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0.1 Introductory remarks

Quantum field theory (QFT) is the quantum mechanics of extensive degrees of freedom.

What I mean by this is that at each point of space, there’s some stuff that can wiggle.

‘Extensive degrees of freedom’ are those which, if we

like, we can sprinkle over vast tracts of land, like sod

(depicted in the figure at right). And also like sod,

each little patch of degrees of freedom only interacts

with its neighboring patches: this property of sod

and of QFT is called locality.

More precisely, in a quantum mechanical system, we specify the degrees of freedom

by their Hilbert space; by an extensive system, I’ll mean one in which the Hilbert

space is of the form H = ⊗patches of spaceHpatch and the interactions are local H =∑
patches H(nearby patches).1

It’s not surprising that QFT is so useful, since this situation happens all over the

place. Some examples of ‘stuff’ are: the atoms in a solid, or the electrons in those

atoms, or the spins of those electrons. A less obvious, but more visible, example is the

electromagnetic field, even in vacuum. More examples are provided by other excitations

of the vacuum, and it will be our job here to understand those very electrons and atoms

that make up a solid in these terms. The vacuum has other less-long-lasting excitations

which are described by the Standard Model of particle physics.

Some examples of QFT are Lorentz invariant (‘relativistic’). That’s a nice simplifi-

cation when it happens. Indeed this seems to happen in particle physics. We’re going

to focus on this case for much of this quarter. Still I would like to emphasize: though

some of the most successful applications of QFT are in the domain of high energy

particle physics, this is not a class on that subject, and I will look for opportunities to

emphasize the universality of QFT.

Last quarter you saw that the low-energy excitations of weakly-coupled fields are

particles. A consequence of relativity is that the number of particles isn’t fixed. That

is: there are processes where the number of particles changes in time. Sometimes

this is used to motivate the study of QFT. It’s a necessary consequence of Lorentz

symmetry, but the converse is false: particle production and destruction can happen

without relativity.

1Actually, the Hilbert space of a gauge theory is not of this form; rather, it is a subspace of such

a space which satisfies the Gauss law. This is a source of a lot of confusion, which I hope to dispel.
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‘Divergences’. Another intrinsic and famous feature of QFT discernible from the

definition I gave above is its flirtation with infinity. I said that there is ‘stuff at each

point of space’; how much stuff is that? Well, there are two senses in which ‘the number

of points of space’ is infinite: (1) space can go on forever (the infrared (IR)), and (2)

in the continuum, in between any two points of space are more points (the ultraviolet

(UV)). The former may be familiar from statistical mechanics, where it is associated

with the thermodynamic limit, which is where interesting things happen. For our own

safety, our discussion will take place in a padded room, protected on both sides from

the terrors of the infinite.

Last quarter 215A ended right when you learned to compute amplitudes for simple

processes in QED. There are many measurable quantities that can be computed using

the formalism you developed, and the success of leading-order QED is a real high point

of physics. I’ll have to say a few words about that success.

Lurking behind that success, however, is a dark cloud. The leading order of per-

turbation theory is given by tree diagrams; more complicated diagrams should be

suppressed by more powers of e2

4π
≡ α. You might think that if the leading calculation

worked so well, we should do even better by looking at the next term. But there is a

surprise: naively calculating the next term gives an infinite correction.

So an important job will be to explain the non-naive point of view on this calculation

which allows us to extract finite, meaningful answers from perturbation theory.

Even more important will be to give a better point of view, from which we never

would have encountered divergences in the first place. The (silly) name for this point

of view is the renormalization group.

So here are some goals for the quarter, both practical and philosophical:

• There is more to QFT than the S-matrix. In a particle-physics QFT course (like

215 so far) you learn that the purpose in life of correlation functions or green’s

functions or off-shell amplitudes is that they have poles (at pµpµ−m2 = 0) whose

residues are the S-matrix elements, which are what you measure (or better, are

the distribution you sample) when you scatter the particles which are the quanta

of the fields of the QFT. I want to make two extended points about this:

1. In many physical contexts where QFT is relevant, you can actually measure

the off-shell stuff. This is yet another reason why including condensed matter

in our field of view will deepen our understanding of QFT.

2. This is good, because the Green’s functions don’t always have simple poles!

There are lots of interesting field theories where the Green’s functions in-

stead have power-law singularities, like G(p) ∼ 1
p2∆ . If you Fourier trans-
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form this, you don’t get an exponentially-localized packet. The elementary

excitations created by a field whose two point function does this are not

particles. (Any conformal field theory (CFT) is an example of this.) The

theory of particles (and their dance of creation and annihilation and so on)

is an important but proper subset of QFT.

• In addition to its importance in high energy physics, I want to emphasize that

QFT is also quite central in many aspects of condensed matter physics. From

the point of view of someone interested in QFT, high energy particle physics has

the severe drawback that it offers only one example! (OK, for some purposes we

can think about QCD and the electroweak theory separately...)

From the high-energy physics point of view, we could call this the study of regu-

lated QFT, with a particular kind of lattice regulator. Why make a big deal about

‘regulated’? Besides the fact that this is how QFT comes to us (when it does)

in condensed matter physics, such a description is required if we want to know

what we’re talking about. For example, we need it if we want to know what we’re

talking about well enough to explain it to a computer. Many QFT problems are

too hard for our brains. A related but less precise point is that I would like to do

what I can to erase the problematic, theorist-centered perspective on QFT which

‘begins from a classical lagrangian and quantizes it’.

• A central theme this quarter will be coarse-graining in quantum systems with

extensive degrees of freedom, aka the renormalization group (RG) in QFT.

By ‘coarse-graining’ I mean ignoring things we don’t care about, or rather only

paying attention to them to the extent that they affect the things we do care

about. And the things we should care about the most are the biggest ones – the

modes with the longest wavelength. So the ‘better perspective’ alluded to above

is: we should try to understand QFT scale by scale.

To continue the sod example in 2+1 dimensions, a person laying the sod in the

picture above cares that the sod doesn’t fall apart, and rolls nicely onto the

ground (as long as we don’t do high-energy probes like bending it violently or

trying to lay it down too quickly). These long-wavelength properties of rigidity

and elasticity are collective, emergent properties of the microscopic constituents

(sod molecules) – we can describe the dynamics involved in covering the Earth

with sod (never mind whether this is a good idea in a desert climate) without

knowing the microscopic theory of the sod molecules (‘grass’). Our job is to think

about the relationship between the microscopic model (grassodynamics) and its

macroscopic counterpart (in this case, suburban landscaping). In my experience,

learning to do this is approximately synonymous with understanding.
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• I would like to convince you that “non-renormalizable” does not mean “not worth

your attention,” and explain the incredibly useful notion of an Effective Field

Theory.

• There is more to QFT than perturbation theory about free fields in a Fock vac-

uum. In particular, it is worthwhile to spend some some time thinking about

non-perturbative physics, effects of topology, solitons. Topology is one tool for

making precise statements without perturbation theory (the basic idea: if we

know something is an integer, it is easy to get many digits of precision!). Maybe

this will wait until 215C.

• Given time, I would like to show that many fancy phenomena precious to par-

ticle physicists can emerge from humble origins in the kinds of (completely

well-defined) local quantum lattice models we will study. Here I have in mind:

fermions, gauge theory, photons, anyons, strings, topological solitons, CFT, and

many other sources of wonder I’m forgetting right now.

0.2 Sources and acknowledgement

The material in these notes is collected from many places, among which I should

mention in particular the following:

Peskin and Schroeder, An introduction to quantum field theory (Wiley)

Zee, Quantum Field Theory (Princeton, 2d Edition)

Banks, Modern Quantum Field Theory: A Concise Introduction (Cambridge)

Schwartz, Quantum field theory and the standard model (Cambridge)

David Tong’s lecture notes

Many other bits of wisdom come from the Berkeley QFT courses of Prof. L. Hall

and Prof. M. Halpern.

Xiao-Gang Wen, Quantum Field Theory of Many-Body Systems

Sidney Coleman, Aspects of Symmetry

Alexander Polyakov, Gauge Fields and Strings

Eduardo Fradkin, Field Theories of Condensed Matter Systems
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0.3 Conventions

Following most QFT books, I am going to use the + − −− signature convention for

the Minkowski metric. I am used to the other convention, where time is the weird one,

so I’ll need your help checking my signs. More explicitly, denoting a small spacetime

displacement as dxµ ≡ (dt, d~x)µ, the Lorentz-invariant distance is:

ds2 = +dt2 − d~x · d~x = ηµνdx
µdxν with ηµν = ηµν =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


µν

.

(spacelike is negative). We will also write ∂µ ≡ ∂
∂xµ

=
(
∂t, ~∇x

)µ
, and ∂µ ≡ ηµν∂ν . I’ll

use µ, ν, ... for Lorentz indices, and i, j, k, ... for spatial indices.

The convention that repeated indices are summed is always in effect unless otherwise

indicated.

d is the number of space dimensions, D is the number of spacetime dimensions (it’s

bigger!).

A consequence of the fact that english and math are written from left to right is

that time goes to the left.

A useful generalization of the shorthand ~ ≡ h
2π

is d̄k ≡ dk
2π
. I will also write

/δ
d
(q) ≡ (2π)dδ(d)(q). I will try to be consistent about writing Fourier transforms as∫

ddk

(2π)d
eikxf̃(k) ≡

∫
d̄dk eikxf̃(k) ≡ f(x).

IFF ≡ if and only if.

RHS ≡ right-hand side. LHS ≡ left-hand side. BHS ≡ both-hand side.

IBP ≡ integration by parts. WLOG ≡ without loss of generality.

+O(xn) ≡ plus terms which go like xn (and higher powers) when x is small.

+h.c. ≡ plus hermitian conjugate.

L 3 O means the object L contains the term O.

We work in units where ~ and the speed of light, c, are equal to one unless otherwise

noted. When I say ‘Peskin’ I usually mean ‘Peskin & Schroeder’.

Please tell me if you find typos or errors or violations of the rules above.
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1 To infinity and beyond

At this point I believe you are able to use QED to compute the amplitudes and cross-

sections for many physical processes involving electrons, photons and positrons. More

precisely, you know how to compute the leading-order-in-α amplitudes, using Feynman

diagrams which are trees – diagrams without loops. The natural next step is to look

at the next terms in the perturbation expansion in α, which come from diagrams with

one loop. This innocent-seeming step opens a big can of worms. The reason this is a

big step is that tree-level processes are actually classical.

In a tree-level diagram, the quantum numbers (and in particular the momenta) of

the intermediate states are fixed by the external states. In contrast, once there is a

loop, there are undetermined momenta which must be summed, and this sum includes,

it seems, arbitrarily high momentum modes. Surely we have no information yet about

these modes from our piddling low-energy experiments. (Perhaps this is an opportunity

to learn about them?) What do we do?

In order to put ourselves in the right frame of mind to think about this stuff,

we’ll make a brief retreat to a parable about a system with finitely many degrees of

freedom in §1.1. A second useful parable in §1.2 will come from the Casimir effect –

the additive constant in the energy of free fields raises the same issues. Then we’ll

apply these lessons to a simple field theory example, namely scalar field theory. Then

we’ll come back to perturbation theory in QED. Reading assignment for this chapter:

Zee §III.

1.1 A parable from quantum mechanics on the breaking of

scale invariance

Recall that the coupling constant in φ4 theory in D = 3 + 1 spacetime dimensions

is dimensionless, and the same is true of the electromagnetic coupling e in QED in

D = 3+1 spacetime dimensions. In fact, the mass parameters are the only dimensionful

quantities in those theories, at least in their classical avatars. This means that if we

ignore the masses, for example because we are interested in physics at much higher

energies, then these models seem to possess scale invariance: the physics is unchanged

under zooming in.

Here we will study a simple quantum mechanical example (that is: an example

with a finite number of degrees of freedom)2 with such (classical) scale invariance. It

exhibits many interesting features that can happen in strongly interacting quantum

2I learned this example from Marty Halpern.
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field theory – asymptotic freedom, dimensional transmutation. Because the model is

simple, we can understand these phenomena without resort to perturbation theory.

They will nevertheless illuminate some ways of thinking which we’ll need in examples

where perturbating is our only option.

Consider the following (‘bare’) action:

S[q] =

∫
dt

(
1

2
~̇q2 + g0δ

(2)(~q)

)
≡
∫
dt

(
1

2
~̇q2 − V (~q)

)
where ~q = (x, y) are two coordinates of a quantum particle, and the potential involves

δ(2)(~q) ≡ δ(x)δ(y), a Dirac delta function. I chose the sign so that g0 > 0 is attractive.

(Notice that I have absorbed the inertial mass m in 1
2
mv2 into a redefinition of the

variable q, q →
√
mq.)

First, let’s do dimensional analysis (always a good idea). Since ~ = c = 1, all

dimensionful quantites are some power of a length. Let −[X] denote the number of

powers of length in the units of the quantity X; that is, if X ∼ (length)ν(X) then we

have [X] = −ν(X), a number. We have:

[t] = [length/c] = −1 =⇒ [dt] = −1.

The action appears in the exponent in the path integrand, and is therefore dimension-

less (it has units of ~), so we had better have:

0 = [S] = [~]

and this applies to each term in the action. We begin with the kinetic term:

0 = [

∫
dt~̇q2] =⇒

[~̇q2] = +1 =⇒ [~̇q] = +
1

2
=⇒ [~q] = −1

2
.

Since 1 =
∫
dqδ(q), we have 0 = [dq] + [δ(q)] and

[δd(~q)] = −[q]d =
d

2
, and in particular [δ2(~q)] = 1.

This implies that when d = 2 the naive (“engineering”) dimensions of the coupling

constant g0 are [g0] = 0 – it is dimensionless. Classically, the theory does not have a

special length scale; it is scale invariant.
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The Hamiltonian associated with the Lagrangian above is

H =
1

2

(
p2
x + p2

y

)
+ V (~q).

Now we treat this as a quantum system. Acting in the position basis, the quantum

Hamiltonian operator is

H = −~2

2

(
∂2
x + ∂2

y

)
− g0δ

(2)(~q)

So in the Schrödinger equation Hψ =
(
−~2

2
∇2 + V (~q)

)
ψ = Eψ, the second term

on the LHS is

V (~q)ψ(~q) = −g0δ
(2)(~q)ψ(0).

To make it look more like we are doing QFT, let’s solve it in momentum space:

ψ(~q) ≡
∫

d2p

(2π~)2 e
i~p·~q/~ϕ(~p) ≡

∫
d̄2p ei~p·~qϕ(~p) (1.1)

where I used some notation from §0.3 and set ~ = 1. The delta function is

δ(2)(q) =

∫
d2p

(2π~)2 e
i~p·~q/~. (1.2)

So the Schrödinger equation says(
−1

2
∇2 − E

)
ψ(q) = −V (q)ψ(q)∫

d̄2peip·q
(
p2

2
− E

)
ϕ(p) = +g0δ

2(q)ψ(0)

(1.2)
= +g0

(∫
d̄2peip·q

)
ψ(0) (1.3)

where to get to the second line, we just plugged in (1.1). Integrating the both-hand

side of (1.3) over q: (
∫

d̄2qe−ip·q ((1.3)) ) says(
~p2

2
− E

)
ϕ(~p) = +g0

∫
d2p′

(2π~)2ϕ(~p′)︸ ︷︷ ︸
=ψ(0)

There are two cases to consider:

• ψ(~q = 0) =
∫

d̄2pϕ(~p) = 0. Then this case is the same as a free theory, with the

constraint that ψ(0) = 0, (
~p2

2
− E

)
ϕ(~p) = 0

i.e. plane waves which vanish at the origin, e.g. ψ ∝ sin pxx
~ e
±ipyy/~. These scat-

tering solutions don’t see the delta-function potential at all.
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• ψ(0) ≡ α 6= 0, some constant to be determined. This means ~p2/2−E 6= 0, so we

can divide by it :

ϕ(~p) =
g0

~p2

2
− E

(∫
d̄2p′ϕ(~p′)

)
=

g0

~p2

2
− E

α.

The integral of the RHS (for ψ(0) = α) is a little problematic if E > 0, since

then there is some value of p where p2 = 2E. Avoid this singularity by going to

the boundstate region: consider E = −εB < 0. So:

ϕ(~p) =
g0

~p2

2
+ εB

α.

What happens if we integrate this
∫

d̄2p to check self-consistency – the LHS should

give α again:

0
!

=

∫
d̄2pϕ(~p)︸ ︷︷ ︸

=ψ(0)=α 6=0

(
1−

∫
d̄2p

g0

~p2

2
+ εB

)

=⇒
∫

d̄2p
g0

~p2

2
+ εB

= 1

is a condition on the energy εB of possible boundstates.

But there’s a problem: the integral on the LHS behaves at large p like∫
d2p

p2
=∞ .

At this point in an undergrad QM class, you would give up on this model. In QFT we

don’t have that luxury, because this kind of thing happens all over the place. Here’s

what we do instead.

We cut off the integral at some large p = Λ:∫ Λ d2p

p2
∼ log Λ .

This our first example of the general principle that a classically scale invariant system

will exhibit logarithmic divergences (rather: logarithmic dependence on the cutoff).

It’s the only kind allowed by dimensional analysis.

The introduction of the cutoff can be thought of in many ways: we could say there

are no momentum states with |p| > Λ, or maybe we could say that the potential is not

really a delta function if we look more closely. The choice of narrative here shouldn’t

affect our answers to physics questions at energies far below the cutoff.
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More precisely:∫ Λ d2p
p2

2
+ εB

= 2π

∫ Λ

0

pdp
p2

2
+ εB

= 2π log

(
1 +

Λ2

2εB

)
.

So in our cutoff theory, the boundstate condition is:

1 = g0

∫ Λ d̄2p
p2

2
+ εB

=
g0

2π~2
log

(
1 +

Λ2

2εB

)
.

A solution only exists for g0 > 0. This makes sense since only then is the potential

attractive (recall that V = −g0δ).

Now here’s a trivial-seeming step that offers a dramatic new vista: solve for εB.

εB =
Λ2

2

1

e
2π~2

g0 − 1
. (1.4)

As we remove the cutoff (Λ → ∞), we see that E = −εB → −∞, the boundstate

becomes more and more bound – the potential is too attractive.

Suppose we insist that the boundstate energy εB is a fixed thing – imagine we’ve

measured it to be 200 MeV3. We should express everything in terms of the measured

quantity. Then, given some cutoff Λ, we should solve for g0(Λ) to get the boundstate

energy we have measured:

g0(Λ) =
2π~2

log
(

1 + Λ2

2εB

) .
This is the crucial step: this silly symbol g0 which appeared in our action doesn’t mean

anything to anyone (see Zee’s dialogue with the S.E. in section III). We are allowing

g0 ≡ the bare coupling to be cutoff-dependent.

Instead of a dimensionless coupling g0, the useful theory contains an arbitrary

dimensionful coupling constant (here εB). This phenomenon is called dimensional

transmutation (d.t.). The cutoff is supposed to go away in observables, which depend

on εB instead.

In QCD we expect that in an identical way, an arbitrary scale ΛQCD will enter into

physical quantities. (If QCD were the theory of the whole world, we would work in

units where it was one.) This can be taken to be the rest mass of some mesons –

boundstates of quarks. Unlike this example, in QCD there are many boundstates, but

their energies are dimensionless multiplies of the one dimensionful scale, ΛQCD. Nature

chooses ΛQCD ' 200 MeV.

3Spoiler alert: I picked this value of energy to stress the analogy with QCD.
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[This d.t. phenomenon was maybe first seen in a perturbative field theory in S.

Coleman, E. Weinberg, Phys Rev D7 (1973) 1898. Maybe we’ll come back to their

example.]

There are more lessons in this example. Go back to (1.4):

εB =
Λ2

2

1

e
2π~2

g0 − 1

g0→0
' e

−2π~2

g0 6=
∞∑
n=0

gn0 fn(Λ)

it is not analytic (i.e. a power series) in g0(Λ) near small g0; rather, there is an essential

singularity in g0. (All derivatives of εB with respect to g0 vanish at g0 = 0.) You can’t

expand the dimensionful parameter in powers of the coupling. This means that you’ll

never see it in perturbation theory in g0. Dimensional transmutation is an inherently

non-perturbative phenomenon.

Notice furthermore that even for moderately weak coupling, εB � Λ2. For example,

when g0 = .1, εB/Λ
2 = 10−28! Dimensional transmutation generates a hierarchy of

scales. This phenomenon explains why the critical temperature below which metals go

superconducting is much less than their intrinsic energy scale (the Fermi energy).

Look at how the bare coupling depends on the cutoff in this example:

g0(Λ) =
2π~2

log
(

1 + Λ2

2εB

) Λ2�εB→ 2π~2

log
(

Λ2

2εB

) Λ2�εB→ 0

– the bare coupling vanishes in this limit, since we are insisting that the parameter εB
is fixed. This is called asymptotic freedom (AF): the bare coupling goes to zero (i.e.

the theory becomes free) as the cutoff is removed. This also happens in QCD.

[End of Lecture 1]

RG flow equations. Define the beta-function as the logarithmic derivative of the

bare coupling with respect to the cutoff:

Def: β(g0) ≡ Λ
∂

∂Λ
g0(Λ) .

For this theory

β(g0) = Λ
∂

∂Λ

 2π~2

log
(

1 + Λ2

2εB

)
 calculate

= − g2
0

π~2

 1︸︷︷︸
perturbative

− e−2π~2/g0︸ ︷︷ ︸
not perturbative

 .

Notice that it’s a function only of g0, and not explicitly of Λ. Also, in this simple toy

theory, the perturbation series for the beta function happens to stop at order g2
0.
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β measures the failure of the cutoff to disappear from our discussion – it signals a

quantum mechanical violation of scale invariance. What’s β for? Flow equations:

ġ0 = β(g0).

4 This is a tautology. The dot is

Ȧ = ∂sA, s ≡ log Λ/Λ0 =⇒ ∂s = Λ∂Λ.

(Λ0 is some reference scale.) But forget for the moment that this is just a definition:

ġ0 = − g2
0

π~2

(
1− e−2π~2/g0

)
.

This equation tells you how g0 changes as you change the cutoff. Think of it as a

nonlinear dynamical system (fixed points, limit cycles...)

Def: A fixed point g?0 of a flow is a value of the coupling g0 where the flow stops:

0 = ġ0|g?0 = β(g?0) ,

a zero of the beta function. (Note: if we have many couplings gi, then we have such

an equation for each g: ġi = βi(g). So βi is (locally) a vector field on the space of

couplings.)

Where are the fixed points in our example?

β(g0) = − g2
0

π~2

(
1− e−2π~2/g0

)
.

There’s only one: g?0 = 0, near which β(g0) ∼ − g2
0

π~ , the non-perturbative terms are

small. What does the flow look like near this point? For g0 > 0, ġ0 = β(g0) < 0. With

this (high-energy) definition of the direction of flow, g0 = 0 is an attractive fixed point:

*<-<-<-<-<-<-<-<-<-<-<------------------------ g_0

g?0 = 0.

We already knew this. It just says g0(Λ) ∼ 1
log Λ2 → 0 at large Λ. A lesson is that in

the vicinity of such an AF fixed point, the non-perturbatuve stuff e
−2π~2

g0 is small. So

4Warning: The sign in this definition carries a great deal of cultural baggage. With the definition

given here, the flow (increasing s) is toward the UV, toward high energy. This is the high-energy

particle physics perspective, where we learn more physics by going to higher energies. As we will see,

there is a strong argument to be made for the other perspective, that the flow should be regarded as

going from UV to IR, since we lose information as we move in that direction – in fact, the IR behavior

does not determine the UV behavior in general, but UV does determine IR.
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we can get good results near the fixed point from the perturbative part of β. That is:

we can reliably compute the behavior of the flow of couplings near an AF fixed point

perturbatively, and be sure that it is an AF fixed point. This is the situation in QCD.

On the other hand, the d.t. phenomenon that we’ve shown here is something that

we can’t prove in QCD. However, the circumstantial evidence is very strong!

Another example where this happens is quantum mechanics in any number of vari-

ables with a central potential V = −g2
0

r2 . It is also classically scale invariant:

[r] = −1

2
,

[
1

r2

]
= +1 =⇒ [g0] = 0.

This model was studied in K.M. Case, Phys Rev 80 (1950) 797 and you will study it on

the first homework. The resulting boundstates and d.t. phenomenon are called Efimov

states; this model preserves a discrete scale invariance.

Here’s a quote from Marty Halpern from his lecture on this subject:

I want you to study this set of examples very carefully, because it’s the only time in

your career when you will understand what is going on.

In my experience it’s been basically true. For real QFTs, you get distracted by Feynman

diagrams, gauge invariance, regularization and renormalization schemes, and the fact

that you can only do perturbation theory.
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1.2 Casimir effect: vacuum energy is real

[A. Zee, Quantum Field Theory in a Nutshell, §I.9]

Our success in the last subsection relied on our ability to completely solve the

theory, which we could do because there was just a single degree of freedom. Now we

will be brave and think about a system with extensive degrees of freedom.

This subsection has two purposes. The main purpose is to give an object lesson in

asking the right questions. In physics, the right question is often a question which can

be answered by an experiment, at least in principle. The answers to such questions are

less sensitive to our silly theoretical prejudices, e.g. about what happens to physics at

very short distances.

A second purpose is to show that the 1
2
~ω energy of the vacuum of the quantum

harmonic oscillator is real. Sometimes we can get rid of it by choosing the zero of

energy (which doesn’t matter unless we are studying dynamical gravity). But it is

meaningful if we can vary ω (or the collection of ωs if we have many oscillators as for

the radiation field) and compare the difference.

In the context of the bunch of oscillators making up the radiation field, we can

change the spectrum of frequencies of these oscillators {ωk} by putting it in a box and

varying the size of the box. In particular, two parallel conducting plates separated by

some distance d experience an attractive force from the change in the vacuum energy

of the EM field resulting from their presence. The plates put boundary conditions on

the field, and therefore on which normal modes are present.

To avoid some complications of E&M which are not essential for our point here,

we’re going to make two simplifications:

• we’re going to solve the problem in 1+1 dimensions

• and we’re going to solve it for a scalar field.

To avoid the problem of changing the boundary conditions outside the plates we

use the following device with three plates:

| ← d→ | ←− L− d −→ |

(We will consider L � d, so we don’t really care about the far right plate.) The

‘perfectly conducting’ plates impose the boundary condition that our scalar field q(x)

vanishes there. The normal modes of the scalar field q(x) in the left cavity are then

qj = sin (jπx/d) , j = 1, 2, ...
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with frequencies ωj = π|j|
d
c. There is a similar expression for the modes in the right

cavity which we won’t need. We’re going to add up all the 1
2
~ωs for all the modes in

both cavities to get the vacuum energy E0(d); the force on the middle plate is then

−∂dE0.

The vacuum energy in the whole region of interest between the outer plates is the

sum of the vacuum energies of the two cavities

E0(d) = f(d) + f(L− d)

where

f(d) =
1

2
~
∞∑
j=1

ωj = ~c
π

2d

∞∑
j=1

j
?!?!!
= ∞.

We have done something wrong. What?

Our crime is hubris: we assumed that we knew what the modes of arbitrarily large

mode number k (arbitrarily short wavelength, arbitrarily high frequency) are doing,

and in particular we assumed that they cared about our silly plates. In fact, no metal

in existence can put boundary conditions on the modes of large enough frequency –

those modes don’t care about d. The reason a conductor puts boundary conditions

on the EM field is that the electrons move around to compensate for an applied field,

but there is a limit on how fast the electrons can move (e.g. the speed of light). The

resulting cutoff frequency is called the plasma frequency but we don’t actually need to

know about all these details. To parametrize our ignorance of what the high-frequency

modes do, we must cut off (or regularize) the contribution of the high-frequency modes.

Let’s call modes with ωj � π/a high frequency, where a is some short time5, a � d.

Replace

f(d) f(a, d) = ~
π

2d

∞∑
j=1

e−aωj/πj

= −π~
2
∂a

(
∞∑
j=1

e−aj/d

)
︸ ︷︷ ︸

= 1

1−e−a/d
−1

= +
π~
2d

ea/d

(ea/d − 1)
2

a�d' ~

 πd

2a2︸︷︷︸
→∞ as a→0

− π

24d
+

πa2

480d3
+ ...

 (1.5)

5You can think of a as the time it takes the waves to move by one lattice spacing. If we work

in units where the velocity is c = 1, this is just the lattice spacing. I will do so for the rest of this

discussion.
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Answers which don’t depend on a have a chance of being meaningful. The thing we

can measure is the force:

F = −∂dE0 = − (f ′(d)− f ′(L− d))

= −~
(( π

2a2
+

π

24d2
+O(a2)

)
−
(
π

2a2
+

π

24 (L− d)2 +O(a2)

))
a→0
= −π~

24

(
1

d2
− 1

(L− d)2

)
L�d
= − π~c

24d2
(1 +O(d/L)) . (1.6)

This is an attractive force between the plates. (I put the c back in the last line by

dimensional analysis.)

The analogous force between real conducting plates, caused by the change of bound-

ary conditions on the electromagnetic field, has been measured.

The string theorists will tell you that
∑∞

j=1 j = − 1
12

, and our calculation above

agrees with them in some sense. But what this foolishness means is that if we compute

something which is not dependent on the cutoff we have to get the same answer no

matter what cutoff we use. Notice that it is crucial to ask the right questions.

An important question is to what extent could we have picked a different cutoff

function (instead of e−πω/a) and gotten the same answer for the physics. This interest-

ing question is answered affirmatively in Zee’s wonderful book, 2d edition, section I.9

Appendix (available electronically here!). Go study this appendix now.

A comment about possible physical applications of the calculation we actually did:

you could ask me whether there is such a thing as a Casimir force due to the vacuum

fluctuations of phonons. Certainly it’s true that the boundary of a chunk of solid

puts boundary conditions on the phonon modes, which change when we change the

size of the solid. The problem with the idea that this might produce a measurable

force (which would lead the solid to want to shrink) is that it is hard to distinguish

the ‘phonon vacuum energy’ from the rest of the energy of formation of the solid,

that is, the energy difference between the crystalline configuration of the atoms and

the configuration when they are all infinitely separated. Certainly the latter is not

well-described in the harmonic approximation.

Lest this seem too disconnected from the other ‘divergences’ we will encounter in

QFT associated with loop amplitude, let me emphasize that the vacuum energy is a

loop amplitude in this free field theory (the only one). Specifically

E0 = 〈0|H0|0〉 = 〈0|
∫
ddx φ(x)

(
−∂2

t +∇2 +m2
)
φ(x) |0〉 = .
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A few comments about the 3+1 dimensional case of E&M. Assume the size

of the plates is much larger than their separation L. Dimensional analysis shows that

the force per unit area from vacuum fluctuations must be of the form

P = A
~c
L4

where A is a numerical number. A is not zero!

Use periodic boundary conditions in the xy planes (along the plates). The allowed

wave vectors are then

~k =

(
2πnx
Lx

,
2πny
Ly

)
with nx, ny integers.

We have to do a bit of E&M here. Assume the plates are perfect conductors

(this where the hubris about the high-frequency modes enters). This means that the

transverse component of the electric field must vanish at the surface. Instead of plane

waves in z, we get standing waves: φ(z) ∝ sin (nπz/L) .

The frequencies of the associated standing waves are then

ωn(~k) = c

√
π2n2

L2
+ ~k2, n = 0, 1, 2

Also, there is only one polarization state for n = 0.

So the zero-point energy is

E0(L) =
~
2

2
′∑
n,~k

ωn(~k)


where it’s useful to define

′∑
n,~k

≡ 1

2

∑
n=0,~k

+
∑
n≥1,~k

Now you can imagine introducing a regulator like the one we used above, and replacing

′∑
n,~k

· 
′∑
n,~k

e−aωn(~k)/π·

and doing the sums and integrals and extracting the small-a behavior.

19



1.3 A simple example of perturbative renormalization in QFT

[Zee §III.1, Schwartz §15.4] Now let’s consider an actual, interacting field theory but a

simple one, namely the theory of a real scalar field in four dimensions, with

L = −1

2
φ2φ− 1

2
m2φ2 − g

4!
φ4. (1.7)

Demanding that the action is dimensionless means that [φ] = D−2
2

so [m] = 1 and

[g] = 4−D
2

, so g is dimensionless in D = 4. As above, this will mean logarithms!

Let’s do 2← 2 scattering of φ particles.

iM2←2 = + O(g3)

= −ig + iMs + iMt + iMu + O(g3)

where, in terms of qs ≡ k1 + k2, the s-channel 1-loop amplitude is

iMs =
1

2
(−ig)2

∫
d̄4k

i

k2 −m2 + iε

i

(qs − k)2 −m2 + iε
∼
∫ Λ d4k

k4
.

Parametrizing ignorance. What is a scalar field? One way to discover scalar

field theory is to start with a chain of masses connected by springs, like a mattress, and

look at the long-wavelength (small-wavenumber) modes. So the coherent excitations of

such a field are sound waves and the quanta of the field are called phonons. In the sum,∫
d4k, the region of integration that’s causing the trouble is not the part where the

system looks most like a field theory. That is: if we look closely enough (small enough

1/k), we will see that the mattress is made of springs. In terms of the microscopic

description with springs, there is a smallest wavelength, of order the inverse lattice

spacing: the sum over k stops.

Field theories arise from many such models, which may differ dramatically in their

short-distance physics. We’d like to not worry too much about which one, but rather

say things which do not depend on this choice. Recall the discussion of the Casimir

force from §1.2: in that calculation, different choices of regulators for the mode sum

corresponded (for example) to different material properties of the conducting plates.

The Casimir force was independent of this choice; more generally, it is an important

part of the physics problem to identify which quantities are UV sensitive and which

are not.

If we had an actual lattice (like the chain of springs), we would replace the inverse

propagator p2 − m2 = ω2 − ~p2 − m2 with ω2 − ω2
p − m2, where ωp is the dispersion
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relation (e.g. ωp = 2t
∑d

i=1 (1− cos pia) for nearest-neighbor hopping on the cubic

lattice), and p is restricted to the Brillouin zone (−π/a ≤ pi < π/a for the cubic

lattice). Instead, for simplicity, let’s keep just impose a hard cutoff on the euclidean

momentum
∑d

i=0 p
2 ≤ Λ2.

Parametrizing ignorance is another way to say ‘doing science’. In the context of

field theory, at least in the high-energy community, it is called ‘regularization’.

Now we need to talk about the integral a little more. The part which is causing

the trouble is the bit with large k, which might as well be |k| ∼ Λ � m, so let’s set

m = 0 for simplicity.

We’ll spend lots of time learning to do integrals below. Here’s the answer:

iM = −ig + iCg2

(
log

Λ2

s
+ log

Λ2

t
+ log

Λ2

u

)
+O(g3)

If you must know, C = 1
16π2 .

[End of Lecture 2]

Observables can be predicted from other observables. Again, the boldface

statement might sound like some content-free tweet from a boring philosophy-of-science

twitter feed, but actually it’s a very important thing to remember here.

What is g? As Zee’s Smart Experimentalist says, it is just a letter in some theorist’s

lagrangian, and it doesn’t help anyone to write physical quantities in terms of it. Much

more useful would be to say what is the scattering amplitude in terms of things that

can be measured. So, suppose someone scatters φ particles at some given (s, t, u) =

(s0, t0, u0), and finds for the amplitude iM(s0, t0, u0) = −igP where P is for ‘physical’.6

This we can relate to our theory letters:

− igP = iM(s0, t0, u0) = −ig + iCg2L0 +O(g3) (1.8)

where L0 ≡ log Λ2

s0
+ log Λ2

t0
+ log Λ2

u0
. (Note that quantities like gP are often called

gR where ‘R’ is for ‘renormalized,’ whatever that is.) I emphasize that this much we

would have to do to make useful predictions, even if there were no specter of infinity

or dependence on a fictitious cutoff.

6You might hesitate here about my referring to the amplitude M as an ‘observable’. The difficult

and interesting question of what can actually be measured in experiments can be decoupled a bit from

this discussion. If you want to worry about this, see the beginning of Schwartz, chapter 18.
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Renormalization. Now here comes the big gestalt shift: Solve this equation (1.8)

for the stupid letter g

−ig = −igP − iCg2L0 +O(g3)

= −igP − iCg2
PL0 +O(g3

P ). (1.9)

and eliminate g from the discussion:

iM(s, t, u) = −ig + iCg2L+O(g3)
(1.9)
= −igP − iCg2

PL0 + iCg2
PL+O(g3

P )

= −igP + iCg2
P

(
log

s0

s
+ log

t0
t

+ log
u0

u

)
+O(g3

P ). (1.10)

This expresses the amplitude at any momenta (within the range of validity of the

theory!) in terms of measured quantities, gP , s0, t0, u0. The cutoff Λ is gone! Just like

in our parable in §1.1, it was eliminated by letting the coupling vary with it, g = g(Λ),

according to (1.9). We’ll say a lot more about how to think about that dependence.

Renormalized perturbation theory. To slick up this machinery, consider the

following Lagrangian density (in fact the same as (1.7), with m = 0 for simplicity):

L = −1

2
φ2φ− gP

4!
φ4 − δg

4!
φ4 (1.11)

but written in terms of the measured coupling gP , and some as-yet-undetermined ‘coun-

terterm’ δg. Then (with some foresight, we treat δg ∼ g2
P , since its job is to cancel a

term of this order)

M(s, t, u) = −gP − δg − Cg2
P

(
log

s

Λ2
+ log

t

Λ2
+ log

u

Λ2

)
+O(g3

P ).

If, in order to enforce the renormalization condition M(s0, t0, u0) = −gP , we choose

δg = −g2
PC

(
log

s0

Λ2
+ log

t0
Λ2

+ log
u0

Λ2

)
then we find

M(s, t, u) = −gP − Cg2
P

(
log

s

s0

+ log
t

t0
+ log

u

u0

)
+O(g3

P )

– all the dependence on the unknown cutoff is gone, we satisfy the observational demand

M(s0, t0, u0) = −gP , and we can predict the scattering amplitude (and others!) at any

momenta.

The only price is that the ‘bare coupling’ g depends on the cutoff, and becomes

infinite if we pretend that there is no cutoff. Happily, we didn’t care about g anyway.

We can just let it go.
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The step whereby we were able to absorb all the dependence on the cutoff into

the bare coupling constant involved some apparent magic. It is not so clear that the

same magic will happen if we study the next order O(g3
P ) terms, or if we study other

amplitudes. A QFT where all the cutoff dependence to all orders can be removed with

a finite number of counterterms is called ‘renormalizable’. As we will see, such a field

theory is less useful because it allows us to pretend that it is valid up to arbitrarily high

energies. The alternative, where we must add more counterterms (such as something

like δ6
Λ2φ

6) at each order in perturbation theory, is called an effective field theory, which

is a field theory that has the decency to predict its regime of validity.

1.4 Classical interlude: Mott formula

As a prelude to studying loops in QED, and to make clear what is at stake, let me

fill in some of the details of the leading-order calculation. By studying scattering of

an electron from a heavy charged fermion (a muon is convenient) we will reconstruct

the cross section for scattering off a Coulomb potential (named after Mott). This will

emphasize the fact that the tree-level process is classical. Then we’ll figure out how it

is corrected by other QED processes.

Crossing symmetry. If you look at a Feynman diagram on its side (for example

because someone else fails to use the convention that time goes to the left) it is still a

valid amplitude for some process. Similarly, dragging particles between the initial and

final state also produces a valid amplitude. Making this relation precise can save us

some work. The precise relation for dragging an incoming particle into the final state,

so that it is an outgoing antiparticle, is:

iMf←iA(pf ; pi, pA) = = iMĀf←i(pf , k = −pA; pi) = .

(If you must, note that this is another sense in which an antiparticle is a particle

going backwards in time.) If A is a spinor particle, the sum relations for particles and

antiparticles are different:∑
r

ur(p)ūr(p) = /p+m,
∑
r

vr(k)v̄r(k) = /k −m = −(/p+m)

– after accounting for k = −pA, they differ by an overall sign. Hence we must also ap-

pend a fermion sign factor (−1)number of fermions shuffled between in and out in the unpolarized

scattering probability. Here is an example.

23



µ+µ− ← e+e− . For example, consider the process µ+µ− ← e+e−. To try to keep

things straight, I’ll call the electron momenta p, p′ and the muon momenta k, k′, since

that won’t change under crossing. The amplitude is

iMµ+µ−←e+e− =

=
(
−ieūs(k)γµvs

′
(k′)
)

muons

−i
(
ηµν − (1−ξ)qµqν

q2

)
q2

(
−iev̄r

′
(p′)γνur(p)

)
electrons

(1.12)

(with q ≡ p + p′ = k + k′). If we don’t keep track of the spins, then we must average

over initial states and sum over final states, so the unpolarized scattering probability

density is
1

4

∑
spins

|M|2 spinor traces
=

1

4

e4

s2
EµνMµν ,

where the tensor objects Eµν ,Mµν come respectively from the electron and muon lines,

1

4
Eµν = pµp

′
ν + p′µpν − ηµν(p · p′ +m2

e)

1

4
Mµν = kµk

′
ν + k′µkν − ηµν(k · k′ +m2

µ),

and they are contracted by the photon line, with s = q2 = (p+ p′)2.

Spinor trace ninjutsu. In case you missed it, here is how to evaluate the spinor

traces:

The trace is cyclic: tr (AB · · ·C) = tr (CAB · · ·) . (1.13)

Our gamma matrices are 4× 4, so tr1 = 4.

trγµ = tr
(
γ5
)2
γµ

(1.13)
= trγ5γµγ5 {γ

5,γµ}=0
= −trγµ = 0. (1.14)

The same trick shows that the trace of any odd number of gammas vanishes. The idea

is that an odd number of gammas is a map between the L and R subspaces, so it has

only off-diagonal terms in the Weyl basis.

trγµγν
clifford

= −trγνγµ + 2ηµνtr1
(1.13)
= −trγµγν + 8ηµν =⇒ trγµγν = 4ηµν . (1.15)

trγµγνγργσ = 4 (ηµνηρσ + ησµηνρ − ηµρηνσ) . (1.16)
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Why is this? The completely antisymmetric bit vanishes because it is proportional to

γ5 which is traceless (by the same argument as (1.14)). If any pair of indices is the

same then the other two must be too by (1.15). If adjacent pairs are the same they can

just square to one and we get +1; if alternating pairs are the same (and different from

each other) then we must move them through each other with the anticommutator. If

they are all the same we get 4.

trγµγνγργσγ5 = −4iεµνρσ.

e−µ− ← e−µ− . To get from our previous work the amplitude (tree level, so far)

for the process e−µ− ← e−µ−, we must move the incoming positron line to an outgoing

electron line, and move the outgoing antimuon line to an incoming muon line (hence

the sign in σ will be (−1)number of fermions shuffled between in and out = (−1)2 = 1). Relative

to the amplitude for µ+µ− ← e+e− (1.12), we must replace the relevant vs with us for

the initial/final antiparticles that were moved into final/initial particles, and we must

replace p′ → −p′, k′ → −k′:

iM = = (−ieū(p′)γµu(p)))electrons

−i
(
ηµν −

(1−ξ)qtµqtν
q2
t

)
q2
t

(−ieū(k)γνu(k′))muons(1.17)

with qt ≡ p− p′ = k − k′. After the spin sum,

1

4

∑
s,s′,r,r′

|M|2 = 4
e4

t2
(−pµp′ν − p′µpν − ηµν(−p · p′ +m2

e))

·
(
−kµk′ν − k′µkν − ηµν(−k · k′ +m2

µ)
)

(1.18)

On the Mandelstam variables, this is just the permutation (s, t, u)→ (t, u, s).

Payoff: the Mott formula. Recall other ways of figuring out the scattering cross

section from a Coulomb potential from a point charge of charge ze.

We think about scattering from a fixed electrostatic potential A0 = ze
r

and do classical

mechanics. I can never remember how this goes. Instead, let’s just scatter an electron

off a heavy charge, such as a muon. If the charge of the heavy object were z times that

of the electron, we would multiply the amplitude by z and the cross section by z2.
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‘Heavy’ here means that we can approximate the

CoM frame by its rest frame, and its initial and fi-

nal energy as k′0 = mµ, k0 =
√
m2
µ + ~k2 = mµ +

1
2
~k2/mµ + · · · ' mµ. Also, this means the collision

is approximately elastic. In the diagram of the kine-

matics at right, c ≡ cos θ, s ≡ sin θ.

This means that the muon-line tensor factor Mµν in (1.18) simplifies dramatically:

−1

4
Mµν ' kµk

′
ν + k′µkν − ηµν

k · k′ −m2
µ︸ ︷︷ ︸

'm2
µ−m2

µ=0

 ' δµ0δν02m2
µ.

In the electron line, we get

− p · p′ +m2
e = −E2 + ~p2 cos θ +m2

e = −~p2(1− cos θ). (1.19)

So

EµνMµν = 32m2
µE

00 = 32m2
µ(2E2 + η00(p · p′ −m2

e)) (1.20)

(1.19)
= 32m2

µ(2E2 − ~p2(1− cos θ))

trig
= 32m2

µ2(E2 − ~p2 sin2 θ/2)
β2≡~p2/E2

= 64m2
µE

2(1− β2 sin2 θ/2) .

Note that t = (p− p′)2 = −2~p2(1− cos θ).

Now we can use the formula for the cross section (for the derivation, see these notes,

§4.7):

dσ =
1

vrel

1

2EA2EB

(
1

4

∑
spins

|M|2
)
dΠLI . (1.21)

So the differential cross section is

dσ =
1

vrel︸︷︷︸
=β

1

2E

1

2mµ

z2e4

t2
64m2

µE
2(1− β2 sin2 θ/2)

dΩ

16π2

p

Etotal

Etotal∼mµ
=

4E

β

z2e4(1− β2 sin2 θ/2)

t2
dΩ

from which we get
dσ

dΩMott
=
α2(1− β2 sin2 θ/2)

4β2~p2 sin4 θ/2
.
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If we take β � 1 in this formula we get the Rutherford formula. Notice that it blows

up at θ → 0. This is a symptom of the long-range nature of the Coulomb potential,

i.e. the masslessness of the photon.

Radiative corrections. Now it’s time to think about perturbative corrections to

this cross section. Given that the leading-order calculation reproduced the classical

physics of the Coulomb potential, you can think of what we are doing as effectively

discovering (high-energy or short-distance) quantum corrections to the Coulomb law.

The diagrams we must include are these (I made the muon lines thicker and also red):

iMeµ←eµ = +




+

 +O(e6)

• What do the one-loop diagrams in the second line have in common? They have

an internal muon line. Why does this matter? When the energy going through the

line is much smaller than the muon mass, then the propagator is i(/k+mµ)

k2−m2
µ
∼ 1

mµ
and its

relative contribution is down by k/mµ � 1. So let’s neglect these for now.

• Why don’t we include diagrams like ? The LSZ formula tells us

that their effects on the S-matrix are accounted for by the wavefunction renormalization

factors Z

Seµ←eµ =
√
Ze

2√
Zµ

2

 +

( )
+ · · ·


amputated, on-shell

and in determining the locations of the poles whose residues are the S-matrix elements.

We’ll take care of these when we talk about the electron self-energy.

• Notice that the one-loop amplitudes are suppressed relative to the tree level am-

plitude by two factors of e, hence one factor of the fine structure constant α = e2

4π
.

Their leading effects on the cross section come from

σ ∼
∣∣∣ +

( )
+ · · ·

∣∣∣2 ∼ σtree +O(α3)
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from the cross term between the tree and one-loop amplitudes.

In the above discussion, we encounter all three ‘primitive’ one-loop divergent am-

plitudes of QED, which we’ll study in turn:

• electron self-energy:

• vertex correction:

• vacuum polarization (photon self-energy):

1.5 Electron self-energy in QED

Let’s think about the electron two-point function in momentum space:

G̃(2)(p) = + · · ·

= + · · ·

(1.22)

We’ve grouped the diagrams according to their behavior when we divide input and

output by cutting a single line. A diagram which cannot be divided by cutting a single

line is called one-particle irreducible (1PI). The blue blob is defined to be the sum of

all 1PI diagrams. We will denote the 1PI two-point function by

−iΣ(p) ≡
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a blob with nubbins; for fermions with conserved particle number, the nubbins carry

arrows indicating the particle number flow. Let me call the tree level propagator

iS(p) ≡
i(/p+m0)

p2 −m2
0 + iε

=
i

/p−m0

– notice that I added a demeaning subscript to the notation for the mass appearing in

the Lagrangian. Foreshadowing.

The full two point function is then:

G̃(2)(p) = iS + iS (−iΣ(p)) iS + iS (−iΣ(p)) iS (−iΣ(p)) iS + · · ·
= iS (1 + ΣS + ΣSΣS + · · ·) = iS

1

1− ΣS

=
i

/p−m0

1

1− Σ 1
/p−m0

=
i

/p−m0 − Σ(p)
. (1.23)

A comment about summing this infinite series:

1 + x+ x2 + · · · = 1

1− x
. (1.24)

You probably know that a geometric series has a radius of convergence of 1. This is

because the function to which it sums has a pole at x = 1, and the radius of convergence

is at most the distance to the nearest singularity.

On the other hand, there is a theorem of complex analysis that if two functions

analytic in an open set D agree in D then they are the same. This is the basis for

analytic continuation.

The LHS of (1.24) is not a priori defined when |x| > 1. The relation (1.24) therefore

gives a useful meaning to it in this regime.

[End of Lecture 3]

Are you worried about these manipulations because Σ and S are matrices in the

spinor indices? Don’t be: they are both made entirely from the matrix /p, and therefore

they commute; we could do these manipulations in the eigenbasis of /p. This fully

corrected propagator has a pole at

/p = m ≡ m0 + Σ(m) . (1.25)

This means that the actual mass of the particle is this new quantity m. But what is

m (it is called the ‘renormalized mass’)? To figure it out, we need to know about Σ.
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In QED we must study Σ in perturbation theory. As you can see from (1.22), the

leading (one-loop) contribution is

−iΣ2(p) = = (−ie)2

∫
d̄4k γµ

i(/k +m0)

k2 −m2
0 + iε

γν
−iηµν

(p− k)2 − µ2 + iε
.

Notice that I am relying on the Ward identity to enforce the fact that only the trans-

verse bit of the photon propagator matters. Also, I added a mass µ for the photon

as an IR regulator. We must keep the external momentum p arbitrary, since we don’t

even know where the mass-shell is!

Finally, I can’t put it off any longer: how are we going to do this loop-momentum

integral?

Step 1: Feynman parameter trick. It is a good idea to consider the integral∫ 1

0

dx
1

(xA+ (1− x)B)2
=

∫ 1

0

dx
1

(x(A−B) +B)2
=

1

A−B
−1

x(A−B) +B

∣∣∣∣x=1

x=0

=
1

A−B

(
− 1

A
+

1

B

)
=

1

AB
.

This allows us to combine the denominators into one:

I =
1

k2 −m2
0 + iε︸ ︷︷ ︸

B

1

(p− k)2 − µ2 + iε︸ ︷︷ ︸
A

=

∫ 1

0

dx
1

(x ((p2 − 2pk + k2)− µ2 + iε) + (1− x)(k2 −m2
0 + iε))

2

Step 2: Now we can complete the square

I =

∫ 1

0

dx
1(k − px︸ ︷︷ ︸

≡`

)2 −∆ + iε

2

with

`µ ≡ kµ − pµx, ∆ ≡ +p2x2 + xµ2 − xp2 + (1− x)m2
0 = xµ2 + (1− x)m2

0 − x(1− x)p2.

Step 3: Wick rotate. Because of the iε we’ve been dutifully car-

rying around, the poles of the p0 integral don’t occur in the first

and third octants of the complex p0 plane. (And the integrand

decays at large |p0|.) This means that we can rotate the contour

to euclidean time for free: `0 ≡ i`4. Equivalently: the integral

over the contour at right vanishes, so the real time contour gives

the same answer as the (upward-directed) Euclidean contour.
Notice that `2 = −`2

E. Altogether

−iΣ2(p) = −e2

∫
d̄4`

∫ 1

0

dx
N

(`2 −∆ + iε)2
= −e2

∫ 1

0

dxi

∫
d̄4`E

N

(`2
E + ∆)

2
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where the numerator is

N = γµ
(
/̀+ x/p+m0

)
γµ = −2

(
/l + x/p

)
+ 4m0.

Here I used two Clifford algebra facts: γµγµ = 4 and γµ/pγµ = −2/p. Think about the

contribution from the term with /̀ in the numerator: everything else is invariant under

rotations of `

d̄4`E =
1

(2π)4
dΩ3`

3d` =
dΩ3

(2π)4
`2d`

2

2
,

so this averages to zero. The rest is of the form (using
∫
S3 dΩ3 = 2π2)

Σ2(p) = e2

∫ 1

0

dx

∫
`2d`2

2

(2π2)

(2π)4

2(2m0 − x/p)
(`2 + ∆)2

=
e2

8π2

∫ 1

0

dx(2m0 − x/p)J (1.26)

with

J =

∫ ∞
0

d`2 `2

(`2 + ∆)2 .

In the large ` part of the integrand this is∫ Λ d`2

`2
∼ log Λ.

You knew this UV divergence was coming. To be more precise, let’s add zero:

J =

∫
d`2

(
`2 + ∆

(`2 + ∆)2 −
∆

(`2 + ∆)2

)
=

∫ ∞
0

d`2

(
1

`2 + ∆
− ∆

(`2 + ∆)2

)
= ln(`2 + ∆)

∣∣∞
`2=0

+
∆

`2 + ∆

∣∣∣∣∞
`2=0

= ln(`2 + ∆)
∣∣∞
`2=0
− 1.

Recall that

∆ = xµ2 + (1− x)m2
0 − x(1− x)p2 ≡ ∆(µ2).

Pauli-Villars regularization. Here is a convenient fiction: when you exchange

a photon, you also exchange a very heavy particle, with mass m2 = Λ2, with an extra

(−1) in its propagator. This means that (in this Pauli-Villars regulation scheme) the

Feynman rule for the wiggly line is instead

 −iηµν

(
1

k2 − µ2 + iε
− 1

k2 − Λ2 + iε

)
= −iηµν

(
µ2 − Λ2

(k2 − µ2 + iε) (k2 − Λ2 + iε)

)
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This goes like 1
k4 at large k, so the integrals are more convergent. Yay.

Notice that the contribution from the Pauli-Villars photon to tree-level amplitudes

goes like | 1
k2−Λ2 |

Λ�k∼ 1
Λ2 (where k is the momentum going through the photon line,

determined by the external momenta), which innocuously vanishes as Λ→∞.

Remembering that the residue of the pole in the propagator is the probability for

the field operator to create a particle from the vacuum, you might worry that this is

a negative probability, and unitarity isn’t manifest. This particle is a ghost. However,

we will choose Λ so large that the pole in the propagator at k2 = Λ2 will never be

accessed and we’ll never have external Pauli-Villars particles. We are using this as a

device to define the theory in a regime of energies much less than Λ. You shouldn’t

take the regulated theory too seriously: for example, the wrong-sign propagator means

wrong-sign kinetic terms for the PV fields. This means that very wiggly configurations

will be energetically favored rather than suppressed by the Hamiltonian. It will not

make much sense non-perturbatively.

I emphasize that this regulator is one possibility of many. They each have their

drawbacks. They all break scale invariance. Nice things about PV are that it is Lorentz

invariant and gauge invariant; the bad thing is it’s not unitary. A class of regulators

which make perfect sense non-perturbatively is the lattice (as in the model with masses

on springs). The price is that it really messes up the spacetime symmetries.

Applying this to the self-energy integral amounts to the replacement

J  J∆(µ2) − J∆(Λ2)

=
[(

ln
(
`2 + ∆(µ2)

)
− 1
)
−
(
ln
(
`2 + ∆(Λ2)

)
− 1
)]∣∣∞

0

= ln
`2 + ∆(µ2)

`2 + ∆(Λ2)

∣∣∣∣∞
0

= ln 1/1− ln
∆(µ2)

∆(Λ2)
= ln

∆(Λ2)

∆(µ2)
.

Notice that we can take advantage of our ignorance of the microphysics to make the

cutoff (the PV scale Λ) as big as we like and thereby simplify our lives:

∆(Λ2) = xΛ2 + (1− x)m2
0 − x(1− x)p2 Λ�everyone

≈ xΛ2.

Finally then

Σ2(p)PV =
α

2π

∫ 1

0

dx(2m0 − x/p) ln
xΛ2

xµ2 + (1− x)m2
0 − x(1− x)p2

. (1.27)

Having arrived at this regulated expression for the self-energy we need to “impose

a renormalization condition,” i.e. introduce some observable physics in terms of which
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to parametrize our answers. We return to (1.25): the shift in the mass as a result of

this one-loop self-energy is

δm ≡ m−m0 = Σ2(/p = m) +O(e4) = Σ2(/p = m0) +O(e4)

=
α

2π

∫ 1

0

dx (2− x)m0 ln
xΛ2

xµ2 + (1− x)m2
0 + x(1− x)m2

0︸ ︷︷ ︸
=xµ2+(1−x2)m2

0≡f(x,m0,µ)

=
α

2π

∫ 1

0

dx (2− x)m0

 ln
Λ2

m2
0︸ ︷︷ ︸

divergent

+ ln
xm2

0

f(x,m0, µ)︸ ︷︷ ︸
relatively small


≈ α

2π

(
2− 1

2

)
m0 ln

Λ2

m2
0

=
3α

4π
m0 ln

Λ2

m2
0

. (1.28)

In the penultimate step (with the ≈), we’ve neglected the finite bit (labelled ‘relatively

small’) compared to the logarithmically divergent bit: we’ve already assumed Λ� all

other scales in the problem.

Mass renormalization. Now the physics input: The mass of the electron is 511

keV (you can ask how we measure it and whether the answer we get depends on the

resolution of the measurement, and indeed there is more to this story; this is a low-

energy answer, for example we could make the electron go in a magnetic field and

measure the radius of curvature of its orbit and set mev
2/r = evB/c), so

511 keV ≈ me = m0

(
1 +

3α

4π
ln

Λ2

m2
0

)
+O(α2).

In this equation, the LHS is a measured quantity. In the correction on the RHS α ≈ 1
137

is small, but it is multiplied by ln Λ2

m0
which is arbitrarily large. This means that the

bare mass m0, which is going to absorb the cutoff dependence here, must actually be

really small. (Notice that actually I’ve lied a little here: the α we’ve been using is

still the bare charge; we will need to renormalize that one, too, before we are done.) I

emphasize: m0 and the other fake, bare parameters in L depend on Λ and the order of

perturbation theory to which we are working and other theorist bookkeeping garbage;

me does not. At each order in perturbation theory, we eliminate m0 and write our

predictions in terms of me. It is not too surprising that the mass of the electron

includes such contributions: it must be difficult to travel through space if you are

constantly emitting and re-absorbing photons.

Wavefunction renormalization. The actual propagator for the electron, near

the electron pole is

G̃(2)(p) =
i

/p−m0 − Σ(p)

p∼m
' iZ

/p−m
+ regular terms. (1.29)
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The residue of the pole at the electron mass is no longer equal to one, but rather Z.

To see what Z actually is at this order in e2, Taylor expand near the pole

Σ(p)
Taylor

= Σ(/p = m) +
∂Σ

∂/p
|/p=m(/p−m) + · · ·

= Σ(/p = m0) +
∂Σ

∂/p
|/p=m0(/p−m0) + · · ·+O(e4)

So then (1.29) becomes

G̃(2)(p)
p∼m∼ i

/p−m− ∂Σ
∂/p
|m0(/p−m)

=
i(

/p−m
) (

1− ∂Σ
∂/p
|m0

) (1.30)

So that

Z =
1

1− ∂Σ
∂/p
|m0

' 1 +
∂Σ

∂/p
|m0 ≡ 1 + δZ

and at leading nontrivial order

δZ =
∂Σ2

∂/p
|m0

(1.27)
=

α

2π

∫ 1

0

dx

(
−x ln

xΛ2

f(x,m0, µ)
+ (2m0 − xm0)

−2x(1− x)

f(x,m0, µ)

)
= − α

4π

(
ln

Λ2

m2
0

+ finite

)
. (1.31)

Here f = f(x,m0, µ) is the same quantity defined in the second line of (1.28). We’ll

see below that the cutoff-dependence in δZ plays a crucial role in making the S matrix

(for example for the eµ → eµ process we’ve been discussing) cutoff-independent and

finite, when written in terms of physical variables.

1.6 Big picture interlude

OK, I am having a hard time just pounding away at one-loop QED. Let’s take a break

and think about the self-energy corrections in scalar field theory. Then we will step

back and think about the general structure of short-distance senstivity in (relativistic)

QFT, before returning to the QED vertex correction and vacuum polarization.

1.6.1 Self-energy in φ4 theory

[Zee §III.3] Let’s return to the φ4 theory in D = 3 + 1 for a moment. The Mφφ←φφ

amplitude is not the only place where the cutoff appears.

Above we added a counterterm of the same form as the φ4 term in the Lagrangian.

Now we will see that we need counterterms for everybody:

L = −1

2

(
φ2φ+m2φ2

)
− gP

4!
φ4 − δg

4!
φ4 − 1

2
δZφ2φ− 1

2
δm2φ2.
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Here is a way in which φ4 theory is weird: At one loop there is no wavefunction

renormalization. That is,

δΣ1(k) = = −ig

∫ Λ

d̄4q
i

q2 −m2 + iε
= δΣ1(k = 0) ∼ gΛ2

which is certainly quadratically divergent, but totally independent of the external mo-

mentum. This means that when we Taylor expand in k (as we just did in (1.30)), this

diagram only contributes to the mass renormalization. Demanding that the pole in the

propagator occurs at p2 = m2, we must set δm2 = −δΣ1.

So let’s see what happens if we keep going:

δΣ2(k) = =
(−ig)2

3!

∫
d̄4p

∫
d̄4qiD0(p)iD0(q)iD0(k−p−q) ≡ I(k2,m,Λ).

Here iD0(p) ≡ i
p2−m2+iε

is the free propagator (the factor of i is for later convenience),

and we’ve defined I by this expression. The fact that I depends only on k2 is a

consequence of Lorentz invariance. Counting powers of the loop momenta, the short-

distance bit of this integral is of the schematic form
∫ Λ d8P

P 6 ∼ Λ2, also quadratically

divergent, but this time k2-dependent, so there will be a nonzero δZ ∝ g2. As we just

did for the electron self-energy, we should Taylor expand in k. (We’ll learn more about

why and when the answer is analytic in k2 at k = 0 later.) The series expansion in k2

(let’s do it about k2 = 0 ∼ m2 to look at the UV behavior) is

δΣ2(k2) = A0 + k2A1 + k4A2 + · · ·

where A0 = I(k2 = 0) ∼ Λ2. In contrast, dimensional analysis says A1 = ∂
∂k2 I|k2=0 ∼∫

d8P
P 8 ∼ Λ0+ ∼ ln Λ has two fewer powers of the cutoff. After that it’s clear sailing:

A2 =
(
∂
∂k2

)2
I|k2=0 ∼

∫ Λ d8P
P 10 ∼ Λ−2 is finite as we remove the cutoff, and so are all the

later coefficients.

If instead the physical pole were at a nonzero value of the mass, we should Taylor

expand about k2 = m2
P instead:

D−1(k) = D−1
0 (k)−Σ(k) = k2−m2

0−
(
δΣ1(m2

P ) + A0

)︸ ︷︷ ︸
≡a∼Λ2

−(k2−m2
P )A1−(k2−m2

P )2A2+· · ·

(1.32)

where now An ≡ 1
n!

(
∂
∂k2

)n
Σ2(k2)|k2=m2

P
. The · · · here includes both higher orders in g

(O(g3)) and higher powers of k2, i.e. higher derivative terms.
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Therefore, the propagator is

D(k) =
1

(1− A1)(k2 −m2
P )

+ · · · = Z

k2 −m2
P

+ · · ·

with

Z =
1

1− A1

, m2
P = m2 + a

where a was defined in (1.32). [End of Lecture 4]

Some points to notice: • δZ = A1.

• The contributions An≥2(k2)n can be reproduced by counterterms of the form

Anφ2nφ. Had they been cutoff dependent we would have needed to add such (cutoff-

dependent) counterterms.

• The mass-squared of the scalar field in D = 3+1 is quadratically divergent, while

the mass of the spinor was only log divergent. This UV sensitivity of scalar fields is

ubiquitous7 (see the homework) and is the source of many headaches.

• On the term ‘wavefunction renormalization’: who is φ? Also just a theorist’s

letter. Sometimes (in condensed matter) it is defined by some relation to observation

(like the height of a wave in a mattress), in high energy theory not so much. Classically,

we fixed its (multiplicative) normalization by setting the coefficient of φ2φ to one. If

we want to restore that convention after renormalization, we can make a redefinition

of the field φR ≡ Z−1/2φ. This is the origin of the term ‘wavefunction renormalization’.

A slightly better name would be ‘field renormalization’, but even better would be just

‘kinetic term renormalization’.

Renormalized perturbation theory revisited. The full story for the renormal-

ized perturbation expansion in φ4 theory is then

L =
1

2
(∂φ)2 − 1

2
m2
Pφ

2 − gP
4!
φ4 + Lct

with

Lct =
1

2
δZ (∂φ)2 − 1

2
δm2φ2 − δg

4!
φ4.

Here are the instructions for using it: The Feynman rules are as before: the coupling

and propagator are

= −igP , =
i

k2 −m2
P + iε

(1.33)

7At least for most regulators. We’ll see that dim reg is special.
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but the terms in Lct (the counterterms) are treated as new vertices, and treated per-

turbatively:

= −iδg, = −i(δZk2 + δm2).

All integrals are regulated, in the same way (whatever it is). The counterterm couplings

δg, δZ, δm
2 are determined iteratively, as follows: given the δN−1s up to O(gNP ), we fix

each one δ = δN−1 + gNP ∆δN +O(gN+1
P ) by demanding that (1.33) are actually true up

to O(gN+1
P ). This pushes the cutoff dependence back into the muck a bit further.

I say this is the full story, but wait: we didn’t try to compute amplitudes with more

than four φs (such as 3 ← 3 scattering of φ quanta). How do we know those don’t

require new counterterms (like a φ6 term, for example)?

1.6.2 Where is the UV sensitivity?

[still Zee §III.3, Peskin ch. 10. We’ll follow Zee’s discussion pretty closely for a bit.]

Given some process in a relativistic, perturbative QFT, how do we know if it will

depend on the cutoff? We’d like to be able answer this question for a theory with

scalars, spinors, vectors. Here’s how: First, look at each diagram A (order by order in

the loop expansion). Define the ‘superficial’ degree of divergence of A to be DA ≡ [A],

just its engineering dimension. In the limit that Λ � all other scales, we must then

have A ∼ ΛDA (in the absence of cancellations). A log divergent amplitude has DA = 0

(sometimes it’s called DA = 0+).

Let’s start simple, and study the φ4 theory in D = 4. Consider a connected diagram

A with BE external scalar lines. I claim that DA = 4−BE.

Why does’t it (explicitly) depend on any other data of the diagram, such as

BI ≡ # of internal scalar lines (i.e., propagators)

V ≡ # of φ4 vertices

L ≡ # of loops

? We can understand this better using two facts of graph theory and some

power counting. I recommend checking my claims below with an example,

such as the one at right.

BI = 8

BE = 4

V = 5

L = 4

Graph theory fact #1: These quantities are not all independent. For a connected
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graph,

L = BI − (V − 1). (1.34)

Math proof8: Imagine placing the vertices on the page and adding the propagators one

at a time. You need V − 1 internal lines just to connect up all V vertices. After that,

each internal line you add necessarily adds one more loop. �

Another way to think about this fact makes clear that L = # of loops = # of

momentum integrals. Before imposing momentum conservation at the vertices, each

internal line has a momentum which we must integrate:
∏BI

α=1

∫
d̄Dqα. We then stick a

δ(D)(
∑
q) for each vertex, but one of these gives the overall momentum conservation

δ(D)(kT ), so we have V − 1 fewer momentum integrals. For the example above, (1.34)

says 4 = 8− (5− 1).

Graph theory fact #2: Each external line comes out of one vertex. Each internal

line connects two vertices. Altogether, the number of ends of lines sticking out of

vertices is

BE + 2BI = 4V

where the RHS comes from noting that each vertex has four lines coming out of it (in

φ4 theory). In the example, this is 4 + 2 · 8 = 4 · 5. So we can eliminate

BI = 2V −BE/2. (1.35)

Now we count powers of momenta:

A ∼
L∏
a=1

∫ Λ

d̄Dka

BI∏
α=1

1

k2
α

.

Since we are interested in the UV structure, I’ve set the mass to zero, as well as all the

external momenta. The only scale left in the problem is the cutoff, so the dimensions

of A must be made up by the cutoff:

DA = [A] = DL− 2BI
(1.34)
= BI(D − 2)−D(V − 1)

(1.35)
= D +

2−D
2

BE + V (D − 4).

If we set D = 3 + 1 = 4, we get DA = 4 − BE, as claimed. Notice that with BE = 2

we indeed reproduce DA = 2, the quadratic divergence in the mass renormalization,

and with BE = 4 we get DA = 0, the log divergence in the 2 ← 2 scattering. This

pattern continues: with more than four external legs, DA = 4−BE < 0, which means

8I learned this one from my class-mate M.B. Schulz.
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the cutoff dependence must go away when Λ→ 0. This is illustrated by the following

diagram with BE = 6:

∼
∫ Λ d̄4P

P 6
∼ Λ−2.

So indeed we don’t need more counterterms for higher-point interactions in this theory.

Why is the answer independent of V in D = 4? This has the dramatic consequence

that once we fix up the cutoff dependence in the one-loop diagrams, the higher orders

have to work out, i.e. it strongly suggests that the theory is renormalizable. 9

Before we answer this, let’s explore the pattern a bit more. Suppose we include

also a fermion field ψ in our field theory, and suppose we couple it to our scalar by a

Yukawa interaction:

Sbare[φ, ψ] = −
∫
dDx

(
1

2
φ
(
2 +m2

φ

)
φ+ ψ̄ (−/∂ +mψ)ψ + yφψ̄ψ +

g

4!
φ4

)
.

To find the degree of divergence in an amplitude in this model, we have to independently

keep track of the number fermion lines FE, FI , since a fermion propagator has dimension

[1
/p
] = −1, so that DA = [A] = DL − 2BI − FI . The number of ends-of-fermion-lines

is 2Vy = 2FE + FI and the number of ends-of-boson-lines is Vy + 4Vg = BE + 2BI .

The number of loops is L = BI + FI − (Vy + Vg − 1). Putting these together (I used

Mathematica) we get

DA = D + (D − 4)

(
Vg +

1

2
Vy

)
+BE

(
2−D

2

)
+ FE

(
1−D

2

)
. (1.36)

Again in D = 4 the answer is independent of the number of vertices! Is there something

special about four spacetime dimensions?

To temper your enthusiasm, consider adding a four-fermion interaction: G(ψ̄ψ)(ψ̄ψ)

(or maybe GV (ψ̄γµψ)(ψ̄γµψ) or GA(ψ̄γµγ5ψ)(ψ̄γµγ
5ψ) or any other pile of gamma

matrices in between, with the indices contracted). When you redo this calculation on

9Why isn’t it a proof of renormalizability? Consider the following integral:

I =

∫ Λ d4p

(p2 +m2)5

∫ Λ

d4k.

According to our method of counting, we would say DI = 4 + 4− 10 = −2 and declare this finite and

cutoff-independent. On the other hand, it certainly does depend on the physics at the cutoff. (I bet

it is possible to come up with more pathological examples.) The rest of the work involving ‘nested

divergences’ and forests is in showing that the extra structure in the problem prevents things like I
from being Feynman amplitudes.
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the homework, you’ll find that in D = 4 a diagram (for simplicity, one with no φ4 or

Yukawa interactions) has

DA = 4− (1)BE −
(

3

2

)
FE + 2VG,

where VG is the number of insertions of the 4-fermion term. This dependence on the

number of four-fermi vertices means that there are worse and worse divergences as

we look at higher-order corrections to a given process. Even worse, it means that for

any number of external lines FE no matter how big, there is a large enough order in

perturbation theory in G where the cutoff will appear! This means we need δn(ψ̄ψ)n

counterterms for every n, which we’ll need to fix with physical input. This is a bit

unappetizing, and such an interaction is called “non-renormalizable”. However, when

we remember that we only need to make predictions to a given precision (so that we

only need to go to a finite order in this process) we will see that such theories are

nevertheless quite useful.

So why were those other examples independent of V ? It’s because the couplings

were dimensionless. Those theories were classically scale invariant (except for the mass

terms).

1.6.3 Naive scale invariance in field theory

[Halpern] Consider a field theory of a scalar field φ in D spacetime dimensions, with

an action of the form

S[φ] =

∫
dDx

(
1

2
∂µφ∂

µφ− gφp
)

for some constants p, g. Which value of p makes this scale invariant? (That is: when

is g dimensionless, and hence possibly the coupling for a renormalizable interaction.)

Naive dimensions:

[S] = [~] = 0, [x] ≡ −1, [dDx] = −D, [∂] = 1

The kinetic term tells us the engineering dimensions of φ:

0 = [Skinetic] = −D + 2 + 2[φ] =⇒ [φ] =
D − 2

2
.

Notice that the D = 1 case agrees with our quantum mechanics counting from §1.1.

Quantum field theory in D = 1 spacetime dimensions is quantum mechanics.

Then the self-interaction term has dimensions

0 = [Sinteraction] = −D + [g] + p[φ] =⇒ [g] = D − p[φ] = D + p
2−D

2
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We expect scale invariance when [g] = 0 which happens when

p = pD ≡
2D

D − 2
,

i.e. the scale invariant scalar-field self-interaction in D spacetime dimensions is φ
2D
D−2 .

D 1 2 3 4 5 6 ... D ∞
[φ] −1

2
0 1

2
1 3/2 2 ... D−2

2
∞

scale-inv’t p ≡ pD −2 ∞? 6 4 10/3 3 ... 2D
D−2

2

? What is happening in D = 2? The field is dimensionless, and so any power of

φ is naively scale invariant, as are more complicated interactions like gij(φ)∂µφ
i∂µφj,

where the coupling g(φ) is a function of φ. This allows for scale-invariant non-linear

sigma models, where the fields are coordinates on a curved manifold with metric ds2 =

gijdφ
idφj.

In dimensions where we get fractional powers, this isn’t so nice.

Notice that the mass term ∆S =
∫
dDxm

2

2
φ2 gives

0 = −D + 2[m] + 2[φ] =⇒ [m] = 1 ∀D <∞

– it’s a mass, yay.

What are the consequences of this engineering dimensions calculation in QFT? For

D > 2, an interaction of the form gφp has

[g] = D · pD − p
pD


< 0 when p > pD, non-renormalizable or irrelevant

= 0 when p = pD, renormalizable or marginal

> 0 when p < pD, super-renormalizable or relevant.

(1.37)

Consider the ‘non-renormalizable’ case. Suppose we calculate in QFT some quantity f

with [f ] as its naive dimension, in perturbation theory in g, e.g. by Feynman diagrams.

We’ll get:

f =
∞∑
n=0

gncn

with cn independent of g. So

[f ] = n[g] + [cn] =⇒ [cn] = [f ]− n[g]

So if [g] < 0, cn must have more and more powers of some mass (inverse length) as

n increases. What dimensionful quantity makes up the difference? Sometimes it is
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masses or external momenta. But generically, it gets made up by UV divergences (if

everything is infinite, dimensional analysis can fail, nothing is real, I am the walrus).

More usefully, in a meaningful theory with a UV cutoff, ΛUV , the dimensions get made

up by the UV cutoff, which has [ΛUV ] = 1. Generically: cn = c̃n (ΛUV )−n[g], where c̃n
is dimensionless, and n[g] < 0 – it’s higher and higher powers of the cutoff.

Consider the renormalizable (classically scale invariant) case: [cn] = [f ], since [g] =

0. But in fact, what you’ll get is something like

cn = c̃n logν(n)

(
ΛUV

ΛIR

)
,

where ΛIR is an infrared cutoff or a mass or external momentum, [ΛIR] = 1. Some

classically scale invariant examples (so that m = 0 and the bare propagator is 1/k2)

where you can see that we get logs from loop amplitudes:

φ4 inD = 4: φ6 inD = 3:

φ3 in D = 6: In D = 2, even the propagator for a massless

scalar field has logs:

〈φ(x)φ(0)〉 =

∫
d̄2k

e−ikx

k2
∼ log

|x|
ΛUV

.

The terms involving ‘renormalizable’ in (1.37) are somewhat old-fashioned and come

from a high-energy physics point of view where the short-distance physics is unknown,

and we want to get as far as we can in that direction with our limited knowledge (in

which case the condition ‘renormalizability’ lets us get away with this indefinitely –

it lets us imagine we know everything). The latter terms are natural in the opposite

situation (like condensed matter physics) where we know some basically correct micro-

scopic description but want to know what happens at low energies. Then an operator

like 1
M24φ

28 whose coefficient is suppressed by some large mass scale M is irrelevant

for physics at energies far below that scale. Inversely, an operator like m2φ2 gives a

mass to the φ particles, and matters very much (is relevant) at energies E < m. In the

marginal case, the quantum corrections have a chance to make a big difference.

[End of Lecture 5]
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1.7 Vertex correction in QED

[Peskin chapter 6, Schwartz chapter 17, Zee chapter III.6] Back to work on QED. The

vertex correction has some great physics payoffs:

• We’ll cancel the cutoff dependence we found in the S matrix from δZ.

• We’ll compute g−2 (the anomalous magnetic moment) of the electron, the locus

of some of the most precise agreement between theory and experiment. (Actually

the agreement is so good that it’s used as the definition of the fine structure

constant. But a similar calculation gives the leading anomalous magnetic moment

of the muon.)

• We’ll see that the exclusive differential cross section
(
dσ
dΩ

)
eµ←eµ that we’ve been

considering is not really an observable. Actually it is infinity!10 The key word

here is ‘exclusive,’ which means that we demand that the final state is exactly one

electron and one muon and absolutely nothing else. Think for a moment about

how you might do that measurement.

This is an example of an IR divergence. While UV divergences mean you’re

overstepping your bounds (by taking too seriously your Lagrangian parameters

or your knowledge of short distances), IR divergences mean you are asking the

wrong question.

To get started, consider the following class of diagrams.

=

≡ iM = ie2 (ū(p′)Γµ(p, p′)u(p))
1

q2
ū(K ′)γµu(K) (1.38)

The shaded blob is the vertex function Γ. The role of the light blue factors is just

to make and propagate the photon which hits our electron; let’s forget about them.

Denote the photon momentum by q = p′− p. We’ll assume that the electron momenta

p, p′ are on-shell, but qµ is not, as in the eµ scattering process. Then q2 = 2m2−2p′ ·p.
10More accurately, the exclusive cross section is zero; the one-loop correction is minus infinity, which

is perturbation theory’s clumsy attempt to correct the finite tree level answer to make it zero.
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Before calculating the leading correction to the vertex Γµ = γµ +O(e2), let’s think

about what the answer can be. It is a vector made from p, p′, γµ and m, e and numbers.

It can’t have any γ5 or εµνρσ by parity symmetry of QED. So on general grounds we

can organize it as

Γµ(p, p′) = Aγµ +B(p+ p′)µ + C(p− p′)µ (1.39)

where A,B,C are Lorentz-invariant functions of p2 = (p′)2 = m2, p · p′, /p, /p′. But, for

example, /pγµu(p) = (mγµ − pµ)u(p) which just mixes up the terms; really A,B,C are

just functions of the momentum transfer q2. Gauge invariance, in the form of the Ward

identity, says that contracting the photon line with the photon momentum should give

zero:

0
Ward
= qµū(p′)Γµu(p)

(1.39)
= ū(p′)

A /q︸︷︷︸
= /p′−/p

ū(p′)...u(p)
= m−m=0

+B (p+ p′) · (p− p′)︸ ︷︷ ︸
=m2−m2=0

+Cq2

u(p)

Therefore 0 = Cq2ū(p′)u(p) for general q2 and general spinors, so C = 0. This is the

moment for the Gordon identity to shine:

ū(p′)γµu(p) = ū(p′)

(
pµ + p

′µ

2m
+

iσµνqν
2m

)
u(p)

(where σµν ≡ i
2
[γµ, γν ]) can be used to eliminate the p+p′ term11. The Gordon identity

shows that the QED interaction vertex ū(p′)γµu(p)Aµ contains a magnetic moment bit

in addition to the p+ p′ term (which is there for a charged scalar field).

It is then convenient (and conventional) to parametrize the vertex in terms of the

two form factors F1,2:

Γµ(p, p′) = γµF1(q2) +
iσµνqν

2m
F2(q2). (1.40)

This little monstrosity has the complete information about the coupling of the electron

to the electromagnetic field, such as for example a background electromagnetic field.

It is a parametrization of the matrix elements of the current between two one-electron

states, incorporating the fact of gauge invariance.

11Actually this is why we didn’t include a σµν term. You could ask: what about a term like

σµν(p+p′)ν? Well, there’s another Gordon identity that relates that to things we’ve already included:

ū2σµν(p1 + p2)νu1 = iū2 (qµ − (m1 −m2)γµ)u1.

It is proved the same way: just use the Dirac equation /p1
u1 = m1u1, ū2/p2

= ū2m2 and the Clifford

algebra. We are interested here in the case where m1 = m2.
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The first term at zero momentum eF1(q2 = 0) is the electric charge of the electron

(if you don’t believe it, use the vertex (1.40) to calculate the Coulomb field of the

electron; there are some details on page 186 of Peskin). Since the tree-level bit of

F1 is 1, if by the letter e here we mean the actual charge, then we’d better include

counterterms (Lct 3 ψ̄δeγµAµψ) to make sure it isn’t corrected: F1(0) = 1.

The magnetic moment of the electron is the coefficient ~µ of Ṽ (q) = −~µ · ~B(q) +

... in the non-relativistic effective potential. Comparing the non-relativistic limit of

ū(p′)Γiu(p)Ai(q) = −~µ · ~B(q) + ..., (see the homework) shows that (see Peskin p. 187)

~µ = g
e

2m
~S,

where ~S ≡ ξ† ~σ
2
ξ is the electron spin. Comparing with the vertex function, this says

that the g factor is

g = 2(F1(0) + F2(0)) = 2 + 2F2(0) = 2 +O(α).

We see that the anomalous magnetic moment of the electron is 2F2(q2 = 0).

Now that we have some expectation about the form of the answer, and some ideas

about what it’s for, we sketch the evaluation of the one-loop QED vertex correction:

= −ie3

∫
d̄4k ū(p′)γν

/k
′
+me

(k′)2 −m2
e

γµ
/k +me

k2 −m2
e

γρu(p)· ηνρ
(p− k)2 −m2

γ

with k′ ≡ k + q.

Step (1) Feynman parameters again. The one we showed before can be rewritten

more symmetrically as:

1

AB
=

∫ 1

0

dx

∫ 1

0

dy δ(x+ y − 1)
1

(xA+ yB)2
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Now how can you resist the generalization12:

1

ABC
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1)
2

(xA+ yB + zC)3

So, set A = (k′)2 −m2
e, B = k2 −m2

e, C = (p− k)2 −m2
γ (with the appropriate iεs), so

that the integral we have to do is∫
d̄4kNµ

(k2 + k · (· · · ) + · · · )3
.

Step (2) Complete the square, ` = k − zp+ xq to get
∫

d̄4`Nµ

(`2−∆)3 where

∆ = −xyq2 + (1− z)2m2 + zm2
γ. (1.42)

The `-dependence in the numerator is either 1 or `µ or `µ`ν . In the integral over `, the

second averages to zero, and the third averages to ηµν`2 1
4
. As a result, the momentum

integrals we need are just∫
d̄D`

(`2 −∆)m
and

∫
d̄D` `2

(`2 −∆)m
.

Right now we only need D = 4 and m = 3, but it turns out to be quite useful to think

about them all at once. Like in our discussion of the electron self-energy diagram, we

12Peskin outlines a proof by induction of the whole family of such identities on page 190. But here’s

a simpler proof using Schwinger parameters. You’ll agree that

1

A
=

∫ ∞
0

ds e−sA. (1.41)

Applying this identity to each factor gives

1

A1A2 · · ·An
=

∫ ∞
0

ds1 · · ·
∫ ∞

0

dsn e
−
∑n
i=1 siAi .

Now use scaling to set τ ≡
∑n
i=1 sn, and xi ≡ si/τ . Then

1

A1A2 · · ·An
=

∫ ∞
0

dττn−1
n∏
i=1

∫ 1

0

dxiδ

(
n∑
i=1

xi − 1

)
e−τ

∑
i xiAi .

Now do the integral over τ , using
∫∞

0
dττn−1e−τX = (n−1)!

Xn (differentiate (1.41) wrt A), to arrive at

1

A1A2 · · ·An
=

n∏
i=1

∫ 1

0

dxiδ

(
n∑
i=1

xi − 1

)
(n− 1)!

(
∑
i xiAi)

n .
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can evaluate them by Wick rotating (which changes the denominator to `2
E + ∆) and

going to polar coordinates. This gives:∫
d̄D`

(`2 −∆)m
= (−1)m

i

(4π)D/2
Γ
(
m− D

2

)
Γ(m)

(
1

∆

)m−D
2

. (1.43)

∫
d̄D` `2

(`2 −∆)m
= (−1)m−1D

2

i

(4π)D/2
Γ
(
m− D

2
− 1
)

Γ(m)

(
1

∆

)m−D
2
−1

. (1.44)

Notice that these integrals are not equal to infinity when the parameter D is not an

integer. This is the idea behind dimensional regularization.

Step (0) But for now let’s persist in using the Pauli Villars regulator. (I call this

step (0) instead of (3) because it should have been there all along.) Here this means we

subtract from the amplitude the same quantity with mγ replaced by Λ2. The dangerous

bit comes from the `2 term we just mentioned, since m −D/2 − 1 = 3 − 4/2 − 1 = 0

means logs.

The numerator is

Nµ = ū(p′)γν
(
/k + /q +me

)
γµ (/k +me) γνu(p)

= −2 (Aū(p′)γµu(p) + Bū(p′)σµνqνu(p) + Cū(p′)qµu(p)) (1.45)

where

A = −1

2
`2 + (1− x)(1− y)q2 + (1− 4z + z2)m2

B = imz(1− z)

C = m(z − 2)(y − x) . (1.46)

The blood of many men was spilled to arrive at these simple expressions (actually

most of the algebra is done explicitly on page 319 of Schwartz). Now you say: but you

promised there would be no term like C because of the Ward identity. Indeed I did and

indeed there isn’t because C is odd in x↔ y while everything else is even, so this term

integrates to zero.

The first term (with A) is a correction to the charge of the electron and will be UV

divergent. More explicitly, we get, using Pauli-Villars,∫
d̄4`

(
`2(

`2 −∆mγ

)3 −
`2

(`2 −∆Λ)3

)
=

i

(4π)2
ln

∆Λ

∆mγ

.

The other bits are finite, and we ignore the terms that go like negative powers of Λ.

More on this cutoff dependence soon. But first something wonderful:
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1.7.1 Anomalous magnetic moment

The second term B contains the anomalous magnetic moment:

F2(q2) =
2m

e
· (the term with B )

=
2m

e
4e3 (im)

∫
dxdydzδ(x+ y + z − 1)z(1− z)

∫
d̄4`

(`2 −∆)3︸ ︷︷ ︸
= −i

32π2∆

=
α

π
m2

∫
dxdydzδ(x+ y + z − 1)

z(1− z)

(1− z)2m2 − xyq2
. (1.47)

The correction to the magnetic moment is the long-wavelength bit of this:

F2(q2 = 0) =
α

π
m2

∫ 1

0

dz

∫ 1−z

0

dy
z

(1− z)m2
=

α

2π
.

g = 2 +
α

π
+O(α2).

A rare opportunity for me to plug in numbers: g = 2.00232.

1.7.2 IR divergences mean wrong questions.

There is a term in the numerator from the Aγµ bit∫
d̄4`

(`2 −∆)3
= c

1

∆

(with c = − i
32π2 again), but without the factor of z(1 − z) we had in the magnetic

moment calculation. It looks like we’ve gotten away without having to introduce a UV

regulator here, too (so far). But now look at what happens when we try to do the

Feynman parameter integrals. For example, at q2 = 0, we get (if we had set mγ = 0)∫
dxdydzδ(x+ y + z − 1)

m2(1− 4z + z2)

∆
= m2

∫ 1

dz

∫ 1−z

0

dy
−2 + 2(1− z) + (1− z)2

(1− z)2m2

=

∫ 1

dz
−2

(1− z)
+ finite, (1.48)

which diverges at the upper limit of integration. In fact it’s divergent even when q2 6= 0.

This is a place where we actually need to include the photon mass, mγ, for our own

safety. The fact that restoring mγ 6= 0 in (1.42) regulates this divergence is one way to

see that it is indeed an IR divergence. [End of Lecture 6]
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The (IR singular bit of the) vertex (to O(α)) is of the form

Γµ = γµ
(

1− α

2π
fIR(q2) ln

(
−q2

mγ
2

))
+ stuff which is finite as mγ → 0. (1.49)

Notice that the IR divergent stuff depends on the electron momenta p, p′ only through

q, the momentum of the photon. So it looks like we are led to conclude(
dσ

dΩ

)
µe←µe

=

(
dσ

dΩ

)
Mott

(
1− α

π
fIR(q2) ln

(
−q2

mγ
2

))
+O

(
α2
)

which blows up when we remove the fake photon mass mγ → 0. Notice that for t-

channel exchange, −q2 > 0, so the argument of the log is positive, the cross-section is

real. But notice that the one-loop correction is not only infinite, but negative infinity,

which simply cannot happen from the definition of the cross section. This is perturba-

tion theory’s way of telling us that the answer is 1−α ·∞+O(α2) ' 0 – the putatively

small corrections from radiative effects are actually trying to make the answer zero.

[Schwartz §20.1] I wanted to just quote the above result for (1.49) but I lost my

nerve, so here is a bit more detail leading to it. The IR dangerous bit comes from the

second term in A above. That is,

F1(q2) = 1 + f(q2) + δ1 +O(α2)

with

f(q2) =
e2

8π2

∫ 1

0

dxdydzδ(x+y+z−1)

(
ln
zΛ2

∆
+
q2(1− x)(1− y) +m2

e(1− 4z + z2)

∆

)
.

δ1 here is a counterterm for the ΨγµAµΨ vertex.

We can be more explicit if we consider −q2 � m2
e so that we can ignore the electron

mass everywhere. Then we would choose the counterterm δ1 so that

1 = F1(0) =⇒ δ1 = −f(0)
me/q→0→ − e2

8π2

1

2
ln

Λ2

m2
γ

.

And the form of f(q2) is

f(q2)|me=0 =
e2

8π2

∫
dxdydzδ(x+ y + z − 1)

ln
(1− x− y)Λ2

∆︸ ︷︷ ︸
IR finite

+
q2(1− x)(1− y)

−xyq2 + (1− x− y)m2
γ


F1(q2)|me=0 = 1− e2

16π2

(
ln2 −q2

m2
γ

+ 3 ln
−q2

m2
γ

)
+ finite.

In doing the integrals, we had to remember the iε in the propagators, which can be

reproduced by the replacement q2 → q2 +iε. This ln2(q2/mγ) is called a Sudakov double

logarithm. Notice that taking differences of these at different q2 will not make it finite.
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Diversity and inclusion to the rescue. Before you throw up your hands in

despair, I would like to bring to your attention another consequence of the massless-

ness of the photon: It means real (as opposed to virtual) photons can be made with

arbitrarily low energy. But a detector has a minimum triggering energy: the detector

works by particles doing some physical something to stuff in the detector, and it has

a finite energy resolution – it takes a finite amount of energy Ec for those particles

to do the stuff. This means that a process with exactly one e and one µ in the final

state cannot be distinguished from a process ending in eµ plus a photon of

arbitrarily small energy, such as would result from (final-state radiation)

or (initial-state radiation). This ambiguity is present for any process with

external charged particles.

Being more inclusive, then, we cannot distinguish amplitudes of the form

ū(p′)M0(p′, p)u(p) ≡ −i


 ,

from more inclusive amplitudes like

−i




= ū(p′)γµ e
/p′+/k−meM0(p′, p)u(p)ε?µ(k) + ū(p′)M0(p′, p) e

/p−/k−meγ
µu(p)ε?µ(k) .

Now, by assumption the extra outgoing photon is real (k2=0) and it is soft, in the

sense that k0 < Ec, the detector cutoff. So we can approximate the numerator of the

second term as(
/p− /k +me

)
γµu(p) '

(
/p+me

)
γµu(p)

Clifford
= (2pµ + γµ

(
−/p+me

)
)u(p)︸ ︷︷ ︸

=0

= 2pµu(p).

In the denominator we have e.g. (p− k)2 −m2
e = p2 −m2

e − 2p · k + k2 ∼ −2p · k since

the electron is on shell p2 = m2
e and so is the photon k2 = 0. Therefore

M (eµ+ one soft γ ← eµ) = eū(p′)M0(p′, p)u(p)

(
p′ · ε?

p′ · k + iε
− p · ε?

p · k − iε

)
(1.50)
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This is bremsstrahlung. Before we continue this calculation to find the inclusive

amplitude which a real detector actually measures, let’s pause to relate the previous

expression to some physics we know. Where have we seen this kind of expression

p
′µ

p′ · k + iε
− pµ

p · k − iε
≡ 1

ie
j̃µ(k)

before? Notice that the iε are different because one comes from final state and one

from initial. Well, this object is the Fourier transform j̃µ(k) =
∫
d4x e+ikxjµ(x) of the

current

jµ(x) = e

∫
dτ
dyµ

dτ
δ(4)(x− y(τ))

associated with a particle which executes a piecewise linear motion 13

yµ(τ) =

{
pµ

m
τ, τ < 0

p
′µ

m
τ, τ > 0

.

This is a good approximation to the motion a free particle which experiences a sudden

acceleration; sudden means that the duration of the pulse is short compared to ω−1

for any frequency we’re going to measure. The electromagnetic radiation that such

an accelerating charge produces is given classically by Maxwell’s equation: Ãµ(k) =

− 1
k2 j̃

µ(k).

I claim further that the factor fIR(q2) = α
π

ln
(
−q2

m2

)
(which entered our lives in

(1.49)) arises classically as the number of soft photons produced by such a process in

each decade of wavenumber. You can figure this out by plugging Ãµ(k) = − 1
k2 j̃

µ(k)

into the electromagnetic energy 1
2

∫
d3x (E2 +B2) =

∫
d̄3k~ωknk. (Note that the in-

tegral over k here actually diverges; this is an artifact of the approximation that the

momentum change is instantaneous.) See Peskin §6.1 for help.

(
dσ

dΩ

)Eγ<Ec
µeγsoft←µe

=

(
dσ

dΩ

)
Mott

e2

∫ Ec

0

d̄3k

2Ek︸ ︷︷ ︸
γ phase space

∣∣∣∣p · ε?p · k
− p′ · ε?

p′ · k

∣∣∣∣2 Ek=|~k|∼
∫

0

d3k

k3
=∞.

13Check it:∫
d4xjµ(x)e+ikx = e

∫
dτ
dyµ(τ)

dτ
eik·y(τ) = e

∫ ∞
0

dτ
p
′µ

m
e
i
(
k·p′
m +iε

)
τ

+ e

∫ 0

−∞
dτ
pµ

m
ei(

k·p
m −iε)τ = j̃µ(k).

Notice that the iε are convergence factors in the Fourier transforms.
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This is another IR divergence. (One divergence is bad news, but two is an opportunity

for hope.) Just like we must stick to our UV regulators like religious zealots, we must

cleave tightly to the consistency of our IR regulators: we need to put back the photon

mass:

Ek =

√
~k2 +mγ

2

which means that the lower limit of the k integral gets cut off at mγ:∫ Ec

0

dk

Ek
=

(∫ mγ

0

+

∫ Ec

mγ

)
dk√

k2 +mγ
2
∼
∫ mγ

0

dk

mγ︸ ︷︷ ︸
=1

+

∫ Ec

mγ

dk

k︸ ︷︷ ︸
ln Ec
mγ

.

Being careful about the factors, the actual cross section measured by a detector with

energy resolution Ec is14

(
dσ

dΩ

)observed

=

(
dσ

dΩ

)
eµ←µe

+

(
dσ

dΩ

)Eγ<Ec
µeγsoft←µe

+O(α3)

=

(
dσ

dΩ

)
Mott

1−α
π
fIR(q2) ln

(
−q2

mγ
2

)
︸ ︷︷ ︸

vertex correction

+
α

π
fIR(q2) ln

(
E2
c

mγ
2

)
︸ ︷︷ ︸

soft photons


=

(
dσ

dΩ

)
Mott

(
1− α

π
fIR(q2) ln

(
−q2

E2
c

))

The thing we can actually measure is independent of the IR regulator photon mass mγ,

and finite when we remove it. On the other hand, it depends on the detector resolution.

Like in the plot of some kind of Disney movie, an apparently minor character whom

you may have been tempted to regard as an ugly detail has saved the day.

I didn’t show explicitly that the coefficient of the log is the same function fIR(q2).

In fact this function is fIR(q2) = 1
2

log(−q2/m2), so the product fIR ln q2 ∼ ln2 q2 is

the Sudakov double logarithm. A benefit of the calculation which shows that the same

fIR appears in both places (Peskin chapter 6.5) is that it also shows that this pattern

persists at higher order in α: there is a ln2(q2/mγ
2) dependence in the two-loop vertex

correction, and a matching − ln2(E2
c /mγ

2) term in the amplitude to emit two soft

14Notice that we add the cross-sections, not the amplitudes, for these processes with different final

states. Here’s why: even though we don’t measure the existence of the photon, something does: it

gets absorbed by some part of the apparatus or the rest of the world and therefore becomes entangled

with some of its degrees of freedom; when we fail to distinguish between those states, we trace over

them, and this erases the interference terms we would get if we summed the amplitudes.
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photons. There is a 1
2!

from Bose statistics of these photons. The result exponentiates,

and we get

e−
α
π
f ln(−q2/mγ2)e−

α
π
f(E2

c/mγ
2) = e−

α
π
f ln(−q2/E2

c ).

You may be bothered that I’ve made all this discussion about the corrections from

the electron line, but said nothing about the muon line. But the theory should make

sense even if the electron and muon charges Qe, Qm were different, so the calculation

should make sense term-by-term in an expansion in Qm.

Some relevant names for future reference: The name for the guarantee that this

always works in QED is the Bloch-Nordsieck theorem. Closely-related but more serious

issues arise in QCD, the theory of quarks and gluons; this is the beginning of the story

of jets (a jet is some IR-cutoff dependent notion of a QCD-charged particle plus the

cloud of stuff it carries with it) and parton distribution functions.

Sketch of exponentiation of soft photons. [Peskin §6.5] In the following we

will just keep track of the bits which diverge when mγ → 0. Consider a diagram with

n soft external photons, summed over ways of distributing them on an initial and final

electron line:

n∑
nf=1

= ū(p′)iM0u(p)en
n∏

α=1

(
p
′µα

p′ · kα
− pµα

p · kα

)
≡ An.

Here the difference in each factor is just as in (1.50), one term from initial and one from

final-state emission; expanding the product gives the sum over nf = 1−ni, the number

coming from the final-state line. From this expression, we can make a diagram with a

soft-photon loop by picking an initial line α and a final line β setting kα = −kβ ≡ k

and tying them together with a propagator and summing over k:

= An−2
e2

2

∫
d̄4k

−iηρσ
k2 −m2

γ

(
p′

p′ · k
− p

p · k

)ρ(
p
′

−p′ · k
− p

−p · k

)σ

(1.51)

The factor of 1
2

accounts for the symmetry under exchange of α ↔ β. For the case of

n = 2, this is the whole story, and this is

ūiM0u ·X =

  ·
 

soft part
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(where here ‘soft part’ means the part which is singular in mγ) from which we conclude

that

X = − α

2π
fIR(q2) ln

(
−q2

m2
γ

)
+ finite.

(The integral is done in Peskin, page 201.) Taking the most IR-divergent bit with m

virtual soft photons (order αm) for each m gives

Mvirtual soft =
∞∑
m=0


 =

︸ ︷︷ ︸
iM0


∑
m

1

m!
Xm

︸ ︷︷ ︸
eX

where the 1/m! is a symmetry factor from interchanging the virtual soft photons.

Notice that this verifies my claim that the −∞ in the one-loop answer is perturbation

theory’s way of trying to make the cross-section zero: since X
mγ→0→ −∞, dσexclusive ∝

e2X mγ→0→ 0.

Now consider the case of one real external soft (E ∈ [mγ, Ec]) photon in the final

state. The cross section is

dσ1γ =

∫
dΠ
∑
pols

εµε?ν︸ ︷︷ ︸
=−ηµν

MµM?
ν

= |ū(p′)M0u(p)|2
∫

d̄3k

2Ek
(−ηµν) e2

(
p′

p′ · k
− p

p · k

)µ(
p
′

−p′ · k
− p

−p · k

)ν
≡ dσ0Y,

Y =
α

π
fIR(q2) ln

(
E2
c

m2
γ

)
.

(This was actually exactly the same integral as in the virtual-photon calculation in

(1.51).) Therefore, the exclusive cross section, including contributions of soft real

photons gives
∞∑
n=0

dσnγ = dσ0

∑
n

1

n!
Yn = dσ0e

Y.

Here the n! is because the final state contains n identical bosons.

Putting the two effects together gives the promised cancellation of mγ dependence

to all orders in α:

dσ = dσ0e
2XeY

= dσ0 exp

(
−α
π
fIR(q2) ln

−q2

m2
γ

+
α

π
fIR(q2) ln

E2
c

m2
γ

)
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= dσ0 exp

(
−α
π
fIR(q2) ln

−q2

E2
c

)
.

This might seem pretty fancy, but unpacking the sum we did, the basic statement

is that the probability of finding n photons with energy in a given (low-energy) range

[E−, E+] is

P[E−,E+] =
1

n!
λne−λ, λ =

α

π
fIR(q2) ln

E+

E−
= 〈n〉 =

〈
n2
〉
− 〈n〉2

a Poisson distribution. This is just what one finds in a coherent state of the radiation

field.

1.7.3 Some magic from gauge invariance of QED

We found that the self-energy of the electron gave a wavefunction renormalization

factor

Z2 = 1 +
∂Σ

∂/p
|/p=m0 +O(e4) = 1− α

4π
ln

Λ2

m2
+ finite +O(α2).

We care about this because there is a factor of Z2 in the LSZ formula for an S-matrix

element with two external electrons. On the other hand, we found a cutoff-dependent

correction to the vertex eγµF1(q2) of the form

F1(q2) = 1 +
α

4π
ln

Λ2

m2
+ finite +O(α2).

Combining these together

Seµ←eµ =
(√

Z2(e)
)2 (

+
( )

+ · · ·
)

=

(
1− α

4π
ln

Λ2

m2
+ · · ·

)
e2ū(p′)

(
γµ
(

1 +
α

4π
ln

Λ2

m2
+ · · ·

)
+ α

iσµνqν
2m

)
u(p)

the UV divergence from the vertex cancels the one in the self-energy. Why did this have

to happen? During our discussion of the IR divergences, I mentioned a counterterm δ1

for the vertex. But how many counterterms do we get here? Is there a point of view

which makes this cancellation obvious? Notice that the · · · multiplying the γµ term

still contain the vacuum polarization diagram, which is our next subject, and which

may be (is) cutoff dependent. Read on.

1.8 Vacuum polarization

[Zee, III.7] We’ve been writing the QED lagrangian as

L = ψ̄
(
/∂ + ie /̃A−m

)
ψ − 1

4
F̃µνF̃

µν .
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I’ve put tildes on the photon field because of what’s about to happen: Suppose we

rescale the definition of the photon field eÃµ ≡ Aµ, eF̃µν ≡ Fµν . Then the coupling e

moves to the photon kinetic term:

L = ψ̄
(
/∂ + i /A−m

)
ψ − 1

4e2
FµνF

µν .

With this normalization, instead of measuring the coupling between electrons and

photons, the coupling constant e measures the difficulty a photon has propagating

through space:

〈AµAν〉 ∼
−iηµνe

2

q2
.

None of the physics is different, since each internal photon line still has two ends on a

ψ̄ /Aψ vertex.

But from this point of view it is clear that the magic of the previous subsection is

a consequence of gauge invariance, here’s why: the demand of gauge invariance relates

the coefficients of the ψ̄ /∂ψ and ψ̄ /Aψ terms15. Therefore, any counterterm we need for

the ψ̄ /∂ψ term (which comes from the electron self-energy correction and is traditionally

called δZ2) must be the same as the counterterm for the ψ̄ /Aψ term (which comes from

the vertex correction and is called δZ1). No magic, just gauge invariance.

A further virtue of this reshuffling of the factors of e (emphasized by Zee on page

205) arises when we couple more than one species of charged particle to the electromag-

netic field, e.g. electrons and muons or, more numerously, protons: once we recognize

that charge renormalization is a property of the photon itself, it makes clear that quan-

tum corrections cannot mess with the ratio of the charges. A deviation from −1 of

the ratio of the charges of electron and proton as a result of interactions might seem

plausible given what a mess the proton is, and would be a big deal for atoms. Gauge

invariance forbids it.

Just as we defined the electron self-energy (amputated 2-point function) as =

−iΣ(/p) (with two spinor indices implied), we define the photon self-energy as

+iΠµν(q
2) ≡ IPI = +O(e4)

(the diagrams on the RHS are amputated). It is a function of q2 by Lorentz symmetry.

(The reason for the difference in sign is that the electron propagator is +i
/p−m while the

15Notice that the gauge transformation of the rescaled Aµ is Aµ → Aµ+∂µλ(x), ψ(x)→ eiqλ(x)ψ(x)

so that Dµψ ≡ (∂ + qiA)µ ψ → eiqλDµψ where q is the charge of the field (q = −1 for the electron).

This is to be contrasted with the transformation of Ãµ → Ãµ − ∂µλ(x)/e.
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photon propagator is −iηµν
q2 .) We can parametrize the answer as

Πµν(q2) = A(q2)ηµν +B(q2)qµqν .

The Ward identity says

0 = qµΠµν(q2) =⇒ 0 = Aqν +Bq2qν =⇒ B = −A/q2.

Let A ≡ Πq2 so that

Πµν(q2) = Π(q2)q2

(
ηµν − qµqν

q2

)
︸ ︷︷ ︸

=∆µν
T

.

This object ∆µν
T is a projector

∆µ
T ρ∆T

ρ
ν = ∆µ

T ν (1.52)

onto modes transverse to qµ. Recall that we can take the bare propagator to be

=
−i∆T

q2

without changing any gauge-invariant physics. This is useful because then

G̃(2)(q) = + · · ·
(1.52)
=

−i∆T

q2

(
1 + iΠq2∆T

(
−i∆T

q2

)
+ iΠq2∆T

(
−i∆T

q2

)
iΠq2∆T

(
−i∆T

q2

)
+ · · ·

)
∆2
T=∆T
=

−i∆T

q2

(
1 + Π∆T + Π2∆T + · · ·

)
=
−i∆T

q2

1

1− Π(q2)
. (1.53)

Does the photon get a mass? If the thing I called A above q2Π(q2)
q2→0→ A0 6= 0

(that is, if Π(q2) ∼ A0

q2 or worse), then G̃
q2→0∼ 1

q2−A0
does not have a pole at q2 = 0.

If Π(q2) is regular at q2 = 0, then the photon remains massless. In order to get

such a singularity in the photon self energy Π(q2) ∼ A0

q2 we need a process like δΠ ∼
, where the intermediate state is a massless boson with propagator

∼ A0

q2 . As I will explain below, this is the Anderson-Higgs mechanism (not the easiest

way to understand it). [End of Lecture 7]

The Ward identity played an important role here. Why does it work for the vacuum

polarization?

qµΠµν
2 (q2) = qµ ∝ e2

∫
d̄4ptr

1

/p+ /q −m
/q

1

/p−m
γν .
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But here is an identity:

1

/p+ /q −m
/q

1

/p−m
=

1

/p−m
− 1

/p+ /q −m
. (1.54)

Now, if we shift the integration variable p → p + q in the second term, the two terms

cancel.

Why do I say ‘if’? If the integral depends on the UV limit, this shift is not innocu-

ous. So we have to address the cutoff dependence.

In addition to the (lack of) mass renormalization, we’ve figured out that the elec-

tromagnetic field strength renormalization is

Zγ ≡ Z3 =
1

1− Π(0)
∼ 1 + Π(0) +O(e4).

We need Zγ for example for the S-matrix for processes with external photons, like

Compton scattering.

Claim: If we do it right16, the cutoff dependence looks like17:

Π2(q2) =
α0

4π

−2

3
ln Λ2 + 2D(q2)︸ ︷︷ ︸

finite


where Λ is the UV scale of ignorance. The photon propagator gets corrected to

e2
0∆T

q2
 

Z3e
2
0∆T

q2
,

and Z3 = 1
1−Π(0)

blows up logarithmically if we try to remove the cutoff. You see

that the fine structure constant α0 =
e20
4π

has acquired the subscript of deprecation: we

can make the photon propagator sensible while removing the cutoff if we are willing to

recognize that the letter e0 we’ve been carrying around is a fiction, and write everything

16What I mean here is: if we do it in a way which respects the gauge invariance and hence the

Ward identity. The simple PV regulator we’ve been using does not quite do that. However, an only

slightly more involved implementation, explained in Zee page 202-204, does. Alternatively, we could

use dimensional regularization everywhere.
17The factor in front of the ln Λ can be made to look like it does in other textbooks using α = e2

4π ,

so that
α0

4π

(
2

3
ln Λ2

)
=

e2
0

12π2
ln Λ.
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in terms of e ≡
√
Z3e0 where e2

4π
= 1

137
is the measured fine structure constant (at low

energy). To this order, then, we write

e2
0 = e2

(
1 +

α0

4π

2

3
ln Λ2

)
+O(α2). (1.55)

m0 = m+O(α0) = m+O(α). (1.56)

Since the difference between α0 and α is higher order (in either), our book-keeping is

unchanged. Inverting the relationship perturbatively, the renormalized charge is

e2 = e2
0

(
1− α0

4π

2

3
ln Λ2 +O(α2)

)
– in QED, the quantum fluctuations reduce the charge, as you might expect from the

interpretation of this phenomenon as dielectric screening by virtual e+e− pairs.

In the example case of eµ← eµ scattering, the full one-loop UV cutoff dependence

then looks like

Seµ←eµ =
√
Z2
e

(
1− α0

4π
ln Λ2 +

α0

2π
A(m0)

)
e2

0

Lµū(p′)

[
γµ
(

1 +
α0

4π
ln Λ2 +

α0

2π
(B +D) +

α0

4π

(
−2

3
ln Λ2

))
+

iσµνqν
2m

α0

2π
C(q2,m0)

]
u(p)

= e2Lµū(p′)

[
γµ
(

1 +
α

2π
(A+B +D)

)
+

iσµνqν
2m

α

2π
C

]
u(p) +O(α2) (1.57)

where Lµ is the stuff from the muon line, and A,B,C,D are finite functions of m, q2.

In the second step, two things happened: (1) we cancelled the UV divergences from

the Z-factor and from the vertex correction: this had to happen because there was no

possible counterterm. (2) we used (1.55) and (1.56) to write everything in terms of the

measured e,m. This removes the remaining cutoff dependence.

Claim: this works for all processes to order α2. For example, Bhabha scattering

gets a contribution of the form

∝ e0
1

1− Π(0)
e0 = e2.

In order to say what is A+B+D we need to specify more carefully a renormalization

scheme (other combinations of A,B,D can be changed by gauge transformations and

field redefinitions). To do that, I need to give a bit more detail about the integral.
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1.8.1 Under the hood

The vacuum-polarization contribution of a fermion of mass m and charge e at one loop

is

q,µ q,ν = −
∫

d̄Dktr

(
(ieγµ)

i (/k +m)

k2 −m2
(ieγν)

i
(
/q + /k +m

)
(q + k)2 −m2

)
The minus sign out front is from the fermion loop. Some boiling, which you can find

in Peskin (page 247) or Zee (§III.7), reduces this to something manageable. The steps

involved are: (1) a trick to combine the denominators, like the Feynman trick 1
AB

=∫ 1

0
dx
(

1
(1−x)A+xB

)2

. (2) some Dirac algebra, to turn the numerator into a polynomial

in k, q. As Zee says, our job in this course is not to train to be professional integrators.

The result of this boiling can be written

iΠµν
2 (q) = −e2

∫
d̄D`

∫ 1

0

dx
Nµν

(`2 −∆)2

with ` = k+xq is a new integration variable, ∆ ≡ m2−x(1−x)q2, and the numerator

is

Nµν = 2`µ`ν − ηµν`2 − 2x(1− x)qµqν + ηµν
(
m2 + x(1− x)q2

)
+ terms linear in `µ .

At this point I can illustrate explicitly why we can’t use the euclidean momentum

cutoff in gauge theory. With a euclidean momentum cutoff, the diagram gives

something of the form

iΠµν
2 ∝ e2

∫ Λ

d4`E
`2
Eη

µν

(`2
E −∆)

2 + ... ∝ e2Λ2ηµν

This is NOT of the form Πµν = ∆µν
T Π(p2); rather it produces a correction to the photon

mass proportional to the cutoff. What happened? Our cutoff was not gauge invariant.

Oops.18

Fancier PV regularization. [Zee page 202] We can fix the problem by adding

also heavy Pauli-Villars electron ghosts. Suppose we add a bunch of them with masses

18Two points: How could we have predicted that the cutoff on euclidean momentum `2E < Λ2 would

break gauge invariance? Its violation of the Ward identity here is a proof, but involved some work.

The idea is that the momentum of a charged field shifts under a gauge transformation. Second: it

is possible to construct a gauge invariant regulator with an explicit UV cutoff, using a lattice. The

price, however, is that the gauge field enters only via the link variables U(x, ê) = ei
∫ x+ê
x

A where x is a

site in the lattice and ê is the direction to a neighboring site in the lattice. For more, look up ‘lattice

gauge theory’ in Zee’s index. More on this later.
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ma and couplings
√
cae to the photon. Then the vacuum polarization is that of the

electron itself plus

−
∑
a

ca

∫
d̄Dktr

(
(ieγµ)

i

/q + /k −ma

(ieγν)
i

/q −ma

)
∼
∫ Λ

d̄4k

(∑
a ca
k2

+

∑
a cam

2
a

k4
+ · · ·

)
.

So, if we take
∑

a ca = −1 we cancel the Λ2 term, and if we take
∑

a cam
2
a = −m2, we

also cancel the ln Λ term. This requires at least two PV electron fields, but so what?

Once we do this, the momentum integral converges, and the Ward identity applies, so

the answer will be of the promised form Πµν = q2Π∆µν
T . After some more boiling, the

answer is

Π2(q2) =
1

2π2

∫
dxx(1− x) ln

M2

m2 − x(1− x)q2

where lnM2 ≡ −
∑

a ca lnm2
a. This M plays the role of the UV scale of ignorance

thenceforth.

Notice that this is perfectly consistent with our other two one-loop PV calculations:

in those, the extra PV electrons never get a chance to run. At higher loops, we would

have to make sure to be consistent.

Dimensional regularization. A regulator which is more automatically gauge

invariant is dimensional regularization (dim reg). I have already been writing many of

the integrals in D dimensions. One small difference when we are considering this as a

regulator for an integral of fixed dimension is that we don’t want to violate dimensional

analysis, so we should really replace∫
d4` −→

∫
d4−ε`

µ̄−ε

where D = 4 − ε and µ̄ is an arbitrary mass scale which will appear in the regulated

answers, which we put here to preserve dim’l analysis – i.e. the couplings in dim

reg will have the same engineering dimensions they had in the unregulated theory

(dimensionless couplings remain dimensionless). µ̄ will parametrize our RG, i.e. play

the role of the RG scale. (It is often called µ at this step and then suddenly replaced

by something also called µ; I will instead call this µ̄ and relate it to the thing that ends

up being called µ.)

[Zinn-Justin 4th ed page 233] Dimensionally regularized integrals can be defined

systematically with a few axioms indicating how the D-dimensional integrals behave

under

1. translations
∫

d̄Dpf(p+ q) =
∫

d̄Dpf(p) 19

19Note that this rule fails for the euclidean momentum cutoff. Also note that this is the property

we needed to demonstrate the Ward identity for the vertex correction using (1.54).
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2. scaling
∫

d̄Dpf(sp) = |s|−D
∫

d̄Dpf(p)

3. factorization
∫

d̄Dp
∫

d̄Dqf(p)g(q) =
∫

d̄Dpf(p)
∫

d̄Dqg(q)

The (obvious?) third axiom implies the following formula for the sphere volume as a

continuous function of D:(π
a

)D/2
=

∫
dDxe−a~x

2

= ΩD−1

∫ ∞
0

xD−1dxe−ax
2

=
1

2
a−

D
2 Γ

(
D

2

)
ΩD−1 . (1.58)

This defines ΩD−1 for general D.

In dim reg, the one-loop vacuum polarization correction does satisfy the gauge-

invariance Ward identity Πµν = ∆µν
T q

2Π2(q2). A peek at the tables of dim reg integrals

shows that Π2 is:

Π2(q2)
Peskin p. 252

= − 8e2

(4π)D/2

∫ 1

0

dxx(1− x)
Γ(2−D/2)

∆2−D/2 µ̄ε

D→4
= − e2

2π2

∫ 1

0

dxx(1− x)

(
2

ε
− log

(
∆

µ2

))
(1.59)

where we have introduced the heralded µ:

µ2 ≡ 4πµ̄2e−γE

where γE is the Euler-Mascheroni constant, which appears in the Taylor expansion

of the Euler gamma function; we define µ in this way so that, like Rosencrantz and

Guildenstern in Hamlet, γE both appears and disappears from the discussion in this

one scene.

In the second line of (4.6), we expanded the Γ-function about D = 4. Notice that

what was a log divergence, becomes a 1
ε

pole in dim reg. There are other singularities

of this function at other integer dimensions. It is an interesting question to ponder why

the integrals have such nice behavior as a function of D. That is: they only have simple

poles. A partial answer is that in order to have worse (e.g. essential) singularities at

some D, the perturbative field theory would have to somehow fail to make sense at

larger D.

Now we are in a position to choose a renormalization condition (also known as a

renormalization scheme), which will specify how much of the finite bit of Π gets sub-

tracted by the counterterm. One possibility is to demand that the photon propagator

is not corrected at q = 0, i.e. demand Zγ = 1. Then the resulting one-loop shift is

δΠ2(q2) ≡ Π2(q2)− Π2(0) =
e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)q2

m2

)
.
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We’ll use this choice below.

Another popular choice, about which more later, is called the MS scheme, in which

Π is defined by the rule that we subtract the 1/ε pole. This means that the counterterm

is

δ
(MS)

F 2 = − e2

2π2

2

ε

∫ 1

0

dxx(1− x)︸ ︷︷ ︸
=1/6

.

(Confession: I don’t know how to state this in terms of a simple renormalization

condition on Π2. Also: the bar in MS refers to the (not so important) distinction

between µ̄ and µ.) The resulting vacuum polarization function is

δΠ
(MS)
2 (q2) =

e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)q2

µ2

)
.

1.8.2 Physics from vacuum polarization

One class of physical effects of vacuum polarization arise from attaching the corrected

photon propagator to a static delta-function charge source. The resulting effective

Coulomb potential is the fourier transform of

Ṽ (q) =
1

q2

e2

1− Π(q2)
≡ e2

eff(q)

q2
. (1.60)

This has consequences in both IR and UV.

IR: In the IR (q2 � m2), it affects the spectra of atoms. The leading correction is

δΠ2(q) =
e2

2π2

∫
dxx(1−x) ln

(
1− q2

m2
x(1− x))

)
q�m
' e2

2π2

∫
dxx(1−x)

(
− q2

m2
x(1− x))

)
= − q2

60π2m2

which means

Ṽ (q)
q�m
' e2

q2
+
e2

q2

(
− q2

30m2

)
+ · · ·

and hence

V (r) = − e2

4πr2
− e4

60π2m2
δ(r) + · · · ≡ V + ∆V.

This shifts the energy levels of hydrogen s-orbitals (the ones with support at the origin)

by ∆Es = 〈s|∆V |s〉 which contributes to lowering the 2S state relative to the 2P state

(the Lamb shift).

63



This delta function is actually a long-wavelength approximation to what is called the

Uehling potential; its actual range is 1/me, which is the scale on which Π2 varies . The

delta function approximation is a good idea for atomic physics, since 1
me
� a0 = 1

αme
,

the Bohr radius. See Schwartz p. 311 for a bit more on this.

UV: In the UV limit (q2 � m2), we can approximate ln
(

1− q2

m2x(1− x)
)
'

ln
(
− q2

m2x(1− x)
)
' ln

(
− q2

m2

)
to get20

Π2(q2) =
e2

2π2

∫ 1

0

dxx(1−x) ln

(
1− q2

m2
x(1− x)

)
' e2

2π2

∫ 1

0

dxx(1−x) ln

(
− q2

m2

)
=

e2

12π2
ln

(
− q2

m2

)
.

Therefore, the effective charge in (1.60) at high momentum exchange is

e2
eff(q2)

q2�m2
e' e2

1− e2

12π2 ln
(
− q2

m2

) . (1.61)

(Remember that q2 < 0 for t-channel exchange, as in the static potential, so the

argument of the log is positive and this is real.)

Two things: if we make q2 big enough, we can make the loop correction as big as

the 1. This requires |q| ∼ 10286 eV. Good luck with that. This is called a Landau pole.

The second thing is: this perspective of a scale-dependent coupling is very valuable,

and is a crucial ingredient in the renormalization group. The value α = 1
137

is the

extreme IR value, for q � me.

20The last step is safe since the x(1 − x) suppresses the contributions of the endpoints of the x

integral, so we can treat x(1− x) as finite.
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2 Consequences of unitarity

Next I would like to fulfill my promise to show that conservation of probability guar-

antees that some things are positive (for example, Z and 1− Z, where Z is the wave-

function renormalization factor). We will show that amplitudes develop an imaginary

part when the virtual particles become real. (Someone should have put an extra factor

of i in the definition to resolve this infelicity.) We will discuss the notion of density

of states in QFT (this should be a positive number!), and in particular the notion

of the density of states contributing to a correlation function G = 〈OO〉, also known

as the spectral density of G (or of the operator O). In high-energy physics this idea

is associated with the names Källen-Lehmann and is part of a program of trying to

use complex analysis to make progress in QFT. These quantities are also ubiquitous

in the theory of condensed matter physics and participate in various sum rules. This

discussion will be a break from perturbation theory; we will say things that are true

with a capital ‘t’. [End of Lecture 8]

2.1 Spectral density

[Zee III.8, Appendix 2; Peskin §7.1; Xi Yin’s notes for Harvard Physics 253b] In the

following we will consider a (time-ordered) two-point function of an operator O. We

will make hardly any assumptions about this operator. We will assume it is a scalar

under rotations, and will assume translation invariance in time and space. But we

need not assume that O is ‘elementary’. This is an extremely loaded term, a useful

definition for which is: a field governed by a nearly-quadratic action. Also: try to keep

an eye out for where (if anywhere) we assume Lorentz invariance.

So, let

−iD(x) ≡ 〈0| T O(x)O†(0) |0〉 .

Notice that we do not assume that O is hermitian. Use translation invariance to move

the left operator to the origin: O(x) = eiPxO(0)e−iPx. This follows from the statement

that P generates translations 21

∂µO(x) = i[Pµ,O(x)] .

21Note that P here is a D-component vector of operators

Pµ = (H, ~P)µ

which includes the Hamiltonian – we are using relativistic notation – but we haven’t actually required

any assumption about the action of boosts.
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And let’s unpack the time-ordering symbol:

− iD(x) = θ(t) 〈0| eiPxO(0)e−iPxO†(0) |0〉+ θ(−t) 〈0| O†(0)eiPxO(0)e−iPx |0〉 . (2.1)

Now we need a resolution of the identity operator on the entire QFT H:

1 =
∑
n

|n〉 〈n| .

This innocent-looking n summation variable is hiding an enormous sum! Let’s also

assume that the groundstate |0〉 is translation invariant:

P |0〉 = 0.

We can label each state |n〉 by its total momentum (since the components of Pµ com-

mute with each other):

Pµ |n〉 = pµn |n〉 .

Let’s examine the first term in (2.1); sticking the 1 in a suitable place:

〈0| eiPxO(0)1e−iPxO†(0) |0〉 =
∑
n

〈0| O(0) |n〉 〈n| e−iPxO†(0) |0〉 =
∑
n

e−ipnx||O0n ||2 ,

with O0n ≡ 〈0| O(0) |n〉 the matrix element of our operator between the vacuum and

the state |n〉. Notice the absolute value: unitarity of our QFT requires this to be

positive and this will have valuable consequences.

Next we work on the time-ordering symbol. I claim that :

θ(x0) = θ(t) = −i

∫
d̄ω

e+iωt

ω − iε
; θ(−t) = +i

∫
d̄ω

e+iωt

ω + iε
.

Just like in the discussion of the Feynman contour, the point of the iε is to push the pole

inside or outside the integration contour. The half-plane in which we must close the

contour depends on the sign of t. There is an important sign related to the orientation

with which we circumnavigate the pole. Here is a check that we got the signs and

factors right:
dθ(t)

dt
= −i∂t

∫
d̄ω

eiωt

ω − iε
=

∫
d̄ωeiωt = δ(t).

Consider now the fourier transform of D(x) (for simplicity, I’ve assumed O = O†
here):

−iD(q) =

∫
dDxeiqxiD(x) = i(2π)D−1

∑
n

||O0n ||2
(
δ(D−1)(~q − ~pn)

q0 − p0
n + iε

− δ(D−1)(~q + ~pn)

q0 + p0
n − iε

)
.

(2.2)
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With this expression in hand, you could imagine measuring the O0ns and using that

to determine D.

Now suppose that our operator O is capable of creating a single particle (for ex-

ample, suppose, if you must, that O = φ, a perturbative quantum field). Such a state

is labelled only by its spatial momentum:
∣∣∣~k〉 (here I briefly retreat to non-relativistic

normalization of states
〈
~k|~k′

〉
= δD−1(~k − ~k′)). The statement that O can create this

state from the vacuum means〈
~k
∣∣∣O(0) |0〉 =

Z
1
2√

(2π)D−1 2ω~k

(2.3)

where Z 6= 0 and ω~k is the energy of the particle as a function of ~k. For a Lorentz

invariant theory, we can parametrize this as

ω~k
Lorentz!≡

√
~k2 +m2

in terms of m, the mass of the particle. 22 What is Z? From (2.3) and the axioms of

QM, you can see that it’s the probability that O creates this 1-particle state from the

vacuum. In the free field theory it’s 1, and it’s positive because it’s a probability. 1−Z
measures the extent to which O does anything besides create this 1-particle state.

The identity of the one-particle Hilbert space (relatively tiny!) H1 is

11 =

∫
d̄D−1~k

∣∣∣~k〉〈~k∣∣∣ , 〈
~k|~k′

〉
= δ(D−1)(~k − ~k′).

This is a summand in the whole horrible resolution:

1 = 11 + · · · .
22It’s been a little while since we spoke explicitly about free fields, so let’s remind ourselves about

the appearance of ω−
1
2 in (2.3), recall the expansion of a free scalar field in creation an annihilation

operators:

φ(x) =

∫
d̄D−1~p√

2ω~p

(
a~pe
−ipx + a†~pe

ipx
)

.

For a free field
∣∣∣~k〉 = a†~k

|0〉, and
〈
~k
∣∣∣φ(0) |0〉 = 1√

(2π)D−12ω~k
. The factor of ω−

1
2 is required by the

ETCRs:

[φ(~x), π(~x′)] = iδD−1(~x− ~x′), [a~k,a
†
~k′

] = δD−1(~k − ~k′) ,

where π = ∂tφ is the canonical field momentum. It is just like in the simple harmonic oscillator, where

q =

√
~

2mω

(
a + a†

)
, p = i

√
~ω
2

(
a− a†

)
.
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I mention this because it lets us define the part of the horrible
∑

n in (2.2) which comes

from 1-particle states:

=⇒ − iD(q) = ...+ i(2π)D−1

∫
d̄D−1~k

Z

(2π)D−12ωk

(
δD−1(~q − ~k)

q0 − ω~k + iε
− (ωk → −ωk)

)
= ...+ i

Z

2ωq

(
1

q0 − ωq + iε
− 1

q0 + ωq + iε

)
Lorentz

= ...+ i
Z

q2 −m2 + iε

(Here again ... is contributions from states involving something else, e.g. more than

one particle.) The big conclusion here is that even in the interacting theory, even if

O is composite and complicated, if O can create a 1-particle state with mass m with

probability Z, then its 2-point function has a pole at the right mass, and the residue

of that pole is Z. 23

The imaginary part of D is called the spectral density ρ (beware that different

physicists have different conventions for the factor of i in front of the Green’s function;

the spectral density is not always the imaginary part, but it’s always positive (in unitary

theories)!

Using

Im
1

Q∓ iε
= ±πδ(Q), (for Q real). (2.4)

we have

ImD(q) = π (2π)D−1
∑
n

||O0n ||2
(
δD(q − pn) + δD(q + pn)

)
.

More explicitly (for real operators):

Im i

∫
dDx eiqx 〈0| T O(x)O(0) |0〉 = π (2π)D−1

∑
n

||O0n ||2

δD(q − pn)+ δD(q + pn)︸ ︷︷ ︸
=0 for q0 > 0 since p0

n > 0

 .

The second term on the RHS vanishes when q0 > 0, since states in H have energy

bigger than the energy of the groundstate. Therefore, the contribution of a 1-particle

state to the spectral density is:

ImD(q) = ...+ πZδ(q2 −m2).

23If we hadn’t assumed Lorentz invariance, this would be replaced by the statement: if the operator

O can create a state with energy ω from the vacuum with probability Z, then its Green’s function

has a pole at that frequency, with residue Z.
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This quantity ImD(q) (the spectral density ofO) is positive because it is the number

of states (with D-momentum in an infinitesimal neighborhood of q), weighted by the

modulus of their overlap with the state engendered by the operator on the groundstate.

Now what about multiparticle states? The associated sum over such states involves

multiple (spatial) momentum integrals, not fixed by the total momentum e.g. in φ4

theory, φ can make a 3-particle state: and the three particles must

share the momentum q. In this case the sum over all 3-particle states is∑
n, 3-particle states with momentum q

∝
∫
d~k1d~k2d~k3δ

D(k1 + k2 + k3 − q)

(Note that I am not saying that a single real φ particle is decaying to three real φ

particles; that can’t happen if they are massive. Rather, in the diagram you

can think of the particle with momentum q as virtual.)

Now instead of an isolated pole, we have a whole collection of

poles right next to each other. This is a branch cut. In this

example, the branch cut begins at q2 = (3m)2. 3m is the lowest

energy q0 at which we can produce three particles of mass m

(they have to be at rest).

Note that in φ3 theory, we would instead find that the particle can decay into two

particles, and the sum over two particle states would look like∑
n, 2-particle states with momentum q

∝
∫
d~k1d~k2δ

D(k1 + k2 − q)

so the continuum would start at q2 = (2m)2.

Recall that for real x the imaginary part of a function of one variable with a branch

cut, (like Im(x + iε)ν = 1
2

((x+ iε)ν − (x− iε)ν)) is equal to (half) the discontinuity

of the function ((x)ν) across the branch cut. The discontinuity goes to zero as we

approach the branch point. Near the multi-particle continuum, the Green’s function

has such a branch cut.

Now we recall some complex analysis, in the form of the Kramers-Kronig (or dis-

persion) relations:

ReG(z) =
1

π
P
∫ ∞
−∞

dω
ImG(ω)

ω − z
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(valid if ImG(ω) is analytic in the UHP of ω and falls off faster than 1/ω). These

equations, which I think we were supposed to learn in E&M but no one seems to, and

which relate the real and imaginary parts of an analytic function by an integral equa-

tion, can be interpreted as the statement that the imaginary part of a complex integral

comes from the singularities of the integrand, and conversely that those singularities

completely determine the function.

An even more dramatic version of these relations (whose imaginary part is the

previous eqn) is

f(z) =
1

π

∫
dw

ρ(w)

w − z
, ρ(w) ≡ Imf(w + iε).

The imaginary part determines the whole function.

Comments:

• The spectral density ImD(q) determines D(q). When people get excited about

this it is called the “S-matrix program” or something like that.

• The result we’ve shown protects physics from our caprices in choosing field vari-

ables. If someone else uses a different field variable η ≡ Z
1
2φ + αφ3, the result

above with O = η shows that∫
dDxeiqx 〈T η(x)η(0)〉

still has a pole at q2 = m2 and a cut starting at the three-particle threshold,

q2 = (3m)2.

• A sometimes useful fact which we’ve basically already shown (for real operators):

ImD(q) = (2π)D
∑
n

||O0n ||2
(
δD(q − pn) + δD(q + pn)

)
=

1

2

∫
dDxeiqx 〈0| [O(x),O(0)] |0〉 .

We can summarize what we’ve learned in the Lorentz-invariant case as follows: In

a Lorentz invariant theory, the spectral density ρ for a scalar operator φ is a scalar

function of pµ with∑
s

δD(p− ps)|| 〈0|φ(0) |s〉 ||2 =
θ(p0)

(2π)D−1
ρ(p2) .

Claims:

• ρ(s) = N ImD for some number N (I believe N = π here), when s > 0.
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• ρ(s) = 0 for s < 0. There are no states for spacelike momenta.

• ρ(s) ≥ 0 for s > 0. The density of states for timelike momenta is positive or zero.

• With our assumption about one-particle states, ρ(s) has a delta-function singu-

larity at s = m2, with weight Z. More generally we have shown that

D(k2) =

∫
ds ρ(s)

1

k2 − s+ iε
. (2.5)

This is called the Källen-Lehmann spectral representation of the propagator; it

represents it as a sum of free propagators with different masses, determined by

the spectral density.

In particular, this result (2.5) implies that D(z = k2) is an analytic function in

the complex z-plane away from the support of ρ, i.e. away from the momenta

where physical states live. Singularities of amplitudes come only from physics.

One consequence (assuming unitarity and Lorentz symmetry) is that at large

|k2|, the Green’s function is bigger than 1
k2 , since each term in the integral goes

like 1
k2 and ρ(s) ≥ 0 means that there cannot be cancellations between each

1
k2−s contribution. This means that if the kinetic term for your scalar field has

more derivatives, something must break at short distances. Breaking Lorentz

symmetry is the easiest way out, for example on a lattice; in a Lorentz-invariant

theory, this is an indication that non-renormalizable terms imply more degrees of

freedom at high energy. (More on this in subsection §2.2.) For example, consider

the theory with Lagrangian L = (∂φ)2 + 1
Λ2 (∂2φ)

2
. It’s quadratic so we can solve

it, and the propagator is

1

k2 + k4/Λ2
=

1

k2
− 1

k2 − Λ2

which as you can see looks just like a Pauli-Villars regulator. That is, we’ve

added in a ghost field whose pole has a negative residue. As we’ve seen above,

the residue of the pole in the propagator is a probability, and hence in a unitary

theory had better be positive.

Taking into account our assumption about single-particle states, this is

D(k2) =
Z

k2 −m2 + iε
+

∫ ∞
(3m)2

ds ρc(s)
1

k2 − s+ iε

where ρc is just the continuum part. The pole at the particle-mass2 survives

interactions, with our assumption. (The value of the mass need not be the same

as the bare mass!)
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• Sum rule. Finally, suppose that the field φ in question is a canonical field, in

the sense that

[φ(x, t), ∂tφ(y, t)] = iδ(d)(x− y).

This is a statement both about the normalization of the field, and that its canon-

ical momentum is its time derivative. Then24

1 =

∫ ∞
0

dsρ(s). (2.7)

If we further assume that φ can create a one-particle state with mass m, so that

ρ(s) = Zδ(s−m2)+ρc(s) where ρc(s) ≥ 0 is the contribution from the continuum

of ≥ 2-particle states, then

1 = Z +

∫ ∞
threshold

dsρc(s)

is a sum rule. It shows that Z ∈ [0, 1] and is just the statement that if the

field doesn’t create a single particle, it must do something else. The LHS is the

probability that something happens.

The idea of spectral representation and spectral density is more general than the

Lorentz-invariant case. In particular, the spectral density of a Green’s function is

an important concept in the study of condensed matter. For example, the spectral

density for the electron 2-point function is the thing that actually gets measured in

angle-resolved photoemission experiments (ARPES).

2.2 Cutting rules and optical theorem

[Zee §III.8] So, that may have seemed like some math. What does this mean when we

have in our hands a perturbative QFT? Consider the two point function of a relativistic

scalar field φ which has a perturbative cubic interaction:

S =

∫
dDx

(
1

2

(
(∂φ)2 +m2φ2

)
− g

3!
φ3

)
.

24 Here’s how to see this. For free fields (chapter 2) we have

〈0|[φ(x), φ(y)]|0〉free = ∆+(x− y,m2)−∆+(y − x,m2),

where ∆+(x) =
∫

d̄dp
2ω~p

e−ip·x|p0=ω~p . For an interacting canonical field, we have instead a spectral

representation (by exactly the methods above):

〈Ω|[φ(x), φ(y)]|Ω〉 =

∫
dµ2ρ(µ2)

(
∆+(x− y, µ2)−∆+(y − x, µ2)

)
, (2.6)

where ρ is the same spectral density as above. Now take ∂x0 |x0=y0 of the BHS of (2.6) and use

∂t∆+(x− y;µ2)|x0=y0 = − i
2δ

(d)(~x− ~y).
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Sum the geometric series of 1PI insertions to get

iDφ(q) =
i

q2 −m2 − Σ(q) + iε

where Σ(q) is the 1PI two point vertex.

The leading contribution to Σ comes from the one loop

diagram at right and is

iΣ1 loop(q2) =
1

2
(ig)2

∫
d̄Dk

i

k2 −m2 + iε

i

(q − k)2 −m2 + iε
.

The 1
2

is a symmetry factor from exchanging the two inter-

nal lines of the loop. Consider this function for real q, for

which there are actual states of the scalar field – timelike qµ, with q0 > m. The real

part of Σ shifts the mass. But what does it mean if this function has an imaginary

part?

Claim: ImΣ/m is a decay rate.

It moves the energy of the particle off of the real axis from m (in its rest frame) to

√
m2 + iImΣ(m2)

small ImΣ ∼ g2

' m+ i
ImΣ(m2)

2m
.

The fourier transform to real time is an amplitude for propagation in time of a state

with complex energy E : its wavefunction evolves like ψ(t) ∼ e−iEt and has norm

||ψ(t) ||2 ∼ ||e−i(E−i
1
2

Γ)t ||2 = e−Γt.

In our case, we have Γ ∼ ImΣ(m2)/m (I’ll be more precise below), and we interpret

that as the rate of decay of the norm of the single-particle state. There is a nonzero

probability that the state turns into something else as a result of time evolution in

the QFT: the single particle must decay into some other state – generally, multiple

particles. (We will see next how to figure out into what it decays.)

The absolute value of the Fourier transform of this quantity ψ(t) is the kind of

thing you would measure in a scattering experiment. This is

F (ω) =

∫
dt e−iωtψ(t) =

∫ ∞
0

dt e−iωtei(M−
1
2
iΓ)t =

1

i (ω −M)− 1
2
Γ
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||F (ω) ||2 =
1

(ω −M)2 + 1
4
Γ2

is a Lorentzian in ω with width Γ. So Γ is sometimes called a width.

So: what is ImΣ1 loop in this example?

We will use
1

k2 −m2 + iε
= P 1

k2 −m2
− iπδ(k2 −m2) ≡ P − i∆

where P denotes ‘principal part’. Then

ImΣ1 loop(q) = −1

2
g2

∫
dΦ (P1P2 −∆1∆2)

with dΦ =d̄Dk1d̄
Dk2(2π)DδD(k1 + k2 − q).

This next trick, to get rid of the principal part bit, is from Zee’s book (the second

edition on p.214; he also does the calculation by brute force in the appendix to that

section). We can find a representation for the 1-loop self-energy in terms of real-space

propagators: it’s the fourier transform of the amplitude to create two φ excitations at

the origin at time zero with a single φ field (this is −ig), to propagate them both from

0 to x (this is (iD(x))2) and then destroy them both with a single φ field (this is −ig
again). Altogether:

iΣ(q) =
1

2

∫
ddx eiqx (−ig)2 iD(x)iD(x)

=
1

2
g2

∫
dΦ

1

k2
1 −m2

1 + iε

1

k2
2 −m2

2 + iε
(2.8)

In the bottom expression, the iεs are designed to produce the time-ordered D(x)s.

Consider instead the strange combination

0 =
1

2

∫
ddx eiqx (ig)2 iDadv(x)iDret(x)

=
1

2
g2

∫
dΦ

1

k2
1 −m2

1 − σ1iε

1

k2
2 −m2

2+σ2iε
(2.9)

where σ1,2 ≡ sign(k0
1,2). This expression vanishes because the integrand is identically

zero: there is no value of t for which both the advanced and retarded propagators are

nonzero (one has a θ(t) and the other has a θ(−t), and this is what’s accomplished by

the red σs). Therefore, we can add the imaginary part of zero

Im(i0) =
1

2
g2

∫
dΦ (P1P2 + σ1σ2∆1∆2)
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[End of Lecture 9]

to our expression for ImΣ1-loop to cancel the annoying principal part bits:

ImΣ1-loop =
1

2
g2

∫
dΦ ((1 + σ1σ2) ∆1∆2) .

The quantity (1 + σ1σ2) is only nonzero (equal to 2) when k0
1 and k0

2 have the same

sign; but in dΦ is a delta function which sets q0 = k0
1 + k0

2. WLOG we can take q0 > 0

since we only care about the propagation of positive-energy states. Therefore both k0
1

and k0
2 must be positive.

The result is that the only values of k on the RHS that contribute are ones with

positive energy, which satisfy all the momentum conservation constraints:

ImΣ =
1

2
g2

∫
dΦ2θ(k0

1)θ(k0
2)∆1∆2 =

1

2
g22

∫
dΦθ(k0

1)θ(k0
2)πδ(k2

1 −m2)πδ(k2
2 −m2)

=
g2

2

1

2

∫
d̄D−1~k1

2ω~k1

d̄D−1~k2

2ω~k2

(2π)DδD(k1 + k2 − q) .

In the last step we used the identity θ(k0)δ(k2−m2) = θ(k0) δ(k
0−ωk)
2ωk

. But this is exactly

(half) the density of actual final states into which the thing can decay! In summary:

ImΣ =
1

2

∑
actual states n of 2 particles

into which φ can decay

||Aφ→n ||2 = mΓ. (2.10)

In this example the decay amplitude A is just ig. And the 1
2

symmetry factor matches

the factor that accounts for identical particles in the final state. (The other factor of

two is part of the optical theorem, as we’ll see next.) In the last step we compared to

our expression for the decay rate (p. 94 of my 215A notes).

This result is generalized by the Cutkosky cutting rules

for finding the imaginary part of a feynman diagram de-

scribing a physical process. The rough rules are the fol-

lowing. Assume the diagram is amputated – leave out the

external propagators. Then any line drawn through the di-

agram which separates initial and final states (as at right)

will ‘cut’ through some number of internal propagators; re-

place each of the cut propagators by θ(p0)2πδ(p2−m2) = θ(p0)2πδ(p0−εp)

2εp
. As Tony Zee

says: the amplitude becomes imaginary when the intermediate particles become real

(as opposed to virtual), aka ‘go on-shell’. This is a place where the iεs are crucial.
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There is a small but important problem with the preceding discussion (pointed out

by Brian Campbell-Deem): a single φ particle of mass m cannot decay into two φ

particles each of mass m – the kinematics of this example do not allow any final state

phase space. But we can make the example viable (without changing the calculation

at all) by thinking about a theory of two scalar fields, one light φ, one heavy Φ with

lagrangian

L =
1

2

(
(∂Φ)2 −M2Φ2 + (∂φ)2 −m2φ2 − gφ2Φ

)
and thinking about the self-energy for the (unstable) heavy particle.

The general form of (2.10) is a general consequence of unitarity. Recall that the

S-matrix is

Sfi = 〈f | e−iHT |i〉 ≡ (1 + iT )fi .

H = H† =⇒ 1 = SS† =⇒ 2ImT ≡ i
(
T † − T

) 1=SS†
= T †T .

This is called the optical theorem and it is the same as the one taught in some QM

classes. In terms of matrix elements:

2ImTfi =
∑
n

T †fnTni

Here we’ve inserted a resolution of the identity (again on the QFT Hilbert space, the

same scary sum) in between the two T operators. In the one-loop approximation, in

the φ3 theory here, the intermediate states which can contribute to
∑

n are two-particle

states, so that
∑

n will turn into
∫

d̄~k1

2ωk1

d̄~k2

2ωk2
, the two-particle density of states.

A bit more explicitly, introducing a basis of scattering states

〈f | T |i〉 = Tfi = /δ
4
(pf − pi)Mfi, T †fi = /δ

4
(pf − pi)M?

if , (recall that /δ
d ≡ (2π)dδd)

we have (denoting N is the number of particles)

〈F | T †1T |I〉 =
∑
N

〈F | T †
N∏
f=1

∫
d̄3qf
2Ef
|{qf}〉 〈{qf}| T |I〉

=
∑
N

N∏
f=1

∫
d̄3qf
2Ef

/δ
4
(pF −

∑
f

qf )M?
{qf}F

/δ
4
(pI −

∑
f

qf )M{qf}I

Now notice that we have a /δ
4
(pF − pI) on both sides, and

N∏
f=1

∫
d̄3qf
2Ef

/δ
4
(pF −

∑
f

qf ) =

∫
dΠN
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is the final-state phase space of the N particles. Therefore, the optical theorem says

i (M?
IF −MFI) =

∑
N

∫
dΠNM?

{qf}FM{qf}I .

Now consider forward scattering, I = F (notice that here it is crucial that M is the

transition matrix, S = 1 + iT = 1 + i/δ(pT )M):

2ImMII =
∑
N

∫
dΠN |M{qf}I |

2.

For the special case of 2-particle scattering, we can relate the RHS to the total cross

section for 2→ anything:

ImM(k1, k2 ← k1, k2) = 2Ecmpcmσ(anything← k1, k2).

In more complicated examples (such as a box diagram contributing to 2-2 scatter-

ing), there can be more than one way to cut the diagram. Different ways of cutting

the diagram correspond to discontinuities in different kinematical variables. To get the

whole imaginary part, we have to add these up. A physical cut is a way of separating

all initial-state particles from all final-state particles by cutting only internal lines. So

for example, a t-channel tree-level diagram (like ) never has any imaginary

part; this makes sense because the momentum of the exchanged particle is spacelike.

Resonances. A place where this technology is useful is when we want to study

short-lived particles. In our formula for transition rates and cross sections we as-

sumed plane waves for our external states. Some particles don’t live long enough for

separately producing them: and then watching them decay: ;

instead we must find them as resonances in scattering amplitudes of other particles:

Im

( )
.

So, consider the case iM = 〈F | iT |I〉 where both I and F are one-particle states.

A special case of the LSZ formula says

M = −
(√

Z
)2

Σ = −ZΣ (2.11)

where −iΣ is the amputated 1-1 amplitude, that is, the self-energy, sum of all connected

and amputated diagrams with one particle in and one particle out. Let Σ(p) = A(p2)+
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iB(p2) (not standard notation), so that near the pole in question, the propagator looks

like

G̃(2)(p) =
i

p2 −m2
0 − Σ(p)

' i

(p2 −m2) (1− ∂p2A|m2)︸ ︷︷ ︸
=Z−1

−iB
=

iZ

(p2 −m2)− iBZ
.

(2.12)

In terms of the particle width Γw ≡ −ZB(m2)/m, this is

G̃(2)(p) =
iZ

(p2 −m2) + imΓw
.

So, if we can make the particle whose propagator we’re dis-

cussing in the s-channel, the cross-section will be propor-

tional to∣∣∣G̃(2)(p)
∣∣∣2 =

∣∣∣∣ iZ

(p2 −m2)− imΓw

∣∣∣∣2 =
Z2

(p2 −m2)2 +m2Γ2
w

a Lorentzian or Breit-Wigner distribution: In the COM

frame, p2 = 4E2, and the cross section σ(E) has a reso-

nance peak at 2E = m, with width Γw. It is the width

in the sense that the function is half its maximum when

E = E± =
√

m(m±Γw)
4

' m
2
± Γ

4
.

This width is the same as the decay rate, because of the optical theorem:

Γw = −BZ
m

(2.11)
= − 1

m
(−ImM1→1)

optical
=

1

m

1

2

∑
n

∫
f

dΠn|M{qf}1|
2 = Γ

the last equation of which is exactly our formula for the decay rate. If it is not the

case that Γ� m, i.e. if the resonance is too broad, the Taylor expansion of the inverse

propagator we did in (2.12) may not be such a good idea.

Unitarity and high-energy physics. Two comments: (1) there had better not

be any cutoff dependence in the imaginary part. If there is, we’ll have trouble cancelling

it by adding counterterms – an imaginary part of the action will destroy unitarity. This

is elaborated a bit in Zee’s discussion.

(2) Being bounded by 1, probabilities can’t get too big. Cross sections are also

bounded: there exist precise bounds from unitarity on the growth of cross sections

with energy, such as the Froissart bound, σtotal(s) ≤ C ln2 s for a constant C. Xi Yin’s

notes describe a proof.
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On the other hand, consider an interaction whose coupling G has mass dimension

k. The cross section to which G contributes has dimensions of area, and comes from

squaring an amplitude proportional to G, so comes with at least two powers of G. At

E � anything else, these dimensions must be made up with powers of E:

σ(E � ...) ∼ G2E−2−2k. (2.13)

This means that if k ≤ −1, the cross section grows at high energy. In such a case,

something else must happen to ‘restore unitarity’. One example is Fermi’s theory of

Weak interactions, which involves a 4-fermion coupling GF ∼ M−2
W . Here we know

what happens, namely the electroweak theory, about which more soon. In gravity,

GN ∼M−2
Pl , we can’t say yet.

2.3 How to study hadrons with perturbative QCD

[Peskin §18.4] Here is a powerful physics application of both the optical theorem and the

spectral representation. Consider the total inclusive cross section for e+e− scattering

at energies s = (k + k+)2 � m2
e:

σanything←e+e− optical thm
=

1

2s
ImM(e+e− ← e+e−) (2.14)

where on the RHS,M is the forward scattering amplitude (meaning that the initial and

final electrons have the same momenta). We’ve learned a bit about the contributions

of electrons and muons to the BHS of this expression, what about QCD? To leading

order in α (small), but to all orders in the strong coupling αs (big at low energies), the

contributions of QCD look like

iMh = = (−ie)2ū(k)γµv(k+)
−i

s
iΠµν

h (q)
−i

s
v̄(k+)γνu(k)

with

= iΠµν
h (q)

Ward
= i(q2ηµν − qµqν)Πh(q

2)

the hadronic contribution to the vacuum polarization. We can pick out the contribution

of the strong interactions by just keeping these bits on the BHS of (2.14):

σhadrons←e+e− =
1

4

∑
spins

ImMh

2s
= −4πα

s
ImΠh(s). (2.15)

(The initial and final spins are equal and we average over initial spins. We can ignore the

longitudinal term qµqν by the Ward identity. The spinor trace is
∑

spins ū(k)γµv(k+)v̄(k+)γµu(k) =

79



−2k · k+ = −s.) As a reality check, consider the contribution from one loop of a heavy

lepton of mass M2 � m2
e:

ImΠL(s+ iε) = −α
3
F (M2/s)

and

σL
+L−←e+e− =

4π

3

α2

s
F (M2/s)

with

F (M2/s) =

0, s < (2M)2√
1− 4M2

s

(
1 + 2M2

s

)
= 1 +O (M2/s) , s > (2M)2

.

In perturbative QCD, the leading order result is the

same from each quark with small enough mass:

σquarks←e+e−
0 = 3︸︷︷︸

colors

∑
flavors, f

Q2
f

4π

3

α2

s
F (m2

f/s).

This actually does remarkably well as a crude ap-

proximation to the measured σ(hadrons ← e+e−) –

see Fig. 5.3 of Peskin, at right. (This figure does

not appear in the paper Peskin cites, I’m not sure

of the correct provenance.) The key point is that

the ratio of the hadronic cross section to that for

muons in the final state jumps at E = 2mf for each

new quark flavor (you can see mc ∼ 1.3 GeV and

mb ∼ 4.5 GeV in the figure). See Peskin pp 139-141

for more.

[End of Lecture 10]

But Q: why is a perturbative analysis of QCD relevant here? You might think

asymptotic freedom means QCD perturbation theory is good at high energy or short

distances, and that seems to be borne out by noticing that Πh is a two-point function

of the quark contributions to the EM current:

iΠµν
h (q) = −e2

∫
d4x e−iq·x 〈Ω| T Jµ(x)Jν(0) |Ω〉 , Jµ(x) ≡

∑
f

Qf q̄f (x)γµqf (x).

(Here, the quark fields qf are Dirac spinors, with Lagrangian Lq =
∑

f q̄f
(
i /D −mf

)
qf , Dµ =

∂µ − iQfAµ + ..., where the ... is the coupling to the gluon field which we’ll discuss

soon enough. They have a color index which runs from 1 to 3 which I’ve suppressed.)

Maybe it looks like we are taking x → 0 and therefore studying short distances. But
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if we are interested in large timelike qµ here, that means that dominant contributions

to the x integral are when the two points are timelike separated, and in the resolution

of the identity in between the two Js includes physical states of QCD with lots of real

hadrons. In contrast, the limit where we can do (maybe later we will learn how) per-

turbative QCD is when q2 = −Q2
0 < 0 is spacelike. (Preview: We can use the operator

product expansion of the two currents.)

How can we use this knowledge to find the answer in the physical regime of q2 > 0?

The fact that Πh is a two-point function means that it has a spectral representation.

It is analytic in the complex q2 plane except for a branch cut on the positive real axis

coming from production of real intermediate states, exactly where we want to know the

answer. One way to encode the information we know is to package it into moments:

In ≡ −4πα

∮
CQ0

dq2

2πi

Πh(q
2)

(q2 +Q2
0)n+1

= −4πα

n!
(∂q2)n Πh|q2=−Q2

0
.

The idea here is that the RHS can be computed by perturbative QCD.

But non-analyticities in Π(q2) only come from physical reasons – intermediate states

going on-shell. Since the physical states all have q2 > 0, we can deform the contour

freely away from the branch cut.

On the other hand, we know from the (appropriate generalization to currents of

the) spectral representation sum rule (2.7) that Πh(q
2)
|q|�...
<∼ log(q2), so for n ≥ 1, the

contour at infinity can be ignored.

Therefore

In = −4πα

∮
Pacman

dq2

2πi

Πh(q
2)

(q2 +Q2
0)n+1

= −4πα

∫
dq2

4πi

DiscΠh

(q2 +Q2
0)n+1

(2.15)
=

1

π

∫ ∞
sthreshhold

ds
s

(s+Q2
0)n+1

σhadrons←e+e−(s).

On the RHS is (moments of) the measurable (indeed, measured) cross-section, and on

the LHS is things we can calculate (later). If the convergence of these integrals were

uniform in n, we could invert this relation and directly try to predict the cross sec-

tion to hadrons. But it is not, and the correct cross section varies about the leading

QCD answer more and more at lower energies, culminating at various Breit-Wigner

resonance peaks at q̄q boundstates.
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3 Wilsonian perspective on renormalization

[Fradkin, 2d edition, chapter 4; Cardy; Zee §VI; Álvarez-Gaumé and Vázquez-Mozo, An

Invitation to QFT, chapter 8.4-5 (' §7.3-4 of hep-th/0510040)] The following discussion

describes a perspective which can be applied to any system of (many) extensive degrees

of freedom. This includes many statistical-mechanics systems, condensed-matter sys-

tems and also QFTs in high energy physics. The great insight of Kadanoff and Wilson

about such systems is that we should organize our thinking about them by length scale.

We should think about a family of descriptions, labelled by the resolution of our micro-

scope. Before explaining this perspective in detail, two preparatory sections: we give

another parable from QM, and spend some time addressing the basic and instructive

question of where do field theories come from.

3.1 A parable on integrating out degrees of freedom

Here’s another parable from QM which gives some useful perspective on renormaliza-

tion in QFT and on the notion of effective field theory.

[Banks p. 138] Consider a system of two coupled harmonic oscillators. We will as-

sume one of the springs is much stiffer than the other: let’s call their natural frequencies

ω0,Ω, with ω0 � Ω. The euclidean-time action is

S[Q, q] =

∫
dt

[
1

2

(
q̇2 + ω2

0q
2
)

+
1

2

(
Q̇2 + Ω2Q2

)
+ gQq2

]
≡ Sω0 [q]+SΩ[Q]+Sint[Q, q].

(The particular form of the q2Q coupling is chosen for convenience. Don’t take too

seriously the physics at negative Q.) We can construct physical observables in this

model by studying the path integral:

Z =

∫
[dQdq]e−S[Q,q].

Since I put a minus sign rather than an i in the exponent (and the potential terms in

the action have + signs), this is a euclidean path integral.

Let’s consider what happens if we do the path integral over the heavy mode Q, and

postpone doing the path integral over q. This step, naturally, is called integrating out

Q, and we will see below why this is a good idea. The result just depends on q; we can

think of it as an effective action for q:

e−Seff[q] :=

∫
[dQ]e−S[q,Q]

= e−Sω0 [q]
〈
e−Sint[Q,q]

〉
Q
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Here 〈...〉Q indicates the expectation value of ... in the (free) theory of Q, with the

action SΩ[Q]. It is a gaussian integral (because of our choice of Sint:〈
e−Sint[Q,q]

〉
Q

=

∫
[dQ]e−SΩ[Q]−

∫
dsJ(s)Q(s) = N e

1
4

∫
dsdtJ(s)G(s,t)J(t) .

This last equality is an application of the ‘fundamental theorem of path integrals,’

i.e. the gaussian integral. Here J(s) ≡ gq(s)2. The normalization factor N is indepen-

dent of J and hence of q. And G(s, t) is the inverse of the linear operator appearing in

SΩ, the euclidean Green’s function:

SΩ[Q] =

∫
dsdtQ(s)G−1(s, t)Q(t).

More usefully, G satisfies (
−∂2

s + Ω2
)
G(s, t) = δ(s− t) .

The fact that our system is time-translation invariant means G(s, t) = G(s − t). We

can solve this equation in fourier space: G(s) =
∫

d̄ωe−iωsGω makes it algebraic:

Gω =
1

ω2 + Ω2

and we have

G(s) =

∫
d̄ωe−iωs

1

ω2 + Ω2
. (3.1)

So we have:

e−Seff[q] = e−Sω0 [q]e−
∫
dtds g

2

2
q(s)2G(s,t)q(t)2

or taking logs

Seff[q] = Sω0 [q] +

∫
dtds

g2

2
q(s)2G(s, t)q(t)2 . (3.2)

Q mediates an interaction of four qs, an anharmonic term, a

self-interaction of q. In Feynman diagrams, the leading inter-

action between q’s mediated by Q comes from the diagram

at left.
And the whole thing comes from exponentiating disconnected copies of this diagram.

There are no other diagrams: once we make a Q from two qs what can it do besides

turn back into two qs? Nothing. And no internal q lines are allowed, they are just

sources, for the purposes of the Q integral.

But it is non-local: we have two integrals over the time in the new quartic term.

This is unfamiliar, and bad: e.g. classically we don’t know how to pose an initial value

problem using this action.
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But now suppose we are interested in times much longer than 1/Ω, say times com-

parable to the period of oscillation of the less-stiff spring 2π/ω. We can accomplish

this by Taylor expanding under the integrand in (3.1):

G(s)
s�1/Ω
'

∫
d̄ωe−iωs

1

Ω2

1

1 + ω2

Ω2︸ ︷︷ ︸
=
∑
n(−1)n

(
ω2

Ω2

)n
' 1

Ω2
δ(s) +

1

Ω4
∂2
sδ(s) + ...

Plug this back into (3.2):

Seff[q] = Sω0 [q] +

∫
dt

g2

2Ω2
q(t)4 +

∫
dt

g2

2Ω4
q̇2q2 + ...

The effects of the heavy mode Q are now organized in a derivative expansion, with

terms involving more derivatives suppressed by more powers of the high energy scale

Ω.

+ · · · (3.3)

A useful mnemonic for integrating out the effects of the heavy field in terms of Feynman

diagrams: to picture Q as propagating for only a short time (compared to the external

time t−s), we can contract its propagator to a point. The first term on the RHS shifts

the q4 term, the second shifts the kinetic term, the third involves four factors of q̇...

On the RHS of this equation, we have various interactions involving four qs, which

involve increasingly many derivatives. The first term is a quartic potential term for

q: ∆V = g
Ω2 q

4; the leading effect of the fluctuations of Q is to shift the quartic self-

coupling of q by a finite amount (note that we could have included a bare λ0q
4 potential

term).

Notice that if we keep going in this expansion, we get terms with more than two

derivatives of q. This is OK. We’ve just derived the right way to think about such

terms: we treat them as a perturbation, and they are part of a never-ending series of

terms which become less and less important for low-energy questions. If we want to

ask questions about q at energies of order ω, we can get answers that are correct up to

effects of order
(
ω
Ω

)2n
by keeping the nth term in this expansion.
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Conversely if we are doing an experiment with precision ∆ at energy ω, we can

measure the effects of up to the nth term, with(ω
Ω

)2n

∼ ∆.

Another important lesson: Seff[q] contains couplings with negative dimensions of

energy ∑
n

cn (∂nt q)
2 q2, with cn ∼

1

Ω2n
,

exactly the situation where the S-matrix grows too fast at high energies that we dis-

cussed above in (2.13). In this case we know exactly where the probability is going: if

we have enough energy to see the problem (E ∼ Ω), we have enough energy to kick

the heavy mode Q out of its groundstate.

3.1.1 Attempt to consolidate understanding

We’ve just done some coarse graining: focusing on the dofs we care about (q), and

actively ignoring the dofs we don’t care about (Q), except to the extent that they

affect those we do (e.g. the self-interactions of q).

Above, we did a calculation in a QM model with two SHOs. This is a paradigm

of QFT in many ways. For one thing, free quantum fields are bunches of harmonic

oscillators with natural frequency depending on k, Ω =
√
~k2 +m2. Here we kept just

two of these modes (one with large k, one with small k) for clarity. Perhaps more

importantly, QM is just QFT in 0+1d. The more general QFT path integral just

involves more integration variables. The idea of the Wilsonian RG (for continuum

field theory) is essentially to do the integrals over the modes in descending order of

wavenumber, and at each stage make the expansion described above to get a local

action. And notice that basically all possible terms are generated, consistent with the

symmetries (here for example, there is a Z2 symmetry under which q → −q, so there

are no odd powers of q).

The result of that calculation was that fluctuations of Q mediate various q4 inter-

actions. It adds to the action for q the following: ∆Seff[q] ∼
∫
dtdsq2(t)G(t− s)q2(s),

as in Fig. 3.3.

If we have the hubris to care about the exact answer, it’s nonlocal in time. But

if we want exact answers then we’ll have to do the integral over q, too. On the other

hand, the hierarchy of scales ω0 � Ω is useful if we ask questions about energies of

order ω0, e.g.

〈q(t)q(0)〉 with t ∼ 1

ω0

� Ω
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Then we can Taylor expand the function G(t − s), and we find a series of corrections

in powers of 1
tΩ

(or more accurately, powers of ∂t
Ω

).

(Notice that it’s not so useful to integrate out light degrees of freedom to get an

action for the heavy degrees of freedom; that would necessarily be nonlocal and stay

nonlocal and we wouldn’t be able to treat it using ordinary techniques.)

The crucial point is that the scary non-locality of the effective action that we saw

only extends a distance of order 1
Ω

; the kernel G(s − t) looks like this:

The mechanism we’ve just discussed is

an essential ingredient in getting any physics

done at all. Why can we do physics despite

the fact that we do not understand the the-

ory of quantum gravity which governs Planck-

ian distances? We happily do lots of physics

without worrying about this! This is because

the effect of those Planckian quantum gravity

fluctuations – whatever they are, call them Q

– on the degrees of freedom we do care about (e.g. the Standard Model, or an atom,

or the sandwich you made this morning, call them collectively q) are encoded in terms

in the effective action of q which are suppressed by powers of the high energy scale

MPlanck, whose role in the toy model is played by Ω. And the natural energy scale of

your sandwich is much less than MPlanck.

I picked the Planck scale as the scale to ignore here for rhetorical drama, and

because we really are ignorant of what physics goes on there. But this idea is equally

relevant for e.g. being able to describe water waves by hydrodynamics (a classical

field theory) without worrying about atomic physics, or to understand the physics of

atoms without needing to understand nuclear physics, or to understand the nuclear

interactions without knowing about the Higgs boson, and so on deeper into the onion

of physics.

This wonderful situation, which makes physics possible, has a price: since physics

at low energies is so insensitive to high energy physics, it makes it hard to learn about

high energy physics! People have been very clever and have learned a lot in spite of

this vexing property of the RG called decoupling. We can hope that will continue.

(Cosmological inflation plays a similar role in hiding the physics of the early universe.

It’s like whoever designed this game is trying to hide this stuff from us.)

The explicit functional form of G(s) (the inverse of the (euclidean) kinetic operator
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for Q) is:

G(s) =

∫
d̄ω

e−iωs

ω2 + Ω2
= e−Ω|s| 1

2Ω
. (3.4)

Do it by residues: the integrand has poles at ω = ±iΩ. The absolute value of |s| is

crucial, and comes from the fact that the contour at infinity converges in the upper

(lower) half plane for s < 0 (s > 0).

Next, some comments about ingredients in this discussion, which provide a useful

opportunity to review/introduce some important QFT technology:

• Please don’t be confused by the formal similarity of the above manipulations with

the construction of the generating functional of correlation functions of Q:

Z[J ] ≡
〈
e
∫
dtQ(t)J(t)

〉
Q
, 〈Q(t1)Q(t2)...〉Q =

δ

δJ(t1)

δ

δJ(t2)
... logZ[J ]

It’s true that what we did above amounts precisely to constructing Z[J ], and

plugging in J = g0q
2. But the motivation is different: in the above q is also a

dynamical variable, so we don’t get to pick q and differentiate with respect to it;

we are merely postponing doing the path integral over q until later.

• Having said that, what is this quantity G(s) above? It is the (euclidean) two-

point function of Q:

G(s, t) = 〈Q(s)Q(t)〉Q =
δ

δJ(t)

δ

δJ(s)
logZ[J ].

The middle expression makes it clearer that G(s, t) = G(s − t) since nobody

has chosen the origin of the time axis in this problem. This euclidean Green’s

function, the inverse of −∂2
τ + Ω2, is unique, once we demand that it falls off at

large separation (unlike the real-time Green’s function).

• Adding more labels. Quantum mechanics is quantum field theory in 0+1

dimensions. Except for our ability to do all the integrals, everything we are

doing here generalizes to quantum field theory in more dimensions: quantum

field theory is quantum mechanics (with infinitely many degrees of freedom).

With more spatial dimensions, we’ll want to use the variable x for the spatial

coordinates (which are just labels on the fields!) and it was in anticipation of

this step that I used q instead of x for my oscillator position variables.
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3.2 Where do field theories come from?

3.2.1 A model with finitely many degrees of freedom per unit volume

Figure 1: A configuration of classical Ising

spins on the 2d square lattice. [from Álvarez-Gaumé

and Vázquez-Mozo, hep-th/0510040]

Consider the following system of exten-

sive degrees of freedom – it is an example

of a very well-regulated (euclidean) QFT.

At each site i of a square lattice we place

a two-valued (classical) degree of freedom

si = ±1, so that the path ‘integral’ mea-

sure is∫
[ds]... ≡

∑
{si}

... =
∏

sites, i

∑
si=±1

... .

Let’s choose the euclidean action to be

S[s] = −βJ
∑
〈i,j〉

sisj .

Here βJ is some coupling; the notation 〈i, j〉 means ‘sites i and j which are nearest

neighbors’. The partition function is

Z =

∫
[ds]e−S[s] =

∑
{si}

e+βJ
∑
〈i,j〉 sisj . (3.5)

(I can’t hide the fact that this is the thermal partition function Z = tre−βH for the

classical Ising model on the square lattice, with H = −J
∑
〈i,j〉 sisj, and β ≡ 1/T is the

coolness25, i.e. the inverse temperature.)

In the thermodynamic limit (the number of sites goes to infinity), this model has a

special value of βJ > 0 above which there is spontaneous breaking of the Z2 symmetry

si → −si by a nonzero magnetization, 〈si〉 6= 0.

Kramers-Wannier duality. To see that there is a special value of βJ , we can

make the following observation, due to Kramers and Wannier, and generalized by

Wegner, which is now a subject of obsession for many theoretical physicists. It is

called duality. Consider a configuration of the spins. The action S[s] is determined by

the number of links across which the spins disagree (positive βJ favors contributions

from spins which agree). It is possible to rewrite the partition sum in terms of these

25This nomenclature, due to the condensed matter physicist Miles Stoudenmire, does a great job of

reminding us that at lower temperatures, quantum mechanics has more dramatic consequences.
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disagreements. (For more on this, see the lecture notes here.) The answer is identical

to the original model, except with βJ replaced by a(βJ)−1 for some number a! At high

temperature the model is obviously disordered, at low temperature the dual model is

obviously disordered, but that means that the original model is ordered. In between

something happens. If only one something happens, it must happen at the special

value βJ = a(βJ)−1.

For a more complete discussion of this subject of duality I recommend this review

by Kogut, §4.

Onsager solution. Lars Onsager solved the model above exactly (published in

1944) and showed for sure that it has a critical point (βJ)? = 1
2

tanh−1
(

1√
2

)
. For our

present purposes this landmark result is a distraction.

Comment on analyticity in βJ versus the critical point. [Zee §V.3] The Ising

model defined by (3.5) is a model of a magnet (more specifically, when βJ > 0 which

makes neighboring spins want to align, a ferromagnet). Some basic phenomenology:

just below the Curie temperature Tc, the magnetization (average magnetic moment per

unit volume) behaves like

|M | ∼ (Tc − T )β

where β is a pure number (it depends on the number of spatial dimensions)26. In terms

of the Ising model, the magnetization is27

〈M〉 =
1

Z

∑
{si}

e−H(s)/T

∑
i si
V

. (3.6)

(V is the number of sites of the lattice, the volume of space.) How can you get such

a non-analytic (at T = Tc 6= 0) function of T by adding a bunch of terms of the form

e−E/T ? It is clearly impossible if there is only a finite number of terms in the sum,

each of which is analytic near Tc 6= 0. It is actually possible if the number of terms

is infinite – finite-temperature phase transitions only happen in the thermodynamic

limit.

3.2.2 Landau and Ginzburg guess the answer.

Starting from Z, even with clever tricks like Kramers-Wannier duality, and even for

Onsager, it is pretty hard to figure out what the answer is for the magnetization. But

the answer is actually largely determined on general grounds, as follows.

26The name is conventional; don’t confuse it with the inverse temperature.
27In many real magnets, the magnetization can point in any direction in three-space – it’s a vector

~M . We are simplifying our lives.
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Let’s ask what is the free energy G at fixed magnetization, G[M ]. How would we

do this in an experiment? We’d apply a uniform magnetic field, and find just the

right field to get the desired M , and then measure the free energy (with our trusty

free-energy-ometer, of course). In more formal terms, we should add a source for the

magnetization and compute

e−βF [J ] = tre−β(H+
∑
MJ).

Pick some magnetization Mc, and choose J [Mc] so that

〈M〉 = −∂F
∂J

= Mc.

Then G[Mc] ≡ F [J [Mc]] −
∑
McJ

[Mc]. This is a Legendre transform of the usual F in

Z = e−βF . In this context, the source J is (minus) an external magnetic (Zeeman)

field. This G[M ] is just the same idea as an object you may encounter called the

euclidean effective action Γ[φc] (up to factors of β), where the analog of M is called

the ‘classical field’ φc. G is the thing we should minimize to find the magnetization in

the groundstate.

LG Effective Potential. We can even consider a model where the magnetization

is a vector. If ~M is independent of position ~x 28 then rotation invariance (or even just

M → −M symmetry) demands that

G = V

(
r ~M2 + u

(
~M2
)2

+ ...

)
where r, u are some functions of T that we don’t know, and the dots are terms with

more Ms. These functions a(T ) and b(T ) have no reason not to be smooth functions

of T . Now suppose there is a value of T for which a(T ) vanishes:

r(T ) = r1(T − Tc) + ...

with r1 > 0 a pure constant. For T > Tc, the minimum of G is at ~M = 0; for T < Tc,

the unmagnetized state becomes unstable and new minima emerge at | ~M | =
√
− r

2u
∼

(Tc−T )
1
2 . This is the mean field theory description of a second-order phase transition.

It’s not the right value of β (it’s about 1/3) for the 3d Curie point, but it shows very

simply how to get an answer that is not analytic at Tc.

LG Effective Action. Landau and Ginzburg can do even better. G(M) with

constant M is like the effective potential; if we let M(~x) vary in space, we can ask and

28In (3.6), I’ve averaged over all space; instead we could have averaged over just a big enough patch

to make it look smooth. We’ll ask ‘how big is big enough?’ next – the answer is ‘the correlation

length’.
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answer what is the effective action, G[M(~x)]. The Landau-Ginzburg effective action is

G[M ] =

∫
dd~x

(
r ~M2 + u

(
~M2
)2

+ Z∂i ~M · ∂i ~M + ...

)
(3.7)

– now we are allowed to have gradients. c is a new unknown function of T ; let’s set it

to 1 by rescaling M . This just a scalar field theory (with several scalars) in euclidean

space. Each field has a mass
√
r (they are all the same as a consequence of the spin

rotation symmetry). So 1√
r

is a length scale, to which we turn next.

[End of Lecture 11]

Definition of correlation length. Suppose we perturb the system by turning on

an external (we pick it) magnetic field (source for ~M) ~H, which adds to the hamiltonian

by − ~H · ~M . (So far we are doing Euclidean physics, which means equilibrium, no real

time dependence.) Pick the field to be small, so its effect is small and we can study

the linearized equations (let’s do it for T > Tc, so we’re expanding around M = 0):(
−∂2 + r

)
~M = ~H .

Recall the Green’s function G2 of a massive scalar field: G2 solves this equation in the

case where H is a delta function. Since the equation is linear, that solution determines

the solution for general H (this was why Green introduced Green’s functions):

M(x) =

∫
d3yG2(x, y)H(y) =

∫
d3y

(∫
d̄3k

ei
~k·(~x−~y)

~k2 + r

)
H(y)

=

∫
d3y

1

4π|~x− ~y|
e−
√
r|~x−~y|H(y). (3.8)

The Green’s function

GIJ
2 (x) =

〈
~M I(x) ~MJ(0)

〉
= δIJ

1

4π|~x|
e−
√
r|~x|

is diagonal in the vector index I, J so I’ve suppressed it in (3.8). G2 is the answer to

the question: if I perturb the magnetization at the origin, how does it respond at x?

The answer is that it dies off like〈
~M(x) ~M(0)

〉
∼ e−|x|/ξ

– this relation defines the correlation length ξ, which will depend on the parameters.

In the LG mean field theory, we find ξ = 1√
r
. The LG theory predicts the behavior of ξ

as we approach the phase transition to be ξ ∼ 1
(T−Tc)ν with ν = 1

2
. Again the exponent

is wrong in detail (we’ll see why below), but it’s a great start.
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Now let’s return to the microscopic model (3.5). Away from the special value of

βJ , the correlation functions behave as

〈sisj〉connected ∼ e−
rij
ξ

where rij ≡ distance between sites i and j. Notice that the subscript connected means

that we need not specify whether we are above or below Tc, since it subtracts out

the disconnected bit 〈si〉 〈sj〉 by which their form differs. From the more microscopic

viewpoint, ξ is the length scale over which the values of the spins are highly correlated.

This allows us to answer the question of how much coarse-graining we need to do to

reach a continuum approximation: The continuum description in terms of

M(x) ≡
∑

i∈Rx 〈si〉
Vol(Rx)

(3.9)

is valid if we average over regions R (centered around the point x) with linear size

bigger than ξ.

3.2.3 Coarse-graining by block spins.

Figure 2: A blocking transformation.

[from Álvarez-Gaumé and Vázquez-Mozo, hep-th/0510040]

We want to understand the connection be-

tween the microscopic spin model and the

macroscopic description of the magnetiza-

tion better, for example to systematically

improve upon the quantitative failures of

the LG mean field theory for the criti-

cal exponents. Kadanoff’s idea is to con-

sider a sequence of blocking transforma-

tions, whereby we group more and more

spins together, to interpolate between the

spin at a single site si, and the magnetiza-

tion averaged over the whole system, pass-

ing through (3.9) on the way.

The blocking (or ‘decimation’) transfor-

mation can be implemented in more detail

for ising spins on the 2d square lattice as follows (Fig. 2). Group the spins into blocks

of four as shown; we will construct a new coarser Ising system, where the sites of the

new lattice correspond to the blocks of the original one, and the spin at the new site

is an average of the four. One way to do this is majority rule:

sblock, b ≡ sign

( ∑
i∈block,b

si

)
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where we break a tie by defining sign(0) = +1.

We want to write our original partition function in terms of the averaged spins on

a lattice with twice the lattice spacing. We’ll use the identity

1 =
∑
sblock

δ

(
sblock − sign(

∑
i∈block

si)

)
.

This is true for each block; we can insert one of these for each block. Split the original

sum into nested sums, the outer one over the blocks, and the inner one over the spins

within the block:

Z =
∑
{s}

e−βH[si] =
∑

{sblock, b}

∑
s∈block,b

∏
blocks

δ

(
sblock,b − sign

( ∑
i∈block,b

si

))
e−βH

(a)[s] .

The superscript (a) on the Hamiltonian is intended to indicate that the lattice spacing

is a. Now we interpret the inner sum as another example of integrating out stuff we

don’t care about to generate an effective interaction between the stuff we do care about:

∑
s∈block,b

∏
blocks

δ

(
s(2a) − sign

( ∑
i∈block,b

si

))
e−βH

a[s] ≡ e−βH
(2a)[s(2a)]

These sums are hard to actually do, except in 1d. But we don’t need to do them to

understand the form of the result.

As in our QM example from the previous lecture, the new Hamiltonian will be less

local than the original one – it won’t just be nearest neighbors in general:

H(2a)[s(2a)] = −J (2a)
∑
〈i,j〉

s
(2a)
i s

(2a)
j +−K(2a)

∑
〈〈i,j〉〉

s
(2a)
i s

(2a)
j + ...

where 〈〈i, j〉〉 means next-neighbors. Notice that I’ve used the same labels i, j for the

coarser lattice. We have rewritten the partition function as the same kind of model,

on a coarser lattice, with different values of the couplings:

Z =
∑
{s(2a)}

e−βH
(2a)[s(2a)] .

Now we can do it again. The decima-

tion operation defines a map on the space

of (in this case Ising) Hamiltonians:

H(a) 7→ H(2a) 7→ H(4a) 7→ H(8a) 7→ ...
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The couplings J,K... are coordinates on

the space of Hamiltonians. Each time we

do it, we double the lattice spacing; the

correlation length in units of the lattice

spacing gets halved, ξ 7→ ξ/2. This operation is called a ‘renormalization group trans-

formation’ but notice that it is very much not invertible; we lose information about

the short-distance stuff by integrating it out.

RG fixed points. Where can it end? One thing that can happen is that the form

of the Hamiltonian can stop changing:

H(a) 7→ H(2a) 7→ H(4a) 7→ H(8a) 7→ ... 7→ H? 7→ H? 7→ H? ...

The fixed point hamiltionian H?, which is not changed by the rescaling operation, is

scale invariant. What can its correlation length be if it is invariant under ξ → ξ/2?

Either ξ = 0 (the mass of the fields go to infinity and there is nothing left to integrate)

or ξ = ∞ (the mass goes to zero and we have more to discuss, we can call this a

nontrivial fixed point).

Near a nontrivial fixed point, once ξ � a, the original lattice spacing, we are quite

justified in using a continuum description, to which we return in subsection 3.3.
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Perturbations of a fixed point. Before doing any more work, though, we can

examine the possible behaviors of the RG flow near a fixed point. Consider a fixed

point Hamiltonian H?, and move away from it slightly by changing one of the couplings

a little bit:

H = H? + δgO.

What does the RG do to this to leading order in δg? The possibilities are:

Figure 3: A possible set of RG flows for a

system with two couplings λ1,2. [from Álvarez-Gaumé

and Vázquez-Mozo, hep-th/0510040]

• If the flow takes it back to the orig-

inal fixed point, O (and its asso-

ciated coupling δg) is called irrel-

evant.

• If the flow takes it away from the

original fixed point, O is called a

relevant perturbation of H?.

• The new H might also be a fixed

point, at least to this order in δg.

Such a coupling (and the associated

operator O) is called marginal. If

the new H really is a new fixed point, not just to leading order in δg, then O
is called exactly marginal. Usually it goes one way or the other and is called

marginally relevant or marginally irrelevant.

Note the infrared-centric terminology.

Comment on Universality: The Ising model is a model of many microscopically-

different-looking systems. It can be a model of spins like we imagined above. Or it

could be a model of a lattice gas – we say spin up at site i indicates the presence of a

gas molecule there, and spin down represents its absence. These different models will

naturally have different microscopic interactions. But there will only be so many fixed

points of the flow in the space of Hamiltonians on this system of 2-valued variables.

This idea of the paucity of fixed points underlies Kadanoff and Wilson’s explanation of

the experimental phenomenon of universality: the same critical exponents arise from

very different-seeming systems (e.g. the Curie point of a magnet and the liquid-gas

critical point).

The basic point is that there is a scale-invariant field theory (often a conformal

field theory) which describes the intrinsic properties of the critical point; the critical

exponents are dimensions of operators in this field theory.
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3.3 The continuum version of blocking

[Zee, §VI.8 (page 362 of 2d Ed.)]

Here is a very different starting point from which to approach the same critical

point as in the previous subsection:

Consider the φ4 theory in Euclidean

space, with negative m2 (and no φk terms

with odd k). This potential has two min-

ima and a Z2 symmetry that interchanges

them, φ → −φ. If we squint at a con-

figuration of φ, we can label regions of

space by the sign of φ (as in the figure at

right). The kinetic term for φ will make

nearby regions want to agree, just like the

J
∑
〈ij〉 σiσj term in the Ising model. So

the critical point described by taking m2

near zero is plausibly the same as the one

obtained from the lattice Ising model described above29.

We will study the integral

ZΛ ≡
∫

Λ

[Dφ]e−
∫
dDxL(φ). (3.10)

Here the specification
∫

Λ
says that we integrate over field configurations φ(x) =

∫
d̄Dkeikxφk

such that φk = 0 for |k| ≡
√∑D

i=1 k
2
i > Λ. Think of 2π/Λ as the lattice spacing30 –

there just aren’t modes of shorter wavelength. We are using (again) a cutoff on the

euclidean momenta k2
E ≤ Λ2.

We want to understand (3.10) by some coarse-graining procedure. Let us imitate

the block spin procedure. Field variations within blocks of space of linear size na have

wavenumbers greater than 2π
na

. (These modes average to zero on larger blocks; modes

with larger wavenumber encode the variation between these blocks.) So the analog

of the partition function after a single blocking step is the following: Break up the

29 For a more sophisticated argument for this equivalence, see page 7-9 of Polyakov, Gauge Fields

and Strings.
30This cutoff is not precisely the same as have a lattice; with a lattice, the momentum space is

periodic: eikxn = eik(na) = ei(k+ 2π
a )(na) for n ∈ Z. Morally it is the same.
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configurations into pieces:

φ(x) =

∫
d̄keikxφk ≡ φ< + φ> .

Here φ< has nonzero fourier components only for |k| ≤ Λ − δΛ and φ> has nonzero

fourier components only for Λ − δΛ ≤ |k| ≤ Λ. Zee calls the two parts ‘smooth’ and

‘wiggly’. They could also be called ‘slow’ and ‘fast’ or ‘light’ and ‘heavy’. We want to

do the integral over the heavy/wiggly/fast modes to develop an effective action for the

light/smooth/slow modes:

ZΛ =

∫
Λ−δΛ

[Dφ<]e−
∫
dDxL(φ<)

∫
[Dφ>]e−

∫
dDxL1(φ<,φ>)

where L1 contains all the dependence on φ> (and no other terms).

Just as with the spin sums, these integrals are hard to actually do, except in a

gaussian theory. But again we don’t need to do them to understand the form of the

result. First give it a name:

e−
∫
dDxδL(φ<) ≡

∫
[Dφ>]e−

∫
dDxL1(φ<,φ>) (3.11)

so once we’ve done the integral we’ll find

ZΛ =

∫
Λ−δΛ

[Dφ<]e−
∫
dDx(L(φ<)+δL(φ<)) . (3.12)

To get a feeling for the form of δL (and because there is little reason not to) consider

the more general Lagrangian

L =
1

2
(∂φ)2 +

∑
n

gnφ
n + ... (3.13)

where we include all possible terms consistent with the symmetries (rotation invariance,

maybe φ→ −φ...). Then we can find an explicit expression for L1:∫
dDxL1(φ<, φ>) =

∫
dDx

(
1

2
(∂φ>)2 +

1

2
m2 (φ>)

2
+ ...

)
(I write the integral so that I can ignore terms that integrate to zero such as ∂φ<∂φ>.)

This is the action for a scalar field φ> interacting with itself and with a (slowly-varying)

background field φ<. But what can the result δL be but something of the form (3.13)

again, with different coefficients? The result is to shift the couplings gn → gn + δgn.

(This includes the coefficient of the kinetic term and also of the higher-derivative terms
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which are hidden in the ... in (3.13). You will see in a moment the logic behind which

terms I hid.)

Finally, so that we can compare steps of the procedure to each other, we rescale

our rulers. We’d like to change units so that
∫

Λ−δΛ is a
∫

Λ
with different couplings; we

accomplish this by defining

Λ− δΛ ≡ bΛ, b < 1.

In
∫

Λ−δΛ, we integrate over fields with |k| < bΛ. Change variables: k = bk′ so now

|k′| < Λ. So x = x′/b, ∂′ ≡ ∂/∂x′ = 1
b
∂x and wavefunctions are preserved eikx = eik

′x′ .

Plug this into the action∫
dDxL(φ<) =

∫
dDx′b−D

(
1

2
b2 (∂′φ<)

2
+
∑
n

(gn + δgn) (φ<)
n

+ ...

)

We can make this look like L again by rescaling the field variable: b2−D (∂′φ<)2 ≡
(∂′φ′)2 (i.e. φ′ ≡ b

1
2

(2−D)φ<):∫
dDx′L(φ<) =

∫
dDx′

(
1

2
(∂′φ′)

2
+
∑
n

(gn + δgn) b−D+
n(D−2)

2 (φ′)n + ...

)

So the end result is that integrating out a momentum shell of thickness δΛ ≡ (1−b)Λ
results in a change of the couplings to

g′n = b
n(D−2)

2
−D (gn + δgn) .

This procedure produces a flow on the space of actions.

Ignore the interaction corrections, δgn, for a moment. Then, since b < 1, the

couplings with n(D−2)
2
−D > 0 get smaller and smaller as we integrate out more shells.

If we are interested in only the longest-wavelength modes, we can ignore these terms.

They are irrelevant. Couplings (‘operators’) with n(D−2)
2
− D < 0 get bigger and are

relevant.

The mass term has n = 2 and (m′)2 = b−2m2 is always relevant for any D <∞. So

far, the counting is the same as our naive dimensional analysis. That’s because we left

out the δL term! This term can make an important difference, even in perturbation

theory, for the fate of marginal operators (such as φ4 in D = 4), where the would-be-big

tree-level term is agnostic about whether they grow or shrink in the IR.

Notice that starting from (3.10) we are assuming that the system has a rotation

invariance in euclidean momentum. If one of those euclidean directions is time, this
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follows from Lorentz invariance. This simplifies the discussion. But for non-relativistic

systems, it is often necessary to scale time differently from space. The relative scaling

z in ~x′ = b~x, t′ = bzt is called the dynamical critical exponent.

The definition of the beta function and of a fixed point theory is just as it was in

the first lecture.

At this point we need to pick an example in which to include the interaction term.

3.4 An extended example: XY model

[R. Shankar, Rev. Mod. Phys. 66 (1994) 129]

Consider complex bosons in D dimensions. I am a little tired of a real scalar field,

so instead we will study two real scalar fields φ = φ1 + iφ2. We can define this model,

for example, on a euclidean lattice, by an action of the form

S[φ, φ?] =
1

2

∑
n,i

|φ(n)− φ(n+ i)|2 +
∑
n

u0|φ(n)|4 . (3.14)

Here n labels sites of some (e.g. hypercubic) lattice and i labels the (8 in the 4d hy-

percubic case) links connecting neighboring sites. We’ll call the lattice spacing 2π/Λ1.

In terms of Fourier modes, this is

S[φ, φ?] = −
∫
|k|<Λ0

d̄Dkφ?(k)J(k)φ(k) + Sint .

For the hyper-cubic lattice, we get (the second step is Taylor expansion)

J(k) = 2

(
D∑
µ=1

(cos akµ − 1)

)
ka�1'

∑
µ

(
a2k2

µ +
a4

4 · 3
k4
µ...

)
.

The energy function J(k) only has the discrete rotation symmetries of the lattice (90◦

rotations for the hypercubic lattice). But the leading term at small wavenumber has

full rotation invariance; in position space, this term is a2∂µφ∂
µφ?. The next term∫

d̄Dk a4k4|φk|2 =
∫
dDx a4φ?

∑
µ ∂

4
µφ, which breaks the rotation group to a discrete

subgroup, is irrelevant by the counting we did above:
∫
dDx∂4φ2 ∼ sD−4−2D−2

2 = s−2.

This means that rotation invariance emerges on its own.

31

31Confession: the restriction on the momenta in the exact lattice model should be to a fundamental

domain for the identification kµ ≡ kµ + Λµ1 ; I am going to replace this right away with a rotation-

invariant cutoff on the magnitude k2 ≡ kµkµ ≤ Λ0 of the euclidean momentum. This is an unimportant

lie for our purposes.
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The path integral is defined by

Z ≡
∫

[dφ?dφ]|k|<Λ0︸ ︷︷ ︸
≡
∏
|k|<Λ0

dReφ(k)dImφ(k)
π

=
∏
|k|<Λ0

dφ?(k)dφ(k)
2πi

e−S[φ,φ?] (3.15)

There is a U(1) global symmetry which acts by

φ(k)→ eiθφ(k), φ?(k)→ e−iθφ?(k) . (3.16)

In terms of φ1,2, it acts by

(
φ1

φ2

)
→
(

cos θ sin θ

− sin θ cos θ

)(
φ1

φ2

)
, which we should call SO(2)

32. [End of Lecture 12]

With u0 = 0, this is a bunch of gaussian integrals, and everything can be computed

by Wick from the two-point function:

〈φ?(k1)φ(k2)〉 = (2π)D δD(k1 − k2)
1

k2
1

= (2π)D δD(k1 − k2)G(k1).

Although this gaussian model is trivial, we can still do the RG to it. (We will turn

on the interactions in a moment.) An RG step has three ingredients, of which I’ve

emphasized only two so far:

1. Integrate out the fast modes, i.e. φ>, with |k| ∈ (Λ− δΛ,Λ). I will call Λ− δΛ ≡
Λ/s, and33 s > 1, we will regard s as close to 1: s− 1� 1.

Z =

∫ ∏
0≤|k|≤Λ/s

dφ<(k)


∫ ∏

Λ/s≤|k|≤Λ

dφ>(k)e

−

S0[φ<] + S0[φ>]︸ ︷︷ ︸
quadratic

+ Sint[φ
<, φ>]︸ ︷︷ ︸

mixes fast and slow




=

∫
[dφ<]e−S0[φ<]

〈
e−Sint[φ

<,φ.]
〉

0,>︸ ︷︷ ︸
average over φ>, with gaussian measure

Z0,> (3.17)

The factor of Z0,> is independent of φ< and can be ignored.

2. Rescale momenta so that we may compare successive steps: k̃ ≡ sk lies in the

same interval |k̃| ∈ (0,Λ).

32Actually, the symmetry of (3.15) is O(2), since (φ1, φ2) → (−φ1, φ2) is also a symmetry and has

determinant minus one.
33I note that s = b from the previous subsection; sorry for the proliferation of redundant letters.
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3. Are the actions s(φ) = rφ2 + uφ4 and s̃(ψ) = 4rψ2 + 16uψ4 different? No: let

2ψ ≡ φ. We can resacle the field variable at each step:

φ̃(k̃) ≡ ζ−1φ<(k̃/s).

We will choose the ‘wavefunction renormalization’ factor ζ so that the kinetic

terms are fixed.

RG for free field

If Sint = 0, then (3.17) gives

S̃[φ<] =

∫
|k|<Λ/s

d̄Dkφ?<(k)k2φ>(k)
steps 2 and 3

= s−D−2ζ2

∫
|k̃|<Λ

φ̃?(k̃)k̃2φ̃(k̃)d̄Dk̃ .

With ζ ≡ s
D+2

2 , the Gaussian action is a fixed point of the RG step:

S̃[φ̃] = S[φ] = S?.

Warning: the field φ(k) is the Fourier transform of the field φ(x) that we considered

above. They are different by an integral over space or momenta: φ(x) =
∫

d̄Dkφ(k)eikx.

So they scale differently. The result that ζ = s
D+2

2 is perfectly consistent with our

earlier result that φ(x) scales like s
2−D

2 .

Now we consider perturbations. We’ll only study those that preserve the symmetry

(3.16). We can order them by their degree in φ. The first nontrivial case preserving

the symmetry is

δS2[φ] =

∫
|k|<Λ

d̄Dkφ?(k)φ(k)r(k) .

Here r(k) is a coupling function. If its position-space representation is local, it has a

nice Taylor expansion about k = 0:

r(k) = r0︸︷︷︸
≡m2

0

+k2r2 + ...

(I also assumed rotation invariance.) The same manipulation as above gives

δ̃S2[φ̃(k̃)] = s−D+D+2
2

2=2

∫
|k̃|<Λ

φ̃?(k̃)r̃(k̃)φ̃(k̃)d̄Dk̃

with r̃(k̃) = s2r(k̃/s), so that

r̃0 = s2r0︸ ︷︷ ︸
relevant

, r̃2 = s0r2︸ ︷︷ ︸
marginal by design

, r̃4 = s−2r4︸ ︷︷ ︸
irrelevant

...
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Quartic perturbation

δS4 = Sint =

∫
Λ

φ?(4)φ?(3)φ(2)φ(1)u(4321)

This is some shorthand notation for

δS4 = Sint =
1

(2!)2

∫ 4∏
i=1

d̄Dki(2π)DδD(k4+k3−k2−k1)φ?(k4)φ?(k3)φ(k2)φ(k1)u(k4k3k2k1) .

The delta function maintains translation invariance in real space. Here u(4321) is some

general function, but only the bit with u(4321) = u(3421) = u(4312) matters. This

interaction couples the fast and slow modes. We need to evaluate

e−S̃[φ<] = e−S0[φ<]
〈
e−δS[φ<,φ>]

〉
0,>

.

A tool at our disposal is the cumulant expansion, aka the exponentiation of the discon-

nected diagrams: 〈
e−Ω
〉

= e−〈Ω〉+
1
2(〈Ω2〉−〈Ω〉2)+... (3.18)

So

δ̃S = 〈δS〉>,0︸ ︷︷ ︸
∼u0

−1

2

(〈
δS2
〉
>,0
− 〈δS〉2>,0

)
︸ ︷︷ ︸

∼u2
0

+...

So this expansion is a perturbative expansion in u0.

First the first term (∼ u0):

〈δS〉>,0 =
u0

(2!)2

∫
|k|<Λ

〈(φ< + φ>)?4(φ< + φ>)?3(φ< + φ>)2(φ< + φ>)1u(4321)〉>,0

This is made of 16 terms which can be

decomposed as follows, and illustrated by

the Feynman diagrams at right. These

Feynman diagrams are just like the usual

ones with the important difference that

the loop momenta only run over the shell

from |k| = Λ/s to |k| = Λ. The only al-

lowed external lines are the slow modes.

The ones that contribute to the O(u0)

term all have a single 4-point vertex.

(a) 1 diagram with all external lines be-

ing slow modes. This gives the tree

level interaction term for the slow

modes.
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(b) 1 diagram with only fast modes in-

volved in the vertex. This con-

tributes to the irrelevant constant

Z0,>.

(c) 8 diagrams with an odd number of

fast modes; these all vanish by the

usual Wick business.

(d) 6 diagrams with 2 slow 2 fast. The

fast modes must be contracted and

this makes a loop. The arrows (rep-

resenting the flow of the U(1) charge)

must work out to allow nonzero con-

tractions (recall that 〈φφ〉 = 0 by

charge conservation).

So the only interesting ones are diagrams of type (d), which give

δ̃S2(φ<) =
u0

(2!)2

∫
|k|<Λ

〈(φ?>(4)φ?<(3) + φ?>(3)φ?<(4))(φ>(2)φ<(1) + φ>(1)φ<(2))〉0,>

= u0

∫
|k|<Λ/s

d̄Dkφ?<(k)φ<(k) ·
∫ Λ

Λ/s

d̄Dp
1

p2︸ ︷︷ ︸
= ΩD−1

(2π)D

∫ Λ

Λ/s
kD−3dk

D=4
= 2π2

(2π)4
Λ2

2
(1− s−2) .

(3.19)

δ̃S2[φ̃<(k̃)] = u0s
2

∫
|k̃|<Λ

d̄4kφ̃?(k̃)φ̃(k̃)
Λ2

16π2
(1− s−2).

δr0 =
u0Λ2

16π2
(s2 − 1) .

The correction to the mass is of order the cutoff.

In D dimensions, we get instead

δr0 =
ΩD−1

(2π)D
u0

ΛD−2

D − 2
(s2 − s4−D).

The next term in the cumulant expansion

Now for theO(u2
0) term in δ̃S. The diagrammatic representation of 1

2

(
〈δS2〉 − 〈δS〉2

)
is: all connected diagrams containing two 4-point vertices, with only external slow lines.
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The second term cancels all disconnected diagrams. Diagrammatically, these are (we

are in Euclidean spacetime here, so I don’t mind violating my rule that time goes to

the left):

These correct the quartic coupling u = u0 + u1k
2 + .... We care about the sign of δu0,

because in D = 4 it is marginal. Even small corrections will make a big difference.

ũ(k̃4, ...k̃1) = u0−u2
0

∫ Λ

Λ/s

d̄Dk︸ ︷︷ ︸
≡
∫
dΛ

(
1

k2|k − (k̃3 − k̃1)/s|2
+

1

k2|k − (k̃4 − k̃1)/s|2
+

1

2

1

k2| − k − (k̃1 + k̃2)/s|2

)

Note the symmetry factor in the s-channel diagram, which you can see directly from

the cumulant expression.

The most interesting part of this expression is the correction to u0, which is what

we get when we set the external momenta to zero:

ũ(k = 0) = ũ0 = u0 − u2
0

5

2

∫
dΛ

k3dk

k4︸ ︷︷ ︸
=log s

· Ω3

(2π)4︸ ︷︷ ︸
= 1

8π2

.

The bit which depends on the external momenta k can be expanded in a series in k2;

these terms produce things like φ?∇2φφ?φ, which are irrelevant in D > 2.

Let Λ(s) ≡ Λ0/s ≡ Λ0e
−` so s = e`, ` = log Λ0/Λ and Λ d

dΛ
= s∂s = ∂`. Large ` is

the IR. {
du0

d`
= − 5

16π2u
2
0 ≡ −bu2

0

dr̂0
d`

= 2r̂0 + u0

16π2 = 2r0 + au0

. (3.20)

Here a, b > 0 are constants, and r̂0 ≡ r0Λ2 is the mass2 in units of the cutoff. (Note that

the usual high-energy definition of the beta function has the opposite sign, dg
d`

= −βg.)
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These equations can be solved in terms of two

initial conditions:

u0(`) =
u0(0)

1 + bu0(0)`

`→∞,u0(0)>0∼ 1

`
=

1

log Λ0/Λ
→ 0.

u0 is a marginally irrelevant perturbation of the

gaussian fixed point. This theory is not asymptot-

ically free34 The phase diagram is at right. There’s

just the one fixed Gaussian point. Notice that it’s

not true that an arbitrary small u0 added to the

gaussian FP runs back to the gaussian FP. r0 runs

too:

r0(`) = e2`

[
r0(0) +

∫ `

0

e−2`′ au0(0)

1 + bu0(0)`′
d`′
]
.

There is a curve of choices of initial data in (u0(0), r0(0)) which ends up at the origin –

it’s when the thing in brackets vanishes; for small u0, this is the line r0(0) = −a
2
u0(0).

Following Wilson and Fisher, it is an extremely

good idea to consider dimensions other than 4,

D ≡ 4−ε. We’ve already been willing to do this as

a regulator of short-distance physics; it turns out

that it also resolves some short-distance physics in

the phase diagram. If D 6= 4, the quartic interaction is no longer marginal at tree level,

but rather scales like sε. The RG equation is modified to

du0

d`
= εu0 − bu2

0 . (3.21)

For ε > 0 (D < 4) there is another fixed point at u?0 = ε/b > 0. And in fact the

Gaussian FP is unstable, and this Wilson-Fisher fixed point is the stable one in the IR

(see fig at right, which is drawn along the critical surface leading to r0(∞) = 0.). This

situation allows one to calculate (universal) critical exponents at the fixed point in an

expansion in ε.

As ε→ 0, the two fixed points coalesce.

The W-F fixed point describes a continuous phase transition between ordered and

disordered phases. An external variable (roughly r0) must be tuned to reach the phase

34This statement was for u0(0) > 0. For u0(0) < 0, it is AF (this was an observation of Symanzik,

before the study of Yang-Mills), but seems likely to be unstable. For an interesting claim to the

contrary, see here if you are feeling brave. It would be nice to know for sure.
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Figure 4: The φ4 phase diagram. If r0(` = ∞) > 0, the effective potential for the uniform ‘magne-

tization’ has a minimum at the origin; this is the disordered phase, where there is no magnetization.

If r0(` =∞) = V ′′eff < 0, the effective potential has minima away from the origin, and the groundstate

breaks the symmetry (here φ→ eiθφ); this is the ordered phase.

transition. A physical realization of this is the following: think of our euclidean path

integral as a thermal partition function at temperature 1/β:

Z =

∫
[Dφ]e−βH[φ] ;

here we are integrating over thermal fluctuations of classical fields. Above we’ve studied

the case with O(2) symmetry (called the XY model). WLOG, we can choose normalize

our fields so that the coefficient β determines r0. The critical value of r0 then realizes

the critical temperature at which this system goes from a high-temperature disordered

phase to a low-temperature ordered phase. For this kind of application, D ≤ 3 is most

interesting physically. We will see that the ε expansion about D = 4 is nevertheless

quite useful.

You could ask me what it means for the number of dimensions D to be not an

integer. One correct answer is that we have constructed various well-defined functions
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of continuous D simply by keeping D arbitrary; basically all we need to know is the

volume of a D-sphere for continuous D, (1.58). An also-correct answer that some

people (e.g. me) find more satisfying is is the following. Suppose we can define our

QFT by a discrete model, defined on a discretized space (like in (3.14)). Then we can

also put the model on a graph whose fractal dimension is not an integer. Evidence that

this is a physical realization of QFT in non-integer dimensions is given in [Gefen-Meir-

Mandelbrot-Aharony] and [Gefen-Mandelbrot-Aharony]. Some subtle and interesting

issues about uniqueness and unitarity of the field theories so defined are raised here

and here.

Important lessons.

• Elimination of modes does not introduce new singularities into the couplings. At

each step of the RG, we integrate out a finite-width shell in momentum space –

we are doing integrals which are convergent in the infrared and ultraviolet.

• The RG plays nicely with symmetries. In particular any symmetry of the regu-

lated model is a symmetry of the long-wavelength effective action.35

• Some people conclude from the field theory calculation of the φ4 beta function

that φ4 theory “does not exist” or “is trivial”, in the sense that if we demand that

this description is valid up to arbitrarily short distances, we would need to pick

u(Λ =∞) =∞ in order to get a finite interaction strength at long wavelengths.

You can now see that this is a ridiculous conclusion. Obviously the theory exists

in a useful sense. It can easily be defined at short distances (for example) in

terms of the lattice model we wrote at the beginning of this subsection. Similar

statements apply to QED.

• The corrections to the mass of the scalar field are of order of the cutoff. This

makes it hard to understand how you could arrive in the IR and find that an

interacting scalar field has a mass which is much smaller than the cutoff. Yet,

there seems to be a Higgs boson with m ' 125 GeV, and no cutoff on the

Standard Model in sight. This is a mystery.

• As Tony Zee says, a more accurate (if less catchy) name than ‘renormalization

group’ would be ‘the trick of doing the path integral a little at a time’.

[End of Lecture 13]

35The extra qualifier about the regulated model is important because some symmetries of continuum

classical field theories cannot be realized as symmetries of well-defined quantum field theories. We

will discuss this phenomenon, called anomalies, in the near future.
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3.4.1 Comparison with renormalization by counterterms

Is this procedure the same as ‘renormalization’ in the high-energy physics sense of

sweeping divergences under the rug of bare couplings? Suppose we impose the renor-

malization condition that Γ4(k4...k1) ≡ Γ(4321), the 1PI 4-point vertex, is cutoff inde-

pendent. Its leading contributions come from the diagrams: +

(where now the diagrams denote amputated amplitudes, the arrows indicate flow of

scalar charge (since we’re studying the case with O(2) symmetry) and also momentum,

and the integrals run over all momenta up to the cutoff). Clearly there is already a

big similarity. In more detail, this is

Γ(4321) = u0 − u2
0

∫ Λ

0

d̄Dk(
1

(k2 + r0)(|k + k3 − k1|2 + r0)
+

1

(k2 + r0)(|k + k4 − k1|2 + r0)
+

1

2

1

(k2 + r0)(| − k + k1 + k2|2 + r0)

)
And in particular, the bit that matters for the running of the coupling is

Γ(0000) = u0 − u2
0

5

32π2
log

Λ2

r0

+O(u3
0).

Demanding that this be independent of the cutoff Λ = e−`Λ0,

0 = ∂` (Γ(0000)) = −Λ
d

dΛ
Γ(0000)

gives

0 =
du0

d`
+

5

16π2
u2

0 +O(u3
0)

=⇒ βu0 = − 5

16π2
u2

0 +O(u3
0)

as before. (The bit that would come from ∂`u
2
0 in the second term is of order u3

0 and

so of the order of things we are already neglecting.)

I leave it to you to show that the flow for r0 that results from demanding that

〈φ(k)φ?(k)〉 have a pole at k2 = −m2 (with m independent of the cutoff) gives the

same flow we found above.

It is worth noting that although the continuum field theory perspective with coun-

terterms is less philosophically satisfying, it is often easier for actual calculations than

integrating momentum shells, mainly because we can use a convenient regulator like

dim reg.
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3.4.2 Comment on critical exponents

[Zinn-Justin, chapter 25, Peskin, chapter 12.5, Stone, chapter 16, Cardy, and the classic

Kogut-Wilson]

Recall that the Landau-Ginzburg mean field theory made a (wrong) prediction for

the critical exponents at the Ising transition:

〈M〉 ∼ (Tc − T )β for T < Tc, ξ ∼ (Tc − T )−ν

with βMFT = 1
2
, νMFT = 1

2
. This answer was wrong (e.g. for the Ising transition in

(euclidean) D = 3, which describes uniaxial magnets (spin is ±1) or the liquid-gas

critical point) because it simply ignored the effects of fluctuations of the modes of

nonzero wavelength, i.e. the δL bit in (3.12). I emphasize that these numbers are

worth getting right because they are universal – they are properties of a fixed point,

which are completely independent of any microscopic details.

Now that we have learned to include the effects of fluctuations at all length scales on

the long-wavelength physics, we can do better. We’ve done a calculation which includes

fluctuations at the transition for an XY magnet (the spin has two components, and

a U(1) symmetry that rotates them into each other), and is also relevant to certain

systems of bosons with conserved particle number. The mean field theory prediction

for the exponents is the same as for the Ising case (recall that we did the calculation

for a magnetization field with an arbitrary number N of components, and in fact the

mean field theory prediction is independent of N ≥ 1; we’ll say more about general

N -component magnets below).

In general there are many scaling relations between various critical exponents, which

can be understood beginning from the effective action, and were understood before

the correct calculation of the exponents. So not all of them are independent. For

illustration, we will briefly discuss two independent exponents.

Order parameter exponent, η. The simplest critical exponent to understand

from what we’ve done so far is η, the exponent associated with the anomalous dimension

of the field φ itself. (It is not the easiest to actually calculate, however.) This can be

defined in terms of the (momentum-space) amputated two-point function of φ (that is,

Γ2(p) = 1/G̃(p)) as

Γ2(p) =
ξ−1�p�Λ
'

( p
Λ

)2−η

where ξ is the correlation length and Λ is the UV cutoff. This looks a bit crazy – at

nonzero η, the full propagator has a weird power-law singularity instead of a 1
p2−m2 ,

and in position space it is a power law G2(x) ∼ 1
|x|D−2+η , instead of an exponential

decay. An example where all the details can be understood is the operator eiαX the

massless scalar field X in 1+1 dimensions (see the homework).

109

http://www.sciencedirect.com/science/article/pii/0370157374900234


Γ2(p) is the 1PI momentum space 2-point vertex, i.e. the kinetic operator. We

can interpret a nonzero η as saying that the dimension of φ, which in the free theory

was ∆0 = 2−D
2

, has been modified by the interactions to ∆ = 2−D
2
− η/2. η/2 is the

anomalous dimension of φ. Quantum mechanics violates (naive) dimensional analysis;

it must, since it violates classical scale invariance. Of course (slightly more sophisti-

cated) dimensional analysis is still true – the extra length scale is the UV cutoff, or

some other scale involved in the renormalization procedure.

But how can this happen in perturbation theory? Consider physics near the gaus-

sian fixed point, where η must be small, in which case we can expand:

Γ2(p)
ξ−1�p�Λ,η�1

'
( p

Λ

)2 (
e−η log(p/Λ)

)
=
( p

Λ

)2

(1− η log (p/Λ) + ...)

It comes from the wavefunction renormalization.

In the φ4 theory, η = 0 at one loop. The leading correction to η comes from

the ‘sunrise’ (or ‘eyeball’) diagram at right, at two loops. (I draw the φ> lines

in red and the φ< lines in black.) So in this model, η ∼ g2
? ∼ ε2.

[Ma, Modern Theory of Critical Phenomena, p. 209] Tarun Grover gave me a hard

time for not emphasizing enough the fact that at the Wilson-Fisher fixed point, the

anomalous dimension of the order-parameter field is nonzero – it is not a free field. He

called it “the central result.” So here is another perspective on this calculation, which

allows us to get the actual value. It is another example where it is easier to study field

theory in real space, rather than momentum space.

Return to our expression for the correction to the effective action for the slow modes

from integrating out the fast modes from the cumulant expansion, (3.18). But now

write δS in position space:

δS[φ<] =
u0

4

〈∫
dDx|φ< + φ>|4(x)

〉
>,0

−(u0/4)2

2

〈∫
dDx|φ< + φ>|4(x)

∫
dDy|φ< + φ>|4(y)

〉
>,0,c

+...

where the subscript c indicates connected. We will look for terms in this expansion

which look like
∫
dDx∂φ2

<. The bit from the O(u0) term is of the form

= u0

∫
dxφ(x)2G>(x− x)

and so doesn’t give a correction to the kinetic term, only to the mass, as expected.

The terms with two slow modes involve six fast modes, and have exactly the form
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of the eyeball diagram above (but now interpreted as a position-space diagram)36:

δS[φ<] 3 = −n+ 2

2
u2

0

∫
dDx

∫
dDyφ<(x)G>(x− y)3φ<(y). (3.22)

Since the fast modes involve only small wavelengths, their propagator must be short-

ranged; therefore we can Taylor expand

φ<(y) = φ<(x) + ~r · ~∇φ<(x) +
1

2
(~r · ~∇)2φ<(x) + · · · , (3.23)

where r ≡ y − x. This gives

δS 3 −1

2
u2

0

∫
dDxφ<(x)

∫
dDyG>(r)3

 φ<(x)︸ ︷︷ ︸
mass correction

+ ~r · ~∇φ<(x)︸ ︷︷ ︸
vanishes by rotation symmetry

+
1

2
(~r · ~∇)2φ<(x) + · · ·

 .

(3.24)

So this last term is what we are looking for, and it takes the form (after an IBP)

+

∫
dDx r2 (∂φ<(x))

2
δZ

with

δZ = r−1
2

n+ 2

4
u2

0

∫
dDr

r2

D
G>(r)3 (3.25)

where we used rotation invariance:
∫
dDrrirjf(|r|) =

∫
dDr r

2δij

D
f(|r|).

Here we can evaluate G> directly in D = 4 (since the differences will be in the

O(ε3) slush):

r2G>(x− y) ≡
∫ Λ

Λ/b

d̄Dk
eik(x−y)

k2
(3.26)

=

∫ Λ

Λ/b

k4−1−2dk
Ω2

(2π)4

∫ 1

−1

dθ sin2 θeikr cos θ︸ ︷︷ ︸
=
πJ1(kr)
kr

(3.27)

=
Ω2

(2π)4

π

r

∫ Λ

Λ/b

dkJ1(kr) (3.28)

=
4π

(2π)4

π

r2
(J0(rΛ/b)− J0(rΛ)) =

1

4π2r2
(J0(rΛ/b)− J0(rΛ)) (3.29)

36Although I drew the diagrams appropriate to the XY model, in this calculation, I have not been

careful about the numerical prefactor, which depends on the number of components n of the order

parameter field. This prefactor directly determines the numerical factor in η at the WF fixed point,

which is a universal constant of nature, like π or e, and therefore worth determining. It’s my factors

of two that you should watch out for.
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where Jn are Bessel functions.

So we have

δZ = r−1
2

(n+ 2)u2
0

4D

(
1

4π

)3

Ω3

∫ ∞
0

drrD−1r2G>(r)3 (3.30)

D→4
= r−4

2

(n+ 2)u2
0

16

(
1

4π2

)3

2π2

∫ ∞
0

dr

r
(J0(rΛ/b)− J0(rΛ))3 (3.31)

= r−4
2

(n+ 2)u2
0

210π4

∫ ∞
0

dr
r

(J0(r/b)− J0(r ))3 (3.32)

where r ≡ rΛ and the cutoff dependence drops out.

To find the dependence on b, again the crucial idea is that

the G>(r) is short-ranged; the BesselJ oscillates, but the en-

velope decays when its argument is of order a few. To get

the idea, treat J0(r ) ∼ θ(1− r ), J0(r/b) ∼ θ(b− r ), so

(4πr2G>(r ))3 = (J0(r/b)− J0(r ))3 ∼ θ(r − 1)θ(b− r )

and ∫ ∞
0

dr
r

(J0(r/b)− J0(r ))3 ∼
∫ b

1

dr
r

= ln b.

The oscillations give additive corrections to this answer, which are independent of

b37. Therefore, we find

δZ = r−4
2 cu2

0 ln b,

where c is a numerical number made of 2s and πs. The anomalous dimension of φ is

then η = ∂ln bδZ = cr−4
2 u2

0.

37Actually, Mathematica can do the integrals∫ ∞
0

dr
r

(J0(r/b)− J0(r )) = ln b (3.33)∫ ∞
0

dr
r

(J0(r/b)− J0(r ))
2

= ln b , (3.34)

and they both give exactly ln b, but it doesn’t like higher powers. The latter integral is the position

space expression for the diagrams which correct u0 at one loop, such as: .
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Correlation length exponent, ν. We now turn to the correlation length expo-

nent, ν. Recall that the correlation length is the length scale above which the relevant

perturbation gets big and cuts off the critical fluctuations of the fixed point. As the

actual fixed point is approached, this happens at longer and longer scales: ξ diverges

at a rate determined by the exponent ν.

We can proceed as follows. First we relate the scaling of the correlation length to

the scaling behavior of the relevant perturbation that takes us away from from the fixed

point. The latter we will evaluate subsequently in our example. (There is actually an

easier way to do this, discussed in §3.4.3, but this will be instructive.)

Suppose we begin our RG procedure with a perturbation of a fixed-point Hamilto-

nian by a relevant operator O:

H(ξ1) = H? + δ1O .

Under a step of the RG, ξ1 → s−1ξ1, δ1 → s∆δ1, where I have defined ∆ to be the

scaling dimension of the operator O. Then after N steps, δ = sN∆δ1, ξ = s−Nξ1.

Eliminating sN from these equations we get the relation

ξ = ξ1

(
δ

δ1

)− 1
∆

(3.35)

which is the definition of the correlation length exponent ν, and we conclude that

ν = 1
∆

.

Here is a better way to think about this. At the critical point, the two-point function

of the order parameter G(x) ≡ 〈φ(x)φ(0)〉 is a power law in x, specified by η. Away

from the critical point, there is another scale, namely the size of the perturbation – the

deviation of the knob δ from its critical value, such as T − Tc. Therefore, dimensional

analysis says that G(x) takes the form

G(x) =
1

|x|D−2

(
1

|x|/a

)η
Φ
(
|x|δ1/∆

)
where the argument of the scaling function Φ is dimensionless. (I emphasized that

some length scale a, such as the lattice spacing, must make up the extra engineering

dimensions to allow for an anomalous dimension of the field at the critical point.)

When x � all other length scales, G(x) should decay exponentially, and the decay

length must then be ξ ∼ δ−
1
∆ which says ν = 1

∆
.

In the case of φ4 theory, r0 is the parameter that an experimentalist must carefully

tune to access the critical point (what I just called δ) – it is the coefficient of the

relevant operator O = |φ|2 which takes us away from the critical point; it plays the

role of T − Tc.
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At the free fixed point the dimension of |φ|2 is just twice that of φ, and we get

ν−1 = ∆
(0)

|φ|2 = 2D−2
2

= D− 2. At the nontrivial fixed point, however, notice that |φ|2 is

a composite operator in an interacting field theory. In particular, its scaling dimension

is not just twice that of φ! This requires a bit of a digression. [End of Lecture 14]

Renormalization of composite operators.

[Peskin §12.4] Perturbing the Wilson-Fisher fixed point by this seemingly-innocuous

quadratic operator, is then no longer quite so innocent. In particular, we must define

what we mean by the operator |φ|2! One way to define it (from the counterterms point

of view, now, following Peskin and Zinn-Justin) is by adding an extra renormalization

condition38. We can define the normalization of the composite operator O(k) ≡ |φ|2(k)

by the condition that its (amputated) 3-point function gives

〈OΛ(k)φ(p)φ?(q)〉 = 1 at p2 = q2 = k2 = −Λ2 .

The subscript onOΛ(k) is to emphasize that its (multiplicative) normalization is defined

by a renormalization condition at scale (spacelike momentum) Λ. Just like for the

‘elementary fields’, we can define a wavefunction renormalization factor:

OΛ ≡ Z−1
O (Λ)O∞

where O∞ ≡ φ?φ is the bare product of fields.

We can represent the implementation of this prescription diagramatically. In the

diagram above, the double line is a new kind of thing – it represents the insertion of

OΛ. The vertex where it meets the two φ lines is not the 4-point vertex associated with

the interaction – two φs can turn into two φs even in the free theory. The one-loop,

38 Note that various factors differ from Peskin’s discussion in §12.4 because I am discussing a

complex field φ 6= φ?; this changes the symmetry factors.
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1PI correction to this correlator is (the second diagram on the RHS of the figure)39

(−u0)

∫ ∞
0

d̄D`
1

`2

1

(k + `)2
= −u0

c

k4−D

where c is a number (I think it is c =
Γ(2−D

2 )
(4π)2 ) and we know the k dependence of the

integral by scaling. If you like, I am using dimensional regularization here, thinking of

the answer as an analytic function of D.

Imposing the renormalization condition requires us to add a counterterm diagram

(part of the definition of |φ|2, indicated by the ⊗ in the diagrams above) which adds

Z−1
O (Λ)− 1 ≡ δ|φ|2 =

u0c

Λ4−D .

We can infer the dimension of (the well-defined) |φ|2Λ by writing a renormalization

group equation for our 3-point function

G(2;1) ≡
〈
|φ|2Λ(k)φ(p)φ?(q)

〉
.

0
!

= Λ
d

dΛ
G(n;1) =

(
Λ
∂

∂Λ
+ β(u)

∂

∂u
+ nγφ + γO

)
G(n;1) .

This (Callan-Symanzik equation) is the demand that physics is independent of the

cutoff. γO ≡ Λ ∂
∂Λ

logZO(Λ) is the anomalous dimension of the operator O, roughly

the addition to its engineering dimension coming from the interactions (similarly γφ ≡
Λ ∂
∂Λ

logZφ(Λ)). To leading order in u0, we learn that

γO = Λ
∂

∂Λ

(
−δO +

n

2
δZ

)
which for our example with n = 2 gives the anomalous dimension of |φ|2 to be (just

the first term to this order since δZ is the wavefunction renormalization of φ, which as

we discussed first happens at O(u2
0))

γ|φ|2 =
2u0

16π2
.

Plugging in numbers, we get, at the N = 2 (XY) Wilson-Fisher fixed point at

u?0 = ε/b,

ν =
1

∆|φ|2
=

1

2− γ|φ|2
D=4−ε

=
1

2− 2u?0
16π2

=
1

2− 216π2

5
ε

16π2

=
1

2− 2ε
5

.

39At higher order in u0, the wavefunction renormalization of φ will also contribute to the renormal-

ization of |φ|2.
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(for the Ising fixed point the 5/2 would be replaced by N+8
N+2
|N=1 = 3).

It is rather amazing how well one can do at estimating the answers for D = 3 by

expanding in ε = 4−D, keeping the leading order correction, and setting ε = 1. The

answer from experiment and the lattice40 is νD=3,N=2 ' 0.67, while we find νε=1,N=2 '
0.63. It is better than mean field theory for sure. You can do even better by Padé

approximating the ε expansion. Currently (and for the foreseeable future) the best

answer comes from the conformal bootstrap.

One final comment about defining and renormalizing composite operators: if there

are multiple operators with the same quantum numbers and the same scaling di-

mension, they will mix under renormalization. That is, in order to obtain cutoff-

independent correlators of these operators, their definition must be of the form

OiΛ =
(
Z−1(Λ)

)
ij
Oj∞

– there is a wavefunction renormalization matrix, and a matrix of anomalous dimensions

γij = −Λ∂Λ log
(
Z−1(Λ)

)
ij
.

‘Operator mixing’ is really just the statement that correlation functions like 〈OiOj〉
are nonzero.

40To be more precise, the current results for the 3d XY model are

νexperiment = 0.6709(1), νMonte Carlo = 0.67169(7)

which disagree by 8σ! The value which is both most reliable and most precise comes from the conformal

bootstrap and is

νconformal bootstrap = 0.67175(2),

in agreement with the MC result. For a discussion of the current state see this paper.
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3.4.3 Once more, with feeling (and an arbitrary number of components)

I’ve decided to skip this subsection in lecture. You may find it useful for the homework.

[Kardar, Fields, §5.5, 5.6] Let’s derive the RG for φ4 theory again, with a number

of improvements:

• Instead of two components, we’ll doN component fields, with U =
∫
dDxu0 (φaφa)2

(repeated indices are summed, a = 1..N).

• We’ll show that it’s not actually necessary to ever do any momentum integrals

to derive the RG equations.

• We’ll keep the mass perturbation in the discussion at each step; this lets us do

the following:

• We’ll show how to get the correlation length exponent without that annoying

discussion of composite operators. (Which was still worth doing because in other

contexts it is not avoidable.)

We’ll now assume O(N) symmetry, φa → Ra
bφ

b, with RtR = 1N×N , and perturb

about the gaussian fixed point with (euclidean) action

S0[φ] =

∫ Λ

0

d̄Dk φa(k)φa(−k)︸ ︷︷ ︸
≡|φ|2(k)

1

2

(
r0 + r2k

2
)
.

The coefficient r2 of the kinetic term is a book-keeping device that we may set to 1 if

we choose. Again we break up our fields into slow and fast, and integrate out the fast

modes:

ZΛ =

∫
[Dφ<]e

−
∫ Λ/s
0 d̄Dk|φ<(k)|2

(
r0+r2k

2

2

)
Z0,>

〈
e−U [φ<,φ>]

〉
0,>

.

Again the 〈...〉0,> means averaging over the fast modes with their Gaussian measure, and

Z0,> is an irrelevant normalization factor, independent of the objects of our fascination,

the slow modes φ<. With N components we do Wick contractions using〈
φa>(q1)φb>(q2)

〉
0,>

=
δab/δ(q1 + q2)

r0 + q2
1r2

.

I’ve defined /δ(q) ≡ (2π)DδD(q). Notice that we are now going to keep the mass

perturbation r0 in the discussion at each step. Again

log
〈
e−U
〉

0,>
= −〈U〉0,>︸ ︷︷ ︸

1

+
1

2

(〈
U2
〉

0,>
− 〈U〉20,>

)
︸ ︷︷ ︸

2
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1 = 〈U [φ<, φ>]〉0,> = u0

∫ 4∏
i=1

d̄Dki/δ(
∑
i

ki)

〈∏
i

(φ< + φ>)i

〉
0,>

Diagramatically, these 16 terms decompose as in Fig. 5.

Figure 5: 1st order corrections from the quartic perturbation of the Gaussian fixed point of the

O(N) model. Wiggly lines denote propagation of fast modes φ>, straight lines denote (external) slow

modes φ<. A further refinement of the notation is that we split apart the 4-point vertex to indicate

how the flavor indices are contracted; the dotted line denotes a direction in which no flavor flows,

i.e. it represents a coupling between the two flavor singlets, φaφa and φbφb. The numbers at left are

multiplicities with which these diagrams appear. (The relative factor of 2 between 13 and 14 can be

understood as arising from the fact that 13 has a symmetry which exchanges the fast lines but not

the slow lines, while 14 does not.) Notice that closed loops of the wiggly lines represent factors of N ,

since we must sum over which flavor is propagating in the loop – the flavor of a field running in a

closed loop is not determined by the external lines, just like the momentum.
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The interesting terms are

13 = −u0 2︸︷︷︸
symmetry

N︸︷︷︸
=δaa

∫ Λ/s

0

d̄Dk|φ<(k)|2
∫ Λ

Λ/s

d̄Dq
1

r0 + r2q2

14 =
4 · 1
2 ·N

13

has a bigger symmetry factor but no closed flavor index loop. The result through

O(u) is then

r0 → r0 + δr0 = r0 + 4u0(N + 2)

∫ Λ

Λ/s

d̄Dq
1

r0 + r2q2
+O(u2

0) .

r2 and u are unchanged. RG step ingredients 2 (rescaling: q̃ ≡ sq) and 3 (renormalizing:

φ̃ ≡ ζ−1φ<) allow us to restore the original action; we can choose ζ = s1+D/2 to keep

r̃2 = r2.

The second-order-in-u0 terms are displayed in Fig. 6. The interesting part of the

+

Figure 6: 2nd order corrections from the quartic perturbation of the Gaussian fixed point of the O(N)

model. The left column of diagrams are corrections to the quartic interaction, and the right column

correct quadratic terms. In fact the top right diagram is independent of the external momentum and

hence only corrects r0; the bottom right diagram (that looks like a sheep) also corrects the kinetic

term (along with one more I didn’t draw which differs in how the flavor indices are contracted).

Notice that the diagram at right has two closed flavor loops, and hence goes like N2, and it comes with

two powers of u0. You can convince yourself by drawing some diagrams that this pattern continues

at higher orders. If you wanted to define a model with large N you should therefore consider taking

a limit where N → ∞, u0 → 0, holding u0N fixed. The quantity u0N is often called the ’t Hooft

coupling.
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second order bit

2 =
1

2

〈
U [φ<, φ>]2

〉
0,>,connected

is the correction to U [φ<]. There are less interesting bits which are zero or constant

or two-loop corrections to the quadratic term. The correction to the quartic term at

2nd order is

δ2S4[φ<] = u2
0(4N + 32)

∫ Λ/s

0

4∏
i

(
d̄Dkiφ<(ki)

)
/δ(
∑

ki)f(k1 + k2)

with

f(k1+k2) =

∫
d̄Dq

1

(r0 + r2q2)(r0 + r2(k1 + k2 − q)2)
'
∫

d̄Dq
1

(r0 + r2q2)2
(1 +O(k1 + k2))

– the bits that depend on the external momenta give irrelevant derivative corrections,

like φ2
<∂

2φ2
< . We ignore them.

The full result through O(u2
0) is then the original action, with the parameter re-

placement r2

r0

u0

 7→
r̃2

r̃0

ũ0

 =

s−D−2ζ2(r2 + δr2)

s−Dζ2(r0 + δr0)

s−3Dζ4 (u0 + δu0)

+O(u3
0).

The shifts are: 
δr2 = u2

0
∂2
kA(0)

r2

δr0 = 4u0(N + 2)
∫ Λ

Λ/s
d̄Dq 1

r0+r2q2 − A(0)u2
0

δu0 = −1
2
u2

0(8N + 64)
∫ Λ

Λ/s
d̄Dq 1

(r0+r2q2)2

.

Here A is the two-loop φ2 correction that we didn’t compute (it contains the leading

contribution to the wavefunction renormalization, A(k) = A(0) + 1
2
k2∂2

kA(0) + ...). We

can choose to keep r̃2 = r2 by setting

ζ2 =
sD+2

1 + u2
0∂

2
kA(0)/r2

= sD+2
(
1 +O(u2

0)
)
.

Now let’s make the RG step infinitesimal:

s = e` ' 1 + `{
dr0
d`

= 2r0 + 4(N+2)KDΛD

r0+r2Λ2 u0 − Au2
0 +O(u3

0)
du0

d`
= (4−D)u0 − 4(N+8)KDΛD

(r0+r2Λ2)2 u2
0 +O(u3

0)
(3.36)

I defined KD ≡ ΩD−1

(2π)D
.
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To see how the previous thing arises, and how the integrals all went away, let’s

consider just the O(u0) correction to the mass:

r̃0 = r0 + `
dr0

d`
= s2

(
r0 + 4u(N + 2)

∫ Λ

Λ/s

d̄Dq

r0 + r2q2
+O(u2

0)

)
= (1 + 2`)

(
r0 + 4u0(N + 2)

ΩD−1

(2π)D
ΛD 1

r0 + r2Λ2
`+O(u2

0)

)
=

(
2r0 +

4u0(N + 2)

r0 + r2Λ2
KDΛD

)
`+O(u2

0). (3.37)

Now we are home. (3.36) has two fixed points. One is the free fixed point at the

origin where nothing happens. The other (Wilson-Fisher) fixed point is at{
r?0 = −2u?0(N+2)KDΛD

r?0+r2Λ2

D=4−ε
= −1

2
N+2
N+8

r2Λ2ε+O(ε2)

u?0 = (r?+r2Λ2)2

4(N+8)KDΛD
ε

D=4−ε
= 1

4

r2
2

(N+8)K4
ε+O(ε2)

which is at positive u?0 if ε > 0. In the second step we keep only leading order in

ε = 4−D.

Figure 7: The φ4 phase diagram, for ε > 0.

Now we follow useful strategies for dynamical systems and linearize near the W-F

fixed point:
d

d`

(
δr0

δu0

)
= M?

(
δr0

δu0

)
(3.38)

The matrix M? is a 2x2 matrix whose eigensystem describes the flows near the fixed

point. For the Wilson-Fisher fixed point, it looks like

M? =

(
2− N+2

N+8
ε ...

O(ε2) −ε

)
.
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Its eigenvalues (which don’t care about the off-diagonal terms because the lower left

entry is O(ε2) are

yr = 2− N + 2

N + 8
ε+O(ε2) > 0

which determines the instability of the fixed point and

yu = −ε+O(ε2) < 0 for D < 4

which is a stable direction. An implicit claim I am making here is that if we included

any of the other possible operators (like φ6 or ~∇2φ~∇2φ) in our action, and therefore had

a bigger K×K matrix M? associated to K possible couplings, all the other eigenvalues

would be negative – i.e. all the other operators are irrelevant at the fixed point.

So yr determines the correlation length exponent. Its eigenvector is δr0 to O(ε2).

This makes sense: r0 is the relevant coupling which must be tuned to stay at the critical

point. The correlation length can be found as follows (as we did around Eq. (3.35)).

ξ is the value of s = s1 at which the relevant operator has turned on by an order-1

amount, i.e. by setting ξ ∼ s1 when 1 ∼ δr0(s1). According to the linearized RG

equation, close to the fixed point, we have δr0(s) = syrδr0(0). Therefore

ξ ∼ s
− 1
yr

1 = (δr0(0))−ν .

This last equality is the definition of the correlation length exponent (how does the

correlation length scale with our deviation from the critical point δr0(0)). Therefore

ν =
1

yr
=

(
2

(
1− 1

2

N + 2

N + 8
ε

))−1

+O(ε2) ' 1

2

(
1 +

N + 2

2(N + 8)
ε

)
+O(ε2).

The remarkable success of setting ε = 1 in this expansion to get answers for D = 3

continues. See the references for more details on this; for refinements of this estimate,

see Zinn-Justin’s book.
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3.5 The operator product expansion and conformal perturba-

tion theory

[Cardy, chapter 5] Some of the information in the beta functions depends on our choice

of renormalization scheme and on our choice of regulator. Some of it does not: for

example, the topology of the fixed points, and the critical exponents associated with

them. Next we discuss a point of view which makes clear some of the data in the beta

functions is universal. It also gives a more general perspective on the epsilon expansion

and why it works. And it leads to the modern viewpoint on conformal field theory.

Operator product expansion (OPE). Suppose we want to understand a corre-

lation function of local operators like

〈φi(x1)φj(x2)Φ〉

where {Φ} is a collection of other local operators at locations {xl}; suppose that the

two operators we’ve picked out are closer to each other than to any of the others:

|x1 − x2| � |x1,2 − xl|, ∀l.

Then from the point of view of the collection Φ, φiφj looks like a single local operator.

But which one? Well, it looks like some sum over all of them:

〈φi(x1)φj(x2)Φ〉 =
∑
k

Cijk(x1 − x2) 〈φk(x1)Φ〉

where {φk} is some basis of local operators. By Taylor expanding we can move all the

space-dependence of the operators to one point, e.g.:

φ(x2) = e
(x2−x1)µ ∂

∂x
µ
1 φ(x1) = φ(x1) + (x2 − x1)µ∂µφ(x1) + · · · .

A shorthand for this collection of statements (for any Φ) is the OPE

φi(x1)φj(x2) ∼
∑
k

Cijk(x1 − x2)φk(x1) (3.39)

which is to be understood as an operator equation: true for all states, but only up to

collisions with other operator insertions (hence the ∼ rather than =).

This is an attractive concept, but is useless unless we can find a good basis of local

operators. At a fixed point of the RG, it becomes much more useful, because of scale

invariance. This means that we can organize our operators according to their scaling

dimension. Roughly it means two wonderful simplifications:
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• We can find a special basis of operators {Oi} where

〈φi(x)φj(0)〉? =
δij
r2∆i

(3.40)

(here, for the simple case of scalar operators) where ∆i is the scaling dimension

of φi. The ? indicates that this correlator is evaluated at the fixed point. (3.40)

defines the multiplicative normalizations of the φk. This basis is the same as the

operators multiplying eigenvectors of the scaling matrix M? in (3.38), and the

∆k are related to the eigenvalues (by yk = d−∆k).

Given (3.40), we can order the contributions to
∑

k in the OPE (3.39) by increas-

ing ∆k, which means smaller contributions to 〈φφΦ〉.

• Further, the form of Cijk is fixed up to a number. Again for scalar operators,

Oi(x1)Oj(x2) ∼
∑
k

cijk
|x1 − x2|∆i+∆j−∆k

Ok(x1) (3.41)

where cijk is now a set of pure numbers, the OPE coefficients (or structure con-

stants).

The structure constants are universal data about the fixed point: they transcend

perturbation theory. How do I know this? Because they can be computed from

correlation functions of scaling operators at the fixed point: multiply the BHS of

(3.41) by Ok(x3) and take the expectation value at the fixed point:

〈Oi(x1)Oj(x2)Ok(x3)〉?
(3.41)
=

∑
k′

cijk′

|x1 − x2|∆i+∆j−∆k
〈Ok′(x1)Ok(x3)〉?

(3.40)
=

cijk
|x1 − x2|∆i+∆j−∆k

1

|x1 − x3|2∆k
(3.42)

(There is a better way to organize the RHS here, but let me not worry about

that here.) The point here is that by evaluating the LHS at the fixed point, with

some known positions x1,2,3, we can extract cijk.

Confession: I (and Cardy) have used a tiny little extra assumption of conformal

invariance to help constrain the situation here. It is difficult to have scale invariance

without conformal invariance, so this is not a big loss of generality. We can say more

about this later but for now it is a distraction.

Conformal perturbation theory. Suppose we find a fixed point of the RG, H?.

(For example, it could be the gaussian fixed point of N scalar fields.) Let us study its

neighborhood. (For example, we could seek out the nearby interacting Wilson-Fisher

124



fixed point in D < 4 in this way.) For definiteness and simplicity let’s think about the

equilibrium partition function

Z = tre−H

– we set the temperature equal to 1 and include it in the couplings, so H is dimension-

less. We can parametrize it as

H = H? +
∑
x

∑
i

gia
∆iOi(x) (3.43)

where a is the short distance cutoff (e.g. the lattice spacing), and Oi has dimensions of

length−∆i as you can check from (3.40). So gi are de-dimensionalized couplings which

we will treat as small and expand in41.

Then

Z = Z?︸︷︷︸
≡tre−H?

〈
e−

∑
x

∑
i gia

∆iOi(x)
〉
?

∑
x'

1

ad

∫
ddr

' Z?

(
1−

∑
i

gi

∫
〈Oi(x)〉?

ddx

ad−∆i

+
1

2

∑
ij

gigj

∫
ddx1d

dx2

a2d−∆i−∆j
〈Oi(x1)Oj(x2)〉?

− 1

3!

∑
ijk

gigjgk

∫ ∫ ∫ ∏3
a=1 d

dxa
a3d−∆i−∆j−∆k

〈Oi(x1)Oj(x2)Ok(x3)〉? + ...

)
.

Comments:

• We used the fact that near the fixed point, the correlation length is much larger

than the lattice spacing to replace
∑

x '
1
ad

∫
ddx.

• There is still a UV cutoff on all the integrals – the operators can’t get within a

lattice spacing of each other: |xi − xj| > a.

• The integrals over space are also IR divergent; we cut this off by putting the

whole story in a big box of size L. This is a physical size which should be

RG-independent.

• The structure of this expansion does not require the initial fixed point to be a

free fixed point; it merely requires us to be able to say something about the

correlation functions. As we will see, the OPE structure constants cijk are quite

enough to learn something.

41Don’t be put off by the word ‘conformal’ in the name ‘conformal perturbation theory’ – it just

means doing perturbation theory about a general fixed point, not necessarily the gaussian one.
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Now let’s do the RG dance. We’ll take the high-energy point of view here: while

preserving Z, we make an infinitesimal change of the cutoff,

a→ ba = (1 + `)a, 0 < δl� 1 .

The price for preserving Z is letting the couplings run gi = gi(b). Where does a appear?

(1) in the integration measure factors ad−∆i .

(2) in the cutoffs on
∫
dx1dx2 which enforce |x1 − x2| > a.

(3) not in the IR cutoff – L is fixed during the RG transformation, independent of b .

The leading-in-` effects of (1) and (2) are additive and so may be considered separately:

(1) g̃i = (1 + `)d−∆igi ' gi + (d−∆i)gi` ≡ gi + δ1gi

The effect of (2) first appears in the O(g2) term, the change in which is

(2)
∑
i,j

gigj

∫
|x1−x2|∈(a,a(1+`))

ddx1d
dx2

a2d−∆i−∆j
〈Oi(x1)Oj(x2)〉?︸ ︷︷ ︸

=
∑
k cijk|x1−x2|∆k−∆i−∆j 〈Ok〉?

= `
∑
ijk

gigjcijkΩd−1a
−2d+∆k

∫
〈Ok〉?

So this correction can be absorbed by a change in gk according to

δ2gk = −`1

2
Ωd−1

∑
ij

cijkgigj +O(g3)

where the O(g3) term comes from triple collisions which we haven’t considered here.

Therefore we arrive at the following expression for evolution of couplings: dg
d`

= (δ1g + δ2g) /`

dgk
d`

= (d−∆k)gk −
1

2
Ωd−1

∑
ij

cijkgigj +O(g3) . (3.44)

42 At g = 0, the linearized solution is dgk/gk = (d −∆k)d` =⇒ gk ∼ e(d−∆k)` which

translates our understanding of relevant and irrelevant at the initial fixed point in terms

of the scaling dimensions ∆k: gk is relevant if ∆k < d.

42 To make the preceding discussion we considered the partition function Z. If you look carefully

you will see that in fact it was not really necessary to take the expectation values 〈〉? to obtain the

result (3.44). Because the OPE is an operator equation, we can just consider the running of the

operator e−H and the calculation is identical. A reason you might consider doing this instead is that

expectation values of scaling operators on the plane actually vanish 〈Oi(x)〉? = 0. However, if we

consider the partition function in finite volume (say on a torus of side length L), then the expectation

values of scaling operators are not zero. You can check these statements explicitly for the normal-

ordered operators at the gaussian fixed point introduced below. Thanks to Sridip Pal for bringing

these issues to my attention.
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(3.44) says that to find the interaction bit of the beta function for gk, we look at

all the OPEs between operators in the perturbed hamiltonian (3.43) which produce gk
on the RHS. [End of Lecture 15]

Let’s reconsider the Ising model from this point of view:

H = −1

2

∑
x,x′

J(x− x′)S(x)S(x′)− h
∑
x

S(x)

' −1

2

∑
x,x′

J(x− x′)S(x)S(x′)− h
∑
x

S(x) + λ
∑
x

(
S(x)2 − 1

)2

'
∫
ddx

(
1

2

(
~∇φ
)2

+ r0a
−2φ2 + u0a

d−4φ4 + ha−1−d/2φ

)
(3.45)

In the first step I wrote a lattice model of spins S = ±1; in the second step I used

the freedom imparted by universality to relax the S = ±1 constraint, and replace it

with a potential which merely discourages other values of S; in the final step we took

a continuum limit.

In (3.45) I’ve temporarily included a Zeeman-field term hS which breaks the φ →
−φ symmetry. Setting it to zero it stays zero (i.e. it will not be generated by the RG)

because of the symmetry. This situation is called technically natural.

Now, consider for example as our starting fixed point the Gaussian fixed point, with

H?,0 =

∫
ddx

1

2

(
~∇φ
)2

.

Since this is quadratic in φ, all the correlation functions (and hence the OPEs, which

we’ll write below) are determined by Wick contractions using

〈φ(x1)φ(x2)〉?,0 =
N

|x1 − x2|d−2
.

It is convenient to rescale the couplings of the perturbing operators by gi → 2
Ωd−1

gi
to remove the annoying Ωd−1/2 factor from the beta function equation. Then the RG

equations (3.44) say 
dh
d`

= (1 + d/2)h−
∑

ij cijhgigj
dr0
d`

= 2r0 −
∑

ij cijr0gigj
du0

d`
= εu0 −

∑
ij ciju0gigj

So we just need to know a few numbers, which we can compute by doing Wick con-

tractions with free fields.
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Algebra of scaling operators at the Gaussian fixed point. It is convenient

to choose a basis of normal-ordered operators, which are defined by subtracting out

their self-contractions. That is

On ≡: φn := φn − (self-contractions)

so that 〈: φn :〉 = 0, and specifically43

O2 = φ2 −
〈
φ2
〉
, O4 = φ4 − 6

〈
φ2
〉
φ2 +

〈
φ4
〉
. (3.48)

This amounts to a shift in couplings r0 → r0 + 3u 〈φ2〉?. The benefit of this choice of

basis is that we can ignore any diagram where an operator is contracted with itself.

Note that the contractions 〈φ2〉 discussed here are defined on the plane. They are in

fact quite UV sensitive and require some short-distance cutoff.

To compute their OPEs, consider a correlator of the form above:

〈On(x1)Om(x2)Φ〉

43The coefficients in (3.48) disagree with Cardy’s book. Here’s where these numbers come from.

The self-contractions are annoying both because they are more terms, and also because they are

infinite. We want to define the On so that they are both orthonormal and finite. When I write〈
φ2
〉
, you can imagine that I am separating the locations of the two operators by some cutoff ε, so〈

φ2
〉

= 〈φ(ε)φ(0)〉 = ε2−d; the goal is to subtract off all the bits which are singular as ε→ 0, and then

take the limit.

We can do this inductively. In particular, On is orthogonal to the identity operator O0 = 1 says

〈On〉 = 0. This fixes O2 = φ2 −
〈
φ2
〉
. To save writing let G0 ≡

〈
φ2(x)

〉
. Now let

O4 = φ4 + aφ2
〈
φ2
〉

+ b
〈
φ4
〉

= φ4 + aφ2G0 + 3bG2
0.

First we demand

0
!
= 〈O4〉 = 3G2

0 + aG2
0 + 3bG2

0

which requires 0 = 3 + a+ 3b. The next demand is that

0
!
= 〈O4(x)O2(0)〉 =

〈
φ4(x)φ2(0)

〉
−
〈
φ4
〉
G0 + a

(〈
φ2(x)G0φ

2(0)
〉
−
〈
φ2
〉
G2

0

)
+ 3bG2

0 〈O2(0)〉 (3.46)

= 3G3
0 + 12G2

xG0 − 3G3
0 + a

(
2GxG0 +G3

0 −G3
0

)
= GxG0(12 + 2a) +G3

00. (3.47)

which requires a = −6, and hence b = +1. Notice, however, that this changes nothing about the

operational definition (omit self-contractions). Thanks to Aria Yom for questioning the expression in

(3.48).
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We do wick contractions with the free propagator,

but the form of the propagator doesn’t matter for

the beta function, only the combinatorial factors.

If we can contract all the operators making up On
with those of Om, then what’s left looks like the

identity operator to Φ; that’s the leading term, if

it’s there, since the identity has dimension 0, the

lowest possible. More generally, some number of

φs will be left over and will need to be contracted

with bits of Φ to get a nonzero correlation function. For example, the contributions

to O2 · O2 are depicted at right. In determining the combinatoric factors, note that

permuting the legs on the right does not change anything, they are identical.

The part of the result we’ll need (if we set h = 0) can be written as (omitting the

implied factors of |x1 − x2|∆i+∆j−∆k necessary to restore dimensions):
O2O2 ∼ 21 + 4O2 +O4 + · · ·
O2O4 ∼ 12O2 + 8O4 + · · ·
O4O4 ∼ 241 + 96O2 + 72O4 + · · ·

Notice that the symmetric operators (the ones we might add to the action preserving

the symmetry) form a closed subalgebra of the operator algebra.

At h = 0, the result is (the N = 1 case of the result in §3.4.3){
dr0
d`

= 2r0 − 4r2
0 − 2 · 12r0u0 − 96u2

0

du0

d`
= εu0 − r2

0 − 2 · 8r0u0 − 72u2
0

and so the (N = 1) WF fixed point occurs at u0 = u?0 = ε/72, r0 = O(ε2).

The difference in numerical numbers in the values of the fixed point couplings

relative to our previous calculation comes from our different parametrization (recall

that we shifted the definition of r when we switched to a basis of normal-ordered

operators in (3.48)) – that is not universal information. We can extract something

universal and independent of our choices as follows. Linearizing the RG flow about the

new fixed point,
dr0

d`
= 2r0 − 24u?0r0 + · · ·

gives
dr0

r0

= (2− 24

72
ε)d` =⇒ r0 ∼ e(2− 24

72
ε)` ≡

(
e`
) 1
ν

which gives ν = 1
2

+ 1
12
ε+O(ε2).
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4 Effective field theory

4.1 Introduction to effective field theory

[Some nice lecture notes on effective field theory can be found here: J. Polchinski,

A. Manohar, I. Rothstein, D. B. Kaplan, H. Georgi, A. Manohar]

Having internalized Wilson’s perspective on renormalization – namely that we

should include all possible operators consistent with symmetries and let the dynamics

decide which are important at low energies – we are led immediately to the idea of an

effective field theory (EFT), or, how to do physics without a theory of everything. (You

may notice that all the physics that has been done has been done without a theory of

everything.) It is a weaponized version of selective inattention.

The basic idea is that the Hamiltonian (or the action) should contain all terms

consistent with symmetries, organized according to an expansion in decreasing rele-

vance to low energy physics. This is an implementation of the totalitarian principle of

physics, that anything that can happen must happen.

Diatribe about ‘renormalizability’. There is no reason to demand that a field

theory that we have found to describe physics in some regime should be a valid descrip-

tion of the world to arbitrarily short (or long!) distances. This is a happy statement:

there can always be new physics that has been so far hidden from us. Rather, an

EFT comes with a regime of validity, and with necessary cutoffs. As we will discuss,

in a useful implementation of an EFT, the cutoff implies a small parameter in which

we can expand (and hence compute). (In the example of Seff[q] of the §3.1, the small

parameter is ω/Ω.)

Caring about renormalizibility is pretending to know about physics at arbitrarily

short distances. Which you don’t.

Even when theories are renormalizable, this apparent victory is often false. For

example, QED requires only two independent counterterms (for the mass and for the

fine structure constant), and is therefore by the old-fashioned definition renormalizable,

but it is superseded by the electroweak theory above 80GeV. Also: the coupling in QED

actually increases logarithmically at shorter distances, and ultimately reaches a Landau

pole at SOME RIDICULOUSLY HIGH ENERGY (of order e+ c
α where α ∼ 1

137
is the

fine structure constant (e.g. at the scale of atomic physics) and c is some numerical

number. Plugging in numbers gives something like 10330 GeV, which is quite a bit

larger than the Planck scale). This is of course completely irrelevant for physics and

even in principle because of the previous remark about electroweak unification. And

if not because of that, because of the Planck scale. A heartbreaking historical fact is
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that Landau and many other smart people gave up on QFT as a whole because of this

silly fantasy about QED in an unphysical regime.

We will see below that even in QFTs which are non-renormalizable in the strict

sense, there is a more useful notion of renormalizability: effective field theories come

with a small parameter (often some ratio of mass scales), in which we may expand the

action. A useful EFT requires a finite number of counterterms at each order in the

expansion.

Furthermore, I claim that this is always the definition of renormalizability that

we are using, even if we are using a theory which is renormalizable in the traditional

sense, which allows us to pretend that there is no cutoff. That is, there could always

be corrections of order
(

E
Enew

)n
where E is some energy scale of physics that we are

doing and Enew is some UV scale where new physics might come in; for large enough

n, this is too small for us to have seen. The property of renormalizibility that actually

matters is that we need a finite number of counterterms at each order in the expansion

in E
Enew

.

Renormalizable QFTs are in some sense less powerful than non-renormalizable ones

– the latter have the decency to tell us when they are giving the wrong answer! That

is, they tell us at what energy new physics must come in; with a renormalizable theory

we may blithely pretend that it is valid in some ridiculously inappropriate regime like

10330 GeV.

Notions of EFT. There is a dichotomy in the way EFTs are used. Sometimes one

knows a lot about the UV theory (e.g.

• electroweak gauge theory,

• QCD,

• electrons in a solid,

• water molecules

...) but it is complicated and unwieldy for the questions one wants to answer, so instead

one develops an effective field theory involving just the appropriate and important dofs

(e.g., respectively,

• Fermi theory of weak interactions (or QED or ...),

• chiral lagrangian (or HQET or SCET or hydrodynamics of quark-gluon plasma

or ...),
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• Landau Fermi liquid theory (or the Hubbard model or a topological field theory

or ...),

• hydrodynamics (or some theory of phonons in ice or ...)

...). As you can see from the preceding lists of examples, even a single UV theory

can have many different IR EFTs depending on what phase it is in, and depending on

what question one wants to ask. The relationship between the pairs of theories above

is always coarse-graining from the UV to the IR, though exactly what plays the role of

the RG parameter can vary wildly. For example, in the case of the Fermi liquid theory,

the scaling is ω → 0, and momenta scale towards the Fermi surface, not ~k = 0.

A second situation is when one knows a description of some low-energy physics up

to some UV scale, and wants to try to infer what the UV theory might be. This is a

common situation in physics! Prominent examples include: the Standard Model, and

quantized Einstein gravity. Occasionally we (humans) actually learn some physics and

an example of an EFT from the second category moves to the first category.

Instructions for EFT. Answer the following questions:

1. what are the dofs?

2. what are the symmetries?

3. where is the cutoff, Λ, on its validity?

Then write down all interactions between the dofs which preserve the symmetries, in an

expansion in derivatives, with higher-dimension operators suppressed by more powers

of the UV scale, Λ.

I must also emphasize two distinct usages of the term ‘effective field theory’ which

are common, and which the discussion above is guilty of conflating (this (often slip-

pery) distinction is emphasized in the review article by Georgi linked at the beginning

of this subsection). The Wilsonian perspective advocated above produces a low-energy

description of the physics which is really just a way of solving (if you can) the original

model; very reductively, it’s just a physically well-motivated order for doing the inte-

grals. If you really integrate out the high energy modes exactly, you will get a non-local

action for the low energy modes. This is to be contrasted with the local actions one

uses in practice, by truncating the derivative expansion. It is the latter which is really

the action of the effective field theory, as opposed to the full theory, with some of the
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integrals done already. The latter will give correct answers for physics below the cutoff

scale, and it will give them much more easily.

Some more comments:

• Sometimes (in condensed matter circles) this approach of just writing all terms

consistent with symmetries is called Landau theory.

• Do not underestimate the difficulty of step 1 of the EFT instructions. As we’ll

see in some examples below, the correct low-energy dofs can look nothing at all like

the microscopic dofs.

• The Wilson RG justifies this procedure: coarse graining by integrating out short-

wavelength modes produces all terms consistent with the symmetries.

• When we say “what are the symmetries?” we mean the symmetries G of the

(regulated) microscopic theory. G must be a symmetry of the low-energy EFT. Some-

times new symmetries can emerge at low energies. This procedure explains how this

happens: if there are no relevant or marginal operators invariant under G which vio-

late a symmetry K, then physics at lower and lower energies will be more and more

K-symmetric.

Here are some interesting and/or important examples where EFT has been useful

(some of which we will discuss in more detail below) and where you can learn about

them:

• Hydrodynamics [Kovtun]

• Fermi liquid theory [J. Polchinski, R. Shankar, Rev. Mod. Phys. 66 (1994) 129]

• chiral perturbation theory [D. B. Kaplan, §4]

• heavy quark effective theory [D. B. Kaplan, §1.3, Manohar and Wise, Heavy

Quark Physics]

• random surface growth (KPZ) [Zee, chapter VI]

• color superconductors [D. B. Kaplan, §5]

• gravitational radiation from binary mergers [Goldberger, Rothstein, Porto]

• soft collinear effective theory [Becher, Stewart]

• magnets [Zee, chapter VI.5, hep-ph/9311264v1]
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• effective field theory of cosmological inflation [Senatore et al, Cheung et al, Porto]

• effective field theory of dark matter direct detection [Fitzpatrick et al]

There are many others, the length of this list was limited by how long I was willing to

spend digging up references.

[End of Lecture 16]
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4.2 The color of the sky

[from hep-ph/9606222 and nucl-th/0510023] Why is the sky blue? Basically, it’s be-

cause the blue light from the sun scatters in the atmosphere more than the red light,

and you (I hope) only look at the scattered light.

Here is an understanding of this fact using the EFT logic. Consider the scattering

of photons off atoms (in a gas) at low energies. Low energy means that the photon

does not have enough energy to probe the substructure of the atom – it can’t excite

the electrons or the nuclei. This means that the atom is just a particle, with some

mass M .

The dofs are just the photon field and the field that creates an atom.

The symmetries are Lorentz invariance and charge conjugation invariance and par-

ity. We’ll use the usual redundant description of the photon which has also gauge

invariance.

The cutoff is the energy ∆E that it takes to excite atomic energy levels we’ve left

out of the discussion. We allow no inelastic scattering. This means we require

Eγ � ∆E ∼ α

a0

� a−1
0 �Matom (4.1)

Because of this separation of scales, we can also ignore the recoil of the atom, and treat

it as infinitely heavy.

Since there are no charged objects in sight – atoms are neutral – gauge invariance

means the Lagrangian can depend only on the field strength Fµν . Let’s call the field

which destroys an atom with velocity v φv. vµvµ = 1 and vµ = (1, 0, 0, 0)µ in the

atom’s rest frame. The (Lorentz-singlet) Lagrangian can depend on vµ. We can write

a Lagrangian for the free atoms as

Latom = φ†viv
µ∂µφv .

This action is related by a boost to the statement that the atom at rest has zero energy

– in the rest frame of the atom, the eom is just ∂tφv=(1,~0) = 0. (If we didn’t define the

zero of energy to be at the rest mass, there would be an additional term γvMatomφ
†
vφv,

γv ≡ 1√
1−v2 .) Notice that the kinetic term φ†v

~∇2

2Matom
φv is a very small correction given

our hierarchy of scales (4.1).

So the Lagrangian density is

LMaxwell[A] + Latom[φv] + Lint[A, φv]

and we must determine Lint. It is made from local, Hermitian, gauge-invariant, Lorentz

invariant operators we can construct out of φv, Fµν , vµ, ∂µ (it can only depend on Fµν =
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∂µAν − ∂νAµ, and not Aµ directly, by gauge invariance, because the atom, and hence

φv, is neutral.). It should actually only depend on the combination φ†vφv since we will

not create and destroy atoms. (Notice that we didn’t have to specify the statistics of

the atoms or φv.) Therefore

Lint = c1φ
†
vφvFµνF

µν + c2φ
†
vφvv

σFσµvλF
λµ + c3φ

†
vφv
(
vλ∂λ

)
FµνF

µν + . . .

. . . indicates terms with more derivatives and more powers of velocity (i.e. an expansion

in ∂ · v). Which are the most important terms at low energies? Demanding that the

Maxwell term dominate, we get the power counting rules (so time and space should

scale the same way):

[∂µ] = 1, [Fµν ] = 2

This then implies [φv] = 3/2, [v] = 0 and therefore

[c1] = [c2] = −3, [c3] = −4 .

Terms with more partials are more irrelevant.

What makes up these dimensions? They must come from the length scales that we

have integrated out to get this description – the size of the atom a0 ∼ (αme)
−1 and the

energy gap between the ground state and the electronic excited states ∆E ∼ α2me.

For Eγ � ∆E, a−1
0 , we can just keep the two leading terms.

In the rest frame of the atom, these two leading terms c1,2 represent just the scat-

tering of E and B respectively. To determine their coefficients one would have to do

a matching calculation to a more complete theory (compute transition rates in a the-

ory that does include extra energy levels of the atom). But a reasonable guess is just

that the scale of new physics (in this case atomic physics) makes up the dimensions:

c1 ' c2 ' a3
0. (In fact the magnetic term c2 comes with extra factor of v/c which

suppresses it.) The scattering cross section then goes like σ ∼ c2
i ∼ a6

0; dimensional

analysis ([σ] = −2 is an area, [a6
0] = −6) then tells us that we have to make up four

powers with the only other scale around:

σ ∝ E4
γa

6
0.

(The factor of E2
γ in the amplitude arises from ~E ∝ ∂t ~A.) Blue light, which has about

twice the energy of red light, is therefore scattered 16 times as much.

The leading term that we left out is the one with coefficient c3. The size of this

coefficient determines when our approximations break down. We might expect this to

come from the next smallest of our neglected scales, namely ∆E. That is, we expect

σ ∝ E4
γa

6
0

(
1 +O

(
Eγ
∆E

))
.

The ratio in the correction terms is appreciable for UV light.
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4.3 Fermi theory of Weak Interactions

[from §5 of A. Manohar’s EFT lectures] As another example of EFT, let’s think about

part of the Standard Model.

LEW 3 −
1

2

(
∂µW

+
ν − ∂νW+

µ

) (
∂µW−ν − ∂νW−µ)+MWW

+
µ W

−µ (4.2)

− ig√
2
ψ̄iγ

µPLψjW
+
µ Vij + terms involving Z bosons

Some things intermediate, off-shell W bosons can do: µ decay, ∆S = 1 processes,

neutron decay

If we are asking questions with external momenta less than MW , we can integrate

out W and make our lives simpler:

δSeff ∼
(

ig√
2

)2

VijV
?
k`

∫
d̄Dp

−igµν
p2 −M2

W

(
ψ̄iγ

µPLψj
)

(p)
(
ψ̄kγ

νPLψ`
)

(−p)

(I am lying a little bit about the W propagator in that I am not explicitly projecting

out the fourth polarization with the negative residue. Also, the W carries electric

charge, so the charges of ψ̄i and ψj in (4.2) must differ by one.) This is non-local at

scales p >∼MW (recall the discussion of the subsection §3.1). But for p2 �M2
W ,

1

p2 −M2
W

p2�M2
W' − 1

M2
W

1 +
p2

M2
W

+
p4

M4
W

+ ...︸ ︷︷ ︸
derivative couplings

 (4.3)

SF = −4GF√
2
VijV

?
kl

∫
d4x

(
ψ̄iγ

µPLψj
)

(x)
(
ψ̄kγµPLψ`

)
(x)+O

(
1

M2
W

)
+kinetic terms for fermions

(4.4)

where GF/
√

2 ≡ g2

8M2
W

is the Fermi coupling. We can use this (Fermi’s) theory to

compute the amplitudes above, and it is much simpler than the full electroweak theory

(for example I don’t have to lie about the form of the propagator of the W-boson like I
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did above). It was discovered first and used quite effectively long before the existence

of W s was suspected.

On the other hand, this theory is not the same as the electroweak theory; for

example it is not renormalizable, while the EW theory is. Its point in life is to help

facilitate the expansion in 1/MW . There is something about the expression (4.4) that

should make you nervous, namely the big red 1 in the 1/M2
W corrections: what makes

up the dimensions? This becomes an issue when we ask about ...

4.4 Loops in EFT

Suppose we try to define the Fermi theory SF with a euclidean momentum cutoff

|kE| < Λ. We expect that we’ll have to set Λ ∼ MW . A simple example which shows

that this is problematic arises by asking about radiative corrections in the 4-Fermi

theory to the coupling between the fermions and the photon (or the Z boson).

We are just trying to estimate the magnitude of this correction, so don’t worry

about the factors and the gamma matrices:

∼ I ≡ 1

M2
W︸︷︷︸

∝GF

∫ Λ

d̄4k
1

k

1

k
tr (γ...)︸ ︷︷ ︸

∼
∫ Λ kdk∼Λ2∼M2

W

∼ O(1).

Even worse, consider what happens if we use the vertex coming from the
(

p2

M2
W

)`
correction in (4.3)

∼ I` ≡
1

M2
W

∫ Λ

d̄4k
1

k2

(
k2

M2
W

)`
∼ O(1)

– it’s also unsuppressed by powers of ... well, anything. This is a problem.

Fix: A way to fix this is to use a “mass-independent subtraction scheme”, such as

dimensional regularization and minimal subtraction (MS). The crucial feature is that

the dimensionful cutoff parameter appears only inside logarithms (log µ), and not as

free-standing powers (µ2).

With such a scheme, we’d get instead

I ∼ m2

M2
W

log µ I` ∼
(
m2

M2
W

)`+1

log µ
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where m is some mass scale other than the RG scale µ (like a fermion mass parameter,

or an external momentum, or a dynamical scale like ΛQCD).

We will give a more detailed example next. The point is that in a mass-independent

scheme, the regulator doesn’t produce new dimensionful things that can cancel out the

factors of MW in the denominator. It respects the ‘power counting’: if you see 2`

powers of 1/MW in the coefficient of some term in the action, that’s how many powers

will suppress its contributions to amplitudes. This means that the EFT is like a

renormalizable theory at each order in the expansion (here in 1/MW ), in that there is

only a finite number of allowed vertices that contribute at each order (counterterms

for which need to be fixed by a renormalization condition). The insatiable appetite for

counterterms is still insatiable, but it eats only a finite number at each order in the

expansion. Eventually you’ll get to an order in the expansion that’s too small to care

about, at which point the EFT will have eaten only a finite number of counterterms.

There is a price for these wonderful features of mass-independent schemes, which

has two aspects:

• Heavy particles (of mass m) don’t decouple when µ < m. For example, in a

mass-independent scheme for a gauge theory, heavy charged particles contribute

to the beta function for the gauge coupling even at µ� m.

• Perturbation theory will break down at low energies, when µ < m; in the example

just mentioned this happens because the coupling keeps running.

We will show both these properties very explicitly in the next subsection. The solution

of both these problems is to integrate out the heavy particles by hand at µ = m, and

make a new EFT for µ < m which simply omits that field. Processes for which we

should set µ < m don’t have enough energy to make the heavy particles in external

states anyway. (For some situations where you should still worry about them, see

Aneesh Manohar’s notes linked above.)

4.4.1 Comparison of schemes, case study

The case study we will make is the contribution of a charged fermion of mass m to the

running of the QED gauge coupling.

Recall that the QED Lagrangian is

−1

4
FµνF

µν − ψ̄ (i /D −m)ψ

with Dµ = ∂µ − ieAµ. By redefining the field Fµν = ∂µAν − ∂νAµ by a constant factor

we can move around where the e appears, i.e. by writing Ã = eA, we can make the
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gauge kinetic term look like 1
4e2
F̃µνF̃

µν . This means that the charge renormalization

can be seen either in the vacuum polarization, the correction to the photon propagator:

. I will call this diagram iΠµν .

So the information about the running of the coupling is encoded in the gauge field

two-point function:

Πµν ≡ 〈Aµ(p)Aν(q)〉 =
(
pµpν − p2gµν

)
/δ(p+ q)Π(p2) .

The factor Pµν ≡ pµpν − p2gµν is guaranteed to be the polarization structure by the

gauge invariance Ward identity: pµ 〈Aµ(p)Aν(q)〉 = 0. That is: pµPµν = 0, and there

is no other symmetric tensor made from pµ which satisfies this. This determines the

correlator up to a function of p2, which we have called Π(p2).

The choice of scheme shows up in our choice of renormalization condition to impose

on Π(p2):

Mass-dependent scheme: subtract the value of the graph at p2 = −M2 (a very

off-shell, euclidean, momentum). That is, we impose a renormalization condition which

says

Π(p2 = −M2)
!

= 1 (4.5)

(which is the tree-level answer with the normalization above).

The contribution of a fermion of massm and charge e is (factoring out the momentum-

conserving delta function):

p,µ p,ν = −
∫

d̄Dktr

(
(−ieγµ)

−i (/k +m)

k2 −m2
(−ieγν)

−i
(
/p+ /k +m

)
(p+ k)2 −m2

)
The minus sign out front is from the fermion loop. Some boiling, which you can find

in Peskin (page 247) or Zee (§III.7), reduces this to something manageable. The steps

involved are: (1) a trick to combine the denominators, like the Feynman trick 1
AB

=∫ 1

0
dx
(

1
(1−x)A+xB

)2

. (2) some Dirac algebra, to turn the numerator into a polynomial

in k, p. As Zee says, our job in this course is not to train to be professional integrators.

The result of this boiling can be written

iΠµν = −e2

∫
d̄D`

∫ 1

0

dx
Nµν

(`2 −∆)2

with ` = k+xp is a new integration variable, ∆ ≡ m2−x(1−x)p2, and the numerator

is

Nµν = 2`µ`ν − gµν`2 − 2x(1− x)pµpν + gµν
(
m2 + x(1− x)p2

)
+ terms linear in `µ .
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In dim reg, the one-loop vacuum polarization correction satisfies the gauge in-

varaince Ward identity Πµν = P µνδΠ2 (unlike the euclidean momentum cutoff which

is not gauge invariant). A peek at the tables of dim reg integrals shows that δΠ2 is:

δΠ2(p2)
Peskin p. 252

= − 8e2

(4π)D/2

∫ 1

0

dxx(1− x)
Γ(2−D/2)

∆2−D/2 µ̄ε

D→4
= − e2

2π2

∫ 1

0

dxx(1− x)

(
2

ε
− log

(
∆

µ2

))
(4.6)

where we have introduced the heralded µ:

µ2 ≡ 4πµ̄2e−γE

where γE is the Euler-Mascheroni constant. In the second line of (4.6), we expanded

the Γ-function about D = 4; there are other singularities at other integer dimensions.

Mass-dependent scheme: Now back to our discussion of schemes. I remind you

that in a mass-independent scheme, we demand that the counterterm cancels δΠ2 when

we set the external momentum to p2 = −M2, so that the whole contribution at order

e2 is :

0
(4.5)!
= Π

(M)
2 (p2 = −M2) = δ

(M)

F 2︸︷︷︸
counterterm coefficient for 1

4
FµνFµν

+δΠ2

=⇒ Π
(M)
2 (p2) =

e2

2π2

∫
dxx(1− x) log

(
m2 − x(1− x)p2

m2 + x(1− x)M2

)
.

Notice that the µs go away in this scheme.

Mass-Independent scheme: This is to be contrasted with what we get in a mass-

independent scheme, such as MS, in which Π is defined by the rule that we subtract

the 1/ε pole. This means that the counterterm is

δ
(MS)

F 2 = − e2

2π2

2

ε

∫ 1

0

dxx(1− x)︸ ︷︷ ︸
=1/6

.

(Confession: I don’t know how to state this in terms of a simple renormalization

condition on Π2. Also: the bar in MS refers to the (not so important) distinction

between µ̄ and µ.) The resulting vacuum polarization function is

Π
(MS)
2 (p2) =

e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)p2

µ2

)
.

Next we will talk about beta functions, and verify the claim above about the failure

of decoupling. First let me say some words about what is failing. What is failing – the
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price we are paying for our power counting – is the basic principle of the RG, namely

that physics at low energies shouldn’t care about physics at high energies, except for

small corrections to couplings. An informal version of this statement is: you don’t need

to know about nuclear physics to make toast. A more formal version is the Appelquist-

Carazzone Decoupling Theorem, which I will not state (Phys. Rev. D11, 28565 (1975)).

So it’s something we must and will fix.

Beta functions. M : First in the mass-dependent scheme. The fermion contri-

bution to the beta function for the EM coupling is

β(M)
e =

e

2
M∂MΠ2(p2) = −1

2

(
e3

2π

)∫ 1

0

dxx(1− x)

(
−2M2x(1− x)

m2 +M2x(1− x)

)
+O(e5)

m�M' e3

2π2

∫ 1

0
dxx(1− x) = e3

12π2

m�M' e3

2π2

∫ 1

0
dxx(1− x)M

2x(1−x)
m2 = e3

60π2
M2

m2

. (4.7)

MS : β(MS)
e =

e

2
µ∂µΠ2(p2) = −1

2

e3

2π2

∫ 1

0

dxx(1− x)︸ ︷︷ ︸
=1/6

µ∂µ log
m2 − p2x(1− x)

µ2︸ ︷︷ ︸
=−2

=
e3

12π2
. (4.8)

Also, the MS vacuum polarization behaves for small external momenta like

Π2(p2 � m2) ' − e3

2π2

∫ 1

0

dxx(1− x) log
m2

µ2︸ ︷︷ ︸
�1,for µ�m! bad!

As I mentioned, the resolution of both these prob-

lems is simply to define a new EFT for µ < m

which omits the heavy field. Then the strong cou-

pling problem goes away and the heavy fields do

decouple. The price is that we have to do this by

hand, and the beta function jumps at µ = m; the

coupling is continuous, though.
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Figure 8: The blue curve is the mass-dependent-scheme beta function; at scales M � m, the mass

of the heavy fermion, the fermion sensibly stops screening the charge. The red line is the MS beta

function, which is just a constant, pinned at the UV value.

The couplings in the low energy EFT (here, a theory of just

the photon) are determined by matching: this means com-

pute a bunch of physical quantities in both descriptions, and

solve for the couplings in the IR theory in terms of those of

the UV theory.
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4.5 The Anderson-Higgs Mechanism and Superconductors

Landau-Ginzburg EFT of superconductors: Massive vector fields as gauge

fields. Consider a massive vector field Bµ with Lagrangian density

LB = − 1

4e2
(dB)µν(dB)µν+

1

2
m2BµB

µ (4.9)

where (dB)µν ≡ ∂µBν − ∂νBµ. (Note the funny-looking sign of the mass term which

comes from BµBµ = B2
0 − B2

i .) The mass term is not invariant under Bµ → Bµ +

∂µλ, the would-be gauge transformation. We can understand the connection between

massive vector fields and gauge theory by the ‘Stueckelberg trick’ of pretending that

the gauge parameter is a field: Let Bµ ≡ Aµ− ∂µθ where θ is a new degree of freedom.

Since B is invariant under the transformation

Aµ(x)→ Aµ(x) + ∂µλ(x), θ(x)→ θ(x) + λ(x),

so is any functional of B. Notice that the fake new field θ transforms non-linearly

(i.e. its transformation is affine). This was just a book-keeping step, but something

nice happens:

(dB)µν = ∂µAν − ∂νAµ = Fµν

is the field strength of A. The mass term becomes

BµB
µ = (Aµ − ∂µθ)(Aµ − ∂µθ).

This contains a kinetic term for θ. We can think of this term as (energetically) setting

θ equal to the longitudinal bit of the gauge field. One nice thing about this reshuffling

is that the m → 0 limit decouples the longitudinal bits. Furthermore, if we couple a

conserved current (∂µjµ = 0) to B, then∫
dDx jµB

µ =

∫
dDxjµA

µ

it is the same as coupling to Aµ.

Who is θ? Our previous point of view was that it is fake and we can just choose

the gauge parameter λ(x) to get rid of it, and set θ(x) = 0 (in which case, B = A).

This is called unitary gauge, and gives us back the Proca theory of B = A.

Consider, as an aside the following model of a single complex scalar:

Lglobal ≡ +
1

2
|∂µΦ|2 − V (|Φ|)
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and let’s take

V (|Φ|) = κ(|Φ|2 − v2)2

for some couplings κ, v. This potential has a U(1) sym-

metry Φ → eiλΦ, and a circle of minima at |Φ|2 = v2

(if v2 > 0, which we’ll assume). In polar coordinates in

field space, Φ ≡ ρeiθ, the Lagrangian is

Lglobal = +
1

2
ρ2(∂µθ)

2 +
1

2
(∂ρ)2− V (ρ)

E�V ′′(v)
' 1

2
v2(∂θ)2.

In the last step, we observed that the excitations of the ρ

field are have mass-squared V ′′(v) about the minimum;

below that energy scale, we can integrate it out and ig-

nore it. The θ field is the massless Goldstone boson,

which parametrizes the circle of minima.

Now consider the following theory, related to the previous by gauging the U(1)

symmetry:

Lh ≡ −
1

4e2
FµνF

µν +
1

2
|DµΦ|2 − V (|Φ|)

where Φ is a complex, charged scalar field whose covariant derivative is DµΦ =

(∂µ − iAµ) Φ, with the same V as above. This is called an Abelian Higgs model. The

U(1) symmetry is gauged, in the sense that Aµ → Aµ + ∂µλ(x),Φ(x) → eiλ(x)Φ(x) is

an invariance of the action, and we’ve learned to regard such a local invariance as a

redundancy of the description.

In polar coordinates in field space, Φ ≡ ρeiθ, the Lagrangian is now

Lh = − 1

4e2
FµνF

µν +
1

2
ρ2(Aµ − ∂µθ)2 +

1

2
(∂ρ)2 − V (ρ).

This differs from the action for B written in terms of A, θ only in the addition of the

Higgs mode ρ. Again we can go to unitary gauge and set θ = 0. We find a massive

gauge field A, plus a massive scalar ρ whose mass (expanding V (ρ) about ρ = v) is

∂2
ρV |ρ=v = m2

ρ = 8κv2 κ�1
� m2

A = 〈ρ〉2 = v2.

That is: in the limit of large κ, the excitations of ρ are hard to make, and we get back

LB. For any value of κ, we can say that the gauge field eats the would-be Goldstone

boson θ and becomes heavy, in a manner consistent with gauge invariance44. This is

the Anderson-Higgs mechanism.

44You can check that the mixing with θ is exactly what’s required to make Π(q) singular enough at

q = 0 to give A a mass consistent with the Ward identity, as in our discussion at (1.53).
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The description of massive gauge fields in terms of Lh via the Anderson-Higgs

mechanism is more useful than LB for thinking about the renormalization of massive

gauge fields: for example it is renormalizible, even if we couple A to other charged

fields (e.g. Dirac fermions). This mechanism also works in the case of non-Abelian

gauge fields and is an important ingredient in the (electroweak sector of the) Standard

Model.

It is also a description of what happens to the EM field in a superconductor: the

photon gets a mass; the resulting expulsion of magnetic flux is called the Meissner effect.

For example, if we immerse a region x > 0 with Φ = v in an external constant magnetic

field B0, 0 = ∂µF
µν −m2Aν =⇒ B(x) = Be−mx. Another consequence of the mass is

that if we do manage to sneak some magnetic flux into a superconductor, the flux lines

will bunch up into a localized string. This can be shown by solving the equations of

motion of the model above (this is a bonus problem on the homework). This is called a

vortex (or vortex string in 3d) because of what Φ does in this configuration: its phase

winds around the defect. In a superconductor, the role of Φ is played by the Cooper

pair field (which has electric charge two). The fact that Φ has charge two is visible in

the flux quantization of the vortices (this is part of the homework bonus problem). I

hope to say more about its origins in terms of electrons later in §4.5.1.

I mention here the Meissner effect and the associated collimation of flux lines partly

because it is helpful for developing a picture of confinement. In particular: think

about the energetics of a magnetic monopole (suppose we had one available45) in a

superconductor. If we try to insert it into a superconductor, it will trail behind it a

vortex string along which all of its exiting magnetic flux is localized. This string has

a finite tension (energy per unit length), as you’ll study on the homework. If we make

the superconducting region larger and larger, the energy of the monopole configuration

grows linearly in the size – it is not a finite energy object in the thermodynamic

limit. If monopoles were dynamical excitations of rest mass Mm, it would eventually

become energetically favorable to pop an antimonopole out of the vacuum, so that the

flux string connects the monopole to the antimonopole – this object can have finite

energy inside the superconductor. But notice that in a region where electric charge

is condensed, a single monopole is confined by the magnetic flux string it must carry

around. A confining state of a gauge theory is like this for the electric charges, because

magnetic charge is condensed. [End of Lecture 17]

Who is Φ? In the last bit, we developed an effective (Landau-Ginzburg) description

of superconductors which reproduces the Meissner effect (that magnetic flux is expelled

45 Here is the paper about the only one that’s been detected by humans so far.
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or collimated into flux tubes); it is called the Abelian Higgs model:

F =
1

4
FijFij + |DiΦ|2 + a|Φ|2 +

1

2
b|Φ|4 + ... (4.10)

with DiΦ ≡ (∂i − 2eiAi) Φ. Here A is the photon field. This is a slight modification

of the previous expression to indicate that the Higgs field Φ has electric charge two.

We could have guessed this description by playing the EFT game, knowing that the

dofs involved are the photon and a charge-two scalar field. But who is this charge-two

scalar field? (Relatedly: what is the cutoff on the validity of this description?)

New IR dofs. A feature of this example that I want you to notice: the micro-

scopic description of real superconductor involves electrons – charge 1e spinor fermions,

created by some fermionic operator ψα, α =↑, ↓.

We are describing the low-energy physics of a

system of electrons in terms of a bosonic field,

which (in simple ‘s-wave’ superconductors) is

roughly related to the electron field by

Φ ∼ ψαψβε
αβ ; (4.11)

Φ is called a Cooper pair field. At least, the

charges and the spins and the statistics work out.

The details of this relationship are not the impor-

tant point I wanted to emphasize. Rather I wanted

to emphasize the dramatic difference in the correct choice of variables between the UV

description (spinor fermions) and the IR description (scalar bosons). One reason that

this is possible is that it costs a large energy to make a fermionic excitation of the

superconductor. This can be understood roughly as follows: The microscopic theory

of the electrons looks something like (ignoring the coupling to electromagnetism for

now, except for a screened (and therefore short-ranged) repulsion which ultimately is

the Coulomb interaction)

S[ψ] = S2[ψ] +

∫
dtddx uψ†ψψ†ψ + h.c. (4.12)

where

S2 =

∫
dt

∫
d̄dkψ†k (i∂t − ε(k))ψk.

Spin is important here so that ψ†↑ψ↑ψ
†
↓ψ↓ is nonzero. A mean field theory description

of the condensation of Cooper pairs (4.11) is obtained by replacing the quartic term in

(4.12) by expectation values:

SMFT [ψ] = S2[ψ]−
∫

dtddx u 〈ψψ〉ψ†ψ† + h.c.
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= S2[ψ]−
∫

dtddx uΦψ†ψ† + h.c. (4.13)

So an expectation value for Φ is a mass for the fermions. It is a funny kind of symmetry-

breaking mass, but if you diagonalize the quadratic operator in (4.13) (actually it is

done below) you will find that it costs an energy of order ∆Eψ = u 〈Φ〉 to excite a

fermion. That’s the cutoff on the LG EFT.

A general lesson from this example is: the useful degrees of freedom at low energies

can be very different from the microscopic dofs.

4.5.1 Lightning discussion of BCS.

I am sure that some of you are nervous about the step from S[ψ] to SMFT [ψ] above.

To make ourselves feel better about it, I will say a few more words about the steps

from the microscopic model of electrons (4.12) to the LG theory of Cooper pairs (these

steps were taken by Bardeen, Cooper and Schreiffer (BCS)).

First recall the Hubbard-Stratonovich transformation aka completing the square. In

0+0 dimensional field theory:

e−iux
4

=
1√
iπu

∫ ∞
−∞

dσ e−
1
iu
σ2−2ix2σ . (4.14)

At the cost of introducing an extra field σ, we turn a quartic term in x into a quadratic

term in x. The RHS of (4.14) is gaussian in x and we know how to integrate it over

x. (The version with i is relevant for the real-time integral.) Notice the weird extra

factor of i lurking in (4.14). This can be understood as arising because we are trying

to use a scalar field σ, to mediate a repulsive interaction (which it is, for positive u)

(see Zee p. 193, 2nd Ed).

Actually, we’ll need a complex H-S field:

e−iux
2x̄2

=
1

iπu

∫
C

d2σ e−
1
iu
|σ|2−ix2σ̄+ix̄2σ , (4.15)

where
∫
C d2σ... ≡

∫∞
−∞ dReσ

∫∞
−∞ dImσ... (The field-independent prefactor is, as usual,

not important for path integrals.)

We can use a field theory generalization of (4.15) to ‘decouple’ the 4-fermion inter-

action in (4.12):

Z =

∫
[DψDψ†]eiS[ψ] =

∫
[DψDψ†DσDσ†]eiS2[ψ]+i

∫
dDx(σ̄ψ↑ψ↓+h.c.)−

∫
dDx

|σ|2(x)
iu .

(4.16)
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The point of this is that now the fermion integral is gaussian. At the saddle point

of the σ integral (which is exact because it is gaussian), σ is the Cooper pair field,

σsaddle = uψ↑ψ↓.

Notice that we made a choice here about in which

‘channel’ to make the decoupling – we could have in-

stead introduces a different auxiliary field ρ and writ-

ten S[ρ, ψ] =
∫
ρψ†ψ +

∫
ρ2

2u
, which would break up

the 4-fermion interaction in the t-channel (as an in-

teraction of the fermion density ψ†ψ) instead of the s

(BCS) channel (as an interaction of Cooper pairs ψ2).

At this stage both are correct, but they lead to differ-

ent mean-field approximations below. That the BCS

mean field theory wins is a consequence of the RG.

How can you resist doing the fermion integral in (4.16)? Let’s study the case where

the single-fermion dispersion is ε(k) =
~k2

2m
− µ.

Iψ[σ] ≡
∫

[DψDψ†]e
i
∫

dtddx
(
ψ†
(
i∂t−∇

2

2m
−µ
)
ψ+σ̄ψψ+ψ̄ψ̄σ

)

The action here can be written as the integral of

L =
(
ψ̄ ψ

)(i∂t − ε(−i∇) σ

σ̄ − (i∂t − ε(−i∇))

)(
ψ

ψ̄

)
≡
(
ψ̄ ψ

)
M

(
ψ

ψ̄

)
so the functional integral is

Iψ[σ] = detM = etr logM(σ).

If σ is constant (which will lower the energy), the matrix M is diagonal in momentum

space, and the integral remaining to be done is∫
[DσDσ†]e−

∫
dDx

|σ(x)|2
2iu

+
∫

d̄Dk log(ω2−ε2k−|σ|
2).

It is often possible to do this integral by saddle point. This can be justified, for example,

by the largeness of the volume of the Fermi surface, {k|ε(k) = µ}, or by a large number

N of species of fermions. The result is an equation which determines σ, which as we

saw earlier determines the fermion gap.

0 =
δexponent

δσ̄
= i

σ

2u
+

∫
d̄ωd̄dk

2σ

ω2 − ε2k − |σ|2 + iε
.

We can do the frequency integral by residues:∫
d̄ω

1

ω2 − ε2k − |σ|2 + iε
=

1

2π
2πi

1

2
√
ε2k + |σ|2

.
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The resulting equation is naturally called the gap equation:

1 = −2u

∫
d̄dp′

1√
ε(p′)2 + |σ|2

(4.17)

which you can imagine solving self-consistently for σ46. Plugging back into the action

(4.16) says that σ determines the energy cost to have electrons around; more precisely,

σ is the energy required to break a Cooper pair.

Comments:

• Notice that a solution of (4.17) requires u < 0, an attractive interaction. Super-

conductivity happens because the u that appears here is not the bare interaction

between electrons, which is certainly repulsive (and long-ranged). This is where

the phonons come in in the BCS discussion.

• If we hadn’t restricted to a delta-function 4-fermion interaction u(p, p′) = u0 at

the outset, we would have found a more general equation like

σ(~p) = −1

2

∫
d̄dp′

u(p, p′)σ(~p′)√
ε(p′)2 + |σ(p′)|2

.

• A conservative perspective on the preceding calculation is that we have made a

variational ansatz for the groundstate wavefunction, and the equation we solve

for σ is minimizing the variational energy – finding the best wavefunction within

the ansatz.

• I haven’t included here effects of the fluctuations of the sigma field about its

saddle point. In fact, they make the four-fermion interaction which leads to

Cooper pairing marginally relevant. This breaks the degeneracy in deciding how

to split up the ψψψ†ψ† into e.g. ψψσ or ψ†ψρ. BCS wins. This is explained

beautifully in Polchinski, lecture 2, and R. Shankar. I will summarize the EFT

framework for understanding this in §4.6.

46I should have said: and in fact one can solve it. As we will learn in the next section, the integral

is dominated by the behavior near the Fermi surface, near which ε(p′) ' vF ` ≡ ε; this approximation

is valid for |ε| < ED, some UV cutoff on this description. The result is

1 = −2u

∫
d̄dp′√

ε(p′)2 + |σ|2
' −2u

∫
FS

d̄d−1k

vF

∫ ED

−ED

dε√
ε2 + |σ|2

= Nu log

(
ED +

√
E2
D + |σ|2

|σ|

)

where N ≡
∫
FS

d̄d−1k
2πvF

is the density of states at the Fermi surface. The solution for σ is

|σ| = 2EDe
1

2Nu

e
1
Nu − 1

Nu�1' 2EDe
− 1
Nu .

Notice that this is non-perturbative in the coupling strength u.
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• I’ve tried to give the most efficient introduction I could here. I left out any

possibility of k-dependence or spin dependence of the interactions or the pair

field, and I’ve conflated the pair field with the gap. In particular, I’ve been

sloppy about the dependence on k of σ above.

• You can study a very closely related manipulation on the problem set, in examples

(the O(N) model and the Gross-Neveu model) where the saddle point is justified

by large N .

4.5.2 Non-relativistic scalar fields

[Zee §III.5, V.1, Kaplan nucl-th/0510023 §1.2.1] In the previous discussion of the EFT

for a superconductor, I just wrote the free energy, and so we didn’t have to think about

whether the complex scalar in question was relativistic or not.

It is not. In real superconductors, at least. How should we think about a non-

relativistic field? A simple answer comes from realizing that a relativistic field which

can make a boson of mass m can certainly make a boson of mass m which is moving

slowly, with v � c. By taking a limit of the relativistic model, then, we can make

a description which is useful for describing the interactions of an indefinite number

of bosons moving slowly in some Lorentz frame. A situation that calls for such a

description, for example, is a large collection of 4He atoms.

Non-relativistic limit of a relativistic scalar field. A non-relativistic particle

in a relativistic theory (like the φ4 theory that we’ve been spending time with) has

energy

E =
√
p2 +m2 if v � c

= m+
p2

2m
+ ...

This means that the field that creates and annihilates it looks like

φ(~x, t) =
∑
~k

1√
2E~k

(
a~ke

iE~kt−i~k·~x + h.c.
)

In particular, we have

φ̇2 ' m2φ2

and the BHS of this equation is large. To remove this large number let’s change

variables:

φ(x, t) ≡ 1√
2m

e−imt Φ(x, t)︸ ︷︷ ︸
complex,Φ̇�mΦ

+h.c.

 .
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Notice that Φ is complex, even if φ is real.

Let’s think about the action governing this NR sector of the theory. We can drop

terms with unequal numbers of Φ and Φ? since such terms would come with a factor

of eimt which gives zero when integrated over time. Starting from (∂φ)2 −m2φ2 − λφ4

we get:

Lreal time = Φ?

(
i∂t +

~∇2

2m

)
Φ− g2 (Φ?Φ)2 + ... (4.18)

with g2 = λ
4m2 .

Notice that Φ is a complex field and its action has a U(1) symmetry, Φ → eiαΦ,

even though the full theory did not. The associated conserved charge is the number of

particles:

j0 = Φ?Φ, ji =
i

2m
(Φ?∂iΦ− ∂iΦ?Φ) , ∂tj0 −∇ ·~j = 0 .

Notice that the ‘mass term’ Φ?Φ is then actually the chemical potential term, which

encourages a nonzero density of particles to be present.

This is another example of an emergent symmetry (like baryon number in the SM):

a symmetry of an EFT that is not a symmetry of the microscopic theory. The ... in

(4.18) include terms which break this symmetry, but they are irrelevant.

To see more precisely what we mean by irrelevant, let’s think about scaling. To

keep this kinetic term fixed we must scale time and space differently:

x→ x̃ = sx, t→ t̃ = s2t, Φ→ Φ̃(x̃, t̃) = ζΦ(sx, s2t) .

A fixed point with this scaling rule has dynamical exponent z = 2. The scaling of the

bare action (with no mode elimination step) is

S
(0)
E =

∫
dtdd~x︸ ︷︷ ︸

=sd+zdt̃ddx̃


Φ?
(
sx, s2t

)(
∂t −

~∇2

2m

)
︸ ︷︷ ︸
=s−2

(
∂̃t−

~̃∇2

2m

)
Φ(sx, s2t)− g2

(
Φ?Φ(sx, s2t)

)2
+ ...


= sd+z−2ζ−2︸ ︷︷ ︸

!
=1 =⇒ ζ=s−d/2

∫
dt̃ddx̃

(
Φ̃?

(
∂̃t −

~̃∇2

2m

)
Φ̃− ζ−2g2

(
Φ̃?Φ̃(x̃, t̃)

)2

+ ...

)
(4.19)

From this we learn that g̃ = s2−dg → 0 in the IR – the quartic term is irrelevant in

D = d+1 = 3+1 with nonrelativistic scaling! Where does it become marginal? (Hint:

look back at the first lecture.)
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Number and phase angle. In the NR theory, the canonical momentum for Φ is

just ∂L
∂Φ̇
∼ Φ?, with no derivatives. This statement becomes more shocking if we change

variables to Φ =
√
ρeiθ (which would be useful e.g. if we knew ρ didn’t want to be

zero); the action density is

L =
i

2
∂tρ− ρ∂tθ −

1

2m

(
ρ (∇θ)2 +

1

4ρ
(∇ρ)2

)
− g2ρ2. (4.20)

The first term is a total derivative. The second term says that the canonical momentum

for the phase variable θ is ρ = Φ?Φ = j0, the particle number density. Quantumly,

then:

[ρ̂(~x, t), θ̂(~x′, t)] = iδd(~x− ~x′).

Number and phase are canonically conjugate variables. If we fix the phase, the ampli-

tude is maximally uncertain.

If we integrate over space, N ≡
∫
ddxρ(~x, t) gives the total number of particles,

which is time independent, and satisfies [N, θ] = i.

This relation explains why there’s no Higgs boson in most non-relativistic super-

conductors and superfluids (in the absence of some extra assumption of particle-hole

symmetry). In the NR theory with first order time derivative, the would-be ampli-

tude mode which oscillates about the minimum of V (ρ) is actually just the conjugate

momentum for the goldstone boson!

4.5.3 Superfluids.

[Zee §V.1] Let me amplify the previous remark. A superconductor is just a superfluid

coupled to an external U(1) gauge field, so we’ve already understood something about

superfluids.

The effective field theory has the basic lagrangian (4.20), with 〈ρ〉 = ρ̄ 6= 0. This

nonzero density can be accomplished by adding an appropriate chemical potential to

(4.20); up to an uninteresting constant, this is

L =
i

2
∂tρ− ρ∂tθ −

1

2m

(
ρ (∇θ)2 +

1

4ρ
(∇ρ)2

)
− g2 (ρ− ρ̄)2 .

Expand around such a condensed state in small fluctuations
√
ρ =
√
ρ̄+h, h�

√
ρ̄:

L = −2
√
ρ̄h∂tθ −

ρ̄

2m

(
~∇θ
)2

− 1

2m

(
~∇h
)2

− 4g2ρ̄h2 + ...

Notice that h, the fluctuation of the amplitude mode, is playing the role of the canonical

momentum of the goldstone mode θ. The effects of the fluctuations can be incorporated
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by doing the gaussian integral over h (What suppresses self-interactions of h?), and

the result is

L = ρ̄∂tθ
1

4g2ρ̄− ∇2

2m

ρ̄∂tθ −
ρ̄

2m

(
~∇θ
)2

=
1

4g2
(∂tθ)

2 − ρ̄

2m
(∇θ)2 + ... (4.21)

where in the second line we are expanding in the small wavenumber k of the modes,

that is, we are constructing an action for Goldstone modes whose wavenumber is k �√
9g2ρ̄m so we can ignore higher gradient terms.

The linearly dispersing mode in this superfluid that we have found, sometimes called

the phonon, has dispersion relation

ω2 =
2g2ρ̄

m
~k2.

This mode has an emergent Lorentz symmetry with a lightcone with velocity vc =

g
√

2ρ̄/m. The fact that the sound velocity involves g – which determined the steepness

of the walls of the wine-bottle potential – is a consequence of the non-relativistic

dispersion of the bosons. In the relativistic theory, in contrast, we have L = ∂µΦ?∂µΦ−
κ (Φ?Φ− v2)

2
and we can take κ→∞ fixing v and still get a linearly dispersing mode

by plugging in Φ = eiθv.

What does this have to do with the phenomenology of superfluids, like dissipation-

less flow? The importance of the linearly dispersing phonon mode of the superfluid is

that there is no other low energy excitation of the fluid. With a classical pile of (e.g.

non interacting) bosons, a chunk of moving fluid can donate some small momentum
~k to a single boson at energy cost (~~k)2

2m
. A quadratic dispersion means more modes

at small k than a linear one (the density of states is N(E) ∝ kD−1 dk
dE

). With only

a linearly dispersing mode at low energies, there is a critical velocity below which a

non-relativistic chunk of fluid cannot give up any momentum [Landau]: conserving

momentum M~v = M~v′ + ~~k says the change in energy (which must be negative for

this to happen on its own) is (eliminate v′ = v − ~k/M):

1

2
M(v′)2 + ~ω(k)− 1

2
Mv2 = −~kv +

(~k)2

2M
+ ~ω(k) = (−v + vc)k +

(~k)2

2M
.

For small k, this is only negative when v > vc.

You can ask: an ordinary liquid also has a linearly dispersing sound mode; why

doesn’t Landau’s argument mean that it has superfluid flow? The answer is that it has

other modes with softer dispersion (so more contribution at low energies), in particular

diffusion modes, with ω ∝ k2 (there is an important factor of i in there).
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The Goldstone boson has a compact target space, θ(x) ≡ θ(x) + 2π, since, after all,

it is the phase of the boson field. This is significant because it means that as the phase

wanders around in space, it can come back to its initial value after going around the

circle – such a loop encloses a vortex. Somewhere inside, we must have Φ = 0. And

actually, our discussion of the vortices of the Abelian Higgs model did not depend on

the form of the time-derivative terms. There is much more to say about this.

[End of Lecture 18]

4.6 Effective field theory of Fermi surfaces

In previous subsections, we gave various descriptions of superconductors, appropriate

at increasing energies. At the lowest energies, there was just a massive photon, (4.9).

At higher energies, there was a Cooper-pair field, (4.10). At even higher energies,

where we can break apart Cooper pairs, there are electrons (4.12). In this subsection,

we peel away one more layer of the onion: at even higher energies, those electrons are

no longer paired up and constitute a metal.

[Polchinski, lecture 2 (I recommend these notes very strongly), and R. Shankar]

Electrically conducting solids are a remarkable phenomenon. An arbitrarily small

electric field ~E leads to a nonzero current ~j = σ ~E. This means that there must

be gapless modes with energies much less than the natural cutoff scale in the problem.

Scales involved: The Planck scale of solid state physics (made by the logic by

which Planck made his quantum gravity energy scale, namely by making a quantity

with dimensions of energy out of the available constants) is

E0 =
1

2

e4m

~2
=

1

2

e2

a0

∼ 13eV

(where m ≡ me is the electron mass and the factor of 2 is an abuse of outside infor-

mation) which is the energy scale of chemistry. Chemistry is to solids as the melting

of spacetime is to particle physics. As with particle physics, however, there are other

scales involved. In particular a solid involves a lattice of nuclei, each with M � m

(approximately the proton mass). So m/M is a useful small parameter which controls

the coupling between the electrons and the lattice vibrations. Also, the actual speed of

light c� vF can generally also be treated as∞ to first approximation. vF/c suppresses

spin orbit couplings (though large atomic numbers enhance them: λSO ∝ ZvF/c).

Let us attempt to construct a Wilsonian-natural effective field theory of this phe-

nomenon. The answer is called Landau Fermi Liquid Theory. What are the right low-

energy degrees of freedom? Let’s make a guess that they are like electrons – fermions
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with spin and electric charge. They will not have exactly the properties of free elec-

trons, since they must incorporate the effects of interactions with all their friends. The

‘dressed’ electrons are called quasielectrons, or more generally quasiparticles.

Given the strong interactions between so many particles, why should the dofs have

anything at all to do with electrons? Landau’s motivation for this description (which

is not always correct) is that we can imagine starting from the free theory and adia-

batically turning up the interactions. If we don’t encounter any phase transition along

the way, we can follow each state of the free theory, and use the same labels in the

interacting theory.

We will show that there is a nearly-RG-stable fixed point describing gapless quasi-

electrons. Notice that we are not trying to match this description directly to some

microscopic lattice model of a solid; rather we will do bottom-up effective field theory.

Having guessed the necessary dofs, let’s try to write an action for them consistent

with the symmetries. A good starting point is the free theory:

Sfree[ψ] =

∫
dt d̄dp

(
iψ†σ(p)∂tψσ(p)− (ε(p)− εF )ψ†σ(p)ψσ(p)

)
where σ is a spin index, εF is the Fermi energy (zero-temperature chemical potential),

and ε(p) is the single-particle dispersion relation. For non-interacting non-relativistic

electrons in free space, we have ε(p) = p2

2m
. It will be useful to leave this as a general

function of p. 47 48

The groundstate of the free theory is the filled Fermi sea:

|gs〉 =
∏

p|ε(p)<εF

ψ†p |0〉 , ψp |0〉 = 0, ∀p.

(If you don’t like continuous products, put the system in a

box so that p is a discrete label.) The Fermi surface is the set

of points in momentum space at the boundary of the filled

states:

FS ≡ {p|ε(p) = εF}.

The low-lying excitations are made by adding an electron

just above the FS or removing an electron (creating a hole)

just below.

47Notice that we are assuming translation invariance. I am not saying anything at the moment

about whether translation invariance is discrete (the ions make a periodic potential) or continuous.
48We have chosen the normalization of ψ to fix the coefficient of the ∂t term (this rescaling may

depend on p).
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In order to define the power-counting rules for our EFT, we would like to define a

scaling transformation which focuses on the low-energy excitations. We scale energies

by a factor E → bE, b < 1. In relativistic QFT, ~p scales like E, toward zero, ~p → b~p,

since all the low-energy stuff is near the single special point ~p = 0. Here the situation

is much more interesting because there is a whole surface of low-energy stuff on the

FS. This will lead to what’s called hyperscaling violation – we can’t just count powers

of momentum.

One way to implement this is to introduce a hi-

erarchical labeling of points in momentum space,

by breaking the momentum space into patches

around the FS. (An analogous strategy of labeling

is also used in heavy quark EFT and in SCET.)

We’ll use a slightly different strategy, follow-

ing Polchinski. To specify a point ~p, we pick the

nearest point ~k on the FS, ε(~k) = εF (draw a line

perpendicular to the FS from ~p), and let

~p = ~k + ~̀.

So d − 1 of the components are determined by ~k and one is determined by `. (There

are some exceptional cases if the FS gets too wiggly. Ignore these for now.)

ε(p)− εF = `vF (~k) +O(`2), vF ≡ ∂pε|p=k.

So a scaling rule which accomplishes our goal of focusing on the FS is

E → bE, ~k → ~k, ~̀→ b~̀.

This implies

dt→ b−1dt, dd−1~k → dd−1~k, d~̀→ bd~̀, ∂t → b∂t

Sfree =

∫
dt dd−1~k d~̀︸ ︷︷ ︸

∼b0

iψ†(p) ∂t︸︷︷︸
∼b1

ψ(p)− `vF (k)︸ ︷︷ ︸
∼b1

ψ†(p)ψ(p)


In order to make this go like b0 we require ψ → b−

1
2ψ near the free fixed point.

Next we will play the EFT game. To do so we must enumerate the symmetries we

demand of our EFT:

1. Particle number, ψ → eiθψ
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2. Spatial symmetries: time-translation invariance, and either (a) continuous trans-

lation invariance and rotation invariance (as for e.g. liquid 3He) or (b) lattice

symmetries. This means that momentum space is periodically identified, roughly

p ' p + 2π/a where a is the lattice spacing (the set of independent momenta is

called the Brillouin zone (BZ)) and p is only conserved modulo an inverse lattice

vector 2π/a. There can also be some remnant of rotation invariance preserved

by the lattice. Case (b) reduces to case (a) if the Fermi surface does not go near

the edges of the BZ.

3. Spin rotation symmetry, SU(n) if σ = 1..n. In the limit with c → ∞, this is an

internal symmetry, independent of rotations.

4. Let’s assume that ε(p) = ε(−p), which is a consequence of e.g. parity invariance.

Now we enumerate all terms analytic in ψ and its momenta (since we are assuming

that there are no other low-energy dofs integrating out which is the only way to get

non-analytic terms in ψ) and consistent with the symmetries; we can order them by

the number of fermion operators involved. Particle number symmetry means every ψ

comes with a ψ†. The possible quadratic terms are:∫
dt dd−1~k d~̀︸ ︷︷ ︸

∼b0
µ(k)ψ†σ(p)ψσ(p)︸ ︷︷ ︸

∼b−1

∼ b−1

is relevant. This is like a mass term. But don’t panic: it just shifts the FS around. The

existence of a Fermi surface is Wilson-natural (i.e. a stable assumption given generic

coefficients of all possible terms in the action); any precise location or shape (modulo

something enforced by symmetries, like roundness) is not.

Adding one extra ∂t or factor of ` costs a b1 and makes the operator marginal; those

terms are already present in Sfree. Adding more than one makes it irrelevant.

Quartic terms:

S4 =

∫
dt

4∏
i=1

dd−1~kid~̀i︸ ︷︷ ︸
∼b−1+4

u(4 · · · 1)ψ†σ(p1)ψσ(p3)ψ†σ′(p2)ψσ′(p4)︸ ︷︷ ︸
∼b−

1
2 ·4

δd(~p1 + ~p2 − ~p3 − ~p4)

The minus signs on p3,4 is because ψ(p) removes a particle with momentum p. We

assume u depends only on k, σ, so does not scale – this will give the most relevant

piece. How does the delta function scale?

δd (~p1 + ~p2 − ~p3 − ~p4) = δd (k1 + k2 − k3 − k4 + `1 + `2 − `3 − `4)
?' δd (k1 + k2 − k3 − k4)
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In the last (questioned) step, we used the fact that ` � k to ignore the contributions

of the `s. If this is correct then the delta function does not scale (since ks do not),

and S4 ∼ b1 is irrelevant (and quartic interactions with derivatives are moreso). If this

were correct, the free-fixed point would be exactly stable.

There are two important subtleties: (1) the questioned equality above is question-

able because of kinematics of the Fermi surface. (2) there exist phonons. We will

address these two issues in order.

The kinematic subtlety in the treatment of the

scaling of δ(p1 + p2 − p3 − p4) arises because of the

geometry of the Fermi surface. Consider scattering

between two points on the FS, where (in the labeling

convention above)

p3 = p1 + δk1 + δ`1, p4 = p2 + δk2 + δ`2,

in which case the momentum delta function is

δd(p1 + p2 − p3 − p4) = δd(δk1 + δ`1 + δk2 + δ`2).

For generic choices of the two points p1,2 (top figure at

left), δk1 and δk2 are linearly independent and the δ`s

can indeed be ignored as we did above. However, for

two points with p1 = −p2 (they are called nested, as depicted in the bottom figure at

left), then one component of δk1 + δk2 is automatically zero, revealing the tiny δ`s to

the force of (one component of) the delta function. In this case, δ(`) scales like b−1, and

for this particular kinematic configuration the four-fermion interaction is (classically)

marginal. Classically marginal means quantum mechanics has a chance to make a big

difference.

A useful visualization is at right (d = 2 with

a round FS is shown; this is what’s depicted on

the cover of the famous book by Abrikosov-Gorkov-

Dzyaloshinski): the blue circles have radius kF ; the

yellow vector is the sum of the two initial momenta

p1 + p2, both of which are on the FS; the condition

that p3 + p4, each also on the FS, add up to the same vector means that p3 must lie on

the intersection of the two circles (spheres in d > 2). But when p1 + p2 = 0, the two

circles are on top of each other so they intersect everywhere! Comments:

1. We assumed that both p1 and −p2 were actually on the FS. This is automatic if

ε(p) = ε(−p), i.e. if ε is only a function of p2.
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2. This discussion works for any d > 1.

3. Forward scattering. There is a similar phenomenon for the case where p1 = p3

(and hence p2 = p4). This is called forward scattering because the final momenta

are the same as the initial momenta. (We could just as well take p1 = p4 (and

hence p2 = p3).) In this case too the delta function will constrain the `s and will

therefore scale.

The tree-level-marginal 4-Fermi interactions at special kinematics leads to a family

of fixed points labelled by ‘Landau parameters’. In fact there is whole function’s worth

of fixed points. In 2d, the points on the FS are parametrized by an angle θ, and the

fixed point manifold is parametrized by the forward-scattering function

F (θ1, θ2) ≡ u(θ4 = θ2, θ3 = θ1, θ2, θ1)

(Fermi statistics implies that u(θ4 = θ1, θ3 = θ2, θ2, θ1) = −F (θ1, θ2)) and the BCS-

channel (nesting) interaction:

V (θ1, θ3) = u(θ4 = −θ3, θ3, θ2 = −θ1, θ1).

Now let’s think about what decision the fluctuations

make about the fate of the nested interactions. The

most interesting bit is the renormalization of the BCS

interaction:

= −iV

The electron propagator, obtained by inverting the kinetic operator in Sfree, is

G(ε, p = k + l) =
i

ε(1 + iη)− vF (k)`+O(`)2

where I used η ≡ 0+ for the infinitesimal specifying the contour prescription.

Let’s assume rotation invariance. Then V (θ3, θ1) = V (θ3 − θ1), Vl =
∫

d̄θeilθV (θ).

Different angular momentum sectors decouple from each other at one loop.

We will focus on the s-wave bit of the interaction, so V is independent of momentum.

We will integrate out just a shell in energy (depicted by the blue shaded shell in the

Fermi surface figures). The interesting contribution comes from the following diagram:

−iδ(1)V = = −n(−iV )2

∫ ε0

bε0

dε′dd−1k′d`′

(2π)d+1

i2

(ε+ ε′ − vF (k′)`′) (ε− ε′ − vF (k′)`′)
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do

∫
d`
′

by residues = −nV 2

∫
dε′dd−1k′

(2π)d+1

2πi

vF (k′)

ε− ε′ − (ε+ ε′)︸ ︷︷ ︸
=−2ε′

−1

= +i
nV 2

2

∫ ε0

bε0

dε′

ε′︸ ︷︷ ︸
=log(1/b)

∫
dd−1k′

(2π)dvF (k′)︸ ︷︷ ︸
dos at FS

. (4.22)

Don’t forget the fermion loop minus sign. Between the first and second lines, we did the

`′ integral by residues. The crucial point is that we are interested in external energies

ε ∼ 0, but we are integrating out a shell near the cutoff, so |ε′| > |ε| and the sign of

ε+ ε′ is opposite that of ε− ε′; therefore there is a pole on either side of the real ` axis

and we get the same answer by closing the contour either way. On one side the pole is

at `′ = 1
vF (k′)

(ε+ ε′). (In the t-channel diagram (what Shankar calls ZS), the poles are

on the same side and it therefore does not renormalize the four-fermion interaction.)

The result to one-loop is then

V (b) = V − V 2N log(1/b) +O(V 3)

with N ≡ n
2

∫
dd−1k′

(2π)dvF (k′)
is the density of states at the Fermi surface (including the spin

multiplicity). From this we derive the beta function (recall that b → 0 in the IR in

this section)

−b d
db
V (b) = βV = −NV 2(b) +O(V 3)

and the solution of the flow equation at E = bE1 is

V (E) =
V1

1 +NV1 log(E1/E)

{
→ 0 in IR for V1 > 0 (repulsive)

→ −∞ in IR for V1 < 0 (attractive)
(4.23)

There is therefore a very significant dichotomy depending on the sign of the coupling

at the microscopic scale E1, as in this phase diagram:

The conclusion is that if the interaction starts attractive at some scale it flows

to large attractive values. The thing that is decided by our perturbative analysis is

that (if V (E1) < 0) the decoupling we did with σ (‘the BCS channel’) wins over the

decoupling with ρ (’the particle-hole channel’). What happens at V → −∞? Here we

need non-perturbative physics.

The non-perturbative physics is in general hard, but we’ve already done what we

can in §4.5.1.

The remaining question is: Who is V1 and why would it be attractive (given that

Coulomb interactions between electrons, while screened and therefore short-ranged, are

repulsive)? The answer is:
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Phonons. The lattice of positions taken by the ions making up a crystalline solid

spontaneously break many spacetime symmetries of their governing Hamiltonian. This

implies a collection of gapless Goldstone modes in any low-energy effective theory of

such a solid49. The Goldstone theorem is satisfied by including a field

~D(~r) ∝ (local) displacement δ~r of ions near ~r from their equilibrium positions

Most microscopically we have a bunch of coupled springs:

Lions ∼
1

2
M
(

˙δ~r
)2

− kijδriδrj + ...

with spring constants k independent of the nuclear mass M . It is useful to introduce

a canonically normalized field in terms of which the action is

S[ ~D = (M)1/2 δ~r] =
1

2

∫
dtddq

(
∂tDi(q)∂tDi(−q)− ω2

ij(q)Di(q)Dj(−q)
)
.

Here ω2 ∝M−1. Their status as Goldstones means that the eigenvalues of ω2
ij(q) ∼ |q|2

at small q: moving everyone by the same amount does not change the energy. This also

constrains the coupling of these modes to the electrons: they can only couple through

derivative interactions.

For purposes of their interactions with the elec-

trons, a nonzero q which keeps the e− on the FS must

scale like q ∼ b0. Therefore

dtddq (∂tD)2 ∼ b+1+2[D] =⇒ D ∼ b−
1
2

and the restoring force dtdqD2ω2(q) ∼ b−2 is relevant,

and dominates over the ∂2
t term for

E < ED =

√
m

M
E0 the Debye energy.

(For the more traditional derivation of the relation between ED and E0, see e.g. De-

Gennes’ Superconductivity of Metals and Alloys, pages 99-102.) This means that

phonons mediate static interactions below ED – we can ignore retardation effects, and

their effects on the electrons can be fully incorporated by the four-fermion interaction

we used above (with some ~k dependence). How do they couple to the electrons?

Sint[D,ψ] =

∫
dtd̄3qd2k1d`1d

2k2d`2 M
− 1

2 gi(q, k1, k2)Di(q)ψ
†
σ(p1)ψσ(p2)δ3(p1 − p2 − q)

49Note that there is a subtlety in counting Goldstone modes from spontaneously broken spacetime

symmetries: there are more symmetry generators than Goldstones. Basically it’s because the associ-

ated currents differ only by functions of spacetime; but a localized Goldstone particle is anyway made

by a current times a function of spacetime, so you can’t sharply distinguish the resulting particles.

Some useful references on this subject are Low-Manohar and most recently Watanabe-Murayama.
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∼ b−1+1+1−3/2 = b−1/2 (4.24)

– here we took the delta function to scale like b0 as above. This is relevant when we

use the Ḋ2 scaling for the phonons; when the restoring force dominates we should scale

D differently and this is irrelevant for generic kinematics. This is consistent with our

previous analysis of the four-fermion interaction.

The summary of this discussion is: phonons do not destroy the Fermi surface,

but they do produce an attractive contribution to the 4-fermion interaction, which is

relevant in some range of scales (above the Debye energy). Below the Debye energy, it

amounts to an addition to V that goes like −g2:

Notice that the scale at which the coupling V becomes strong (V (EBCS) ≡ 1 in

(4.23)) is

EBCS ∼ EDe
− 1
NVD .

Two comments about this: First, it is non-perturbative in the interaction VD. Second,

it provides some verification of the role of phonons, since ED ∼ M−1/2 can be varied

by studying the same material with different isotopes and studying how the critical

superconducting temperature (∼ EBCS) scales with the nuclear mass.

Actually, we can make some headway towards understanding the result of this in-

teraction going strong. Because the diagrams with the special kinematics are marginal

and hence unsuppressed, while all other interactions flow to zero at low energy, certain

diagrams dominate. In particular, bubble-chains dominate.

Here’s the narrative, proceeding as a func-

tion of decreasing energy scale, beginning at

E0, the Planck scale of solids: (1) Electrons

repel each other by the Coulomb interac-

tion. However, in a metal, this interaction

is screened by processes like this:

(the intermediate state is an electron-hole

pair) and is short-ranged. It is still repulsive,

however. As we coarse-grain more and more, we see more and more electron-hole pairs

and the force weakens. (2) While this is happening, the electron-phonon interaction is

relevant and growing. This adds an attractive bit to V . This lasts until ED. (3) At ED
the restoring force term in the phonon lagrangian dominates (for the purposes of their

interactions with the electrons) and we can integrate them out. (4) What happens

next depends on the sign of V (ED). If it’s positive, V flows harmlessly to zero. If
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it’s negative, it becomes moreso until we exit the perturbative analysis at EBCS, and

vindicate our choice of Hubbard-Stratonovich channel above.

Further brief comments, for which I refer you to Shankar:

1. Putting back the possible angular dependence of the BCS interaction, the result

at one loop is

dV (θ1 − θ3)

d`
= − 1

8π2

∫ 2π

0

d̄θV (θ1 − θ)V (θ − θ3)

or in terms of angular momentum components,

dVl
d`

= −V
2
l

4π
.

2. This example is interesting and novel in that it is a (family of) fixed point(s)

characterized by a dimensionful quantity, namely kF . This leads to a phenomenon

called hyperscaling violation where thermodynamic quantities need not have their

naive scaling with temperature.

3. The one loop analysis gives the right answer to all loops in the limit that N ∼
(kF/Λ)d−1 � 1, where Λ is the UV cutoff on the momentum.

4. The forward scattering interaction (for any choice of function F (θ13)) is not renor-

malized at one loop. This means it is exactly marginal at leading order in N .

5. Like in φ4 theory, the sunrise diagram at two loops is the first appearance of

wavefunction renormalization. In the context of the Fermi liquid theory, this

leads to the renormalization of the effective mass which is called m?.

Another consequence of the FS kinematics which I should

emphasize more: it allows the quasiparticle to be stable. The

leading contribution to the decay rate of a one-quasiparticle

state with momentum k can be obtained applying the optical

theorem to the following process.

In the figure, the object is the four-fermion vertex (the wiggly line is just

for clarity). The intermediate state is two electrons with momenta k′ + q and k − q,
and one hole with momentum k′. The hole propagator has the opposite iη prescription.

(To understand the contour prescription for the hole propagator, it is useful to begin

with

G(t, p) = 〈gs| T c†p(t)cp(0) |gs〉 , c†p(t) ≡ e−iHtc†pe
iHt
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and use the free-fermion fact [H, c†p] = εpc
†
p. For more details, see the steps leading

up to equation (7.7) of AGD (Abrikosov, Gorkov, Dzyaloshinski, Methods of QFT in

Statistical Physics.))

After doing the frequency integrals by residues, we get

Σ(k, ε) =

∫
d̄q d̄k′

|uq|2

D − iη

D ≡ εk(1 + iη) + εk′(1− iη)− εk′+q(1 + iη)− εk−q(1 + iη)

(Notice that this is the eyeball diagram which gives the lowest-order contribution to

the wavefunction renormalization of a field with quartic interactions.) By the optical

theorem, its imaginary part is the (leading contribution to the) inverse-lifetime of the

quasiparticle state with fixed k:

τ−1(k) = ImΣ(k, ε) = π

∫
d̄q d̄k′δ(D)|uq|2f(−εk′)f(εk′+q)f(εk−q)

where

f(ε) = lim
T→0

1

e
ε−εF
T + 1

= θ(ε < εF )

is the Fermi function. This is just the demand that a particle can only scatter into

an empty state and a hole can only scatter into a filled state. These constraints imply

that all the energies are near the Fermi energy: both εk′+q and εk′ lie in a shell of radius

ε about the FS; the answer is proportional to the density of possible final states, which

is thus

τ−1 ∝
(
ε

εF

)2

.

So the width of the quasiparticle resonance is

τ−1 ∝ ε2 � ε

much smaller than its frequency – it is a sharp resonance, a well-defined particle.

[End of Lecture 19]
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4.7 The Standard Model as an EFT.

The Standard Model. [Schwartz, §29]

L =

(
νL
eL

)
eR νR Q =

(
uL
dL

)
uR dR H

SU(3) - - - 2 2 2 -

SU(2) 2 - - 2 - - 2
U(1)Y −1

2
−1 0 1

6
2
3
−1

3
1
2

Table 1: The Standard Model fields and their quantum numbers under the gauge group. 2 indicates

fundamental representation, - indicates singlet. Except for the Higgs, each column is copied three

times; each copy is called a generation. Except for the Higgs all the matter fields are Weyl fermions

of the indicated handedness. Gauge fields as implied by the gauge groups. (Some people might leave

out the right-handed neutrino, νR.)

Whence the values of the charges under the U(1) (“hypercharge”)? The condition

YL + 3YQ = 0 (where Y is the hypercharge) is required by anomaly cancellation. This

implies that electrons and protons p = εijkuiujdk have exactly opposite charges of the

same magnitude.

The Lagrangian is just all the terms which are invariant under the gauge group

SU(3) × SU(2) × U(1) with dimension less than or equal to four – all renormalizable

terms. This includes a potential for the Higgs, V (|H|) = m2
H |H|2 + λ|H|4, where it

turns out that m2
H ≤ 0. The resulting Higgs vacuum expectation value breaks the

Electroweak part of the gauge group

SU(2)× U(1)Y
〈H〉
 U(1)EM .

The broken gauge bosons get masses from the Higgs kinetic term

|DµH|2|
H=

 0

v/
√

2

 with DµH =

(
∂µ − igW a

µ τ
a − 1

2
ig′Yµ

)
H

where Yµ is the hypercharge gauge boson, and W a, a = 1, 2, 3 are the SU(2) gauge

bosons. There are two massive W -bosons with electric charge ±1 (as described in

§4.3), with MW = vg
2

. The photon and Z boson are the linear combinations of Y and

W 3 which diagonalize the remaining mass terms:(
Aµ
Zµ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
W 3
µ

Yµ

)
.
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Here tan θw ≡ g′

g
defines the Weinberg angle. The masses are Mγ = 0 and MZ =

MW

cos θw
< MW .

Fermion masses come from (dimension-four) Yukawa couplings

LYukawa = −Y `
ijL̄iHe

j
R − Y

u
ij Q̄

iHdjR − Y
d
ijQ̄

i
(
iτ 2H?

)
ujR + h.c.

The contortion with the τ 2 is required to make a hypercharge invariant. Plugging in

the Higgs vev to e.g. the lepton terms gives −meēLeR+h.c. with me = yev/
√

2. There’s

lots of drama about the matrices Y which can mix the generations. The mass for the

νR (which maybe could not exist – it doesn’t have any charges at all) you can figure

out on the homework later.

Here is a useful mnemonic for remembering the table of quantum numbers (possibly

it is more than that): There are larger simple Lie groups that contain the SM gauge

group as subgroups:

SU(3)× SU(2)× U(1)Y ⊂ SU(5) ⊂ SO(10)

one generation = 10⊕ 5̄⊕ 1 = 16

The singlet of SU(5) is the right-handed neutrino, but if we include it, one generation is

an irreducible (spinor) representation of SO(10). This idea is called grand unification.

It is easy to imagine that the gauge group is actually the larger groups on the right,

and another instance of the Higgs mechanism accomplishes the breaking down to the

Standard Model. (The running of the respective gauge couplings go in the right direc-

tion with approximately the right rate to unify to a single value at MGUT ∼ 1016GeV .)

Notice that this idea means leptons and quarks are in the same representations – they

can turn into each other. This predicts that the proton should not be perfectly stable.

Next we’ll say more about this.

Beyond the Standard Model with EFT. At what energy does the Standard

Model stop working? Because of the annoying feature of renormalizibility, it doesn’t

tell us. However, we have experimental evidence against a cutoff on the Standard

Model (SM) at energies less than something like 10 TeV. The evidence I have in mind

is the absence of interactions of the form

δL =
1

M2

(
ψ̄Aψ

)
·
(
ψ̄Bψ

)
(where ψ represent various SM fermion fields and A,B can be various gamma and

flavor matrices) with M <∼ 10 TeV. Notice that I am talking now about interactions

other than the electroweak interactions, which as we’ve just discussed, for energies

above MW ∼ 80GeV cannot be treated as contact interactions – you can see the W s

propagate!
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If such operators were present, we would have found different answers for exper-

iments at LEP. But such operators would be present if we consider new physics in

addition to the Standard Model (in most ways of doing it) at energies less than 10

TeV. For example, many interesting ways of coupling in new particles with masses

that make them accessible at the LHC would have generated such operators.

A little more explicitly: the Standard Model Lagrangian L0 contains all the renor-

malizable (i.e. engineering dimension ≤ 4) operators that you can make from its fields

(though the coefficients of the dimension 4 operators do vary through quite a large

range, and the coefficients of the two relevant operators – namely the identity operator

which has dimension zero, and the Higgs mass, which has engineering dimension two,

are strangely small, and so is the QCD θ angle).

To understand what lies beyond the Standard Model, we can use our knowledge

that whatever it is, it is probably heavy (it could also just be very weakly coupled,

which is a different story), with some intrinsic scale Λnew, so we can integrate it out

and include its effects by corrections to the Standard Model:

L = L0 +
1

Λnew

O(5) +
1

Λ2
new

∑
i

ciO(6)
i + · · ·

where theOs are made of SM fields, and have the indicated engineering dimensions, and

preserve the necessary symmetries of the SM (Lorentz symmetry and gauge invariance).

In fact there is only one kind of operator of dimension 5 meeting these demands:

O(5) = c5εij
(
L̄c
)i
HjεklL

kH l

where H i = (h+, h0)i is the SU(2)EW Higgs doublet and Li = (νL, eL)i is an SU(2)EW
doublet of left-handed leptons, and L̄c ≡ LTC where C is the charge conjugation

matrix. (I say ‘kind of operator’ because we can have various flavor matrices in here.)

On the problem set you get to see from whence such an operator might arise, and what

it does if you plug in the higgs vev 〈H〉 = (0, v). This term violates lepton number

symmetry (L→ eiαLL,Q→ Q,H → H).

At dimension 6, there are operators that directly violate baryon number, such as

εαβγ(ūR)cα(uR)β (ūR)cγ eR.

You should read the above tangle of symbols as ‘qqq`’ – it turns three quarks into a

lepton. The epsilon tensor makes a color SU(3) singlet; this thing εqqq has the quantum

numbers of a baryon, such as the proton and neutron. The long lifetime of the proton

(you can feel it in your bones – see Zee p. 413) then directly constrains the scale of

new physics appearing in front of this operator.

Two more comments about this:
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• If we didn’t know about the Standard Model, (but after we knew about QM and

GR and EFT (the last of which people didn’t know before the SM for some rea-

son)) we should have made the estimate that dimension-5 Planck-scale-suppressed

operators like 1
MPlanck

pO would cause proton decay (into whatever O makes). This

predicts Γp ∼
m3
p

M2
Planck

∼ 10−13s−1 which is not consistent with our bodies not glow-

ing. Actually it is a remarkable fact that there are no gauge-invariant operators

made of SM fields of dimension less than 6 that violate baryon number symmetry

(L → L,Q → eiαBQ,H → H). This is an emergent symmetry, expected to be

violated by the UV completion.

• Surely nothing can prevent ∆L ∼
(

1
MPlanck

)2

qqq`. Happily, this is consistent

with the observed proton lifetime.

There are ∼ 102 dimension 6 operators that preserve baryon number, and therefore

are not as tightly constrained50. (Those that induce flavor-changing processes in the

SM are more highly constrained and must have Λnew > 104 TeV.) Two such operators

are considered equivalent if they differ by something which vanishes by the tree-level

SM equations of motion. This is the right thing to do, even for off-shell calculations

(like green’s functions and for fields running in loops). You know this from a previous

problem set: the EOM are true as operator equations – Ward identities resulting from

being free to change integration variables in the path integral51.

50Recently, humans have gotten better at counting these operators. See this paper.
51There are a few meaningful subtleties here, as you might expect if you recall that the Ward identity

is only true up to contact terms. The measure in the path integral can produce a Jacobian which

renormalizes some of the couplings; the changes in source terms will drop out of S-matrix elements

(recall our discussion of changing field variables in the Consequences of Unitarity section.) but can

change the form of Green’s functions. For more information on the use of eom to eliminate redundant

operators in EFT, see Arzt, hep-ph/9304230 and Georgi, “On-Shell EFT”.
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