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1.1 Outline of lectures

Two groups of lectures
I 10 in MT - mostly 1D & 2D linear motion.
I 19 in HT - 3D full vector treatment of Newtonian

mechanics, rotational dynamics, orbits, introduction to
Lagrangian dynamics

Info on the course is on the web:
http://www.physics.ox.ac.uk/users/harnew/lectures/

I Synopsis and suggested reading list
I Problem sets
I Lecture slides
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1.2 Book list
II Introduction to Classical Mechanics A P French & M G

Ebison (Chapman & Hall)
I Introduction to Classical Mechanics D. Morin (CUP) (good

for Lagrangian Dynamics and many examples).
I Classical Mechanics : a Modern Introduction, M W McCall

(Wiley 2001)
I Mechanics Berkeley Physics Course Vol I C Kittel et al.

(McGraw Hill)
I Fundamentals of Physics Halliday, Resnick & Walker

(Wiley)
I Analytical Mechanics 6th ed, Fowles & Cassidy (Harcourt)
I Physics for Scientists & Engineers, (Chapters on

Mechanics) P.A Tipler & G. Mosca (W H Freeman)
I Classical Mechanics T W B Kibble & F H H Berkshire

(Imperial College Press)
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1.3 What is Classical Mechanics?
Classical mechanics is the study of the motion of bodies in accordance with the
general principles first enunciated by Sir Isaac Newton in his Philosophiae Naturalis
Principia Mathematica (1687). Classical mechanics is the foundation upon which all
other branches of Physics are built. It has many important applications in many areas
of science:

I Astronomy (motion of stars and planets)
I Molecular and nuclear physics (collisions of atomic

and subatomic particles)
I Geology (e.g., the propagation of seismic waves)
I Engineering (eg structures of bridges and buildings)

Classical Mechanics covers:
I The case in which bodies remain at rest
I Translational motion– by which a body shifts from one point in space to another
I Oscillatory motion– e.g., the motion of a pendulum or spring
I Circular motion–motion by which a body executes a circular orbit about another

fixed body [e.g., the (approximate) motion of the earth about the sun]
I More general rotational motion–orbits of planets or bodies that are spinning
I Particle collisions (elastic and inelastic)
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Forces in mechanics

Relative magnitude of forces:

I Strong force - nuclear : ∼ 1
I Electromagnetism - charged particles : 1

137
I Weak force - β decay : ∼ 10−5

I Gravitational - important for masses, relative strength :
∼ 10−39
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Not too fast!

Classical Mechanics valid on
scales which are:

I Not too fast
I eg. high energy particle

tracks from CERN
I v << c [speed of light in

vacuo]
I If too fast, time is no longer

absolute - need special
relativity.
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Not too small!

Classical Mechanics valid on
scales which are:

I Not too small!
I Images of atom planes in a

lattice by scanning
tunneling electron
microscope

I Particles actually have
wave-like properties :
λ = h

p (h = 6.6× 10−34 Js)
I Hence for scales >> λ,

wave properties can be
ignored
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Not too large!

Classical Mechanics valid on
scales which are:

I Not too large!
I Gravitational lens

produced by a cluster of
galaxies

I Space is “flat” in classical
mechanics - curvature of
space is ignored

I Also in Newtonian
mechanics, time is
absolute
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1.4 Vectors in mechanics
The use of vectors is essential in the formalization of classical
mechanics.

I A scalar is characterised by magnitude only: energy,
temperature.

I A vector is a quantity characterised by magnitude and
direction: eg. Force, momentum, velocity.

Notation:
I Vector: a (bold); in components
a = (ax ,ay ,az)

I Magnitude of a is |a| or simply a.

I Two vectors are equal if they have the same magnitude
and direction (i.e. parallel)
a = b gives ax = bx , ay = by , az = bz
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1.4.1 Vector components in 3D

Projecting the components:
p = (px ,py ,pz)

I x-component
px = |p| sin(θ) cos(φ)

I y-component
py = |p| sin(θ) sin(φ)

I z-component
pz = |p| cos(θ)

I Magnitude |p| =
√

(p2
x + p2

y + p2
z )

I Direction tan(φ) = (py/px )
cos(θ) = (pz/|p|)
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1.4.2 Unit vectors

I A unit vector is a vector with
magnitude equal to one.

I e.g. Three unit vectors defined by
orthogonal components of the
Cartesian coordinate system:

I i = (1,0,0), obviously |i| = 1
I j = (0,1,0), |j| = 1
I k = (0,0,1), |k| = 1

I A unit vector in the direction of
general vector a is written
â = a/|a|

I a is written in terms of unit
vectors a = ax i + ay j + azk

y

z

x

O

k

j

i
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1.4.3 Vector algebra

Sum of two vectors

I To calculate the sum of two vectors
c = a + b
Triangle rule: Put the second vector
nose to tail with the first and the
resultant is the vector sum.

I c = a + b : in (x , y , z) components
(cx , cy , cz) = (ax +bx ,ay +by ,az +bz)

I Alternatively c = a + b
cx i + cy j + czk =
(ax + bx )i + (ay + by )j + (az + bz)k
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Vector algebra laws

I a + b = b + a : commutative law
I a + (b + c) = (a + b) + c:

associative law
I Can treat vector equations in same

way as ordinary algebra
a + b = c ⇒ a = c− b

I Note that vector −b is equal in
magnitude to b but in the opposite
direction.
so a− b = a + (−b)
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Multiplication of a vector by a scalar

I This gives a vector in the same direction as the original but
of proportional magnitude.

I For any scalars α and β and vectors a and b

I (αβ) a = α(β a ) = β(α a ) = a (αβ) : associative &
commutative

I (α + β)a = αa + βa : distributive
I α(a + b) = αa + αb
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2.1.1 The scalar (dot) product

Scalar (or dot) product definition:
a.b = |a|.|b| cos θ ≡ ab cos θ

(write shorthand |a| = a ).

I Scalar product is the magnitude of a
multiplied by the projection of b onto a.

I Obviously if a is perpendicular to b then
a.b = 0

I Also a.a = |a|2 (since θ =0◦)
Hence a =

√
(a.a)
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Properties of scalar product

(i) i.i = j.j = k.k = 1 and i.j = j.k = k.i = 0

(ii) This leads to a.b = (ax i + ay j + azk).(bx i + by j + bzk)
= axbx + ayby + azbz

iii) a.b = b.a : commutative
a.(b + c) = a.b + a.c : distributive

(iv) Parentheses are important
Note (u.v) w 6= u (v.w) because one is a vector along ŵ,
the other is along û.
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2.1.2 The vector (cross) product

Vector (or cross) product of two vectors,
definition:

a× b = |a||b| sinθ n̂

where n̂ is a unit vector in a direction perpendicular to both a and b.
To get direction of a× b use right hand rule:

I i) Make a set of directions with your right
hand→ thumb & first index finger, and with
middle finger positioned perpendicular to plane
of both

I ii) Point your thumb along the first vector a

I iii) Point your 1st index finger along b, making
the smallest possible angle to a

I iv) The direction of the middle finger gives the
direction of a× b .

a

b

c = a x b
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Properties of vector product

I i× j = k ; j× k = i ; k× i = j ; i× i = 0 etc.

I (a + b)× c = (a× c) + (b× c) : distributive

I a× b = −b× a : NON-commutative

I (a× b)× c 6= a× (b× c) : NON-associative

I If m is a scalar,
m(a× b) = (ma)× b = a× (mb) = (a× b)m

I a× b = 0 if vectors are parallel (0o)
i.e a× a = 0
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Vector product in components

Cross product written out in components:

I a× b = (ax ,ay ,az)× (bx ,by ,bz)
= (ax i + ay j + azk)× (bx i + by j + bzk)

I Since i× i = j× j = k× k = 0 and i× j = k etc.
I a× b = (aybz − azby )i− (axbz − azbx )j + (axby − aybx )k

This is much easier when we write in determinant form:

a× b =

∣∣∣∣∣∣
i j k

ax ay az
bx by bz

∣∣∣∣∣∣ (1)
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2.1.3 Examples of scalar & vector products in mechanics

I a) Scalar product
Work done on a body by a force through
distance dr from position 1 to 2

W12 =
∫ 2

1 F.dr

Only the component of force parallel to
the line of displacement does work.

I b) Vector product
A torque about O due to a force F
acting at B :

τ = r× F

Torque is a vector with direction
perpendicular to both r and F,
magnitude of |r||F| sin θ.
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2.2 Differentiation of vectors

Notation: a dot above the function indicates derivative wrt time.
A “dash” indicates derivative wrt a spatial coordinate.

ẏ ≡ dy
dt

y ′ ≡ dy
dx

ȧ = lim
∆t→0

a(t + ∆t)− a(t)
∆t

= lim
∆t→0

∆a

∆t

a(t) = ax (t)i + ay (t)j + az(t)k

ȧ = lim
∆t→0

(
ax (t + ∆t)− ax (t)

∆t
i + . . .

)

Hence ȧ = ȧx i + ȧy j + ȧzk

25



2.2.1 Vector velocity

I ∆r = r2 − r1

v = lim
∆t→0

∆r

∆t

I Velocity at any point is
tangent to the path at that
point

I v = dr
dt = ṙ

In one dimension:
Abandon vector notation and simply write v = dx

dt = ẋ ,
(+v in +x direction, −v in −x direction).
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Example - 1D motion
A body has velocity v0 = −15 ms−1 at position x0 = 20m and
has a time-dependent acceleration a(t) = 6t − 4 [ms−2]. Find
the value of x for which the body instantaneously comes to rest.

I a(t) = 6t − 4 [ms−2] ; x0 = 20 m ; v0 = −15 ms−1

I v̇ = 6t − 4 → v =
∫

a(t)dt = 3t2 − 4t + c
I At t = 0, v = −15 ms−1 → c = −15 ms−1

I v = 3t2 − 4t − 15
I v = 0 for 3t2 − 4t − 15 = 3(t − 3)(t + 5

3) = 0

→ t = 3s (also− 5
3s)

I x =
∫

v(t)dt = t3−2t2−15t + c′ → x = 20 m at t = 0, c′ = 20 m

I x(t) = 27− 18− 45 + 20 = −16 m
27



2.2.2 Vector acceleration

I ∆v = v2 − v1

a = lim
∆t→0

∆v

∆t
= v̇ = r̈

In one dimension:
Abandon vector notation and simply write a = dv

dt = v̇ = ẍ ,
(+a in +x direction, −a in −x direction).
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Example: constant acceleration - projectile motion in 2D
I a = dv

dt = constant

I r = 0 at t = 0
I
∫ v

v0
dv =

∫ t
0 adt

→ v = v0 + at → v = dr
dt

I
∫ r

0 dr =
∫ t

0(v0 + at)dt

→ r = v0t + 1
2at2

Under gravity: a = −gŷ → ax = 0; ay = −g

I vx = v0 cos θ
I vy = v0 sin θ − gt

I x = (v0 cos θ)t
I y = (v0 sin θ)t − 1

2gt2

Trajectory: y = (tan θ)x − g
2v2

0
(sec2θ)x2

29



The monkey and the hunter
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3.1 Dimensional analysis
I A useful method for determining the units of a variable in

an equation
I Useful for checking the correctness of an equation which

you have derived after some algebraic manipulation.
Dimensions need to be correct !

I Determining the form of an equation itself

Most physical quantities can be expressed in terms of
combinations of basic dimensions. These are certainly not
unique :

I mass (M)
I length (L)
I time (T)
I electric charge (Q)
I temperature (θ)
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Note: The term "dimension" is not quite the same as "unit", but
obviously closely related.

Quantity Unit Dimension

Frequency Hertz (Hz) = (cycles) s−1 T−1

Force Newton (N) = kg m s−2 MLT−2

Energy Joule (J) = N m = kg m2s−2 ML2T−2

Power Watt (W) = J s−1 = kg m2s−3 ML2T−3

Current Ampere (A) = Cs−1 QT−1

EMF Volt (V) = Nm C−1 = kg m2s−2C−1 ML2T−2Q−1

Dimensional analysis is best illustrated with examples.
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3.1.1 The period of a pendulum
How does the period of a pendulum depend on its length?

I Variables: period P, mass m, length l ,
acceleration due to gravity g

I Guess the form: let P = k m a` bg c

(k is a dimensionless constant)

I T 1 = MaLb(LT−2)c = MaLb+cT−2c

I Compare terms:

a = 0, b + c = 0, −2c = 1

→ c = −1/2, b = 1/2

P = k
√

`
g

We know that P = 2π
√

`
g : we obtained this form using dimensions

and without using equation of motion: IMPRESSIVE !
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3.1.2 Kepler’s third law
How does the period of an orbiting mass depend on its radius?

I Variables: period P, central mass M0, orbit
radius r , Gravitational constant G

I Guess the form: let P = k M a
0 r bG c

(k is a dimensionless constant)

I Dimensions of G→ (MLT−2).L2M−2

I T 1 = MaLb(M−1L3T−2)c

= M(a−c)Lb+3cT−2c

I Compare terms:

a− c = 0, b + 3c = 0, −2c = 1

→ a = −1/2, c = −1/2, b = 3/2

P = k M−1/2
0 r3/2G−1/2 → P2 = k2

GM0
r 3

I
GmM0

r2 = mv2

r

I v = 2πr
P

I P2 = 4π2

GM0
r3

→ k2 = 4π2
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3.1.3 The range of a cannon ball
A cannon ball is fired with Vy upwards and Vx horizontally, assume no air resistance.
I Variables: Vx ,Vy , distance travelled along

x (range) R, acceleration due to gravity g

I First with no use of directed length dimensions

I Let R = kV a
x V b

y gc .

(k is a dimensionless constant)
I Dimensionally L = (L/T )a+b(L/T 2)c

I Compare terms:

a + b + c = 1 and a + b + 2c = 0, which leaves one
exponent undetermined.

I Now use directed length dimensions , then Vx will be
dimensioned as Lx/T ,Vy as Ly/T ,R as Lx and g as
Ly/T 2

I The dimensional equation becomes:
Lx = (Lx/T )a (Ly/T )b(Ly/T 2)c

→ a = 1, b = 1 and c = −1.

R = k vx vy
g

I x = vx t

I y = vy t − 1
2 gt2

= 0

→ t =
2vy
g

I x =
2vx vy

g
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3.1.4 Example of limitations of the method

I Let y = f (x1, x2, . . . xn) where x1, x2, . . . xn have
independent dimensions

I However in general y = (xa
1 xb

2 . . . x
n)φ(u1, . . .uk ) where ui

are dimensionless variables

Extend to how the period of a rigid
pendulum depends on length pivot to CM.

I In actual fact P ≡ P(g, `,m, I) where I

is the moment of inertia
I [I] = ML2 → can define u = I

m`2

T =
√

`
g φ(u)

i.e. Equation is not reproduced
T = 2π

√
I

mg`
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3.2 Newton’s Laws of motion

I NI: Every body continues in a state of rest or in uniform
motion (constant velocity in straight line) unless acted upon
by an external force.

I NII: The rate of change of momentum is equal to the
applied force; where the momentum is defined as the
product of mass and velocity (p = mv). [i.e. the applied
force F on a body is equal to its mass m multiplied by its
acceleration a.]

I NIII: When one body exerts a force on a second body, the
second body simultaneously exerts a force equal in
magnitude and opposite in direction on the first body [i.e.
action and reaction forces are equal in magnitude and
opposite in direction.]
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3.3 Frames of reference

I A frame of reference is an environment which is used to
observe an event or the motion of a particle.

I A coordinate system is associated with the frame to
observe the event (eg the body’s location over time).

I The observer is equipped with measuring tools (eg rulers
and clocks) to measure the positions and times of events.

I In classical mechanics, time intervals between events is
the same in all reference frames (time is absolute).

I In relativity, we will need to use space-time frames.

I A reference frame in which NI is satisfied is called an
inertial reference frame.
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Inertial reference frames
A frame in which Newton’s first law is satisfied:

I Deep space
I The Earth? [Only in circumstances where we can ignore gravity

& the spin of the Earth.]

Principle of Relativity : The laws of Physics are the same in all
inertial frames of reference.

At t = 0, x = 0, x ′ = 0 and S and S′ are coincident.

Galilean Transformation of coordinates:
I x ′ = x − v0t , y ′ = y , z ′ = z, t ′ = t

I Velocity of a body v in S; velocity measured in S′ v ′ = v − v0

I Acceleration measured in S′ a′ = a

I Hence F ′ = F (consistent with the principle of relativity)
39



3.4 The Principle of Equivalence

I The Principle of Equivalence dictates that m = m∗.
I Inertial mass = Gravitational mass
I This may seem obvious, but it was not an original postulate

of Newton
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4.1 Newton’s Second Law

The rate of change of momentum of a body is equal to the
applied force on the body.

I F =
dp
dt = ma where p = mv

I In components: (Fx ,Fy ,Fz) = m(ax ,ay ,az)

I Assuming constant mass, we can define the equation of

motion in 1D : F = d(mv)
dt = md2x

dt2

I We require two initial conditions for a unique solution: e.g.
v = v0 at t = 0 and x = x0 at t = 0

We shall later solve the EOM for three examples:
(i) F = constant, (ii) F ∝ −v , (iii) F ∝ −x
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4.2 Newton’s Third Law

Action and reaction forces are equal in magnitude and opposite
in direction.

Electrostatic interaction

Compressed spring

F12 = −F21
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Conservation of momentum

Compressed spring

I F12 = m1a1 =
dP1

dt and F21 = m2a2 =
dP2

dt

I F12 + F21 = d
dt (P1 + P2) = 0 (Newton III)

I Therefore (P1 + P2) = constant

In an isolated system, the total momentum is conserved.
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Newton II : Example 1. E.O.M. under constant force

How fast should we accelerate the triangular wedge to keep the
block m stationary on the wedge?

Forces on wedge:

I Horizontal: Fex − Fi sin θ = MAx

I Vertical: R − Fi cos θ −Mg = 0

Forces on block:

I Horizontal: Fi sin θ = max

I Vertical: Fi cos θ −mg = may

For block to remain at the same place Ax = ax and ay = 0

I Fi = mg
cos θ and ax = g tan θ = Ax

I Hence Fex = Mg tan θ + mg tan θ = (m + M)g tan θ
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Example constant force, continued

What is the internal force that the blocks apply on each other
and the reaction force by the ground on M?

From before:

I Fi = mg
cos θ

I R − Fi cos θ −Mg = 0

I Hence: R = Fi cos θ + Mg = (m + M)g
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Example 2. Force proportional to velocity
Solve the equation of motion for the case F = −βv (β > 0)
with x = x0 and v = v0 at t = 0

I m dv
dt = −βv

I dv
dt = −αv where α = β

m

I
∫ v

v0

dv
v = −α

∫ t
0 dt → v = v0e−αt

I v = dx
dt →

∫ x
x0

dx =
∫ t

0 vdt =
∫ t

0 v0e−αtdt

I x − x0 = −v0
α e−αt + v0

α

I x = x0 + v0
α (1− e−αt )

I When t →∞, x → x0 + v0
α
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Example 3. Force proportional to position: simple
harmonic oscillator

Solving the equation of motion for the case F = m d2x
dt2 = −kx

I m d2x
dt2 + k

m x = 0 ; trial solution x = A cosωt + B sinωt

→ ẋ = −Aω sinωt + Bω cosωt ; ẍ = −Aω2 cosωt − Bω2 sinωt
I ẍ = −ω2x → ω2 = k

m

I Alternatively x = x0 cos(ωt + φ) (or x = x0Re[ei(αt+φ)] )
I Expand : x = x0(cos(ωt) cosφ− sin(ωt) sinφ)

A = x0 cosφ ; B = −x0 sinφ → x2
0 = A2 + B2 ; tanφ = −B/A

I x0 = amplitude, φ = phase, ω = angular frequency (T = 2π
ω )
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I x = x0 cos(ωt + φ)

I ω =
√

k
m

I φ = ω∆t
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4.3 Energy conservation in one dimension
Work done on a body by a force F

I W =
∫ x2

x1
F (x)dx = m

∫ x2
x1

dv
dt dx

I We can write: dv
dt dx = dx

dt dv = vdv

hence
∫ x2

x1
F (x)dx = m

∫ v2
v1

vdv = 1
2m(v2

2 − v2
1 ) = T2 − T1

I Now introduce an arbitrary reference point x0∫ x2
x1

Fdx =
∫ x2

x0
Fdx −

∫ x1
x0

Fdx defines a conservative force

hence T2 + [−
∫ x2

x0
Fdx ] = T1 + [−

∫ x1
x0

Fdx ]

I We define the potential energy U(x) at a point x :

U(x)− U(x0) = −
∫ x

x0
Fdx and hence

T2 + U2 = T1 + U1 (total energy PE + KE conserved)
I Note the minus sign. The potential energy (relative to a

reference point) is always the negative of the work done by
the force→ F (x) = −dU

dx
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5.1 Conservative forces

Wab =

∫ b

a
F .dr = U(a)− U(b)

For a conservative field of force, the work done depends only
on the initial and final positions of the particle independent of
the path.
The conditions for a conservative force (all equivalent) are:

I The force is derived from a (scalar) potential function:
F(r) = −∇U → F (x) = −dU

dx etc.
I There is zero net work by the force when moving a particle

around any closed path: W =
∮

c F .dr = 0
I In equivalent vector notation ∇× F = 0

For any force: Wab = 1
2mv2

b −
1
2mv2

a

Only for a conservative force: Wab = U(a)− U(b)
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Conservative force: example 1. Constant acceleration
Consider a particle moving under constant force (in 1-D).

I F = ma. Say at t = 0→ x = x0 and v = v0

I T2 + U2 = T1 + U1 (the total energy is conserved)
I 1

2mv2 − (ma)x = 1
2mv2

0 − (ma)x0 = constant
I v2 = v2

0 + 2a(x − x0)

I Gravitational potential energy
I U(∆y) = −

∫ y2
y1

F (y)dy

I U(∆y) = −
∫ y2

y1
(−mg)dy = mg(y2 − y1)
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Example 2. Simple harmonic oscillator

Equation of motion: F = m d2x
dt2 = −kx

I Potential energy: U(x) = −
∫ x

0 Fdx = −
∫ x

0 (−kx)dx = kx2

2

I Total energy: E = T (x) + U(x) = 1
2mẋ2 + kx2

2
I Check conservation of energy:

EOM : mẍ + kx = 0 → [multiply by ẋ ] mẍẋ + kxẋ = 0

→ 1
2m d

dt (ẋ2) + 1
2k d

dt (x2) = 0

I Integrate wrt t : 1
2mẋ2 + 1

2kx2 = constant → i.e. energy
conserved.
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SHM potential energy curve

I E = U(x) + 1
2mv2

I The particle can only reach locations x that satisfy U < E

53



Example 3. Minimum approach of a charge

A particle of mass m and
charge +Q1 starts from
x = +∞ with velocity v0. It
approaches a fixed charge +Q.
Calculate its minimum distance
of approach xmin.

I Force on charge +Q1 : F (x) = + QQ1
4πε0x2 (+ve direction)

I Potential energy at point x : U(x) = −
∫ x
∞ F (x)dx = + QQ1

4πε0x
(where PE = 0 at x =∞)

I Conservation of energy : 1
2mv2

0 + 0 = 1
2mv2 + U(x)

I Min. dist. when v = 0: 1
2mv2

0 = QQ1
4πε0xmin

→ xmin = QQ1
2πmε0v2

0

54



5.2 Potential with turning points

I U is a maximum: unstable equilibrium
I U is a minimum: stable equilibrium
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5.2.1 Oscillation about stable equilibrium

I For SHM : U(x) = 1
2k(x − x0)2

I Taylor expansion about x0:

U(x) = U(x0)+

[
dU
dx

]
x=x0︸ ︷︷ ︸

=0

(x−x0)+ 1
2!

[
d2U
dx2

]
x=x0︸ ︷︷ ︸

=k

(x−x0)2+. . .
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Example: The Lennard-Jones potential
The Lennard-Jones potential
describes the potential energy
between two atoms in a molecule:
U(x) = ε[(x0/x)12 − 2(x0/x)6]
(ε and x0 are constants and x is
the distance between the atoms).

Show that the motion for small displacements about the minimum is
simple harmonic and find its frequency.

I U(x) = U(x0) +
[ dU

dx

]
x=x0

(x − x0) + 1
2!

[
d2U
dx2

]
x=x0

(x − x0)2 + . . .

I U(x0) = ε[(x0/x)12 − 2(x0/x)6]x=x0 = −ε
I dU(x)

dx |x=x0 = 12ε[− 1
x0

(x0/x)13 + 1
x0

(x0/x)7]x=x0 = 0 as expected.

I d2U(x)
dx2 |x=x0 = 12ε

x2
0

[13(x0/x)14 − 7(x0/x)8]x=x0 = 72ε
x2

0

I Hence U(x) ≈ −ε+ 72ε
2!x2

0
(x − x0)2

I F (x) = − dU
dx ≈ −

1
2 × 2( 72ε

x2
0

)(x − x0) = −k(x − x0) SHM about x0

I Angular frequency of small oscillations : ω2 = k
m = 72ε

mx2
0
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5.2.2 Bounded and unbounded potentials

I Bounded motion : E = E1 : x constrained x1 < x < x2

I Unbounded motion : E = E2 : x unconstrained at high x
x0 < x <∞
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6.1 Lab & CM frames of reference

From hereon we will deal with 2 inertial frames:

I The Laboratory frame: this is the frame
where measurements are actually made

I The centre of mass frame: this is the frame
where the centre of mass of the system is at
rest and where the total momentum of the
system is zero
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6.2 Internal forces and reduced mass

I Internal forces only:
F12 = m1r̈1 ; F21 = m2r̈2

Then r̈2 − r̈1 =
F21
m2
− F12

m1

NIII : F21 = −F12 = Fint

I Define r = r2 − r1 → ṙ = ṙ2 − ṙ1

I Fint

(
1

m1
+ 1

m2

)
= r̈

I Define 1
µ = 1

m1
+ 1

m2
→ Fint = µr̈

µ = m1m2
m1+m2

is the reduced mass of the system

This defines the equation of motion of the relative motion of the
particles under internal forces, with position vector r & mass µ

60



6.3 The Centre of Mass

The centre of mass (CM) is the point where the mass-weighted
position vectors (moments) relative to the point sum to zero ;

the CM is the mean location of a distribution of mass in space.

I Take a system of n particles,
each with mass mi located
at positions ri, the position
vector of the CM is defined
by:∑n

i=1 mi(ri − rcm) = 0
I Solve for rcm :
rcm = 1

M
∑n

i=1 mi ri

where M =
∑n

i=1 mi
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Example : SHM of two connected masses in 1D
SHM between two masses m1 and m2 connected by a spring

I x = x2 − x1 ; Natural length L
I Fint = −k (x − L) = µ ẍ

(µ = m1m2
m1+m2

= reduced mass)

I ẍ + k
µ(x − L) = 0

Solution: x = x0 cos(ωt + φ) + L

where ω =
√

k
µ

With respect to the CM:

I xCM = m1x1+m2x2
M where M = m1 + m2

I x ′1 = x1 − xcm = Mx1−m1x1−m2x2
M = −m2x

M

I x ′2 = x2 − xcm = Mx2−m1x1−m2x2
M = m1x

M

Eg. take m1 = m2 = m → ω =
√

2k
m ; x ′1 = −1

2x , x ′2 = 1
2x
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6.3.1 CM of a continuous volume

If the mass distribution is continuous with density ρ(r) inside a
volume V , then:

I
∑n

i=1 mi(ri − rcm) = 0

becomes∫
V ρ(r)(r− rcm)dV = 0

where dm = ρ(r)dV

I Solve for rcm

rcm = 1
M

∫
V ρ(r) r dV

where M is the total mass in
the volume
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Example: the CM of Mount Ranier
Mount Ranier has approximately the shape of a cone (assume
uniform density) and its height is 4400 m. At what height is the centre
of mass?

We have cylindrical symmetry - just need to consider the y direction.
Integrate from top (y = 0) to bottom (y = h)

I ycm =
∫ h

0 ydm
M =

∫ h
0 ydm∫ h
0 dm

dm = ρ(πr2)dy = ρ(πy2 tan2 θ)dy

I ycm =
∫ h

0 yρ(πy2 tan2 θ)dy∫ h
0 ρ(πy2 tan2 θ)dy

ycm =
∫ h

0 y3dy∫ h
0 y2dy

= 3h4

4h3 = 3h
4

(measured from the top)

I h = 4400m→ ycm = 1100m
above the base
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6.3.2 Velocity in the Centre of Mass frame

I The position of the centre of
mass is given by:
rcm = 1

M
∑n

i=1 mi ri

where M =
∑n

i=1 mi

I The velocity of the CM:

vcm = ṙcm = 1
M
∑n

i=1 mi ṙi

I In the Lab frame, total momentum ptot :

ptot =
∑n

i=1 mi ṙi = Mvcm

Hence the total momentum of a system in the Lab frame
is equivalent to that of a single particle having a mass M

and moving at a velocity vcm
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6.3.3 Momentum in the CM frame

I Velocity of the CM: vcm = ṙcm =
∑n

i=1 mi ṙi∑
i mi

=
∑n

i=1 mi vi∑
i mi

I Velocity of a body in the CM relative to Lab v′i = vi−vcm

I The total momentum of the system of particles in the CM:
I
∑

i p
′
i
=
∑

i miv
′
i =

∑
i mi(vi − vcm)

=
∑

i mivi −
∑

i mi

∑
j mjvj∑

j mj
=
∑

i mivi −
∑

j mjvj = 0

Hence the total momentum of a system of particles in the
CM frame is equal to zero

I In addition, the total energy of the system is a minimum
compared to all other inertial reference frames.
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6.3.4 Motion of CM under external forces
I Force on particle i : mi r̈i = Fi

ext + Fi
int

I

n∑
i

mi r̈i︸ ︷︷ ︸
all masses

=
n∑
i

Fi
ext

︸ ︷︷ ︸
external forces

+
n∑
i

Fi
int

︸ ︷︷ ︸
internal forces = zero

=
∑n

i Fi
ext

I rCM =
∑

i
mi ri

M

where M =
∑

i mi

I r̈CM =
∑

i
mi r̈i
M

→ M r̈CM =
∑

i Fi
ext

The motion of the system is equivalent to that of a single
particle having a mass M acted on by the sum of external forces

(The CM moves at constant velocity if no external forces)
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6.4 Kinetic energy and the CM

I Lab kinetic energy : TLab = 1
2
∑

mi v
2
i ; v′i = vi − vCM

where v′i is velocity of particle i in the CM

I TLab = 1
2
∑

mi v
′2
i +

∑
mi v

′
i · vCM + 1

2
∑

mi v
2
CM

I But
∑

miv
′
i · vCM =

∑
miv

′
i

M︸ ︷︷ ︸
= 0

·M vCM = 0

→ TLab = TCM + 1
2Mv2

cm

The kinetic energy in the Lab
frame is equal to the kinetic
energy in CM + the kinetic

energy of the CM
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7.1 Two-body collisions - general concepts

No external forces. Collision via massless springs or other force type.

I ti : collision starts. All
energy is kinetic.
Ti = 1

2m1u2
1 + 1

2m2u2
2

I t : collision peaks. Some
kinetic is converted into
potential (of the spring).
E = 1

2m1ẋ1
2+ 1

2m2ẋ2
2+Eint

I tf : collision ends. All
energy is kinetic again.
Tf = 1

2m1v2
1 + 1

2m2v2
2 ;

Ti = Tf + ∆E (← inelastic)
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7.1.1 Momentum exchange and impulse

During collision: internal force causes change of momentum F =
dp
dt

I At ti : total momentum
p = p1 + p2 = m1u1 + m2u2

I At t : m1 → dp1 = F12dt

m2 → dp2 = F21dt
I At tf : m1 → v1 and m2 → v2

I Impulse ∆p1 = I1 =
∫ tf

ti
F12dt

∆p2 = I2 =
∫ tf

ti
F21dt

I Since F12 + F21 = 0
∆p1 + ∆p2 = 0

I Momentum conserved.
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7.1.2 An off-axis collision in 2D

I Impulse is along line of
centres

∆p1 =
∫ tf

ti
F12dt

∆p2 =
∫ tf

ti
F21dt

I v1 = 1
m1

∫ tf
ti
F12dt + u1

I v2 = − 1
m2

∫ tf
ti
F12dt
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7.2 Elastic collisions in the Lab frame

Before After

Conservation of momentum: m1u1 + m2u2 = m1v1 + m2v2

Conservation of energy: 1
2m1u

2
1 + 1

2m2u
2
2 = 1

2m1v
2
1 + 1

2m2v
2
2

[Note that the motion is in a plane, and the 2D representation
can be trivially extended into 3D by rotation of the plane].
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7.2.1 Elastic collisions in 1D in the Lab frame

I Momentum : m1u1 + m2u2 = m1v1 + m2v2 (1)

→ m1(v1 − u1) = m2(u2 − v2) (2)

I Energy : 1
2 m1u2

1 + 1
2 m2u2

2 = 1
2 m1v2

1 + 1
2 m2v2

2

→ m1(v1 − u1)(v1 + u1) = m2(u2 − v2)(u2 + v2) (3)

I Divide (2) & (3) :
→ (v1 + u1) = (u2 + v2) → (u1 − u2) = (v2 − v1) (4)

→ Relative speed before collision = Relative speed after
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7.2.2 Special case in 1D where target particle is at rest
I u2 = 0 ; From (1) & (4) :

m1u1 = m1v1 + m2(u1 + v1)

I v1 = (m1−m2)u1
m1+m2

I Similarly :
m1u1 = m1(v2 − u1) + m2v2

I v2 = 2m1u1
m1+m2

v1 = m1−m2
m1+m2

u1 and v2 = 2m1
m1+m2

u1

Special cases:

I m1 = m2 : → v1 = 0, v2 = u1
(complete transfer of momentum)

I m1 >> m2 : Gives the limits v1 → u1, v2 → 2u1
(m2 has double u1 velocity)

I m1 << m2 : Gives the limits v1 → −u1, v2 → 0
(“brick wall” collision)
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Example: Newton’s cradle
Consider here just 3 balls

I If the balls are touching, the most general case is:

Momentum after collision : mu = mv1 + mv2 + mv3

Energy after collision : 1
2mu2 = 1

2mv2
1 + 1

2mv2
2 + 1

2mv2
3

2 equations, 3 unknowns
I The obvious solution: v1 = v2 = 0, v3 = u
I But other solution(s) possible:

Momentum : mu = −1
3mu + 2

3mu + 2
3mu

Energy : 1
2mu2 = 1

18mu2 + 4
18mu2 + 4

18mu2

I So why does the simple solution always prevail?
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7.2.3 Collision in 2D : equal masses, target at rest

m1 = m2 = m , u2 = 0

I Momentum: mu1 = mv1 + mv2 → u1 = v1 + v2

Squaring → u2
1 = v2

1 + v2
2 + 2v1.v2

I Energy: 1
2mu2

1 = 1
2mv2

1 + 1
2mv2

2 → u2
1 = v2

1 + v2
2

I Hence 2v1.v2 = 0

→ EITHER v1 = 0 & v2 = u1 OR (θ1 + θ2) = π
2

I Either a head-on collision or opening angle is 90◦
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Relationship between speeds and angles
m1 = m2 = m , u2 = 0

I From cons. mom. (v2)2 = (u1 − v1)2

→ v2
2 = v2

1 + u2
1 − 2u1v1 cos θ1

I Energy: u2
1 = v2

1 + v2
2 → v2

2 = u2
1 − v2

1
I Equate : 2v2

1 = 2u1v1 cos θ1

cos θ1 = v1
u1

and by symmetry cos θ2 = v2
u1

I Note we can also do this via components of momentum :
→ u1 = v1 cos θ1 + v2 cos θ2 and v1 sin θ1 = v2 sin θ2

→ (u1 − v1 cos θ1)2 = v2
2 cos2 θ2 and v2

1 sin2 θ1 = v2
2 sin2 θ2

→ Add : v2
2 = v2

1 sin2 θ1 + u2
1 − 2u1v1 cos θ1 + v2

1 cos2 θ1

→ Gives : v2
2 = v2

1 + u2
1 − 2u1v1 cos θ1
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8.1 Elastic collisions in the CM frame
Lab frame:

Centre of mass frame (zero momentum frame)

I Conservation of momentum in CM:
m1u

′
1 + m2u

′
2 = 0 ; m1v

′
1 + m2v

′
2 = 0

I Conservation of energy in CM:
1
2m1u

′2
1 + 1

2m2u
′2
2 = 1

2m1v
′2
1 + 1

2m2v
′2
2
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8.2 Lab to CM : 2-body 1D elastic collision

I vcm = (m1u1+m2u2)
(m1+m2)

I Before in CM :
m1u′1 + m2u′2 = 0

I After in CM :
m1v ′1 + m2v ′2 = 0

I From last lecture
u′1 − u′2 = v ′2 − v ′1

I Sub for u′2, v
′
2 :

u′1(1 + m1/m2) =

−v ′1(1 + m1/m2)

I v ′1 = −u′1
v ′2 = −u′2
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8.2.1 Collision in 1D : numerical example

1) Find CM velocity relative to laboratory frame :
vcm = m1u1+m2u2

m1+m2
= 6×3+0.5×4

10 = 2 ms−1

2) Transform initial velocities into CM : u′ = u − vcm

u′1 = 3− 2 = 1 ms−1 ; u′2 = 0.5− 2 = −1.5 ms−1

3) Conservation of energy : v ′1 = −u′1 : v ′2 = −u′2
v ′1 = −1 ms−1 ; v ′2 = 1.5 ms−1 after collision

4) Transform final velocities back to Laboratory frame :
v = v ′ + vcm

v1 = −1 + 2 = 1 ms−1 ; v2 = 1.5 + 2 = 3.5 ms−1
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8.3 Relationship between speeds in CM in 2D

I Momentum : m1u
′
1 + m2u

′
2 = 0 ; m1v

′
1 + m2v

′
2 = 0 (1)

I Dot products : m1u′21 = −m2u
′
1 · u′2 ; m2u′22 = −m1u

′
1 · u′2

m1v ′21 = −m2v
′
1 · v′2 ; m2v ′22 = −m1v

′
1 · v′2

I Energy : 1
2m1u′1

2 + 1
2m2u′22 = 1

2m1v ′21 + 1
2m2v ′22

Hence −(m1 + m2)u′1 · u′2 = −(m1 + m2)v′1 · v′2
I u′1 · u′2 = v′1 · v′2 : magnitudes u′1u′2 = v ′1v ′2 → back-to-back
I From (1), magnitudes u′2 = −m1

m2
u′1 ; v ′2 = −m1

m2
v ′1

I Hence u′1(−m1
m2

u′1) = v ′1(−m1
m2

v ′1)→ u′21 = v ′21 ; u′22 = v ′22

I |v ′1| = |u′1| ; |v ′2| = |u′2| →
Speeds before = speeds after
Back-to-back in direction as

shown in diagrams.
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8.4 Lab to CM : 2-body 2D elastic collision

1) Find centre of mass velocity vCM

I (u1 − vCM)m1 + (u2 − vCM)m2 = 0
I → vCM =

m1u1+m2u2
m1+m2

2) Transform initial Lab velocities to CM

I u′1 = u1 − vCM , u′2 = u2 − vCM

3) Get final CM velocities

I |v′1| = |u′1| ; |v′2| = |u′2|
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4) Transform vectors back to the Lab frame

I v1 = v′1 + vCM ; v2 = v2
′ + vCM

5) Can then use trigonometry to solve
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9.1.1 Example 1: Equal masses, target at rest

Before

Magnitude of velocities:
I vCM = m1u1+m2u2

m1+m2
= u0

2

I u′1 = u0 − vCM = u0
2

I u′2 = −vCM = −u0
2

I |v ′1| = |u′1| = u0
2

I |v ′2| = |u′2| = u0
2

After
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Relationships between angles and speeds
Angles:

I Cosine rule:

(u0
2 )2 = (u0

2 )2 + v2
1 − 2v1

u0
2 cos θ1

I v1u0 cos θ1 = v2
1

I cos θ1 = v1
u0

as before

I cos θ2 = v2
u0

Opening angle:
I Cosine rule:

u2
0 = v2

1 + v2
2 − 2v1v2 cos(θ1 + θ2)

I But u2
0 = v2

1 + v2
2 (conservation of

energy)
I cos(θ1 + θ2) = 0 → θ1 + θ2 = π

2

NB: Lines joining opposite corners of rhombus cross at 90◦
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9.1.2 Example 2: Elastic collision, m2 = 2m1, θ1 = 30◦
Find the velocities v1 and v2 and the angle θ2

Magnitude of velocities:

I vCM = m1u1+m2u2
m1+m2

= u0
3

I u′1 = u0 − vCM = 2u0
3

I u′2 = −vCM = −u0
3

I |v ′1| = |u′1| = 2u0
3

I |v ′2| = |u′2| = u0
3

86



Relationships between angles and speeds

I Sine rule:

(sin 30/2u0
3 ) = (sinα/u0

3 )

→ sinα = 1
4 → α = 14.5◦

I β = 30 + α = 44.5◦

I sin 30/2u0
3 = sin(180− 44.5)/v1

→ v1 = 0.93u0

I Cosine rule:

v2
2 = (u0

3 )2 + (u0
3 )2 − 2(u0

3 )2 cosβ

→ v2 = 0.25u0

I Sine rule:

(sin 44.5/v2) = (sin θ2/
u0
3 )

→ θ2 = 68.0◦
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9.2 Inelastic collisions in the Lab frame in 1D (u2 = 0)

An inelastic collision is where
energy is lost (or there is
internal excitation).

I Take m2 at rest & in 1D. Momentum : m1u1 = m1v1 + m2v2 (1)

I Energy : 1
2 m1u2

1 = 1
2 m1v2

1 + 1
2 m2v2

2 + ∆E (2)

I Square Equ.(1) and subtract 2m1× Equ.(2)

→ m2(m2 −m1)v2
2 + 2m1m2v1v2 − 2m1∆E = 0

I Substitute for m1v1 from Equ.1 to get quadratic in v2

→ m2(m2 + m1)v2
2 − 2m1m2u1v2 + 2m1∆E = 0

I Solve, taking consistent solutions with elastic case (∆E = 0)

→ v2 =
2m1m2u1+

√
4m2

1m2
2u2

1−8m1m2(m1+m2)∆E
2m2(m1+m2) (3)

→ v1 =
2m2

1u1−
√

4m2
1m2

2u2
1−8m1m2(m1+m2)∆E

2m1(m1+m2) (4)
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1D inelastic collisions viewed in the Lab frame (u2 = 0)

I We see from Equ. (3) & (4) there is a limiting case:
4m2

1m2
2u2

1 − 8m1m2(m1 + m2)∆E ≥ 0

I i.e. ∆E ≤ m1m2u2
1

2(m1+m2)

I This corresponds to the two bodies sticking together in a
single object of mass (m1 + m2) → v1 = v2

I From momentum cons. m1u1 = m1v1 + m2v2

if v1 = v2 = v , then v = m1u1
(m1+m2) (the CM velocity)

For equal mass m1 = m2 v2 , v1 = u1
2

[
1±

√
1− 4∆E

mu2
1

]
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9.2.1 Coefficient of restitution

General definition : e = |v2−v1|
|u1−u2|

= Speed of relative separation
Speed of relative approach

I From Equ.(3) & (4) previously

v2 − v1 =
2m1m2u1+

√
4m2

1m2
2u2

1−8m1m2(m1+m2)∆E
2m2(m1+m2)

−2m2
1u1−
√

4m2
1m2

2u2
1−8m1m2(m1+m2)∆E

2m1(m1+m2)

I Factorizing, then simplifying, then dividing by u1 gives

e =

√
1− 2(m1+m2)∆E

m1m2u2
1

=
√

1− ∆E
T ′

where T ′ = 1
2µu2

1 with µ = m1m2
m1+m2

(the reduced mass)
I We see later that T ′ is the initial energy in the CM frame,

hence e is related to the fractional energy loss in this frame
I e = 1 completely elastic; e = 0 perfectly inelastic,

in general 0 < e < 1
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9.3 Inelastic collisions viewed in the CM frame
Case of perfectly inelastic collision (e = 0)

After collision, total mass (m1 + m2) is at rest in CM:

I KE in CM: TCM = TLAB − 1
2(m1 + m2)v2

CM
I Differentiate: Loss in KE ∆TCM = ∆TLAB (obvious)
I Max. energy that can be lost = TCM =

= 1
2m1u2

1 + 1
2m2u2

2 −
1
2(m1 + m2)v2

CM
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9.3.1 Kinetic energy in the CM : alternative treatment
Revisit kinetic energy in the CM frame: TLab = TCM + 1

2Mv2
CM

I TCM = 1
2m1u′21 + 1

2m2u′22

I x ′1 = − m2
m1+m2

x = −m2
M x , x ′2 = m1

M x

I u′1 = −m2
M ẋ , u′2 = m1

M ẋ

I TCM = 1
2

(
m1(−m2

M )2 + m2(m1
M )2) ẋ2

I TCM = 1
2

m1m2
M2 (m2 + m1) ẋ2 = 1

2
m1m2

M ẋ2

I Also ẋ = ẋ2 − ẋ1 = u′2 − u′1

TCM = 1
2

m1m2
M ẋ2 = 1

2µẋ2 = 1
2µ(u′1−u′2)2 = 1

2µ(u1−u2)2

These expressions give the CM kinetic energy in terms of the
relative velocities in the CM & Lab and the reduced mass µ
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9.3.2 Coefficient of restitution in the CM
I Initial KE in the CM : T i

CM = 1
2µ(u′1 − u′2)2

I Final KE in the CM : T f
CM = 1

2µ(v ′1 − v ′2)2

I Conservation of energy : T i
CM = T f

CM + ∆E

→ 1
2µ(u′1 − u′2)2 = 1

2µ(v ′1 − v ′2)2 + ∆E

→
(

v ′
1−v ′

2
u′

1−u′
2

)2
= 1− ∆E

T i
CM

→
(

v ′
1−v ′

2
u′

1−u′
2

)
= ±

√
1− ∆E

T i
CM

Same expression as before with T ′ = T i
CM

Coefficient of restitution
e =

|v′
2−v

′
1|

|u′
1−u

′
2|CM

= |v2−v1|
|u1−u2|LAB

=
√

1− ∆E
T i

CM

ONLY in CM frame can ALL the KE be used to create ∆E
→ For e = 0 the two particles coalesce and are at rest in CM93



9.3.3 Example of inelastic process
A calcium nucleus (A=20), mass m, travels with velocity u0 in the Lab.
It decays into a sulphur nucleus (A=16), mass 4

5 m, and an α-particle
(A=4), mass 1

5 m. Energy ∆T is released as KE in the calcium rest
frame (CM). A counter in the Lab detects the sulphur nucleus at 90◦

to the line of travel. What is the speed and angle of the α-particle in
the Lab?
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I Energy ∆T is released as
KE in the CM. vCM = u0

I Momentum in CM:
4
5mv ′1 −

1
5mv ′2 = 0

→ v ′2 = 4v ′1
I Energy: ∆T = 1

2(4
5m)v ′1

2 +
1
2(1

5m)16v ′1
2 = 2mv ′1

2

→ v ′1 = [ ∆T
2m ]

1
2

→ v ′2 = [8∆T
m ]

1
2

I Transform to Lab by
boosting by vCM(= u0)

I cosα = u0
v ′

1
= [

2mu2
0

∆T ]
1
2

I Cosine rule: v2
2 = v ′2

2 + u0
2 + 2v ′2u0 cosα

I Sine rule: sin θ2
v ′

2
= sinα

v2

Solve for
v2 , θ2
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10.1 Resisted motion and limiting speed

I Newton II: m dv
dt = Fext + FR where Fext is the

external force and FR is a resistive force

I If Fext = 0 and FR ∝ velocity, then v ∝ exp(−αt)
(see Lecture 4)

I If Fext 6= 0 and e.g. FR ∝ −vn then there exists a
limiting speed corresponding to dv

dt = 0 that satisfies
FR = −Fext
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10.2 Air resistance

FR = av︸︷︷︸
Laminar flow

+ bv2︸︷︷︸
Turbulent flow

I Laminer flow : Stoke’s Law
F = 6πηrv

r is the radius of the sphere

v is the velocity of the sphere

η is the viscosity of the fluid
I Turbulent flow : S F = 1

2πρCd r2v2

ρ is the density of the fluid

Cd is the drag coefficient (e.g. for a
smooth sphere Cd ∼ 0.47
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10.3 Example 1 : Resistive force, FR ∝ v
I Body fired vertically upwards under

gravity→ air resistance ∝ velocity

→ v = v0 & x = 0 at t = 0
I Equation of motion: m dv

dt = −mg − βv

I
∫ v

v0

dv
g+αv = −

∫ t
0 dt where α = β

m

I
[

1
α
loge(g + αv)

]v
v0
= [−t ] t

0

I loge

(
(g+αv)
(g+αv0)

)
= −αt → 1+αv

g =
(

1 + αv0
g

)
exp(−αt)

v = g
α

[
(1 + αv0

g )exp(−αt)− 1
]

I Terminal (limiting) velocity: t →∞ , vT → − g
α

I Can show by expansion, as α→ 0 , v → v0 − gt
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Maximum height and distance travelled for FR ∝ v
I v = g

α

[
(1 + αv0

g ) exp(−αt)− 1
]

I At maximum height→ v = 0, t = tmax

→ exp(−αtmax ) = (1 + αv0
g )−1

tmax = 1
α loge

(
1 + αv0

g

)
Can expand log to show :
tmax → v0

g when α→ 0

I Distance travelled :
I x =

∫ t
0

g
α

[
(1 + αv0

g ) exp(−αt)− 1
]

dt

= g
α

[
− 1
α(1 + αv0

g ) exp(−αt)− t
]t

0

x = g
α

[(
1
α(1 + αv0

g )(1− exp(−αt)
)
− t
]

Can show by
expansion
x → v0t − 1

2gt2

when α→ 0
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10.4 Example 2: Resistive force, FR ∝ v2

I Body falls vertically downwards under gravity with
air resistance ∝ [velocity]2, v = 0, x = 0 at t = 0

I Equation of motion: m dv
dt = mg − βv2

I Terminal velocity when dv
dt = 0 : vT =

√
mg
β

I Equation of motion becomes dv
dt = g

(
1− v2/v2

T

)
I Integrate

∫ v
0

dv
g(1−v2/v2

T )
=
∫ t

0 dt

I Standard integral :
∫ 1

1−z2 dz = 1
2 loge

(
1+z
1−z

)
I

[
vT
2g loge

(
1+v/vT
1−v/vT

)]v

0
= t → 1+v/vT

1−v/vT
= exp(t/τ) , where τ = vT

2g

→ (1− v
vT

) = (1 + v
vT

) exp(− t
τ )

Velocity as a function of time:

v = vT

[
1−exp(−t/τ)
1+exp(−t/τ)

]
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Velocity as a function of distance for FR ∝ v2

I Equation of motion: dv
dt = g

(
1− v2/v2

T

)
I Write dv

dt = dv
dx

dx
dt = v dv

dx

I
∫ v

0
v dv

g(1−v2/v2
T )

=
∫ x

0 dx

I

[
− v2

T
2g loge

(
1− v2/v2

T

)]v

0
= x

→
(
1− v2/v2

T

)
= exp (−x/xT ) , where xT =

v2
T

2g

v2 = v2
T [1− exp (−x/xT )]

To get x vs. t integrate again : →
∫ t

0 dt =
∫ x

0
dx
v101



10.4.1 Work done on the body by the force for FR ∝ v2

I Equation of motion: m dv
dt = mg − βv2

I Work done:∫
Fdx =

∫ x

o
mg dx︸ ︷︷ ︸

Conservative

−
∫ x

0
βv2dx︸ ︷︷ ︸

Dissipative

I Conservative term : Work done = mgx

I Dissipative term : Work done
= −

∫ x
0 βv2dx = −

∫ x
0 βv2

T [1− exp(−x/xT )] dx

= −βv2
T [x + xT (exp(−x/xT )− 1)︸ ︷︷ ︸

=−xT v2/v2
T

]

= −βv2
T (x − v2/2g) = −mg[x − v2/2g]

v2
T = mg

β

xT =
v2

T
2g

Energy dissipated = 1
2mv2 −mgx As expected.
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