

Lecture Presentation Chapter 10

Gases: Their Properties and Behavior

> HW: $10.1,10.7,10.9$ $10.11,10.13,10.15,10.17$ $10.28,10.30,10.34,10.52$ $10.64,10.72,10.74,10.86$ $10.88,10.90,10.102$

John E. McMurry Robert C. Fay

Gases and Gas Pressure (lots of empty space) (pressure = gases hilting each other \& wall of container)

Gas mixtures are homogeneous and compressible.

A gas is a large collection of particles moving at random through a volume that is primarily empty space.

Collisions of randomly moving particles with the walls of the container exert a force per unit area that we perceive as gas pressure.

Gases and Gas Pressure

Pressure $=\frac{\text { Force }}{\text { Unit area }}$

P on $1 \mathrm{~m}^{2}$ air column is $10,300 \mathrm{~kg}=$ $101,000 \mathrm{~Pa}$ Force $=\mathrm{ma}=$ gravity on mass (where $\mathrm{a}=9.81 \mathrm{~m} / \mathrm{s}^{2}$)
$\mathrm{Pa}=$ pascal pressure unit $[\mathrm{kg} /(\mathrm{m} * \mathrm{~s})=\mathrm{Pa}]$

Gases and Gas Pressure - how measure P ?

Barometer

Mercury-filled dish

Gases and Gas Pressure

Conversions (conversion factor)

$$
\begin{array}{ll}
1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg} & \text { (exact) } \\
1 \mathrm{torr}=1 \mathrm{~mm} \mathrm{Hg} & \text { (exact) }
\end{array} \text { chemists use }
$$

exact means infinite $\#$ of sig. fig. Put this slide on to memorize / info sheet.

Gases and Gas Pressure - open end manometer

End 11/25 D, F section

(a) The mercury level is higher in the arm open to the bulb because the pressure in the bulb is lower than atmospheric.
if $P($ in bulb $)$
>1 atm
(add)
(b) The mercury level is higher in the arm open to the atmosphere because the pressure in the bulb is higher than atmospheric.

The Gas Laws

The physical properties of a gas can be defined by four variables:
P Pressure
T Temperature
V Volume
$n \quad$ number of moles

$V \propto \frac{1}{P} \quad($ constant n and $T)$
At constant n and T, the
volume of an ideal gas
decreases proportionately
$P=1.0 \mathrm{~atm}$
as its pressure increases.
If the pressure is doubled,
the volume is halved.

If the pressure is halved,
the volume is doubled.

Boyle's Law
 $V \propto \frac{1}{P} \quad($ constant n and $T)$

A plot of V versus P for a gas sample is a hyperbola.
(b)

A plot of V versus $1 / P$ is a straight line. Such a graph is characteristic of equations having the form
$y=m x+b$.

$V \propto \frac{1}{P}^{\text {Boyle's Law }} \quad($ constant n and $T)$

$$
P V=k
$$

$$
P_{\text {initial }} V_{\text {initial }}=P_{\text {final }} V_{\text {final }}
$$

Charles's Law

heat balloon (higher T)

- higher volume

$V \propto T \quad($ constant n and $P)$

At constant n and P, the volume of an ideal gas changes proportionately as its absolute temperature changes. If the absolute temperature doubles, the volume doubles.

Charles's Law

$V \propto T \quad($ constant n and $P)$

(a) Celsius scale plot

(b) Kelvin scale plot

A plot of V versus T for a gas sample is a straight line that can be extrapolated to absolute zero, $0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$.

Charles's Law

$V \propto T \quad$ (constant n and P)

$$
\frac{V}{T}=k
$$

$$
\frac{V_{\text {initial }}}{T_{\text {intitial }}}=\frac{V_{\text {tinal }}}{T_{\text {tinal }}}
$$

The Gas Laws

End G section 11/25 Monday

Avogadro's Law (higher n)- higher volume
$V \propto n \quad($ constant T and $P)$

Avogadro's Law

$V \propto n \quad($ constant T and $P)$

$$
\frac{V}{n}=k
$$

$$
\frac{V_{\text {initial }}}{n_{\text {initial }}}=\frac{V_{\text {final }}}{n_{\text {final }}}
$$

The Ideal Gas Law

Summary (to memorize card)
Boyle's Law: $P_{\text {initial }} V_{\text {initial }}=P_{\text {final }} V_{\text {final }}$

$$
V \propto \frac{1}{P} \quad(\text { constant } n \text { and } T)
$$

Charles' Law:

$$
\begin{aligned}
& \frac{V_{\text {initial }}}{T_{\text {initial }}}=\frac{V_{\text {final }}}{T_{\text {final }}} \\
& V \propto T \quad(\text { constant } n \text { and } P)
\end{aligned}
$$

Avogadro's Law:

$$
\begin{aligned}
& \frac{V_{\text {initial }}}{n_{\text {initial }}}=\frac{V_{\text {final }}}{n_{\text {final }}} \\
& V \propto n \quad(\text { constant } T \text { and } P)
\end{aligned}
$$

Ideal Gas Law: $\quad P V=n R T$

R is the gas constant and is the same for all gases.

$$
R=0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}}
$$

Standard Temperature and Pressure (STP) for Gases

$$
P=1 \mathrm{~atm}
$$

$$
\begin{aligned}
& \mathrm{P}=\text { atmosphere } \\
& \mathrm{V}=\text { liter } \\
& \mathrm{T}=\text { Kelvin }
\end{aligned}
$$

must use these units if use R above
R \# will be provided on periodic table

Example Using Ideal Gas Law: $\quad \mathrm{PV}=\mathrm{nRT}$

Sulfur hexafluoride $\left(\mathrm{SF}_{6}\right)$ is a colorless and odorless gas.

Due to its lack of chemical reactivity, it is used as an insulator in electronic equipment.

Calculate the pressure (in atm) exerted by 1.82 moles of the gas in a steel vessel of volume 5.43 L at $69.5^{\circ} \mathrm{C}$.

Solution (watch units)

$$
\begin{aligned}
& P=? \\
& V=5.43 \text { Liter } \\
& n=1.82 \mathrm{~mol} \\
& T=69.5^{\circ} \mathrm{C} \\
& \text { (convert to } K+273 \text {) }
\end{aligned}
$$

$$
P=\frac{n R T}{V}
$$

$$
=\frac{(1.82 \mathrm{~mol})(0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(69.5+273) \mathrm{K}}{5.43 \mathrm{~L}}
$$

$$
=9.42 \mathrm{~atm}
$$

Ideal Gas Equations

Ideal gas
law

$$
P V=n R T
$$

Example: using the combined gas law

$$
\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{P}_{1} \mathrm{~V}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}
$$

A small bubble rises from the bottom of a lake, where the temperature and pressure are $8^{\circ} \mathrm{C}$ and 6.4 atm , to the water's surface, where the temperature is $25^{\circ} \mathrm{C}$ and the pressure is 1.0 atm . Calculate the final volume (in mL) of the bubble if its initial volume was 2.1 mL .

Example: using the combined gas law

$$
\begin{array}{|l|}
\hline \mathrm{P}_{2} \mathrm{~V}_{2} \\
\mathrm{P}_{1} \mathrm{~V}_{1} \\
\mathrm{~T}_{2} \\
\mathrm{~T}_{1} \\
\hline
\end{array}
$$

A small bubble rises from the bottom of a lake, where the temperature and pressure are $8^{\circ} \mathrm{C}$ and 6.4 atm , to the water's surface, where the temperature is $25^{\circ} \mathrm{C}$ and the pressure is 1.0 atm . Calculate the final volume (in mL) of the bubble if its initial volume was 2.1 mL .

$$
\begin{aligned}
& \mathrm{T}_{1}=8^{\circ} \mathrm{C} \\
& \mathrm{P}_{1}=6.4 \mathrm{~atm} \\
& \mathrm{~V}_{1}=2.1 \mathrm{~mL}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{2}=25^{\circ} \mathrm{C} \\
& \mathrm{P}_{2}=1.0 \mathrm{~atm} \\
& \mathrm{~V}_{2}=?
\end{aligned}
$$

Example: using the combined gas law
A small bubble rises from the bottom of a lake, where the temperature and pressure are $8^{\circ} \mathrm{C}$ and 6.4 atm , to the water's surface, where the temperature is $25^{\circ} \mathrm{C}$ and the pressure is 1.0 atm . Calculate the final volume (in mL) of the bubble if its initial volume was 2.1 mL .
$\mathrm{T}_{1}=8{ }^{\circ} \mathrm{C}+273=281 \mathrm{~K}$
$\mathrm{P}_{1}=6.4 \mathrm{~atm}$
$\mathrm{~V}_{1}=2.1 \mathrm{~mL}$
$\frac{P_{2} V_{2}}{P_{1} V_{1}}=\frac{T_{2}}{T_{1}}$
$\frac{(1.0 \mathrm{~atm}) V_{2}}{(6.4 \mathrm{~atm})(2.1 \mathrm{~mL})}=\frac{281 \mathrm{~K}}{298 \mathrm{~K}}$
$\mathrm{V}_{2}=13 \mathrm{~mL}$

End D, F, G
section
12/2M

HW 10.1: Ideal Gas Equations

$P V=n R T$

Which?

$$
\begin{array}{|l}
\hline \mathrm{P}_{2} \mathrm{~V}_{2} \\
\mathrm{P}_{1} \mathrm{~V}_{1} \\
\\
\hline
\end{array} \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}
$$

If $\mathrm{P}=740.2 \mathrm{~mm} \mathrm{Hg}, \mathrm{T}=35.2^{\circ} \mathrm{C}$ for 2.2 moles, what is the volume in Liters. (only one $\mathrm{P}, \mathrm{T}, \mathrm{n}$) (watch units) $[\mathrm{R}=(0.08206 \mathrm{~L}$ atm $) /(\mathrm{mol} \mathrm{K})]\left[\mathrm{K}={ }^{\circ} \mathrm{C}+273.15\right][1 \mathrm{~atm}=760$ $\mathrm{mm} \mathrm{Hg}=760$ torr]

HW 10.1: Ideal Gas Equations

$$
P V=n R T \quad \text { Which ? } \frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{P}_{1} \mathrm{~V}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}
$$

If $\mathrm{P}=740.2 \mathrm{~mm} \mathrm{Hg}, \mathrm{T}=35.2^{\circ} \mathrm{C}$ for 2.2 moles, what is the volume in Liters. (watch units)

$$
\begin{aligned}
& \mathrm{P}=740.2 \mathrm{~mm} \mathrm{Hg} *(1 \mathrm{~atm} / 760 \mathrm{mmHg})=0.9739 \mathrm{~atm} \\
& \mathrm{~T}=35.2^{\circ} \mathrm{C}+273.15 \mathrm{~K}=308.4 \mathrm{~K} \\
& \mathrm{n}=2.2 \text { moles }
\end{aligned}
$$

$$
\mathrm{V}=\frac{(2.2 \mathrm{moles})\{0.08206(\text { liter atm }) /(\mathrm{mol} \mathrm{~K})\}^{*} 308.4 \mathrm{~K}}{0.9739 \mathrm{~atm}}
$$

$$
\text { V = 57.15 Liters (s.f. } 57 \text { Liters) }
$$

HW 10.2 : Ideal Gas Equations

If a 37.2 liters of a gas at 1.2 atm . and 287.2 K is in a piston that moves to give 7.82 liters at 2.4 atm . What is the new temperature? (2 sets of V, P and T)

HW 10.2 : Ideal Gas Equations

$$
P V=n R T
$$

$$
\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{P}_{1} \mathrm{~V}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}
$$

If a 37.2 liters of a gas at 1.2 atm . and 287.2 K is in a piston that moves to give 7.82 liters at 2.4 atm . What is the new temperature?
$\mathrm{P}_{2}=1.27 \mathrm{~atm}$
$\mathrm{V}_{2}=37.2$ liter
$\mathrm{T}_{2}=287.2 \mathrm{~K}$
$\mathrm{P}_{2}=2.42 \mathrm{~atm}$
$\mathrm{V}_{2}=7.82$ liters
$\mathrm{T}_{2}=$?

HW 10.2 : Ideal Gas Equations

$$
P V=n R T
$$

$$
\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{P}_{1} \mathrm{~V}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}
$$

If a 37.2 liters of a gas at 1.2 atm . and 287.2 K is in a piston that moves to give 7.82 liters at 2.4 atm . What is the new temperature?

$\mathrm{P}_{1}=1.27 \mathrm{~atm}$
$\mathrm{V}_{1}=37.2$ liter
$\mathrm{T}_{1}=287.2 \mathrm{~K}$
$\mathrm{P}_{2}=2.42 \mathrm{~atm}$
$\mathrm{V}_{2}=7.82$ liters
$\mathrm{T}_{2}=$?

$\frac{(2.42 \mathrm{~atm})(7.82 \text { Liter })}{(1.27 \mathrm{~atm})(37.2 \text { Liter })}=\frac{\mathrm{T}_{2}}{287.2 \mathrm{~K}}$
$115 \mathrm{~K}=\mathrm{T}_{2}$

The Ideal Gas Law

```
Molar Volume for ALL gases = 22.4 Liter at STP
(STP = standard T & P or 0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ and 1 atm)
```

TABLE 9.4 Molar Volumes of Some Real Gases at $0^{\circ} \mathrm{C}$ and 1 atm

What is the volume of $1 \mathbf{~ m o l}$ of gas at STP?
$V=\frac{n R T}{P}=\frac{(1 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}}\right)(273.15 \mathrm{~K})}{(1 \mathrm{~atm})}=22.41 \mathrm{~L}$

Stoichiometric Relationships with Gases

The reaction used in the deployment of automobile airbags is the high-temperature decomposition of sodium azide, NaN_{3}, to produce N_{2} gas. How many liters of N_{2} at 1.15 atm and $30.0^{\circ} \mathrm{C}$ are produced by decomposition of $102.2 \mathrm{~g} \mathrm{NaN}_{3}$? (stoichiometry + ideal gas laws)

$2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
Not STP

Stoichiometric Relationships with Gases
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$

Moles of $\mathbf{N}_{\mathbf{2}}$ produced: (just normal stoichiometry)
$102.2 \mathrm{~g} \mathrm{NaN}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NaN}_{3}}{65.0 \mathrm{~g} \mathrm{NaN}_{3}} \times \frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{NaN}_{3}}=2.36 \mathrm{~mol} \mathrm{~N}_{2}$
Volume of $\mathbf{N}_{\mathbf{2}}$ produced: $\left(30.0^{\circ} \mathrm{C}+273.15=303.2 \mathrm{~K}\right)$

$$
\frac{(2.36 \mathrm{~mol})}{\mathrm{N}_{2}}\left(0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}}\right)(303.2 \mathrm{~K})
$$

Stoichiometric Relationships with Gases

The reaction used in the deployment of automobile airbags is the high-temperature decomposition of sodium azide, NaN_{3}, to produce N_{2} gas. How many liters of N_{2} at STP ($\mathrm{T}=0^{\circ} \mathrm{C}$ \& $\mathrm{P}=1 \mathrm{~atm}$) (at STP 1 mole any ideal gas $=22.4$ Liters) are produced by decomposition of 102.2 g NaN_{3} ?

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

At STP

Stoichiometric Relationships with Gases

$$
\begin{array}{cl}
2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{~s}) \\
102.2 \mathrm{~g} & +3 \mathrm{~N}_{2}(\mathrm{~g}) \\
& \text { ? moles } \\
& \text { ? liters }
\end{array}
$$

Moles of $\mathbf{N}_{\mathbf{2}}$ produced: (just normal stoichiometry)
$102.2 \mathrm{~g} \mathrm{NaN}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NaN}_{3}}{65.0 \mathrm{~g} \mathrm{NaN}_{3}} \times \frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{NaN}_{3}}=2.36 \mathrm{~mol} \mathrm{~N}_{2}$
Volume of $\mathbf{N}_{\mathbf{2}}$ produced: (at STP)
$\begin{gathered}(2.36 \mathrm{~mol}) \times \frac{22.4 \mathrm{~L}}{\mathrm{~N}_{2}} \\ \mathrm{~mole} \mathrm{~N}_{2}\end{gathered}=52.9 \mathrm{~L}$

Dalton's Law of Partial Pressures: The total pressure exerted by a mixture of gases in a container at constant V and T is equal to the sum of the pressures of each individual gas in the container.

$$
P_{\text {total }}=P_{1}+P_{2}+\ldots+P_{N}
$$

Mole fraction $(\boldsymbol{X})=\frac{\text { Moles of component }}{\text { Total moles in mixture }}$

$$
X_{\mathrm{i}}=\frac{n_{\mathrm{i}}}{n_{\text {total }}} \quad \text { or } \quad X_{\mathrm{i}}=\frac{P_{\mathrm{i}}}{P_{\text {total }}}
$$

Example Dalton's Law

- Mixtures of helium and oxygen can be used in scuba diving tanks to help prevent the bends
- For a particular dive, He and O_{2} were combined to give a total pressure of 11.7 atm. If the pressure due to the oxygen was 2.4 atm , what is the pressure from the Helium ?
- What is the mole fraction of oxygen in the mixture?
- What is the mole fraction of helium in the mixture ?

$$
\mathrm{P}(\text { total })=\mathrm{P}_{\mathrm{O} 2}+\mathrm{P}_{\mathrm{He}}
$$

$$
\chi_{o 2}=\frac{\mathrm{P}_{\mathrm{O2}}}{\mathrm{P}_{\mathrm{TOTAL}}}
$$

$$
\chi_{\mathrm{He}}=\frac{\mathrm{P}_{\mathrm{He}}}{\mathrm{P}_{\mathrm{TOTAL}}}
$$

For a particular dive, He and O_{2} were combined to give a total pressure of 11.7 atm. If the pressure due to the oxygen was 2.4 atm, what is the pressure from the Helium ? What is the mole fraction of oxygen $\left(\chi_{O 2}\right)$ in the mixture? What is the mole fraction of helium (χ_{He}) in the mixture
$\mathrm{P}($ total $)=\mathrm{P}_{\mathrm{O} 2}+\mathrm{P}_{\mathrm{He}}$

$$
\chi_{02}=\frac{\mathrm{P}_{\mathrm{O} 2}}{\mathrm{P}_{\mathrm{TOTAL}}}
$$

$$
\chi_{H e}=\frac{\mathrm{P}_{\mathrm{He}}}{\mathrm{P}_{\mathrm{TOTAL}}}
$$

$11.7 \mathrm{~atm}=2.4 \mathrm{~atm}+\mathrm{P}_{\mathrm{He}}$
$P_{H e}=11.7 \mathrm{~atm}-2.4 \mathrm{~atm}=9.3 \mathrm{~atm}$

$$
\chi_{02}=\frac{2.4 \mathrm{~atm}}{11.7 \mathrm{~atm}}
$$

$$
\chi_{H e}=\frac{9.3 \mathrm{~atm}}{11.7 \mathrm{~atm}}
$$

HW 10-3 Example Dalton's Law (mole fraction)

- Partial pressure of oxygen was observed to be 156 torr $\left(\mathrm{P}_{\mathrm{O} 2}\right)$ in air with a total atmospheric pressure of 743 torr ($\mathrm{P}_{\text {total }}$) Calculate the mole fraction of O_{2} present. Calculate the pressure due to the other gases.

$$
\chi_{1}=\frac{P_{1}}{P_{\text {TOTAL }}}
$$

P (total) $=\mathrm{P}_{\mathrm{O} 2}+\mathrm{P}_{\text {other gases }}$

10-3 Example Dalton's Law (mole fraction)

- Partial pressure of oxygen was observed to be 156 torr ($\mathrm{P}_{\mathrm{O} 2}$) in air with a total atmospheric pressure of 743 torr ($\mathrm{P}_{\text {total }}$) Calculate the mole fraction of O_{2} present

$$
\chi_{1}=\frac{P_{1}}{P_{\mathrm{TOTAL}}} \quad \chi_{\mathrm{O}_{2}}=\frac{P_{\mathrm{O}_{2}}}{P_{\mathrm{TOTAL}}}=\frac{156 \text { torr }}{743 \text { torr }}=0.210
$$

$P($ total $)=P_{\mathrm{O} 2}+\mathrm{P}_{\text {other gases }}$
743 torr $=156$ torr $+P_{\text {other gases }}$
743 torr - 156 torr $=P_{\text {other gases }}$

The Kinetic-Molecular Theory of Gases

1. A gas consists of tiny particles, either atoms or molecules, moving about at random.
2. The volume of the particles themselves is negligible compared with the total volume of the gas. Most of the volume of a gas is empty space.
3. The gas particles act independently of one another; there are no attractive or repulsive forces between particles.

The Kinetic-Molecular Theory of Gases
4. Collisions of the gas particles, either with other particles or with the walls of a container, are elastic (constant temperature).
5. The average kinetic energy of the gas particles is proportional to the Kelvin temperature of the sample.

The Kinetic-Molecular Theory of Gases

bigger gas molecule, slower speed of gas molecule

TABLE 9.5 Average Speeds (m/s) of Some Gas Molecules at $25^{\circ} \mathrm{C}$

The Kinetic-Molecular Theory of Gases

Diffusion and Effusion of Gases: Graham's Law

Diffusion is the mixing of gas molecules by random motion under conditions where molecular collisions occur.

Effusion is the escape of a gas through a pinhole into a vacuum without molecular collisions.

Effusion is good approximation of diffusion because volume in ideal gases is mostly empty space almost same as vacuum.

Diffusion and Effusion of Gases: Graham's Law

Graham's Law

$$
\text { Rate } \propto \frac{1}{\sqrt{m}}
$$

End $12 / 5 \mathrm{D}$ section End $12 / 6$ F, G section
lighter the molecule, faster molecule effuses (bc lighter molecule has faster speed)

Effusion is the escape of a gas through a pinhole into a vacuum without molecular collisions.

