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1 Motivation

Consider a set of data points with their classes labeled, and assume that each class is a Gaussian as shown
in Figure 1(a). Given this set of data points, finding the means of two Gaussian can be done easily by
estimating the sample mean, as the class labels are known.

Now imagine that the classes are not labeled as shown in Figure 1(b). How should we determine the
mean for each of the classes then? In order to solve this problem, we could use an iterative approach: first
make a guess of the class label for each data point, then compute the means and update the guess of the
class labels again. We repeat until the means converge.

The problem of estimating parameters in the absence of labels is known as unsupervised learning. There
are many unsupervised learning methods. We will focus on the Expectation Maximization (EM) algorithm.
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Figure 1: Estimation of parameters becomes trivial given the labelled classes

2 The EM-algorithm

Notations

1. Y , y observations. Y = random variable; y = realization of Y .

2. X, x complete data.

3. Z, z, missing data. Note that X = (Y ,Z).

4. θ: unknown deterministic parameter. θ(t): tth estimate of the θ in the EM iteration.

5. f(y|θ) is the distribution of Y given θ.



6. f(X|θ) is a random variable taking value of f(X|θ) (Remember: f(·|θ) is a function and thus we can
put any argument into f(·|θ) and evaluate its output.)

7. EX|y,θ[g(X)] =
∫
g(x)fX|y,θ(x|y, θ)dx is the conditional expectation of g(X) given Y = y and θ.

8. ℓ(θ) = log f(y|θ) is the log-likelihood. Note that ℓ(θ) depends on y.

EM Steps

The EM-algorithm consists of two steps:

1. E-step: Given y and pretending for the moment that θ
(t) is correct, formulate the distribution for

the complete data x:
f(x|y, θ(t)).

Then, we calculate the Q-function:

Q(θ|θ(t))
def
= EX|y,θ(t) [log f(X|θ)]

=

∫
log f(x|θ)f(x|y, θ(t))dx

2. M-step: Maximize Q(θ|θ(t)) with regard to θ:

θ(t+1) = argmax
θ

Q(θ|θ(t))

Properties of Q(θ|θ(t))

1. Ideally, if we have the distribution of the complete data x, then finding the parameter can be done
by maximizing f(x|θ). However, the complete data is only a virtual thing we created to solved the
problem. In reality we never know x. All we know is its distribution f(x|θ), which depends on what
we know about x. So one way to handle this uncertainty is to compute the average. This average is
the Q-function.

2. Another way of looking at Q(θ|θ(t)). We can treat log f(X|θ) as a function of two variables h(X, θ).
Maximizing over θ is problematic because it depends on X. So by taking expectation EX [h(X , θ)] we
can eliminate the dependency on X.

3. Q(θ|θ(t)) can be thought of a local approximation of the log-likelihood function ℓ(θ): Here, by ‘local’

we meant that Q(θ|θ(t)) stays close to its previous estimate θ(t). In fact if Q(θ|θ(t)) ≥ Q(θ(t)|θ(t)),

then ℓ(θ) ≥ ℓ(θ(t)).

3 Estimating Mean with Partial Observation

Let us consider the first example of the EM algorithm. Suppose that we generated a sequence of n random
variables Yi ∼ N (θ, σ2) for i = 1, . . . , n. Imagine that we have only observed Y = [Y1, Y2, . . . , Ym] where
m < n. How should we estimate θ based on Y ?

Intuitively, the estimated θ should be the sample mean of the m observations θ̂ = 1
m

∑m
i=1 Yi. However,

in this example we would like to derive the EM algorithm and see if the EM algorithm would match with
our intuition.

Solution: To start the EM algorithm, we first need to specify the missing data and the complete data. In
this problem, the missing data is Z = [Ym+1, . . . , Yn], and the complete data is X = [Y ,Z]. The distribution
of X is:

log f(X|θ) =
−n

2
log(2πσ2)−

n∑

i=1

(Yi − θ)2

2σ2
. (1)
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Therefore, the Q function is

Q(θ|θ(t))
def
= EX|Y ,θ(t) [log f(X|θ)]

= EX|Y ,θ(t)

[
−n

2
log(2πσ2)−

m∑

i=1

(Yi − θ)2

2σ2
−

n∑

i=m+1

(Yi − θ)2

2σ2

]

=
−n

2
log(2πσ2)−

m∑

i=1

(yi − θ)2

2σ2
−

n∑

i=m+1

EX|Y ,θ(t) [(Yi − θ)2]

2σ2
.

The last expectation can be evaluated as

EYi|Y ,θ(t) [(Yi − θ)2] = EYi|Y ,θ(t) [Y 2
i − 2Yiθ + θ2]

= [(θ(t))2 + σ2 − 2θ(t)θ + θ2].

Therefore, the Q function is

Q(θ|θ(t)) =
−n

2
log(2πσ2)−

m∑

i=1

(yi − θ)2

2σ2
−

n−m

2σ2
[(θ(t))2 + σ2 − 2θ(t)θ + θ2].

In the M-step, we need to maximize the Q-function. To this end, we set

∂

∂θ
Q(θ|θ(t)) = 0,

which yields that

θ(t+1) =

∑m
i=1 yi + (n−m)θ(t)

n
.

It is not difficult to show that as t → ∞, θ(t) → θ(∞). Hence,

θ(∞) =

∑m
i=1 yi

n
+
(
1−

m

n

)
θ(∞),

which yields

θ(∞) =
1

m

m∑

i=1

yi.

This result says that as the EM algorithm converges, the estimated parameter converges to the sample mean
using the available m samples, which is quite intuitive.

4 Gaussian Mixture With Known Mean And Variance

Our next example of the EM algorithm to estimate the mixture weights of a Gaussian mixture with known
mean and variance. A Gaussian mixture is defined as

f(y | θ) =
k∑

i=1

θiN (y |µi, σ
2
i ), (2)

where θ = [θ1, . . . , θk] is called the mixture weight. The mixture weight satisfies the condition that

k∑

i=1

θi = 1.

Our goal is to derive the EM-algorithm for θ.

3



Solution: We first need to define the missing data. For this problem, we observe that the observed data is
Y = [y1, y2, · · · , yn]. The missing data can be defined as the label for each yj , so that Z = [Z1, Z2, . . . , Zn],
with Zj ∈ {1, . . . , k}. Consequently, the complete data is X = [X1, X2, · · · , Xn], where Xj = (yj , Zj).

The distribution of the complete data can be computed as

f(xj |θ) = f(yj, zj |θ) = θzjN (yj |µzj , σ
2
zj
),

Thus, the Q function is

Q(θ | θ(t)) = EX |, Y ,θ(t) {log f(X |, θ)}

= EZ |, y,θ(t) {log f(Z,y |, θ)}

= EZ |, y,θ(t)



log

n∏

j=1

θzjN (yj |, µzj , σ
2
zj
)





=

n∑

j=1

EZj |yj,θ
(t)

{
log θzj + logN (yj |, µzj , σ

2
zj
)
}
.

The expectation can be evaluated as

EZj |yj,θ
(t){log θzj} =

∑

zj

log θzjP(Zj = zj|yj , θ
(t))

=

k∑

i=1

log θi P(Zj = i|yj , θ
(t))︸ ︷︷ ︸

def
= γ

(t)
ij

.

By summing over all j’s, we can further define

γ
(t)
i =

n∑

j=1

γ
(t)
ij

=

n∑

j=1

P(Zj = i | yj, θ
(t))

=

n∑

j=1

θ
(t)
i N (yj |µi, σ

2
i )∑k

i=1 θ
(t)
i N (yj |µi, σ

2
i )

Therefore, the Q function becomes

Q(θ | θ(t)) =
n∑

j=1

k∑

i=1

log γ
(t)
ij θi + C

=

k∑

i=1

log γ
(t)
i θi + C,

for some constant C independent of θ. Maximizing over θ yields

θ(t+1) = argmax
θ

k∑

i=1

γ
(t)
i log θi

=
γ
(t)
i∑k

i=1 γ
(t)
i

,

where the last equality is due to Gibbs inequality. To summarize the EM algorithm is given in the algorithm
below.
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Data: Gaussian Mixture with known mean and variance
Result: Estimated θ

for t = 1, · · · do

γ
(t)
i =

n∑

j=1

θ
(t)
i N (yj |µi, σ

2
i )∑k

i=1 θ
(t)
i N (yj |µi, σ

2
i )

θ
(t)
i =

γ
(t)
i∑k

i=1 γ
(t)
i

end

Remark: To solve argmax
θ

∑k
i=1 γ

(t)
i log θi, we use the Gibbs inequality. Gibbs inequality states that for

all α and β such that
∑n

i=1 αi = 1,
∑n

i=1 βi = 1, 0 ≤ αi ≤ 1 and 0 ≤ βi ≤ 1, it holds that

n∑

i=1

αi log βi ≤
n∑

i=1

αi logαi, (3)

with the equality holds when αi = βi for all i. The proof of Gibbs inequality is due to the non-negativity of
the KL-divergence which we will skip. What we want to show is that if we let

αi =
γ
(t)
i∑k

i=1 γ
(t)
i

, βi = θi,

then the equality holds when:

θi =
γ
(t)
i∑k

i=1 γ
(t)
i

,

which is the result we want.

5 Gaussian Mixture

Previously we have been working on Gaussian Mixtures with known mean and variance. However for most
of the time it is likely neither mean nor variance is available for us. Thus, we are interested in deriving an
EM-algorithm that would generally apply for any Gaussian mixture model with only observations available.
Recall that a Gaussian mixture is defined as

f(yi|θ) =
k∑

i=1

πiN (yi|µi,Σi), (4)

where θ
def
= {(πiµiΣi)}ki=1 is the parameter, with

∑k
i=1 πi = 1. Our goal is to derive the EM algorithm for

learning θ.
Solution. We first specify the following data:

� Observed Data: Y = [Y 1, · · · ,Y n] with realizations y = [y1, · · · ,yn];

� Missing Data: Z = [Z1, · · · , Zn] with realizations z = [z1, · · · , zn], where zj ∈ {1, · · · , k};

� Complete Data: X = [X1, · · · ,Xn] with realizations x = [x1, · · · ,xn] and xj = (yj , zj).

Accordingly, the distribution of the complete data is

f(yj , zj|θ) = πzjN (yj |µzj
,Σzj )
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Therefore, we can show that

P(Zj = i|yj , θ
(t)) =

π
(t)
i N (yj |µ

(t)
i ,Σ

(t)
i )

∑k
i=1 π

(t)
i N (yi|µ

(t)
i ,Σ

(t)
i )

.

The Q function is

Q(θ, θ(t)) = EX|y,θ(t){log f(X|θ)}

= EZ|y,θ(t){log f(Z,y|θ)}

= EZ|y,θ(t){log(
n∏

j=1

πzjN (yj |µzj
,Σzj ))}

=

n∑

j=1

EZj |yj,θ
(t){log πzj −

1

2
log |Σzj | −

1

2
(yj − µzj

)TΣ−1
zj

(yj − µzj
)}+ C

=
n∑

j=1

k∑

i=1

P(Zj = i|yi, θ
(t)){log πi −

1

2
log |Σi| −

1

2
(yj − µi)

TΣ−1
i (yj − µi)} + C

=

n∑

j=1

k∑

i=1

γ
(t)
ij {logπi −

1

2
log |Σi| −

1

2
(yj − µi)

TΣ−1
i (yj − µi)}+ C,

where C is a constant independent of θ.
The Maximization step is to solve the following optimization problem

maximize
θ

Q(θ|θ(t))

subject to
∑k

i=1 πi = 1,
πi > 0,
Σi ≻ 0.

(5)

For πi, the maximization is

maximize
π

∑k
i=1

∑n
j=1 γ

(t)
ij log πi

subject to
∑k

i=1 πi = 1, πi > 0
(6)

The solution of this problem is

π
(t+1)
i =

∑n
j=1 γ

(t)
ij∑k

i=1

∑n
j=1 γ

(t)
ij

=

∑n
j=1 γ

(t)
ij

n
. (7)

For µi, the maximization can be reduced to solving the equation

∂

∂µi

Q(θ|θ(t)) = 0. (8)

The left hand side is

∂

∂µi

Q(θ|θ(t)) =
∂

∂µi

{
n∑

j=1

k∑

i=1

γ
(t)
ij (yj − µi)

TΣ−1
i (yj − µi)}

= Σ−1
i (

n∑

j=1

γ
(t)
ij yj −

n∑

j=1

γ
(t)
ij µi).

Therefore,

µ
(t+1)
i =

∑n
j=1 γ

(t)
ij yi

∑n
j=1 γ

(t)
ij

(9)
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For Σi, the maximization is equivalent to solving

∂

∂Σi

(θ|θ(t)) = 0. (10)

The left hand side is

∂

∂Σi

(θ|θ(t)) = −
1

2
(Σn

j=1γ
(t)
ij )

∂ log |Σi|

∂Σi

−
1

2

n∑

j=1

γ
(t)
ij

∂

∂Σi

{(yj − µi)
TΣ−1

i (yj − µi)}

= −
1

2
(

n∑

i=1

γt
ij)Σ

−1
i +

1

2

n∑

j=1

γ
(t)
ij Σ−1

i (yj − µi)(yj − µi)
TΣ−1

i .

Therefore,

Σt+1
i =

∑n
j=1 γ

(t)
ij (yj − µ

(t+1)
i )(yj − µ

(t+1)
i )T

∑n
i=1 γ

t
ij

. (11)

6 Bernoulli Mixture

Our next example is to consider a Bernoulli mixture model. To motivate this problem, let us imagine that we
have a dataset of various items. Our goal is to see whether there is any relationship between the presence or
absence of these items. For example, if the object ‘A’ (e.g. a tree) was presented, there is some probability
that the object ‘B’ (e.g. a flower) is also presented. However if given certain object ‘C’ (e.g. a dinosaur)
presented it is unlikely to see the object ‘D’ (e.g. a car, unless you are in Jurassic Park!)

To setup the problem let us first define some notations. We use Y 1, · · · ,Y N to denote N images we
have observed. In each image, there are at most M items, so that Y n = [Y n

1 , · · · , Y n
M ] for n = 1, . . . , N .

Each entry in this vector is a Bernoulli random variable. Moreover, we define

P (Y n
i = 1 |Y n

k = 1)
def
= θki. (12)

Therefore, the goal is to estimate the matrix

Θ =



θ11 . . . θ1M
...

. . .
...

θM1 . . . θMM


 (13)

from the observations Y 1, . . . ,Y N .
The general problem of estimating Θ from Y 1, . . . ,Y N is very difficult. Therefore, it is necessary to pose

some assumptions on the problem. The assumption we make here is “semi-valid” from our daily experience.
It is not completely true, but they are simple enough to provide us some computational solutions.

Assumption 1. Conditional Independence

We assume that the observations follow the conditional independence structure:

P(Y n
i = 1 ∩ Y n

j = 1 |Y n
k = 1) = P(Y n

i = 1 |Y n
k = 1) · P(Y n

j = 1 |Y n
k = 1). (14)

Remark: Conditional independence is not the same as independence. For example, we let A be the event
that a puppy breaks a toy, B be the event that a mother yells, and C be the event that a child cries. Without
knowing the relationship, it could be that the child cries because the mother yells. However, if we assume
the conditional independence of B and C given A, then we know that the crying of the child and the yelling
of the mother are both triggered by the dog, but not by each other.
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Individual Model

In order to understand the EM algorithm of Bernoulli Mixture, let us set n fixed. Consequently,

P(Y n = yn) =

M∑

m=1

P(Y n = yn|‘item m is active’)P(‘item m is active’)︸ ︷︷ ︸
def
= πm

.

Furthermore,

P(Y n = yn | ‘item m is active’) =
M∏

i=1

θ
yn
i

mi(1− θmi)
1−yn

i

def
= fm(yn | θm),

where θm = [θm1, · · · , θmM ] is the mth row of Θ. Therefore,

P (Y n = yn) =
M∑

m=1

πm fm(yn | θm). (15)

EM Algorithm

Now, we will derive EM algorithm to estimate {π1, · · · , πM} and Θ. To start with, let us define the following
types of data:

� Observed Data: Y 1, · · · ,Y N ;

� Missing Data: Z1, · · · , ZN with realizations z1, · · · , zN and zn ∈ R
1×N ;

� Complete Data: X1, · · · ,XN , accordingly xn = (yn, zn).

The distribution of the complete data is

P(Y n = yn, Zn = zn |Θ) = πmfm(yn|θm).

The distribution of the missing data conditioned on the observed data is

P(Zn = m |Y n = yn,Θ(t)) =
π
(t)
m fm(yn | θ

(t)
m )

∑M
m=1 π

(t)
m fm(yn|θ

(t)
m )

.

The nth Q function is

Qn(Θ|Θ(t))
def
= EZn |yn,Θ

(t) [log f(Xn|Θ)]

= EZn |yn,Θ
(t) [log f(Zn,yn|Θ)]

=
M∑

m=1

log(πmfm(yn|θ
(t)
m ))P(Zn = m |yn,Θ

(t))︸ ︷︷ ︸
def
= γ

(t)
ij

=

M∑

m=1

γ(t)
nm log(πmfm(yn|θ

(t)
m )),

where we can show that

log(πmfm(yn | θ
(t)
m )) = log πm + log

M∏

i=1

θ
yn
i

mi(1− θmi)
1−yn

i

= log πm +

M∑

i=1

yni log θmi + (1− yni ) log(1− θmi).
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Therefore, overall Q-function is

Q(Θ|Θ(t) =

M∑

n=1

M∑

m=1

γ(t)
nm

[
log πm +

M∑

i=1

yni log θmi + (1− yni ) log(1 − θmi)

]
. (16)

To maximize the Q function, we solve

Θ(t=1) = argmax
Θ

Q(Θ |Θ(t)). (17)

For a fixed m and i, we have

∂

∂θmi

Q(Θ|Θ(t)) =

N∑

n=1

γ(t)
nm

[
yni
θmi

−
1− yni
1− θmi

]
.

Setting this to zero yields

∑N
n=1 γ

(t)
nmyni

θmi

=

∑N
n=1 γ

(t)
nm(1− yni )

1− θmi

,

which is

θ
(t+1)
mi =

∑N
n=1 γ

(t)
nmyi∑N

n=1 γ
(t)
nm

. (18)

Data: EM Algorithm for Bernoulli Mixture Model
Result: Estimated Θ and πm

for t = 1, · · · do

γ(t)
nm =

π
(t)
m fm(yn|θ(t)

m )
∑M

m=1 π
(t)
m fm(yn|θ(t)

m )

θ
(t+1)
mi =

∑N
n=1 γ

(t)
nmyni∑N

n=1 γ
(t)
nm

π(t+1)
m =

γ
(t)
nm

∑N
n=1 γ

(t)
nm

end

7 Convergence of EM

The convergence of EM algorithm is known to be local. What it means is that as the EM algorithm iterates,
θ(t+1) will never be less likely than θ(t). This property is called the monotonicity of EM, which is the result
of the following theorem.

Theorem 1.

Let X and Y be two random variables with parametric distribution controlled by a parameter θ ∈ Λ.
Suppose that:

1. X does not depend on θ;

2. There exists a Markov relationship
θ → X → Y

i.e. f(y |x, θ) = f(y|x) for all θ ∈ Λ and x ∈ X , y ∈ Y.

Then, for θ ∈ Λ and y ∈ Y such that X (y) 6= ∅, we have:

ℓ(θ) ≥ ℓ(θ(t)) if Q(θ|θ(t)) ≥ Q(θ(t)|θ(t)). (19)
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Proof.

ℓ(θ) = log f(y | θ) (by definition)

= log

∫

X (y)

f(x,y|θ)dx (marginalization, i.e., total probability)

= log

∫

X (y)

f(x,y|θ)

f(x|y, θ(t))
f(x|y, θ(t))dx

= logEX|y,θ(t)

[
f(X,y|θ)

f(X|y, θ)

]

≥ EX|y,θ(t)

[
log

f(X,y|θ)

f(X|y, θ)

]
(Jensen’s Inequality)

= EX|y,θ(t)


log f(y|X , θ)f(X|θ)

f(y|X,θ(t))f(X|θ(t))

f(y|θ(t))


 (Baye’s Rule)

= EX|y,θ(t)

[
log

f(y|X)f(X|θ)f(y|θ(t))

f(y|X)f(X|θ(t))

]
(assumption 2)

= EX|y,θ(t)

[
log

f(X|θ)f(y|θ(t))

f(X|θ(t))

]

= EX|y,θ(t) [log f(X|θ)]− EX|y,θ(t)

[
log f(X|θ(t))

]
+ EX|y,θ(t)

[
log f(y|θ(t))

]

= Q(θ|θ(t))−Q(θ(t)|θ(t)) + log f(y|θ(t))︸ ︷︷ ︸
= ℓ(θ(t))

Thus, ℓ(θ)− ℓ(θ(t)) ≥ Q(θ|θ(t))−Q(θ(t)|θ(t)). Hence if Q(θ|θ(t)) ≥ Q(θ(t)|θ(t)), then ℓ(θ) ≥ ℓ(θ(t)).

✷

8 Using Prior with EM

The EM algorithm can fail due to singularity of the log-likelihood function. For example, when learning a
GMM with 10 components, the algorithm may decide that the most likely solution is for one of the Gaussians
to only have one data point assigned to it. This could yield some bad result of having zero covariance.

To alleviate this problem, one can use the prior information about θ. In this case, we can modify the
EM setp as

� E-step:
Q(θ|θ(t)) = EX|y,θ(t) [log f(X|θ)];

� M-step:
θ(t+1) = argmax

θ

Q(θ|θ(t)) + log f(θ)︸ ︷︷ ︸
prior

.

Example

Assume that we have a GMM of k-components:

f(yj |θ) =
k∑

i=1

wiN (yj |µi, σ
2). (20)

10



Let us consider a constraint on µi:

µi = µ+ (i − 1)∆µ, for i = 1, · · · , k,

i.e. the means are equally spaced. (For details please refer to section 3.3 of Gupta and Chen.

Priors:

We assume the following priors:

1.

σ2 ∼ inverse-gamma

(
v

2
,
ǫ2

2

)
.

That is,

f(σ2) =
( ξ

2

2 )
v
2

Γ(v2 )
(σ2)−

v
2−1 exp

(
−

ξ2

2σ2

)

∝ (σ2)−
v+3
2 exp

(
−

ξ2

2σ2

)
.

2.

∆µ |σ2 ∼ N

(
η,

σ

ρ

)
.

That is,

f(∆µ |σ2) ∝ exp

(
−
(∆µ− η)2

2(σ
2

ρ
)

)
.

Therefore, the joint distribution of the prior is:

f(∆µ, σ2) ∝ (σ2)−
v+3
2 exp

{
−
ξ2 + l(∆− η)2

2σ2

}
. (21)

Parameters: θ = (w1, · · · , wk, µ,∆µ, σ2). Our goal is to estimate θ.

EM algorithm:
First of all, we let

γ
(t)
ij =

w
(t)
i N (yj |µ

(t)
i , σ2(t))

∑k
i=1 w

(t)
i N (yj |µ

(t)
i , σ2(t))

. (22)

The EM steps can be derived as follows.

The Expectation Step

Q(θ|θ(t)) =

n∑

j=1

k∑

i=1

γ
(t)
ij log(wiN (yj |µi, σ

2))

=

n∑

j=1

k∑

i=1

γ
(t)
ij log(wiN (yj |µ+ (i − 1)∆µ, σ2))

=

n∑

j=1

k∑

i=1

γ
(t)
ij logwi −

n

2
log(2π)−

n

2
log(σ2)−

1

2σ2

n∑

j=1

k∑

i=1

γ
(t)
ij (yj − µ− (i− 1)∆µ)2
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The Maximization Step

θ(t+1) = argmax
θ

Q(θ|θ(t)) + log f(θ)

= argmax
θ

n∑

j=1

k∑

i=1

γ
(t)
ij logwi −

n+ v + 3

2
log σ2 −

ξ + l(∆µ− η)2

2σ2

−
1

2σ2

n∑

j=1

k∑

i=1

γ
(t)
ij (yj − µ− (i − 1)∆µ)2 + C

Thus,

w
(t+1)
i =

∑n
j=1 γ

(t)
ij∑k

i=1

∑n
j=1 γ

(t)
ij

,

and
{

∂
∂µ

[Q(θ|θ(t)) + log f(θ)] = 0
∂

∂∆µ
[Q(θ|θ(t)) + log f(θ)] = 0

⇒

[
1

∑k−1
i=1 w

(t+1)
i+1 i∑k−1

i=1 w
(t+1)
i+1 i

∑k−1
i=1 w

(t+1)
i+1 i2 + l

n

] [
µ

∆µ

]
=

[
1
n

∑n
j=1 yj

ρη
n

+ 1
n

∑n
j=1

∑k
i=2 γ

(t)
ij (i− 1)yj

]
.

The solution of µ and ∆µ can be obtained by solving the linear system. Finally,

∂

∂σ2

(
Q(θ|θ(t)) + log f(θ)

)
= 0

⇒ σ2(t+1)
=

ξ2 + l(∆µ(t+1) − η)2 +
∑n

j=1

∑k
i=1 γ

(t)
ij (yj − µ

(t+1)
i )2

n+ v + 3
.

9 MALAB Demo: EM Algorithm for Bernoulli Mixture

9.1 Synthesize The Data

1 function [ data rand] = MakeData( DS, u vec, p mat )

2

3 cnt = 0;

4 for ii = 1:1:length(u vec)

5 N = DS*u vec(ii);

6 p vec = p mat(ii,:);

7 %%

8 for m = 1:1:length(p vec)

9 data vec = randperm(N);

10 th = N*p mat(ii,m);

11 for n = 1:1:N

12 if data vec(n) > th

13 data vec(n)= 0;

14 else

15 data vec(n) = 1;

16 end

17 end

18 data(cnt+1:cnt+N, m) = data vec';

19 end

20 cnt = cnt + N;

21 end

22

23 %% Now randomly permutate the rows of the matrix

24 [row, column] = size(data);

25 row vec = randperm(row);

12



26 for ii = 1:1:row

27 randtemp = row vec(ii);

28 data rand(ii,:) = data(randtemp,:);

29 end

30

31 end

9.2 Estimate the probability of a Vector Given Bernoulli Distribution

1 function [ p b ] = Bernoulli vec( p vec, y vec )

2 %% Calculate the probability of using the current Bernoulli Mixture

3 p b = 1;

4 for ii = 1:1:length(p vec)

5 p b = p b*(p vec(ii)ˆ(y vec(ii)))*((1-p vec(ii))ˆ(1-y vec(ii)));

6 end

7

8 end

9.3 The Main Function for EM with Bernoulli Mixture

1 close all

2 clear all

3 clc

4 DS = input('Eneter the synthetized data size:');

5 u vec = [1/4, 1/2, 1/4]

6 p mat = [1, 0.4, 0.05;

7 0.2, 1, 0.8;

8 0.3, 0.7, 1]

9 data rand = MakeData(DS, u vec, p mat);

10 T = input('Enter the desired number of iterations:');

11

12 %% Pick Initialization of parameters

13 u initial = [1/4, 1/8, 5/8];

14 p initial = [0.3, 0.2, 0.8;

15 0.1, 0.8, 0.7;

16 0.5, 0.15, 0.6];

17

18 M = length(u initial);

19 N = size(data rand, 1);

20 % Initiliaze the parameters

21 u = u initial;

22 p = p initial;

23

24 u history = zeros(M,T);

25 p history = zeros(M,M,T);

26

27 for t = 1:1:T

28 for m = 1:1:M

29 pi m = u(m);

30 p vec = p(m,:);

31 for n= 1:1:N

32 y vec = data rand(n,:);

33 %% Find the Hidden Variable, lambda

34 numerator = pi m*Bernoulli vec(p vec, y vec); % Modle the Bernoulli Process

35 denom = 0;

36 for mm = 1:1:M

37 p vec tmp = p(mm,:);

38 denom = denom + u(mm)*Bernoulli vec(p vec tmp, y vec);

39 end

40 lambda(m,n) = numerator/denom;

41 end
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42 end

43

44 sum lambda = sum(sum(lambda));

45

46 %% Update mu

47 for m = 1:1:M

48 u(m) = sum(lambda(m,:))/sum lambda;

49 end

50

51 %% Update P matrix

52 for i = 1:1:M

53 for m = 1:1:M

54 p(m,i) = (sum(lambda(m,:).*data rand(:,i)'))/(sum(lambda(m,:)));

55 end

56 end

57

58 %% Save in history for each iteration to plot

59 u history(:,t) = u;

60 p history(:,:,t) = p;

61 end

62 disp('updated p and u:')

63 p

64 u

65

66 figure

67 hold on

68 grid on

69 for m = 1:1:M

70 plot(u history(m,:));

71 end

72 ylabel('Estimated \mu value', 'FontSize', 20)

73 xlabel('Iterations', 'FontSize', 20)

74 title('Convergence of \mu estimated for Mixture Number = 3', 'FontSize', 20)

75 for m = 1:1:M

76 stem(T, u vec(m));

77 end

78

79

80 figure

81 hold on

82 grid on

83 for ii = 1:1:M

84 for jj = 1:1:M

85 for t = 1:1:T

86 tmp = p history(ii,jj,t);

87 plot vec(t) = tmp;

88 end

89 plot(plot vec)

90 end

91 end

92 ylabel('Estimated P matrix values', 'FontSize', 20)

93 xlabel('Iterations', 'FontSize', 20)

94 title('Convergence of P matrix estimated for Mixture Number = 3', 'FontSize', 20)

95 for m = 1:1:M

96 for n = 1:1:M

97 stem(T, p mat(m,n));

98 end

99 end

100

101 for m = 1:1:M

102 one loc = find(abs(p(m,:) - 1) == min(abs(p(m,:) - 1)))

103 p final(one loc,:) = p(m,:);

104 u final(one loc) = u(m);

105 end

106

107 disp('After Automatic Sorting Based on Diagnals:')

108 p final

109 u final
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