)

1111 1212

Survival Curves

• In biomedicine, we typically look at the “survivor” or 
“survival” curves for times to an event, rather than the 
CDF

• We use Kaplan-Meier methods to get a survival curve
• Note that we can “see” some common sample statistics 

from a survival curve
• Next slide example:  survival in a clinical trial for 

advanced prostate cancer
– 569 patients randomly assigned to new treatment or 

control 1:1
– Journal of Clinical Oncology 2007
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Kaplan Meier Survival Curve
Erlotinib/Gem vs Placebo/Gem (504 deaths)

Time (months)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30 35

P
ro

po
rti

on
 s

ur
vi

vi
ng

* Stratified log-rank test

Erlotinib/Gem: median OS: 6.37 mos
(95% CI: 5.84 to 7.33)

Placebo/Gem: median OS: 5.94 mos
(95% CI: 5.09 to 6.70)

HR: 0.811 (95% CI: 0.68 to 0.97)

p= 0.017
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Setting for Right
Censored Data

1515

Missing Data Classifications

• Mechanistic classification
– Missing completely at random (MCAR)
– Missing at random (MAR)

• Missingness can depend on other observed data

– Missing not at random (MNAR)

• Functional classification
– Ignorable (MCAR and sometimes MAR)

• Discarding cases with missing data does not bias results

– Nonignorable (MNAR and most times MAR)
• Omitting cases with missing data leads to erroneous 

conclusions 1616

Censored Data

• Special type of nonignorable missing data 
– The value is known to be in some interval, but the 

exact value is not always known
– “Left censoring” can arise with measurement 

technologies that have a  lower limit of detection
– “Interval censoring” example:  screening a cancer 

patient for recurrent tumors every year.  If tumors are 
seen, the time of recurrence is known to be sometime 
between the detection visit and the previous visit 

– “right censoring” commonly arises when measuring 
time to some event



Lecture 6, Right Censoring, Kaplan-Meier

5

1717

Censored Data

• Special type of nonignorable missing data 
– “right censoring” commonly arises when measuring 

time to some event
• Time to death (survival time)

– Some patients live
• Time to relapse

– Some patients don’t relapse during the study
• Among transplant patients, time to first ambulation

– Some patients observed not to have walked for the study 
period

1818

Right Censored Data

• If it weren’t for censoring, we would almost certainly work 
with the “time to” variable as a continuous variable
– Summaries using mean, SD, etc.
– Visualize with scatterplot, histogram, etc.

• But, in the presence of censoring, we need special 
methods, and are somewhat limited to the kind of 
descriptives we can compute

1919

Example: Setting

• A clinical trial of aspirin in prevention of cardiovascular 
mortality
– 10,000 subjects are randomized equally to receive 

either aspirin or placebo

– Subjects are randomized over a three year period

– Subjects are followed for fatal events for an additional 
three year period following accrual of the last subject

2020

Example: Right Censoring

• Problem:
– At the end of the clinical trial, some subjects have 

been observed to die
• True time to death is known for these subjects

– At the end of the clinical trial, most subjects are likely 
to be still alive

• Death times of these subjects are only known to be longer 
than the observation time

• “(Right) Censored observations”
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Example: Wrong Approach

• Cannot ignore censored data 
– These are our treatment successes

– If we throw these cases out of the dataset, we will 
underestimate the probability of longer survival

2222

Example: Bad Solution #1

• Cannot just treat as binary (live/die) data
– Observation time differs across subjects

– Potential for bias:
• If pattern of censoring is different in the groups you will 

compare, then this approach can introduce bias
• E.g. imagine if taking the aspirin made people sick; people in 

the aspirin group quickly dropped out the study.  Can’t just 
analyze them as “alive” – must account for observation time

2323

Example: Bad Solution #2

• To avoid this bias, we could analyze the outcome as 
binary (live/die) data at time of earliest censoring
– This would be valid, BUT
– Probably does not answer the scientific question

• Detecting short term versus long term effects

– Statistically less efficient

2424

Right Censored Data

• Notation:
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Motivating Example
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Motivating Example

• Hypothetical study of subject survival

• Subjects accrued to study and followed until time of 
analysis

• Study done at three centers; each center started the 
studies in three successive years

• Censoring time thus differs across centers
– Only administrative censoring in this example, no 

other drop-outs

2727

Data by Date (Real Time)
Staggered study entry by site

Accrual Group
Year                 A       B       C 

1990  On study      100      -- --
Died       43              

Surviving       57              

1991  On study       57     100      --
Died       27      53      

Surviving       30      47      

1992  On study       30      47     100 
Died       13      22      55 

Surviving       17      25      45 

2828

Data by Study Time
Realign data according to time on study

Accrual Group
Year                 A       B       C 

1   On study      100     100     100 
Died       43      53      55        

Surviving       57      47      45         

2   On study       57      47      --
Died       27      22      

Surviving       30      25      

3   On study       30      -- --
Died       13       

Surviving       17       
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Combined Data

Accrual Group
Year                 A       B       C      Combined 

1   On study      100     100     100         300
Died       43      53      55         151

Surviving       57      47      45         149 

2   On study       57      47      -- 104
Died       27      22                  49

Surviving       30      25                  55

3   On study       30      -- -- 30 
Died       13                          13

Surviving       17                          17

3030

Problem Posed by Missing Data

• Sampling scheme causes (informative) missing data

• Potentially, we might want to estimate three year survival 
probabilities 

• Different centers contribute information for varying 
amounts of time
– One year survival can be estimated at A, B, C
– Two year survival can be estimated at A, B
– Three year survival can be estimated at A

3131

Possible Remedies

• WRONG: Ignore missing
– E.g., 17 of 300 subjects alive at three years

• RIGHT BUT WRONG QUESTION: Use data only up to 
earliest censoring time
– E.g., 149 of 300 subjects alive at one year

• RIGHT BUT INEFFICIENT: Use only center A
– E.g., 17 of 100 subjects alive at three years

3232

Best Approach

• RIGHT AND EFFICIENT
– Use all available data to estimate that portion of 

survival for which it is informative

– Use Centers A, B, and C to estimate one year survival

– Use Centers A and B to estimate proportion of one-
year survivors who survive to two years

– Use Center A to estimate proportion of two-year 
survivors who survive to three years
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Theoretical Basis for Approach

• Properties of probabilities
– Probability of event A and B occurring is product of

• Probability that A occurs when B has occurred
• Probability that B has occurred
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Application of Theory to Survival

• For times T1 < T2 , probability of surviving beyond time T2
is the product of
– Probability of surviving beyond time T2 given survival 

beyond time T1, and
– Probability of surviving beyond time T1
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Estimate Conditional Survival

• Condition on surviving up until the start of the time 
interval
– Denominator is number of subjects at start of interval
– Numerator is deaths during the interval

• Requirement for validity
– Subjects available at the start of each time interval 

are a random sample of the population surviving to 
that time

• “Noninformative censoring”

3636

Estimate Survival Probability

• Estimate probability of survival at the endpoint of  each 
time interval

• Multiply the conditional probabilities for all intervals prior 
to the time point of interest
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Application to Example

• Within interval conditional probabilities
– Use A, B, C to estimate Pr (T0  1)
– Use A, B      to estimate Pr (T0  2 | T0  1)
– Use A           to estimate Pr (T0  3 | T0  2)

• Multiply to obtain unconditional cumulative survival
– Pr (T0  1)
– Pr (T0  2) =  Pr (T0  2 | T0  1)  Pr (T0  1)
– Pr (T0  3) =  Pr (T0  3 | T0  2)  Pr(T0  2)

3838

Motivating Example Results

Survival Probabilities 

Yr  Combined       Each Year                Cumulative

1  On study 300
Died 151

Surviving 149  149/300 = 49.67%                   49.67%

2  On study 104
Died  49

Surviving  55   55/104 = 52.88%     .4967*.5288 = 26.27%

3  On study  30   
Died  13  

Surviving  17   17/ 30 = 56.67%     .2627*.5667 = 14.88%

3939

Estimation of
Survivor Functions

4040

Noninformative Censoring

• When estimating survivor functions using censored data:
– Censoring must not be informative

• Censored subjects neither more nor less likely to have an 
event in the immediate future

– Censored individuals must be a random sample of 
those at risk at time of censoring: 
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Informative Censoring Examples

• Subjects in a RCT are withdrawn due to treatment failure 
– (likely they would die sooner than those remaining)

• Subjects in a RCT in a fatal condition are lost to follow 
up when they go on vacation
– (likely they are healthier than those remaining)

4242

Detecting Informative Censoring
• Guiding principle:  it is impossible to use the data to detect 

informative censoring
– The necessary data are almost certainly missing in the 

data set
• In some cases, it is impossible to ever observe the missing 

data: “Competing Risks”
– Consider the aspirin example.  Suppose the outcome is 

“death from MI.”
– Some people will die from other causes (e.g., cancer) and 

suppose these are treated as censored.
– We cannot observe whether subjects dying of other causes 

are more or less likely to die of another if we cure them of 
the first cause

4343

Kaplan-Meier Estimates

• Kaplan-Meier (Product Limit) Estimates

• Extends the idea from the motivating example to 
precisely measured individual data
– The time intervals are defined by unique observation 

times
– Nj: Number of subjects at risk at start of interval
– Dj: Number of events at end of interval

• (If a censoring time is exactly the same as a death time, the 
convention is to treat the censoring as having occurred 
momentarily after the death)

4444

Kaplan-Meier Notation

• Definition of intervals, number at risk, failures 
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Kaplan-Meier Hazard Estimates

• Computation of hazard and conditional probability of 
survival in interval 
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Kaplan-Meier Survival Estimate

• Estimating survival probability 
S(t) = Pr (T0 > t)
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If Last Observation Censored

• For an interval that ends in a censored observation with 
no observed events, the conditional probability of 
surviving within the interval is 1.

• Note also that if the largest observation time is censored, 
the KM (PLE) survivor function does not go to zero
– We generally regard the KM (PLE) survivor function 

to be undefined for times beyond the largest 
observation (death) time in this situation

4848

Kaplan-Meier Properties

• The KM (PLE) survivor functions can be shown to be
– Consistent: As sample sizes go to infinity, they 

estimate the true value
• Censoring must be noninformative
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Redistribute to the Right

• The KM (PLE) survivor functions can also be derived as 
the “redistribute to the right” estimator

• Basic idea
– Recall the empirical CDF assigns probability 1/n to 

each observation

– A censored observation should be equally likely to 
have event time like any of the remaining uncensored 
observations

• Recursively redistribute the mass of each censored 
observation among the subjects remaining at risk

5050

Ex: Redistribute to the Right

• Data: 1, 3, 4+, 5, 7+, 9, 10 
– (plus sign means censored)

• Initially: each point has mass 1/7

• Determine probability of events at earliest observed 
(uncensored) event times
– Pr (T0 = 1) = 1/7
– Pr (T0 = 3) = 1/7

5151

Ex: Redistribute to the Right

• Censored observation at 4
– Divide the mass at 4 equally among the remaining 

subjects at risk
• Now mass of 1/7 + 1/28 = 5/28 for each of 5, 7, 9, 10

• Determine probability of events at next observed 
(uncensored) event times
– Pr (T0 = 5) = 5/28

5252

Ex: Redistribute to the Right

• Censored observation at 7
– Divide the mass at 7 equally among the remaining 

subjects at risk
• Now mass of 5/28 + 5/56 = 15/56 for each of 9, 10

• Determine probability of events at next observed 
(uncensored) event times
– Pr (T0 = 9) = 15/56
– Pr (T0 = 10) = 15/56
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Ex: Redistribute to the Right

Kaplan-Meier estimate of Survival

t Pr (T0 = t) Pr (T0 > t)
0                               1.000
1     1/ 7 = 0.143               .857
3     1/ 7 = 0.143               .714
4            0.000               .714
5     5/28 = 0.179               .536 
7            0.000               .536
9    15/56 = 0.268               .268
10    15/56 = 0.268               .000
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analysis time

Kaplan-Meier survival estimate
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Comparing Survival Curves

• With censored data, we cannot use sample means, 
sample standard deviations, sample medians, etc.

• Using Kaplan-Meier methods, it is possible to compare 
population: 
A. Median                                    (horizontal difference)
B. 25th and 75th Percentiles         (horizontal difference)
C. Prob of exceeding thresholds  (vertical difference)
D. Restricted Mean                      (area under curve)
E. Hazard ratio                             (related to slopes)

Median:  Median survival is about 38 months in Group 2 
and 16 months in Group 1

5656



Lecture 6, Right Censoring, Kaplan-Meier

15

25th percentile:  Almost identical in Group 1 and Group 2

5757

Proportion surviving 20 months:  Roughly 60% in Group 2 
and 45% in Group 1

5858

Restricted Mean

• Can be shown that the area under S(t) is the mean of a 
positive random variable

• Select a time, t* , up to which we wish to compute the 
restricted mean survival time

• Formally:  restricted mean survival time:
RMST= E[min(T, t*)] = ∫ S(t) dt

• Area under the survival curve up until time t*
• A patient might be told that “your life expectancy over the 

next 5 years with Z disease on this treatment regimen is 
4 years”

• Area under the Kaplan-Meier curve up until time t* gives 
the RMST for the dataset

5959

0

t*
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STATA, R: Kaplan-Meier Commands

• First step is declaring data to be of censored survival 
type

• Potentially three variables may be used 
– Start of interval

• Assumed to be at time 0 if nothing supplied

– End of interval
– Status at end of interval

• 0 = censored
• Nonzero = event occurred at end of interval 
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STATA: Kaplan-Meier Commands

• Syntax for “setting survival data”
– “stset endtime eventind, t0(entrytime)”

• endtime: name of the variable measuring the time at the end 
of the interval

• eventind : name of an indicator (0 or 1) variable indicating 
event status at the end of the interval

• entrytime: name of the variable specifying the time at the 
start of the interval

– (does not need to be supplied)

– “stset, clear” resets the data set

6262

R: Kaplan-Meier Commands

• Syntax for creating a “survival object”
“svarnm <- Surv(endtime, eventind)

“svarnm <- Surv(entrytime, endtime,
eventind)

• endtime: name of the variable measuring the time at the end 
of the interval

• eventind : name of an indicator (0 or 1) variable indicating 
event status at the end of the interval

• entrytime: name of the variable specifying the time at the 
start of the interval

– (does not need to be supplied if 0)

• Any command will specify which survival data you will 
want to use

6363

STATA: Kaplan-Meier Commands

• Syntax for getting estimates, plots
– Plotting survival curves

• “sts graph”

• “sts graph, atrisk”

• “sts graph, cens(s)”

– Listing survival estimates
• “sts list”

– Listing restricted mean (up to maximum observation 
time)
• “stci, rmean” 6464

R: Kaplan-Meier Commands

• Syntax for getting estimates, plots
– Creating a survfit object

• sfitnm <- survfit(svarnm ~ 1)

– Plotting survival estimates
• “plot(sfitnm,…)”

– Listing survival estimates
• “summary(sfitnm)”

– Listing restricted mean
• “print(sfitnm,rmean=#)”



Lecture 6, Right Censoring, Kaplan-Meier

17

6565

Example: PSA Data

• PSA data set
gen relapse = 0
replace relapse = 1 if inrem==“no”
stset obstime relapse
sts graph, xtitle(“Time from Treatment (months)”)
sts list
sts gen estremt = s

6666

Example: KM Graph

• sts graph, xtitle(“Time (mos)”) t1(“Probability of 
Remaining in Remission”)
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Kaplan-Meier survival estimate
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Example: KM Graph

• sts graph, atrisk xtitle(“Time (mos)”) t1(“Probability of 
Remaining in Remission”)
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Example: KM Graph

• sts graph, cens(s) xtitle(“Time (mos)”) t1(“Probability of 
Remaining in Remission”)
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Example: KM Listing

• sts list
Beg.          Net      Survivor      Std.                      

Time    Total   Fail   Lost     Function     Error     [95% Conf. Int.] 

-------------------------------------------------------------------------

1       50      1      0       0.9800    0.0198     0.8664    0.9972 

3       49      3      0       0.9200    0.0384     0.8007    0.9692 

6       46      3      0       0.8600    0.0491     0.7286    0.9307 

7       43      1      0       0.8400    0.0518     0.7054    0.9166 

8       42      1      0       0.8200    0.0543     0.6826    0.9020 

9       41      1      0       0.8000    0.0566     0.6602    0.8870 

10       40      1      0       0.7800    0.0586     0.6381    0.8716 

12       39      2      0       0.7400    0.0620     0.5947    0.8399 

14       37      1      0       0.7200    0.0635     0.5735    0.8236 

15       36      1      0       0.7000    0.0648     0.5525    0.8070 

16       35      2      0       0.6600    0.0670     0.5114    0.7730 

17       33      1      0       0.6400    0.0679     0.4911    0.7557 

--more--

7070

Example: KM Listing

• sts list, at(24 27 30 33 36)

Beg.                 Survivor     Std.

Time     Total     Fail        Function    Error     [95% Conf. Int.]

--------------------------------------------------------------------------

24        28       22         0.5600    0.0702     0.4124    0.6842

27        27        2         0.5185    0.0709     0.3725    0.6461

30        25        1         0.4978    0.0710     0.3529    0.6267

33        22        2         0.4545    0.0711     0.3124    0.5860

36        20        1         0.4318    0.0711     0.2913    0.5645

--------------------------------------------------------------------------

7171

Example: Restricted Means

• STATA will give an estimate of the restricted mean
– Appears not to be possible to give RMST for 

shorter times
. stci, rmean

failure _d:  relapse

analysis time _t:  obstime

| no. of  restrctd

|  subj mean      Std. Err.  [95% Conf. Intrvl]

-------+-----------------------------------------------

total |   50    33.92(*)    3.65323   26.76    41.08

(*) largest observed analysis time is censored, mean is 
underestimated


