
Lecture 07: Planning and Learning
with Tabular Methods

Oliver Wallscheid

Oliver Wallscheid RL Lecture 07 1

https://ei.uni-paderborn.de/lea/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Recap: RL Agent Taxonomy

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

RL Agent Taxonomy

Model

Value Function PolicyActor
Critic

Value-Based Policy-Based

Model-Free

Model-Based

Fig. 7.1: Main categories of reinforcement learning algorithms
(source: D. Silver, Reinforcement learning, 2016. CC BY-NC 4.0)

▶ Up to now: independent usage of model-free and model-based RL

▶ Today: integrating both strategies (on finite state & action spaces)

Oliver Wallscheid RL Lecture 07 2

https://creativecommons.org/licenses/by-nc/4.0

Table of Contents

1 Repetition: Model-based and Model-free RL

2 Dyna: Integrated Planning, Acting and Learning

3 Prioritized Sweeping

4 Update Variants

5 Planning at Decision Time

Oliver Wallscheid RL Lecture 07 3

Model-based RL

▶ Plan/predict value functions and/or policy from a model.
▶ Requires an a priori model or to learn a model from experience.
▶ Solves control problems by planning algorithms such as

▶ Policy iteration or
▶ Value iteration.

S0
a1

a0

S2

S1

a 1

a0

a0

a 1

Fig. 7.2: A model for discrete state and action space problems is generally an
MDP (source: www.wikipedia.org, by Waldoalvarez CC BY-SA 4.0)

Oliver Wallscheid RL Lecture 07 4

https://commons.wikimedia.org/wiki/File:Markov_Decision_Process.svg
https://commons.wikimedia.org/wiki/User:Waldoalvarez
https://creativecommons.org/licenses/by-sa/4.0/deed.en

What is a Model?

▶ A model M is an MDP tuple ⟨X ,U ,P ,R, γ⟩.
▶ In particular, we require the

▶ state-transition probability

P = P [Xk+1 = xk+1|Xk = xk,Uk = uk] (7.1)

▶ and the reward probability

R = P [Rk+1 = rk+1|Xk = xk,Uk = uk] . (7.2)

▶ State space X and action space U is assumed to be known.

▶ Discount factor γ might be given by environment or engineer’s choice.
▶ What kind of model is available?

▶ If M is perfectly known a priori: true MDP.
▶ If M̂ ≈ M needs to be learned: approximated MDP.

Oliver Wallscheid RL Lecture 07 5

Model Learning / Identification

▶ Ideally, the model M is exactly known a priori (e.g., gridworld case).
▶ On the contrary, a model might be too complex to derive or not

exactly available (e.g., real physical systems).
▶ Objective: estimate model M̂ from experience {X0, U0, R1, . . . , XT }.

▶ This is a supervised learning / system identification task:

{X0, U0} → {X1, R1}
...

{XT−1, UT−1} → {XT , RT }

▶ Simple tabular / look-up table approach (with n(x, u) visit count):

p̂uxx′ =
1

n(x, u)

T∑

k=0

1(Xk+1 = x′|Xk = x, Uk = u),

R̂u
x =

1

n(x, u)

T∑

k=0

1(Xk = x|Uk = u)rk+1.

(7.3)

Oliver Wallscheid RL Lecture 07 6

Distribution vs. Sample Models

▶ A model based on P and R is called a distribution model.
▶ Contains descriptions of all possibilities by random distributions.
▶ Has full explanatory power, but is still rather complex to obtain.

▶ Alternatively, use sample models to receive realization series.
▶ Remember black jack examples: easy to sample by simulation but hard

to model a full distributional MDP.

Fig. 7.3: Depending on the application distribution models are easily available or
not (source: Josh Appel on Unsplash)

Oliver Wallscheid RL Lecture 07 7

https://unsplash.com/photos/PHwdpTVUlXw

Model-free RL

▶ Learn value functions and/or policy directly from experience.
▶ Requires no model at all (policy can be considered an implicit model).
▶ Solves control problems by learning algorithms such as

▶ Monte-Carlo,
▶ Sarsa or
▶ Q-learning.

162 Chapter 8: Planning and Learning with Tabular Methods

in the near future. If decision making and model learning are both computation-intensive
processes, then the available computational resources may need to be divided between
them. To begin exploring these issues, in this section we present Dyna-Q, a simple
architecture integrating the major functions needed in an online planning agent. Each
function appears in Dyna-Q in a simple, almost trivial, form. In subsequent sections we
elaborate some of the alternate ways of achieving each function and the trade-o↵s between
them. For now, we seek merely to illustrate the ideas and stimulate your intuition.

Within a planning agent, there are at least two roles for real experience: it can be
used to improve the model (to make it more accurately match the real environment)
and it can be used to directly improve the value function and policy using the kinds of

planning

value/policy

experiencemodel

model
learning

acting

direct
RL

reinforcement learning methods we have discussed
in previous chapters. The former we call model-
learning , and the latter we call direct reinforcement
learning (direct RL). The possible relationships
between experience, model, values, and policy are
summarized in the diagram to the right. Each ar-
row shows a relationship of influence and presumed
improvement. Note how experience can improve
value functions and policies either directly or in-
directly via the model. It is the latter, which is
sometimes called indirect reinforcement learning,
that is involved in planning.

Both direct and indirect methods have advantages and disadvantages. Indirect methods
often make fuller use of a limited amount of experience and thus achieve a better policy
with fewer environmental interactions. On the other hand, direct methods are much
simpler and are not a↵ected by biases in the design of the model. Some have argued
that indirect methods are always superior to direct ones, while others have argued that
direct methods are responsible for most human and animal learning. Related debates
in psychology and artificial intelligence concern the relative importance of cognition as
opposed to trial-and-error learning, and of deliberative planning as opposed to reactive
decision making (see Chapter 14 for discussion of some of these issues from the perspective
of psychology). Our view is that the contrast between the alternatives in all these debates
has been exaggerated, that more insight can be gained by recognizing the similarities
between these two sides than by opposing them. For example, in this book we have
emphasized the deep similarities between dynamic programming and temporal-di↵erence
methods, even though one was designed for planning and the other for model-free learning.

Dyna-Q includes all of the processes shown in the diagram above—planning, acting,
model-learning, and direct RL—all occurring continually. The planning method is the
random-sample one-step tabular Q-planning method on page 161. The direct RL method
is one-step tabular Q-learning. The model-learning method is also table-based and assumes
the environment is deterministic. After each transition St, At ! Rt+1, St+1, the model
records in its table entry for St, At the prediction that Rt+1, St+1 will deterministically
follow. Thus, if the model is queried with a state–action pair that has been experienced
before, it simply returns the last-observed next state and next reward as its prediction.

Fig. 7.4: If a perfect a priori model is not available, RL can be realized directly or
indirectly (source: R. Sutton and G. Barto, Reinforcement learning: an

introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid RL Lecture 07 8

https://creativecommons.org/licenses/by-nc-nd/2.0/

Advantages & Drawbacks: Model-free vs. Model-based RL

Pro model-based / indirect RL:
▶ Efficiently uses limited amount of experience (e.g., by replay).
▶ Allows integration of available a priori knowledge.
▶ Learned models might be re-used for other tasks (e.g., monitoring).

Pro model-free / direct RL:
▶ Is simpler to implement (only one task, not two consequent ones).
▶ Not affected by model bias / error during model learning.

Fig. 7.5: What way is better? (source: Mike Kononov on Unsplash)Oliver Wallscheid RL Lecture 07 9

https://unsplash.com/photos/FY0nQ-I3H_U

Table of Contents

1 Repetition: Model-based and Model-free RL

2 Dyna: Integrated Planning, Acting and Learning

3 Prioritized Sweeping

4 Update Variants

5 Planning at Decision Time

Oliver Wallscheid RL Lecture 07 10

The General Dyna Architecture (1)

▶ Proposed by R. Sutton in 1990’s
▶ General framework with many different implementation variants

8.2. Dyna: Integrated Planning, Acting, and Learning 163

During planning, the Q-planning algorithm randomly samples only from state–action
pairs that have previously been experienced (in Step 1), so the model is never queried
with a pair about which it has no information.

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one example,
is shown in Figure 8.1. The central column represents the basic interaction between
agent and environment, giving rise to a trajectory of real experience. The arrow on the
left of the figure represents direct reinforcement learning operating on real experience to
improve the value function and the policy. On the right are model-based processes. The
model is learned from real experience and gives rise to simulated experience. We use the
term search control to refer to the process that selects the starting states and actions
for the simulated experiences generated by the model. Finally, planning is achieved by
applying reinforcement learning methods to the simulated experiences just as if they had
really happened. Typically, as in Dyna-Q, the same reinforcement learning method is
used both for learning from real experience and for planning from simulated experience.
The reinforcement learning method is thus the “final common path” for both learning
and planning. Learning and planning are deeply integrated in the sense that they share
almost all the same machinery, di↵ering only in the source of their experience.

real

direct RL
update

Model

planning update

search
control

Policy/value functions

experience
model

learning

Environment

simulated
experience

Figure 8.1: The general Dyna Architecture. Real experience, passing back and forth between
the environment and the policy, a↵ects policy and value functions in much the same way as does
simulated experience generated by the model of the environment.

Conceptually, planning, acting, model-learning, and direct RL occur simultaneously
and in parallel in Dyna agents. For concreteness and implementation on a serial computer,
however, we fully specify the order in which they occur within a time step. In Dyna-Q,
the acting, model-learning, and direct RL processes require little computation, and we
assume they consume just a fraction of the time. The remaining time in each step can be
devoted to the planning process, which is inherently computation-intensive. Let us assume
that there is time in each step, after acting, model-learning, and direct RL, to complete

Fig. 7.6: Dyna framework (source: R. Sutton and G. Barto, Reinforcement
learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid RL Lecture 07 11

https://creativecommons.org/licenses/by-nc-nd/2.0/

The General Dyna Architecture (2)

▶ Direct RL update: any model-free algorithm: Q-learning, Sarsa, ...
▶ Model learning:

▶ In tabular case: simple distribution estimation as in (7.3)
▶ Simple experience buffer to re-apply model-free algorithm
▶ For large or continuous state/action spaces: function approximation by

supervised learning / system identification (next lecture)

▶ Search control: strategies for selecting starting states and action to
generate simulated experience

8.2. Dyna: Integrated Planning, Acting, and Learning 163

During planning, the Q-planning algorithm randomly samples only from state–action
pairs that have previously been experienced (in Step 1), so the model is never queried
with a pair about which it has no information.

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one example,
is shown in Figure 8.1. The central column represents the basic interaction between
agent and environment, giving rise to a trajectory of real experience. The arrow on the
left of the figure represents direct reinforcement learning operating on real experience to
improve the value function and the policy. On the right are model-based processes. The
model is learned from real experience and gives rise to simulated experience. We use the
term search control to refer to the process that selects the starting states and actions
for the simulated experiences generated by the model. Finally, planning is achieved by
applying reinforcement learning methods to the simulated experiences just as if they had
really happened. Typically, as in Dyna-Q, the same reinforcement learning method is
used both for learning from real experience and for planning from simulated experience.
The reinforcement learning method is thus the “final common path” for both learning
and planning. Learning and planning are deeply integrated in the sense that they share
almost all the same machinery, di↵ering only in the source of their experience.

real

direct RL
update

Model

planning update

search
control

Policy/value functions

experience
model

learning

Environment

simulated
experience

Figure 8.1: The general Dyna Architecture. Real experience, passing back and forth between
the environment and the policy, a↵ects policy and value functions in much the same way as does
simulated experience generated by the model of the environment.

Conceptually, planning, acting, model-learning, and direct RL occur simultaneously
and in parallel in Dyna agents. For concreteness and implementation on a serial computer,
however, we fully specify the order in which they occur within a time step. In Dyna-Q,
the acting, model-learning, and direct RL processes require little computation, and we
assume they consume just a fraction of the time. The remaining time in each step can be
devoted to the planning process, which is inherently computation-intensive. Let us assume
that there is time in each step, after acting, model-learning, and direct RL, to complete

Oliver Wallscheid RL Lecture 07 12

Algorithmic Implementation: Dyna-Q

parameter: α ∈ {R|0 < α < 1} , n ∈ {N|n ≥ 1} (planning steps per real step)
init: q̂(x, u) arbitrary (except terminal) and M̂(x, u) ∀ {x ∈ X , u ∈ U}
for j = 1, 2, . . . episodes do

Initialize x0;
k ← 0;
repeat

Choose uk from xk using a soft policy derived from q̂(x, u);
Take action uk, observe rk+1 and xk+1;
q̂(xk, uk)← q̂(xk, uk) + α [rk+1 + γmaxu q̂(xk+1, u)− q̂(xk, uk)];

M̂(xk, uk)← {rk+1, xk+1} (assuming deterministic env.);
for i = 1, 2, . . . n do

x̃i ← random previously visited state;
ũi ← random previously taken action in x̃i;

{r̃i+1, x̃i+1} ← M̂(x̃i, ũi);
q̂(x̃i, ũi)← q̂(x̃i, ũi) + α [r̃i+1 + γmaxu q̂(x̃i+1, u)− q̂(x̃i, ũi)];

k ← k + 1;

until xk is terminal ;

Algo. 7.1: Dyna with Q-learning (Dyna-Q)

Oliver Wallscheid RL Lecture 07 13

Remarks on Dyna-Q Implementation

The specific Dyna-Q characteristics are:

▶ Direct RL update: Q-learning,

▶ Model: simple memory buffer of previous real experience,

▶ Search strategy: random choices from model buffer.

Moreover:

▶ Number of Dyna planning steps n is to be delimited from n-step
bootstrapping (same symbol, two interpretations).

▶ Without the model M̂ one would receive one-step Q-learning.
▶ The model-based learning is done n times per real environment

interaction:
▶ Previous real experience is re-applied to Q-learning.
▶ Can be considered a background task: choose maxn s.t. hardware

limitations (prevent turnaround errors).

▶ For stochastic environments: use a distributional model as in (7.3).
▶ Update rule then may be modified from sample to expected update.

Oliver Wallscheid RL Lecture 07 14

Maze Example (1)
8.2. Dyna: Integrated Planning, Acting, and Learning 165

2

800

600

400

200

14
2010 30 40 50

 0 planning steps
(direct RL only)

Episodes

Steps
per

episode 5 planning steps

 50 planning steps

S

G

actions

Figure 8.2: A simple maze (inset) and the average learning curves for Dyna-Q agents varying
in their number of planning steps (n) per real step. The task is to travel from S to G as quickly
as possible.

Figure 8.3 shows why the planning agents found the solution so much faster than
the nonplanning agent. Shown are the policies found by the n = 0 and n = 50 agents
halfway through the second episode. Without planning (n = 0), each episode adds only
one additional step to the policy, and so only one step (the last) has been learned so far.
With planning, again only one step is learned during the first episode, but here during
the second episode an extensive policy has been developed that by the end of the episode
will reach almost back to the start state. This policy is built by the planning process
while the agent is still wandering near the start state. By the end of the third episode a
complete optimal policy will have been found and perfect performance attained.

S

G

S

G
WITHOUT PLANNING (=0) WITH PLANNING (=50)n n

Figure 8.3: Policies found by planning and nonplanning Dyna-Q agents halfway through the
second episode. The arrows indicate the greedy action in each state; if no arrow is shown for a
state, then all of its action values were equal. The black square indicates the location of the
agent.

Fig. 7.7: Applying Dyna-Q with different
planning steps n to simple maze (source: R.

Sutton and G. Barto, Reinforcement learning: an
introduction, 2018, CC BY-NC-ND 2.0)

▶ Maze with obstacles
(gray blocks)

▶ Start at S and reach G

▶ rT = +1 at G

▶ Episodic task with
γ = 0.95

▶ Step size α = 0.1

▶ Exploration ε = 0.1

▶ Averaged learning
curves

Oliver Wallscheid RL Lecture 07 15

https://creativecommons.org/licenses/by-nc-nd/2.0/

Maze Example (2)

▶ Blocks without an arrow depict a neutral policy (equal action values).
▶ Black squares indicate agent’s position during second episode.
▶ Without planning (n = 0), each episodes only adds one new item to

the policy.
▶ With planning (n = 50), the available experience is efficiently utilized.
▶ After the third episode, the planning agent found the optimal policy.

8.2. Dyna: Integrated Planning, Acting, and Learning 165

2

800

600

400

200

14
2010 30 40 50

 0 planning steps
(direct RL only)

Episodes

Steps
per

episode 5 planning steps

 50 planning steps

S

G

actions

Figure 8.2: A simple maze (inset) and the average learning curves for Dyna-Q agents varying
in their number of planning steps (n) per real step. The task is to travel from S to G as quickly
as possible.

Figure 8.3 shows why the planning agents found the solution so much faster than
the nonplanning agent. Shown are the policies found by the n = 0 and n = 50 agents
halfway through the second episode. Without planning (n = 0), each episode adds only
one additional step to the policy, and so only one step (the last) has been learned so far.
With planning, again only one step is learned during the first episode, but here during
the second episode an extensive policy has been developed that by the end of the episode
will reach almost back to the start state. This policy is built by the planning process
while the agent is still wandering near the start state. By the end of the third episode a
complete optimal policy will have been found and perfect performance attained.

S

G

S

G
WITHOUT PLANNING (=0) WITH PLANNING (=50)n n

Figure 8.3: Policies found by planning and nonplanning Dyna-Q agents halfway through the
second episode. The arrows indicate the greedy action in each state; if no arrow is shown for a
state, then all of its action values were equal. The black square indicates the location of the
agent.

Fig. 7.8: Policies (greedy action) for Dyna-Q agent halfway through second
episode (source: R. Sutton and G. Barto, Reinforcement learning: an

introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid RL Lecture 07 16

https://creativecommons.org/licenses/by-nc-nd/2.0/

What if the Model is Wrong?

Possible model error sources:

▶ A provided a priori model may be inaccurate (expert knowledge).

▶ Environment behavior changes over time (non-stationary).

▶ Early-stage model is biased due to learning process.

▶ If function approximators are used: generalization error (cf. lecture 08
and following).

Consequences:

▶ Model errors are likely to lead to a suboptimal policy.

▶ If lucky: errors are quickly discovered and directly corrected by
default, random exploration.

▶ Nevertheless, more intelligent exploration / correction strategies might
be useful (compared to random actions as in ε-greedy strategies).

Oliver Wallscheid RL Lecture 07 17

The Blocking Maze Example8.3. When the Model Is Wrong 167

Cumulative
reward

0 1000 2000 3000

Time steps

150

0

Dyna-Q+

S

G G

S

Dyna-Q

Figure 8.4: Average performance of Dyna agents on a blocking task. The left environment
was used for the first 1000 steps, the right environment for the rest. Dyna-Q+ is Dyna-Q with
an exploration bonus that encourages exploration.

Cumulative
reward

S

G G

S

0 3000 6000
Time steps

400

0

Dyna-Q+
Dyna-Q

Figure 8.5: Average performance of Dyna agents on
a shortcut task. The left environment was used for the
first 3000 steps, the right environment for the rest.

Example 8.3: Shortcut Maze
The problem caused by this kind of
environmental change is illustrated
by the maze example shown in Fig-
ure 8.5. Initially, the optimal path is
to go around the left side of the bar-
rier (upper left). After 3000 steps,
however, a shorter path is opened up
along the right side, without disturb-
ing the longer path (upper right).
The graph shows that the regular
Dyna-Q agent never switched to the
shortcut. In fact, it never realized
that it existed. Its model said that
there was no shortcut, so the more it
planned, the less likely it was to step
to the right and discover it. Even
with an "-greedy policy, it is very
unlikely that an agent will take so
many exploratory actions as to dis-
cover the shortcut.

The general problem here is another version of the conflict between exploration and
exploitation. In a planning context, exploration means trying actions that improve the
model, whereas exploitation means behaving in the optimal way given the current model.

Fig. 7.9: Maze with a changing layout after 1000
steps illustrates a model error (source: R. Sutton

and G. Barto, Reinforcement learning: an
introduction, 2018, CC BY-NC-ND 2.0)

▶ Maze with a changing
obstacle line

▶ Start at S and reach G

▶ rT = +1 at G

▶ Dyna-Q+ encourages
intelligent exploration
(upcoming slides)

▶ Dyna-Q requires more
steps in order to
overcome the blockade

▶ Averaged learning
curves

Oliver Wallscheid RL Lecture 07 18

https://creativecommons.org/licenses/by-nc-nd/2.0/

The Shortcut Maze Example

8.3. When the Model Is Wrong 167

Cumulative
reward

0 1000 2000 3000

Time steps

150

0

Dyna-Q+

S

G G

S

Dyna-Q

Figure 8.4: Average performance of Dyna agents on a blocking task. The left environment
was used for the first 1000 steps, the right environment for the rest. Dyna-Q+ is Dyna-Q with
an exploration bonus that encourages exploration.

Cumulative
reward

S

G G

S

0 3000 6000
Time steps

400

0

Dyna-Q+
Dyna-Q

Figure 8.5: Average performance of Dyna agents on
a shortcut task. The left environment was used for the
first 3000 steps, the right environment for the rest.

Example 8.3: Shortcut Maze
The problem caused by this kind of
environmental change is illustrated
by the maze example shown in Fig-
ure 8.5. Initially, the optimal path is
to go around the left side of the bar-
rier (upper left). After 3000 steps,
however, a shorter path is opened up
along the right side, without disturb-
ing the longer path (upper right).
The graph shows that the regular
Dyna-Q agent never switched to the
shortcut. In fact, it never realized
that it existed. Its model said that
there was no shortcut, so the more it
planned, the less likely it was to step
to the right and discover it. Even
with an "-greedy policy, it is very
unlikely that an agent will take so
many exploratory actions as to dis-
cover the shortcut.

The general problem here is another version of the conflict between exploration and
exploitation. In a planning context, exploration means trying actions that improve the
model, whereas exploitation means behaving in the optimal way given the current model.

Fig. 7.10: Maze with an additional shortcut after
3000 steps (source: R. Sutton and G. Barto,
Reinforcement learning: an introduction, 2018,

CC BY-NC-ND 2.0)

▶ Maze opens a shortcut
after 3000 steps

▶ Start at S and reach G

▶ rT = +1 at G

▶ Dyna-Q with random
exploration is likely not
finding the shortcut

▶ Dyna-Q+ exploration
strategy is able to
correct internal model

▶ Averaged learning
curves

Oliver Wallscheid RL Lecture 07 19

https://creativecommons.org/licenses/by-nc-nd/2.0/

Dyna-Q+ Extensions

Compared to default Dyna-Q in Algo. 7.1, Dyna-Q+ contains the
following extensions:
▶ Search heuristic: add κ

√
τ to regular reward.

▶ τ : is the number of time steps a state-action transition has not been
tried.

▶ κ: is a small scaling factor κ ∈ {R|0 < κ}.
▶ Agent is encouraged to keep testing all accessible transitions.

▶ Actions for given states that had never been tried before are allowed
for simulation-based planning.
▶ Initial model for that: actions lead back to same state without reward.

Oliver Wallscheid RL Lecture 07 20

Table of Contents

1 Repetition: Model-based and Model-free RL

2 Dyna: Integrated Planning, Acting and Learning

3 Prioritized Sweeping

4 Update Variants

5 Planning at Decision Time

Oliver Wallscheid RL Lecture 07 21

Background and Idea

▶ Dyna-Q randomly samples from the memory buffer.
▶ Many planning updates maybe pointless, e.g., zero-valued state

updates during early training.
▶ In large state-action spaces: inefficient search since transitions are

chosen far away from optimal policies.

▶ Better: focus on important updates.
▶ In episodic tasks: backward focusing starting from the goal state.
▶ In continuing tasks: prioritize according to impact on value updates.

▶ Solution method is called prioritized sweeping.
▶ Build up a queue of every state-action pair whose value would change

significantly.
▶ Prioritize updates by the size of change.
▶ Neglect state-action pairs with only minor impact.

Oliver Wallscheid RL Lecture 07 22

Algorithmic Implementation: Prioritized Sweeping

parameter: α ∈ {R|0 < α < 1} , n ∈ {N|n ≥ 1} , θ ∈ {R|θ ≥ 0}
init: q̂(x, u) arbitrary and M̂(x, u) ∀ {x ∈ X , u ∈ U}, empty queue Q
for j = 1, 2, . . . episodes do

Initialize x0 and k ← 0;
repeat

Choose uk from xk using a soft policy derived from q̂(x, u);
Take action uk, observe rk+1 and xk+1;

M̂(xk, uk)← {rk+1, xk+1} (assuming deterministic env.);
P ← |rk+1 + γmaxu q̂(xk+1, u)− q̂(xk, uk)|;
if P > θ then insert {xk, uk} in Q with priority P ;
for i = 1, 2, . . . n while queue Q is not empty do
{x̃i, ũi} ← argmaxP (Q);
{r̃i+1, x̃i+1} ← M̂(x̃i, ũi);
q̂(x̃i, ũi)← q̂(x̃i, ũi) + α [r̃i+1 + γmaxu q̂(x̃i+1, u)− q̂(x̃i, ũi)];
for ∀ {x, u} predicted to lead to x̃i do

r ← predicted reward for {x, u, x̃i};
P ← |r + γmaxu q̂(x̃i, u)− q̂(x, u)|;
if P > θ then insert {x, u} in Q with priority P ;

k ← k + 1;

until xk is terminal ;

Oliver Wallscheid RL Lecture 07 23

Remarks on Prioritized Sweeping Implementation

The specific prioritized sweeping characteristics are:

▶ Direct RL update: Q-learning,

▶ Model: simple memory buffer of previous real experience,

▶ Search strategy: prioritized updates based on predicted value change.

Moreover:

▶ θ is a hyperparameter denoting the update significance threshold.

▶ Prediction step regarding x̃i is a backward search in the model buffer.
▶ For stochastic environments: use a distributional model as in (7.3).

▶ Update rule then may be modified from sample to expected update.

Oliver Wallscheid RL Lecture 07 24

Comparing Against Dyna-Q on Simple Maze Example

170 Chapter 8: Planning and Learning with Tabular Methods

Prioritized sweeping for a deterministic environment

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty
Loop forever:

(a) S current (nonterminal) state
(b) A policy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S0

(d) Model(S, A) R, S0

(e) P |R + � maxa Q(S0, a)�Q(S, A)|.
(f) if P > ✓, then insert S, A into PQueue with priority P
(g) Loop repeat n times, while PQueue is not empty:

S, A first(PQueue)
R, S0 Model(S, A)
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

Loop for all S̄, Ā predicted to lead to S:
R̄ predicted reward for S̄, Ā, S
P |R̄ + � maxa Q(S, a)�Q(S̄, Ā)|.
if P > ✓ then insert S̄, Ā into PQueue with priority P

Backups
until

optimal
solution

10

103

104

105

106

107

102

0 47 94 186 376 752 1504 3008 6016

Gridworld size (#states)

Dyna-Q

Prioritized
sweeping

UpdatesUpdates
until

optimal
solution

Example 8.4: Prioritized Sweeping
on Mazes Prioritized sweeping has been
found to dramatically increase the speed
at which optimal solutions are found in
maze tasks, often by a factor of 5 to 10.
A typical example is shown to the right.
These data are for a sequence of maze
tasks of exactly the same structure as the
one shown in Figure 8.2, except that they
vary in the grid resolution. Prioritized
sweeping maintained a decisive advantage
over unprioritized Dyna-Q. Both systems
made at most n = 5 updates per environ-
mental interaction. Adapted from Peng
and Williams (1993).

Extensions of prioritized sweeping to stochastic environments are straightforward. The
model is maintained by keeping counts of the number of times each state–action pair has
been experienced and of what the next states were. It is natural then to update each pair
not with a sample update, as we have been using so far, but with an expected update,
taking into account all possible next states and their probabilities of occurring.

Prioritized sweeping is just one way of distributing computations to improve planning
e�ciency, and probably not the best way. One of prioritized sweeping’s limitations is that
it uses expected updates, which in stochastic environments may waste lots of computation
on low-probability transitions. As we show in the following section, sample updates

Fig. 7.11: Comparison of prioritized sweeping
and Dyna-Q on simple maze (source: R. Sutton

and G. Barto, Reinforcement learning: an
introduction, 2018, CC BY-NC-ND 2.0)

▶ Environment framework
as in Fig. 7.7

▶ But: changing maze
sizes (number of states)

▶ Both methods can
utilize up to n = 5
planning steps

▶ Prioritized sweeping
finds optimal solution
5-10 times quicker

Oliver Wallscheid RL Lecture 07 25

https://creativecommons.org/licenses/by-nc-nd/2.0/

Table of Contents

1 Repetition: Model-based and Model-free RL

2 Dyna: Integrated Planning, Acting and Learning

3 Prioritized Sweeping

4 Update Variants

5 Planning at Decision Time

Oliver Wallscheid RL Lecture 07 26

Update Rule Alternatives

▶ Dyna updates (search strategy) are not bound to Q-learning during
planning and can be exchanged in many ways (see Fig. 7.12).

▶ Even evaluating a fixed policy π in terms of vπ(x) and qπ(x, u) is
possible.

Expected updates
(DP)

Sample updates
(one-step TD)

TD(0) Sarsa Q-learning

policy evaluation value evaluation Q-policy evaluation Q-value iteration

Fig. 7.12: Possible one-step updates: alternatives for Dyna

Oliver Wallscheid RL Lecture 07 27

Advantages & Drawbacks: Expected vs. Sampled Updates

Pro expected updates:

▶ Delivers more accurate value estimates (no sampling error).

Pro sample updates:

▶ Is computational cheaper (e.g., distributional model not required).

Leads to trade-off:

▶ Estimation accuracy vs. computational burden.

▶ Evaluate decision on given problem, i.e., how many state-action pairs
have to be evaluated for a new expected update?

▶ Utilize branching factor b metric: corresponds to number of possible
next states x′ with p(x′|x, u) > 0.
▶ If expected update is available, this will be roughly as accurate as b

samplings.
▶ If only incomplete expected update is available, prefer sampling

solution (often applies to large state-action spaces).

Oliver Wallscheid RL Lecture 07 28

Example for Sampled vs. Expected Updates

▶ Artificial prediction task where all b successor states are equally likely
▶ Method initialization such that RMS error is always one
▶ Sample updates perform particularly well for large branching factors b

(takeaway message: if facing large stochastic problems, use sampling)
174 Chapter 8: Planning and Learning with Tabular Methods

b = 2 (branching factor)

b =10

b =100

b =1000
b =10,000

sample
updates

expected
updates

1

0
0 1b 2b

RMS error
in value
estimate

Number of computationsmax
a0

Q(s0, a0)

Figure 8.7: Comparison of e�ciency of expected and sample updates.

b successor states are equally likely and in which the error in the initial estimate is
1. The values at the next states are assumed correct, so the expected update reduces
the error to zero upon its completion. In this case, sample updates reduce the error

according to
q

b�1
bt where t is the number of sample updates that have been performed

(assuming sample averages, i.e., ↵ = 1/t). The key observation is that for moderately
large b the error falls dramatically with a tiny fraction of b updates. For these cases,
many state–action pairs could have their values improved dramatically, to within a few
percent of the e↵ect of an expected update, in the same time that a single state–action
pair could undergo an expected update.

The advantage of sample updates shown in Figure 8.7 is probably an underestimate of
the real e↵ect. In a real problem, the values of the successor states would be estimates
that are themselves updated. By causing estimates to be more accurate sooner, sample
updates will have a second advantage in that the values backed up from the successor
states will be more accurate. These results suggest that sample updates are likely to be
superior to expected updates on problems with large stochastic branching factors and
too many states to be solved exactly.

Exercise 8.6 The analysis above assumed that all of the b possible next states were
equally likely to occur. Suppose instead that the distribution was highly skewed, that
some of the b states were much more likely to occur than most. Would this strengthen or
weaken the case for sample updates over expected updates? Support your answer. ⇤

8.6 Trajectory Sampling

In this section we compare two ways of distributing updates. The classical approach, from
dynamic programming, is to perform sweeps through the entire state (or state–action)
space, updating each state (or state–action pair) once per sweep. This is problematic

Fig. 7.13: Comparison of expected vs. sampled updates (source: R. Sutton and
G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid RL Lecture 07 29

https://creativecommons.org/licenses/by-nc-nd/2.0/

Alternatives on Distributing the Updates

Recap:

▶ Dynamic programming: sweep through the entire state(-action) space

▶ Dyna-Q: random uniform sampling

▶ Mutual problem: irrelevant updates decrease computational efficiency

Alternative: update according to on-policy distribution

▶ Based on sampling along the encountered state(-action) pairs
(trajectory sweeping)

▶ Based on explicit on-policy distribution

▶ In both cases: ignore vast, uninteresting parts of the problem space at
the risk of updating same old parts all over again

Oliver Wallscheid RL Lecture 07 30

Exemplary Update Distribution Comparison

176 Chapter 8: Planning and Learning with Tabular Methods

experiment to assess the e↵ect empirically. To isolate the e↵ect of the update distribution,
we used entirely one-step expected tabular updates, as defined by (8.1). In the uniform
case, we cycled through all state–action pairs, updating each in place, and in the on-policy
case we simulated episodes, all starting in the same state, updating each state–action pair
that occurred under the current "-greedy policy ("=0.1). The tasks were undiscounted
episodic tasks, generated randomly as follows. From each of the |S| states, two actions
were possible, each of which resulted in one of b next states, all equally likely, with a
di↵erent random selection of b states for each state–action pair. The branching factor, b,
was the same for all state–action pairs. In addition, on all transitions there was a 0.1
probability of transition to the terminal state, ending the episode. The expected reward
on each transition was selected from a Gaussian distribution with mean 0 and variance 1.

b=10

b=3

b=1

b=1

ion-pol cy

ion-pol cy

uniform

uniform

0

1

2

3

Value of
start state

under
greedy
policy

0 5,000 10,000 15,000 20,000

Computation time, in full backups

0

1

2

3

Value of
start state

under
greedy
policy

0 50,000 100,000 150,000 200,000

Computation time, in full backups

uniform

uniform

on-policy

on-policy

expected updates

expected updates

1,000 STATES

10,000 STATES

Figure 8.8: Relative e�ciency of updates dis-
tributed uniformly across the state space versus
focused on simulated on-policy trajectories, each
starting in the same state. Results are for randomly
generated tasks of two sizes and various branching
factors, b.

At any point in the planning process
one can stop and exhaustively compute
v⇡̃(s0), the true value of the start state
under the greedy policy, ⇡̃, given the cur-
rent action-value function Q, as an indi-
cation of how well the agent would do on
a new episode on which it acted greed-
ily (all the while assuming the model is
correct).

The upper part of the figure to
the right shows results averaged over
200 sample tasks with 1000 states and
branching factors of 1, 3, and 10. The
quality of the policies found is plotted as
a function of the number of expected up-
dates completed. In all cases, sampling
according to the on-policy distribution
resulted in faster planning initially and
retarded planning in the long run. The
e↵ect was stronger, and the initial pe-
riod of faster planning was longer, at
smaller branching factors. In other ex-
periments, we found that these e↵ects
also became stronger as the number of
states increased. For example, the lower
part of the figure shows results for a
branching factor of 1 for tasks with
10,000 states. In this case the advan-
tage of on-policy focusing is large and
long-lasting.

All of these results make sense. In the
short term, sampling according to the
on-policy distribution helps by focusing
on states that are near descendants of

Fig. 7.14: Update distribution comparison (source:
R. Sutton and G. Barto, Reinforcement learning:

an introduction, 2018, CC BY-NC-ND 2.0)

Example:

▶ Two actions per state

▶ Both actions led to b
next states

▶ 10% probability of
transition to terminal
state

▶ reward per transition:
N (µ = 0, σ2 = 1)

▶ Task: estimate start
state value

▶ 200 randomly generated
undiscounted episodic
runs

Oliver Wallscheid RL Lecture 07 31

https://creativecommons.org/licenses/by-nc-nd/2.0/

Table of Contents

1 Repetition: Model-based and Model-free RL

2 Dyna: Integrated Planning, Acting and Learning

3 Prioritized Sweeping

4 Update Variants

5 Planning at Decision Time

Oliver Wallscheid RL Lecture 07 32

Background Planning vs. Planning at Decision Time

Background Planning (discussed so far):

▶ Gradually improves policy or value function if time is available.

▶ Backward view: re-apply gathered experience.

▶ Feasible for fast execution: policy or value estimate are available with
low latency (important, e.g., for real-time control).

Planning at decision time1 (not yet discussed alternative):

▶ Select single next future action through planning.

▶ Forward view: predict future trajectories starting from current state.

▶ Typically discards previous planning outcomes (start from scratch
after state transition).

▶ If multiple trajectories are independent: easy parallel implementation.

▶ Most useful if fast responses are not required (e.g., turn-based
games).

1Can be interpreted as model predictive control in an engineering context.
Oliver Wallscheid RL Lecture 07 33

Heuristic Search

▶ Develop tree-like continuations from each state encountered.
▶ Approximate value function at leaf nodes (using a model) and back

up towards the current state.
▶ Choose action according to predicted trajectory with highest value.
▶ Predictions are normally discarded (new search tree in each state).

8.10. Rollout Algorithms 183

looking ahead from a single position. This great focusing of memory and computational
resources on the current decision is presumably the reason why heuristic search can be so
e↵ective.

The distribution of updates can be altered in similar ways to focus on the current
state and its likely successors. As a limiting case we might use exactly the methods of
heuristic search to construct a search tree, and then perform the individual, one-step
updates from bottom up, as suggested by Figure 8.9. If the updates are ordered in this
way and a tabular representation is used, then exactly the same overall update would
be achieved as in depth-first heuristic search. Any state-space search can be viewed in
this way as the piecing together of a large number of individual one-step updates. Thus,
the performance improvement observed with deeper searches is not due to the use of
multistep updates as such. Instead, it is due to the focus and concentration of updates
on states and actions immediately downstream from the current state. By devoting a
large amount of computation specifically relevant to the candidate actions, decision-time
planning can produce better decisions than can be produced by relying on unfocused
updates.

1 2

3

4 5

6

7

8 9

10

Figure 8.9: Heuristic search can be implemented as a sequence of one-step updates (shown
here outlined in blue) backing up values from the leaf nodes toward the root. The ordering
shown here is for a selective depth-first search.

8.10 Rollout Algorithms

Rollout algorithms are decision-time planning algorithms based on Monte Carlo control
applied to simulated trajectories that all begin at the current environment state. They
estimate action values for a given policy by averaging the returns of many simulated
trajectories that start with each possible action and then follow the given policy. When
the action-value estimates are considered to be accurate enough, the action (or one of the

Fig. 7.15: Heuristic search tree with exemplary order of back-up operations
(source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018,

CC BY-NC-ND 2.0)

Oliver Wallscheid RL Lecture 07 34

https://creativecommons.org/licenses/by-nc-nd/2.0/

Rollout Algorithms

▶ Similar to heuristic search, but: simulate trajectories following a
rollout policy.

▶ Use Monte Carlo estimates of action value only for current state to
evaluate on best action.

▶ Gradually improves rollout policy but optimal policy might not be
found if rollout sequences are too short.

▶ Predictions are normally discarded (new rollout in each state).

R
ol

lo
u

t p
ol

ic
y

Fig. 7.16: Simplified processing diagram of rollout algorithms

Oliver Wallscheid RL Lecture 07 35

Monte Carlo Tree Search (MCTS)

▶ Rollout algorithm, but:
▶ accumulates values estimates from former MC simulations,
▶ makes use of an informed tree policy (e.g., ε-greedy).

186 Chapter 8: Planning and Learning with Tabular Methods

extending the initial portions of trajectories that have received high evaluations from
earlier simulations. MCTS does not have to retain approximate value functions or policies
from one action selection to the next, though in many implementations it retains selected
action values likely to be useful for its next execution.

For the most part, the actions in the simulated trajectories are generated using a simple
policy, usually called a rollout policy as it is for simpler rollout algorithms. When both
the rollout policy and the model do not require a lot of computation, many simulated
trajectories can be generated in a short period of time. As in any tabular Monte Carlo
method, the value of a state–action pair is estimated as the average of the (simulated)
returns from that pair. Monte Carlo value estimates are maintained only for the subset
of state–action pairs that are most likely to be reached in a few steps, which form a tree
rooted at the current state, as illustrated in Figure 8.10. MCTS incrementally extends
the tree by adding nodes representing states that look promising based on the results of
the simulated trajectories. Any simulated trajectory will pass through the tree and then
exit it at some leaf node. Outside the tree and at the leaf nodes the rollout policy is used
for action selections, but at the states inside the tree something better is possible. For
these states we have value estimates for of at least some of the actions, so we can pick
among them using an informed policy, called the tree policy, that balances exploration

Selection SimulationExpansion Backup
Repeat while time remains

Tree
 Policy

Rollout
Policy

Figure 8.10: Monte Carlo Tree Search. When the environment changes to a new state, MCTS
executes as many iterations as possible before an action needs to be selected, incrementally
building a tree whose root node represents the current state. Each iteration consists of the four
operations Selection, Expansion (though possibly skipped on some iterations), Simulation,
and Backup, as explained in the text and illustrated by the bold arrows in the trees. Adapted
from Chaslot, Bakkes, Szita, and Spronck (2008).

Fig. 7.17: Basic building blocks of MCTS algorithms (source: R. Sutton and G.
Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid RL Lecture 07 36

https://creativecommons.org/licenses/by-nc-nd/2.0/

Basic MCTS Procedure

Repeat the following steps while prediction time is available:
1 Selection: Starting at root node, use a tree policy (e.g., ε-greedy) to

travel through the tree until arriving at a leaf node.
▶ The tree policy exploits auspicious tree regions while maintaining some

exploration.
▶ It is improved and (possibly) extended in every simulation run.

2 Expansion: Add child node(s) to the leaf node by evaluating
unexplored actions (optional step).

3 Simulation: Simulate the remaining full episode using the rollout
policy starting from the leaf or child node (if available).
▶ The rollout policy could be random, pre-trained or based on model-free

methods using real experience (if available).

4 Backup: Update the values along the traveled trajectory but only
saves those within the tree policy.

Oliver Wallscheid RL Lecture 07 37

Further MCTS Remarks

What is happening after reaching the feasible simulation runs?
▶ After time is up, MCTS picks an appropriate action regarding the

root node, e.g.:
▶ The action visited the most times during all simulation runs or
▶ The action having the largest action value.

▶ After transitioning to a new state, the MCTS procedure re-starts:
▶ Either with a new tree incorporating only the root node or
▶ by re-utilizing the applicable parts from the previous tree.

Further reading on MCTS:
▶ MCTS-based algorithms are not limited to game applications but

were able to achieve outstanding success in this field.
▶ Famous AlphaGo (cf. Keynote lecture from D. Silver)

▶ More in-depth lectures on MCTS can be found (among others) here:
▶ Stanford Online: CS234
▶ MIT OpenCourseWare
▶ Extensive slide set from M. Sebag at Universite Paris Sud

Oliver Wallscheid RL Lecture 07 38

https://www.youtube.com/watch?v=Wujy7OzvdJk
https://www.youtube.com/watch?v=vDF1BYWhqL8
https://www.youtube.com/watch?v=xmImNoDc9Z4
https://www.lri.fr/~sebag/Slides/InvitedTutorial_CP12.pdf

Summary: What You’ve Learned Today

▶ Model-free RL is easy to implement and cannot suffer any model
learning error while model-based approaches use a limited amount of
experience much more efficient.

▶ Integrating these two RL branches can be achieved using the Dyna
framework (background planning) incorporating the steps:
▶ Direct RL updates (any model-free approach, e.g., Q-learning),
▶ Model learning: use real experience to improve model predictions,
▶ Search control: strategies on how to generate simulated experience.

▶ The Dyna framework allows many different algorithms such as
Dyna-Q(+) or prioritized sweeping.
▶ Learning efficiency is much increased compared to pure

model-based/free approaches.
▶ Many degrees of freedom regarding internal update rules exist.

▶ In contrast, planning at decision time predicts future trajectories
starting from the current state (forward view).
▶ Rather computationally expensive leading to high latency responses.
▶ The Monte Carlo tree search rollout algorithm is a well-known example.

Oliver Wallscheid RL Lecture 07 39

The End for Today

Thanks for your attention and have a nice week!

Oliver Wallscheid RL Lecture 07 40

	Lecture 07: Planning and Learning with Tabular Methods
	Repetition: Model-based and Model-free RL
	Dyna: Integrated Planning, Acting and Learning
	Prioritized Sweeping
	Update Variants
	Planning at Decision Time

