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Chapter 2 Motion in One Dimension

Chapter Goal: To describe and analyze linear motion.
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Chapter 2 Preview
Looking Ahead
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• As you saw in Section 1.5, a good first step in analyzing 

motion is to draw a motion diagram, marking the position 

of an object in subsequent times.

• In this chapter, you’ll learn to create motion diagrams for 

different types of motion along a line. Drawing pictures 

like this is a good staring point for solving problems.

Chapter 2 Preview
Looking Back: Motion Diagrams
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Reading Question 2.1

The slope at a point on a position-versus-time graph of an 

object is the

A. Object’s speed at that point.

B. Object’s average velocity at that point.

C. Object’s instantaneous velocity at that point.

D. Object’s acceleration at that point.

E. Distance traveled by the object to that point.
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Reading Question 2.2

Which of the following is an example of uniform motion?

A. A car going around a circular track at a constant speed.

B. A person at rest starts running in a straight line in a fixed 

direction.

C. A ball dropped from the top of a building.

D. A hockey puck sliding in a straight line at a constant 

speed.
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Reading Question 2.3

The area under a velocity-versus-time graph of an object is

A. The object’s speed at that point.

B. The object’s acceleration at that point.

C. The distance traveled by the object.

D. The displacement of the object.

E. This topic was not covered in this chapter.
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Reading Question 2.4

If an object is speeding up, 

A. Its acceleration is positive.

B. Its acceleration is negative.

C. Its acceleration can be positive or negative depending on 

the direction of motion.
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Reading Question 2.5

A 1-pound ball and a 100-pound ball are dropped from a 

height of 10 feet at the same time. In the absence of air 

resistance

A. The 1-pound ball wins the race.

B. The 100-pound ball wins the race.

C. The two balls end in a tie.

D. There’s not enough information to determine which ball 

wins the race.
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Section 2.1 Describing Motion
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Representing Position

• We will use an x-axis to analyze horizontal motion and 

motion on a ramp, with the positive end to the right.

• We will use a y-axis to analyze vertical motion, with the 

positive end up.
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Representing Position

The motion diagram of a student walking to school and a

coordinate axis for making measurements

• Every dot in the motion diagram of Figure 2.2 represents 

the student’s position at a particular time. 

• Figure 2.3 shows the 

student’s motion shows 

the student’s position as 

a graph of x versus t.
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From Position to Velocity

• On a position-versus-time 

graph, a faster speed 

corresponds to a steeper 

slope.

• The slope of an object’s 

position-versus-time 

graph is the object’s 

velocity at that point in 

the motion.
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From Position to Velocity
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From Position to Velocity

• We can deduce the 

velocity-versus-time 

graph from the position-

versus-time graph.

• The velocity-versus-time 

graph is yet another way to 

represent an object’s 

motion.

© 2015 Pearson Education, Inc.



Slide 2-21

QuickCheck 2.2

Here is a motion diagram of a car moving along a straight road:

Which velocity-versus-time graph matches this motion diagram?

E. None of the above.
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QuickCheck 2.7

Which velocity-versus-time graph 
goes with this position graph?
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QuickCheck 2.7

Which velocity-versus-time graph 
goes with this position graph?
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Section 2.2 Uniform Motion
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Uniform Motion

• Straight-line motion in 

which equal displacements 

occur during any 

successive equal-time 

intervals is called uniform 

motion or constant-

velocity motion.

• An object’s motion is 

uniform if and only if its 

position-versus-time 

graph is a straight line.
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Equations of Uniform Motion

• The velocity of an object in uniform motion tells us the 

amount by which its position changes during each second.

• The displacement ∆x is proportional to the time interval 

∆t.
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Equations of Uniform Motion
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QuickCheck 2.8

Here is a position graph 
of an object:

At t = 1.5 s, the object’s 
velocity is

A. 40 m/s

B. 20 m/s

C. 10 m/s

D. –10 m/s

E. None of the above
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Example 2.3 If a train leaves Cleveland at 
2:00…

A train is moving due west at a constant speed. A passenger 

notes that it takes 10 minutes to travel 12 km. How long will 

it take the train to travel 60 km?

PREPARE For an object in uniform motion, Equation 2.5 

shows that the distance traveled ∆x is proportional to the 

time interval ∆t, so this is a good problem to solve using 

ratio reasoning.
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Example 2.3 If a train leaves Cleveland at 
2:00…(cont.)

SOLVE We are comparing two cases: the time to travel 12 

km and the time to travel 60 km. Because ∆x is proportional 

to ∆t, the ratio of the times will be equal to the ratio of the 

distances. The ratio of the distances is

This is equal to the ratio of the times:

It takes 10 minutes to travel 12 km, so it will take 50 

minutes—5 times as long—to travel 60 km.
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Example Problem

A soccer player is 15 m from her opponent’s goal. She kicks 

the ball hard; after 0.50 s, it flies past a defender who stands 

5 m away, and continues toward the goal. How much time 

does the goalie have to move into position to block the kick 

from the moment the ball leaves the kicker’s foot?
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Instantaneous Velocity

• For one-dimensional motion, an object changing its 

velocity is either speeding up or slowing down.

• An object’s velocity—a speed and a direction—at a 

specific instant of time t is called the object’s

instantaneous velocity.

• From now on, the 

word “velocity” will 

always mean 

instantaneous velocity.
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Finding the Instantaneous Velocity

• If the velocity changes, the position graph is a curved line. 

But we can compute a slope at a point by considering a 

small segment of the graph. Let’s look at the motion in a 

very small time interval right around t = 0.75 s. This is 

highlighted with a circle, and we show a closeup in the 

next graph.
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Finding the Instantaneous Velocity

• In this magnified segment of the position graph, the curve 

isn’t apparent. It appears to be a line segment. We can find 

the slope by calculating the rise over the run, just as before:

vx = (1.6 m)/(0.20 s) = 8.0 m/s 

• This is the slope at t = 0.75 s and thus the velocity at this 

instant of time.
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Finding the Instantaneous Velocity

• Graphically, the slope of the 

curve at a point is the same 

as the slope of a straight line 

drawn tangent to the curve at 

that point. Calculating rise 

over run for the tangent line, 

we get

vx = (8.0 m)/(1.0 s) = 8.0 m/s

• This is the same value we obtained from the closeup view. 

The slope of the tangent line is the instantaneous velocity 

at that instant of time.
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Instantaneous Velocity

• Even when the speed varies we can still use the velocity-

versus-time graph to determine displacement.

• The area under the curve in a velocity-versus-time graph 

equals the displacement even for non-uniform motion.
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QuickCheck 2.5

The slope at a point on a position-versus-time graph of an 
object is

A. The object’s speed at that point.

B. The object’s velocity at that point.

C. The object’s acceleration at that point.

D. The distance traveled by the object to that point.

E. I am not sure.

© 2015 Pearson Education, Inc.



Slide 2-41

QuickCheck 2.5

The slope at a point on a position-versus-time graph of an 
object is

A. The object’s speed at that point.

B. The object’s velocity at that point.

C. The object’s acceleration at that point.

D. The distance traveled by the object to that point.

E. I am not sure.

© 2015 Pearson Education, Inc. Slide 2-42

QuickCheck 2.9

When do objects 1 and 2 have the same velocity?

A. At some instant before 
time t0

B. At time t0

C. At some instant after 
time t0

D. Both A and B

E. Never
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QuickCheck 2.9
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QuickCheck 2.10

Masses P and Q move with the position graphs shown. Do 
P and Q ever have the same velocity? If so, at what time or 
times?

A. P and Q have the same velocity at 2 s.

B. P and Q have the same velocity at 1 s and 3 s.

C. P and Q have the same velocity at 1 s, 2 s, and 3 s.

D. P and Q never have the same velocity.
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Example 2.5 The displacement during a rapid 
start

FIGURE 2.21 shows the velocity-versus-time graph of a car 

pulling away from a stop. How far does the car move during the 

first 3.0 s?

PREPARE Figure 2.21 is a graphical representation of the motion. 

The question How far? indicates that we need to find a 

displacement ∆x rather than a position x. According to Equation 

2.7, the car’s displacement 

∆x = xf − xi between t = 0 s 

and t = 3 s is the area under 

the curve from t = 0 s to 

t = 3 s.

© 2015 Pearson Education, Inc.

Slide 2-47

Example 2.5 The displacement during a rapid 
start (cont.)

SOLVE The curve in this case is an angled line, so the area is 

that of a triangle:

The car moves 18 m during the first 3 seconds as its velocity 

changes from 0 to 12 m/s.
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Acceleration

• We define a new motion concept to describe an object 

whose velocity is changing.

• The ratio of ∆vx/∆t is the rate of change of velocity.

• The ratio of ∆vx/∆t is the slope of a velocity-versus-time 

graph.
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Units of Acceleration

• In our SI unit of velocity, 

60 mph = 27 m/s.

• The Corvette speeds up to 

27 m/s in ∆t = 3.6 s.

• Every second, the 

Corvette’s velocity 

changes by 7.5 m/s.

• It is customary to abbreviate 

the acceleration units 

(m/s)/s as m/s2, which we 

say as “meters per second 

squared.”
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Representing Acceleration

• An object’s acceleration is the slope of its velocity-

versus-time graph.
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Representing Acceleration

• We can find an acceleration graph from a velocity graph.
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Example Problem

A ball moving to the right traverses the ramp shown below. 

Sketch a graph of the velocity versus time, and, directly 

below it, using the same scale for the time axis, sketch a 

graph of the acceleration versus time.
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The Sign of the Acceleration

An object can move right or left (or up or down) while 

either speeding up or slowing down. Whether or not an 

object that is slowing down has a negative acceleration 

depends on the direction of motion.
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The Sign of the Acceleration (cont.)

An object can move right or left (or up or down) while 

either speeding up or slowing down. Whether or not an 

object that is slowing down has a negative acceleration 

depends on the direction of motion.
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QuickCheck 2.15

The motion diagram shows a particle that is slowing down. 
The sign of the acceleration ax is:

A. Acceleration is positive.

B. Acceleration is negative.
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QuickCheck 2.15

The motion diagram shows a particle that is slowing down. 
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QuickCheck 2.18

Mike jumps out of a tree and lands on a trampoline. The 
trampoline sags 2 feet before launching Mike back into the 
air.

At the very bottom, where the sag is the greatest, Mike’s 
acceleration is

A. Upward.

B. Downward.

C. Zero.
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QuickCheck 2.19

A cart slows down while moving 
away from the origin. What do the 
position and velocity graphs look like?
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QuickCheck 2.20

A cart speeds up toward the 
origin. What do the position and 
velocity graphs look like?
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QuickCheck 2.21

A cart speeds up while moving 
away from the origin. What do 
the velocity and acceleration 
graphs look like?
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Section 2.5 Motion with Constant Acceleration
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Motion with Constant Acceleration

• We can use the slope of the graph in the velocity graph to 

determine the acceleration of the rocket.

© 2015 Pearson Education, Inc.



Slide 2-65

Constant Acceleration Equations

• We can use the acceleration to find (vx)f at a later time tf.

• We have expressed this equation for motion along the 

x-axis, but it is a general result that will apply to any axis.
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Constant Acceleration Equations

• The velocity-versus-time graph for constant-acceleration 

motion is a straight line with value (vx)i at time ti and 

slope ax.

• The displacement ∆x during a time interval ∆t is the area 

under the velocity-versus-

time graph shown in the 

shaded area of the figure.
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Constant Acceleration Equations

• The shaded area can be subdivided into a rectangle 

and a triangle. Adding these areas gives
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Constant Acceleration Equations

• Combining Equation 2.11 with Equation 2.12 gives us a 

relationship between displacement and velocity:

• ∆x in Equation 2.13 is the displacement (not the 

distance!).
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Constant Acceleration Equations

For motion with constant acceleration:

• Velocity changes steadily:

• The position changes as the square of the time interval:

• We can also express the change in velocity in terms of 

distance, not time:
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Quadratic Relationships
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The Pictorial Representation
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The Visual Overview

• The visual overview will consist of some or all of the 

following elements:

• A motion diagram. A good strategy for solving a motion 

problem is to start by drawing a motion diagram.

• A pictorial representation, as defined above.

• A graphical representation. For motion problems, it is often 

quite useful to include a graph of position and/or velocity.

• A list of values. This list should sum up all of the important 

values in the problem.

© 2015 Pearson Education, Inc.



Slide 2-73

Example 2.11 Kinematics of a rocket launch

A Saturn V rocket is launched straight up with a constant acceleration of 18 m/s2. 

After 150 s, how fast is the rocket moving and how far has it traveled?

PREPARE FIGURE 2.32 shows a visual overview of the rocket launch that includes a 

motion diagram, a pictorial representation, and a list of values. The visual overview 

shows the whole problem in a nutshell. The motion diagram illustrates the motion of 

the rocket. The pictorial representation (produced according to Tactics Box 2.2) 

shows axes, identifies the important points of the motion, and defines variables. 

Finally, we have included a 

list of values that gives the known and 

unknown quantities. In the visual 

overview we have taken the 

statement of the problem in 

words and made it much more 

precise. The overview contains 

everything you need to know

about the problem.
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Example 2.11 Kinematics of a rocket launch 
(cont.)

SOLVE Our first task is to find the final velocity. Our list of 

values includes the initial velocity, the acceleration, and the 

time interval, so we can use the first kinematic equation of 

Synthesis 2.1 to find the final velocity:
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Example 2.11 Kinematics of a rocket launch 
(cont.)

SOLVE

The distance traveled is found using the second equation in 

Synthesis 2.1:
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Problem-Solving Strategy for Motion with 
Constant Acceleration
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Example 2.12 Calculating the minimum length 
of a runway

A fully loaded Boeing 747 with all engines at full thrust accelerates at 2.6 

m/s2. Its minimum takeoff speed is 70 m/s. How much time will the plane 

take to reach its takeoff speed? What minimum length of runway does the 

plane require for takeoff?

PREPARE The visual overview of FIGURE 2.33 summarizes the important 

details of the problem. We set xi and ti equal to zero at the starting point of 

the motion, when the plane is at rest and the acceleration begins. The final 

point of the motion is when the plane achieves the necessary takeoff speed 

of 70 m/s. The plane is accelerating to the right, so we will compute the time 

for the plane to reach a velocity 

of 70 m/s and the position of the 

plane at this time, giving us the 

minimum length of the runway.
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Example 2.12 Calculating the minimum length 
of a runway (cont.)

SOLVE First we solve for the time required for the plane to 

reach takeoff speed. We can use the first equation in 

Synthesis 2.1 to compute this time:

We keep an extra significant figure here because we will use 

this result in the next step of the calculation.

© 2015 Pearson Education, Inc.
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Example 2.12 Calculating the minimum length 
of a runway (cont.)

SOLVE

Given the time that the plane takes to reach takeoff speed, 

we can compute the position of the plane when it reaches 

this speed using the second equation in Synthesis 2.1:

Our final answers are thus that the plane will take 27 s to 

reach takeoff speed, with a minimum runway length of 

940 m.
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Example 2.12 Calculating the minimum length 
of a runway (cont.)

ASSESS Think about the last time you flew; 27 s seems like a 

reasonable time for a plane to accelerate on takeoff. Actual 

runway lengths at major airports are 3000 m or more, a few 

times greater than the minimum length, because they have 

to allow for emergency stops during an aborted takeoff. (If 

we had calculated a distance far greater than 3000 m, we 

would know we had done something wrong!)
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Example Problem: Champion Jumper

The African antelope known as a 

springbok will occasionally jump straight 

up into the air, a movement known as a 

pronk. The speed when leaving the ground 

can be as high as 7.0 m/s.

If a springbok leaves the ground at 7.0 m/s:

A. How much time will it take to reach its highest point?

B. How long will it stay in the air?

C. When it returns to earth, how fast will it be moving?
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Free Fall

• If an object moves under the 

influence of gravity only, and 

no other forces, we call the 

resulting motion free fall.

• Any two objects in free fall, 

regardless of their mass, 

have the same acceleration.

• On the earth, air resistance is 

a factor. For now we will 

restrict our attention to 

situations in which air 

resistance can be ignored.

Apollo 15 lunar astronaut David Scott 

performed a classic experiment on the moon, 

simultaneously dropping a hammer and a 

feather from the same height. Both hit the 

ground at the exact same time—something 

that would not happen in the atmosphere of 

the earth!
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Free Fall

• The figure shows the motion diagram for an object that 

was released from rest and falls freely. The diagram and 

the graph would be the same for all falling objects.
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Free Fall

• The free-fall acceleration always points down, no matter 

what direction an object is moving.

• Any object moving under the influence of gravity only, 

and no other force, is in free fall.
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Free Fall

• g, by definition, is always positive. There will never be a 

problem that uses a negative value for g.

• Even though a falling object speeds up, it has negative 

acceleration (–g).

• Because free fall is motion with constant acceleration, we 

can use the kinematic equations for constant acceleration 

with ay = –g.

• g is not called “gravity.” g is the free-fall acceleration.

• g = 9.80 m/s2 only on earth. Other planets have different 

values of g.

• We will sometimes compute acceleration in units of g.

© 2015 Pearson Education, Inc.
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QuickCheck 2.26

A ball is tossed straight up in the air. At its very highest 
point, the ball’s instantaneous acceleration ay is

A. Positive.

B. Negative.

C. Zero.
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QuickCheck 2.28

An arrow is launched vertically upward. It moves straight up to a 
maximum height, then falls to the ground. The trajectory of the 
arrow is noted. Which graph best represents the vertical velocity 
of the arrow as a function of time? Ignore air resistance; the only 
force acting is gravity.

© 2015 Pearson Education, Inc.
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Example 2.14 Analyzing a rock’s fall

A heavy rock is dropped from rest at the top of a cliff and falls 100 m 

before hitting the ground. How long does the rock take to fall to the 

ground, and what is its velocity when it hits?

PREPARE FIGURE 2.36 shows a visual overview with all necessary 

data. We have placed the origin at the ground, which makes 

yi = 100 m.
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Example 2.14 Analyzing a rock’s fall (cont.)

SOLVE Free fall is motion with the specific constant acceleration 

ay = −g. The first question involves a relation between time and 

distance, a relation expressed by the second equation in Synthesis 2.1. 

Using (vy)i = 0 m/s and ti = 0 s, we find

We can now solve for tf:

Now that we know the fall time, we can use the first kinematic 

equation to find (vy)f:

© 2015 Pearson Education, Inc.
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Example 2.16 Finding the height of a leap

A springbok is an antelope found in 

southern Africa that gets its name from 

its remarkable jumping ability. When a 

springbok is startled, it will leap straight 

up into the air—a maneuver called a “pronk.” A springbok 

goes into a crouch to perform a pronk. It then extends its 

legs forcefully, accelerating at 35 m/s2 for 0.70 m as its legs 

straighten. Legs fully extended, it leaves the ground and 

rises into the air.

a. At what speed does the springbok leave the ground?

b. How high does it go?
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Example 2.16 Finding the height of a leap 
(cont.)
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Example 2.16 Finding the height of a leap 
(cont.)

PREPARE We begin with the visual overview shown in FIGURE 2.38, where 

we’ve identified two different phases of the motion: the springbok pushing 

off the ground and the springbok rising into the air. We’ll treat these as two 

separate problems that we solve in turn. We will “re-use” the variables yi, yf, 

(vy)i, and (vy)f for the two phases of the motion. 

For the first part of our solution, in Figure 2.38a we 

choose the origin of the y-axis at the position of the 

springbok deep in the crouch. The final position 

is the top extent of the push, at the instant 

the springbok leaves the ground. 

We want to find the velocity at this 

position because that’s how fast the 

springbok is moving as it leaves

the ground.
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Example 2.16 Finding the height of a leap 
(cont.)

SOLVE a. For the first phase, pushing off the ground, we have 

information about displacement, initial velocity, and acceleration, but 

we don’t know anything about the time interval. The third equation in 

Synthesis 2.1 is perfect for this type of situation. We can rearrange it 

to solve for the velocity with which the springbok 

lifts off the ground:

The springbok leaves the ground 

with a speed of 7.0 m/s.
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Example 2.16 Finding the height of a leap 
(cont.)

Figure 2.38b essentially starts over—we have defined a new vertical axis 

with its origin at the ground, so the highest point of the springbok’s motion 

is a distance above the ground. The table of values shows the key piece of 

information for this second part of the problem: The initial velocity for part 

b is the final velocity from part a.

After the springbok leaves the ground, this is a free-fall problem because the 

springbok is moving under the influence of gravity only. We want to know 

the height of the leap, so we are 

looking for the height at the top point 

of the motion. This is a turning point 

of the motion, with the instantaneous 

velocity equal to zero. Thus yf, the 

height of the leap, is the springbok’s

position at the instant (vy)f = 0.
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Example 2.16 Finding the height of a leap 
(cont.)

SOLVE b. Now we are ready for the second phase of the motion, the 

vertical motion after leaving the ground. The third equation in 

Synthesis 2.1 is again appropriate because again we don’t know the 

time. Because yi = 0, the springbok’s displacement is ∆y = yf − yi = yf, 

the height of the vertical leap. From part a, the initial velocity is 

(vy)i = 7.0 m/s, and the final velocity is (vy)f = 0. This is free-fall 

motion, with ay = −g; thus

which gives

Solving for yf, we get a jump 

height of
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Example 2.16 Finding the height of a leap 
(cont.)

ASSESS 2.5 m is a remarkable leap—a bit over 8 ft—but 

these animals are known for their jumping ability, so this 

seems reasonable.
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