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ABSTRACT. To be polished. This is note for my course on supersymmetry in the fall 2017 at Tsinghua university.

We discuss supersymmetric gauge theories in various dimensions, their geometric structures and dualities.
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We will be working with the symmetric monoidal category of Z2-graded algebras over a field k of char-
acteristic 0. Let A be a k-algebra with Z2-graded decomposition

A = A0 ⊕ A1.

We will write |ai| = i, ai ∈ Ai, for the grading. The monoidal structure is given by the graded tensor
product ⊗̂k defined as follows.

Definition 0.1. Let A, B be two Z2-graded algebras over k. We define the graded tensor product A⊗̂kB as
the Z2-graded algebra whose underlying Z2-graded vector space is A⊗k B, with multiplication defined by

(a1 ⊗ b1) · (a2 ⊗ b2) = (−1)|b1||a2|(a1a2)⊗ (b1b2).

1. CLIFFORD ALGEBRA

Definition 1.1. Let V be a vector space over the field k, and Q is a quadratic form on V. We always assume
q be non-degenerate. Let T(V) =

⊕
n≥0

V⊗n be the tensor algebra. The Clifford algebra Cl(V, Q) is defined

to be the quotient of T(V) by the relation

x2 = −Q(x), x ∈ V.
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The tensor product ⊗ on T(V) induces a product on Cl(V, Q) denoted by ·.

Equivalently, Cl(V, Q) is the associative algebra freely generated by V and the relation

a · b + b · a = −2 〈a, b〉 ∀a, b ∈ V,

where 〈−,−〉 is the inner product on V associated to q.

Let T(V) = Teven(V)⊕ Todd(V) be the decomposition into even and odd number of tensors of V in T(V).
It equips Cl(V, Q) with the structure of Z2-graded algebra by

Cl(V, Q) = Cl0(V, q)⊕ Cl1(V, Q)

where Cl0(V, Q) and Cl1(V, Q) are the images of Teven(V) and Todd(V) respectively.

Let T≤p(V) =
⊕

n≤p
V⊗n. Let F p be its image in Cl(V, Q). Then the filtration

F 0 ⊂ F 1 ⊂ · · · ⊂ Cl(V, Q)

equips Cl(V, Q) with the structure of filtered algebra. Let GrF (Cl(V, Q)) be the associated graded algebra.

Lemma 1.2. There is a canonical isomorphism of algebras

GrF (Cl(V, Q)) ∼= ∧∗V

where ∧∗V is the exterior algebra.

In particular, there is an explicit isomorphism of vector spaces

ρ : ∧∗V → Cl(V, Q), v1 ∧ · · · ∧ vp → ∑
σ∈Sp

(−1)σvσ(1) · · · vσ(p).

Lemma 1.3. Suppose V = V1⊕V2 and Q = Q1 + Q2, where Qi is a quadratic form on Vi. Then there is a canonical
isomorphism of Z2-graded k-algebras

Cl(V, Q) ∼= Cl(V1, Q1)⊗̂kCl(V2, Q2).

Example 1.4. Let V be a real vector space, and Q = x2
1 + · · · x2

p − x2
p+1− · · · − x2

p+q. The associated Clifford
algebra will be denoted by Clp,q. Moreover Clp ≡ Clp,0 for simplicity. We have

Clp,q ∼= Clp,0⊗̂RCl0,q.

Example 1.5. Let V be a complex vector space of dimension n, then all non-degenerate quadratic forms are
equivalent. The associated Clifford algebra will be denoted by Cln and we have

Cln ∼= Cl⊗̂
n
C

1 .

Lemma 1.6. Let k(n) denote the n× n matrix algebra with entries in k. The we have algebra isomorphisms

Cl1,0
∼= C, Cl0,1

∼= R⊕R, Cl2,0 ∼= H, Cl1,1
∼= Cl0,2 ∼= R(2)

Cl1 ∼= C⊕C, Cl2 ∼= C(2).

Here H are quaternions.
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Proof. We prove Cl1,1
∼= Cl0,2 ∼= R(2). As a vector space

Cl1,1 = R⊕Rx⊕Ry⊕Rxy

with multiplication structure by x2 = 1, y2 = −1, xy = −yx. It is identified with R(2) by

x =

(
1 0
0 −1

)
, y =

(
0 1
−1 0

)
, xy =

(
0 1
1 0

)
.

Similarly,

Cl0,2 = R⊕Rx⊕Ry⊕Rxy

with multiplication structure by x2 = 1, y2 = 1, xy = −yx. It is identified with R(2) by

x =

(
1 0
0 −1

)
, y =

(
0 1
1 0

)
, xy =

(
0 1
−1 0

)
.

�

The Clifford algebras are easily classified with the help of the following proposition.

Proposition 1.7. We have the following algebra isomorphisms

(1) Clp+2,q ∼= Cl2,0 ⊗ Clq,p, Clp,q+2 ∼= Cl0,2 ⊗ Clq,p, Clp+1,q+1
∼= Cl1,1 ⊗ Clp,q.

(2) Bott periodicity (real case): Clp+4,q ∼= Clp,q+4, Cl(p + 8, q) ∼= Cl(p, q)(16).
(3) Bott periodicity (complex case): Cln+2 ∼= Cln ⊗C Cl2 ∼= Cln(2).
(4) Clp,q ∼= Cl0

p+1,q.

Proof. (1)The isomorphism

Cl2,0 ⊗ Clq,p → Clp+2,q

is realized in generators

ei → ei, ẽα → e12 ẽα, 1 ≤ i ≤ 2, 1 ≤ α ≤ p + q, e12 = e1e2.

(4) The isomorphism

Clp,q ∼= Cl0
p+1,q

is realized in generators

ei → e1ei+1, 1 ≤ i ≤ p + q.

�

Combining Lemma 1.6 and Proposition 1.7, we find the following table

n 1 2 3 4 5 6 7 8

Cln,0 C H H⊕H H(2) C(4) R(8) R(8)⊕R(8) R(16)
Cl0,n R⊕R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)
Cln−1,1 R⊕R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)
Cl1,n−1 C R(2) R(2)⊕R(2) R(4) C(4) H(4) H(4)⊕H(4) H(8)
Cln C⊕C C(2) C(2)⊕C(2) C(4) C(4)⊕C(4) C(8) C(8)⊕C(8) C(16)

TABLE 1. Clifford algebras
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2. SPIN GROUP

Definition 2.1. We define the following operations on Clifford algebras

(1) Reflection automorphism: let x = v1 · · · vm, then x̂ = (−)mv1 · · · vm.
(2) Transpose anti-automorphism: let x = v1 · · · vm, then xt = vm · · · v1.
(3) Conjugate anti-automorphism: x∗ = x̂t.

Definition 2.2. Let Cl×(V, Q) be the multiplicative group of units in Cl(V, Q). We define the twisted
conjugation action of Cl×(V, Q) on the Clifford algebra

Âd : Cl×(V, Q)→ Gl(Cl(V, Q))

by
Âdx(y) = x̂yx−1.

Example 2.3. Let x, y ∈ V, then

Âdx(y) = y− 2
〈x, y〉
〈x, x〉 x

is the reflection along the hyperplane orthogonal to x.

Definition 2.4. The Clifford group Γ(V, Q) is defined by

Γ(V, Q) = {x ∈ Cl×(V, q)|Âdx : V → V preserves V}.

Lemma 2.5. The Clifford action Γ(V, Q) : V → V preserves the quadratic form.

Proof. In fact, ∀v ∈ V, 〈
Âdxv, Âdxv

〉
= x̂vx−1 ̂̂xvx−1 = 〈v, v〉 .

�

Corollary 2.6. There is an exact sequence of groups

0→ k× → Γ(V, Q)
Âd→ O(V, Q)→ 0.

Here O(V, Q) is the orthogonal group of q-preserving linear automorphisms of V.

Proof. Âd is defined by the previous lemma. Let x ∈ Γ(V, Q) ∩ ker(Âd). Then

vx = x̂v, ∀v ∈ V.

Using the filtration F • on Cl(V, Q), it is enough to show that given x ∈ ∧pV, p > 0, if

ι〈v,−〉x = 0 ∈ ∧p−1V for any v ∈ V,

then x = 0. Here 〈v,−〉 is viewed as an element of V∗ and ι is the natural contraction. But this is obvious.

On the other hand, Cartan-Dieudonné theorem states that every element of O(V, Q) is a composition of
at most dimk V reflections (char(k) 6= 2), hence a Clifford action. �

Definition 2.7. The spin norm N : Γ(V, Q)→ k× is a group homomorphism defined by

N(x) = xx̂t.

The reason that N(x) ∈ k× comes from the observation that xx̂t ∈ Γ(V, Q) ∩ ker(Âd). In fact,

Âdxx̂t v = x̂
(

xtv(x̂t)−1
)

x−1 = x̂
(

xtv(x̂t)−1
)t

x−1 = v.
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Definition 2.8. The Pin group and Spin group are defined by

Pin(V, Q) = {v1 · · · vr ∈ Cl×(V, Q)|vi ∈ V, Q(vi) = ±1}.

Spin(V, Q) = Pin(V, Q) ∩ Cl0(V, Q).

In the case when k is a spin field (i.e. k× = (k×)2 ∪−(k×)2), we still have a surjection

Âd : Pin(V, Q)→ O(V, Q)

and the spin norm is
N : Pin(V, Q)→ ±1.

Proposition 2.9. In the real case k = R, we have exact sequences

0→ Z2 → Spin(p, q)→ SO(p, q)→ 1

0→ Z2 → Pin(p, q)→ O(p, q)→ 1.

Here SO(p, q) = {A ∈ O(p, q)|det A = 1}.

Proof. Let x ∈ Pin(V, Q) ∩R×, then

N(x) = x2 = ±1 =⇒ x = ±1.

This implies the second exact sequence. The first exact sequence follows from the fact that each reflection
has determinant −1. �

Proposition 2.10. Spin(p, q) ∼= Spin(q, p).

Proof. We consider the map of Clp,q ⊗R C on generators

ei →
√
−1ei.

This is well-defined on Cl0
p,q since it contains even number of products of

√
−1’s. �

Example 2.11. We can identify some spin groups in low dimensions

Spin(2) ∼= U(1), Spin(3) ∼= SU(2)

Spin(4) = SU(2)× SU(2), Spin(3, 1) ∼= SL∗(2, C)

Spin(6) ∼= SU(4), Spin(5, 1) ∼= SL∗(2, H).

Here SL∗(2, k) = {A ∈ GL(2, k)|det g = ±1}. This can be seen as follows.

• Spin(2). In this case we have Cl2 ∼= H = R⊕R i⊕R j⊕R k.

Spin(2) = {a + b k |a2 + b2 = 1, a, b ∈ R}.

Given φ = ek θ ∈ Spin(2), z = x i+y j ∈ R2, we have Âdφ : z→ e2 k θz.
• Spin(3). Let e1, e2, e3 be orthonormal basis of R3. Cl0

3
∼= Cl2 ∼= H. Explicitly,

H→ Cl0
3 , i→ e2e3, j→ e3e1, k→ e1e2.

Observe that the spin norm on Cl0
3 can be identified with the norm on H. It follows that

Spin(3) ∼= {a ∈H||a|2 = 1}.

Consider a two-dim representation of H by

i =

(
0 −1
1 0

)
, j =

(
0 −

√
−1

−
√
−1 0

)
, k =

(√
−1 0
0 −

√
−1

)
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It identifies

H ∼= {A ∈ M2(C)|Ā = γAγ−1}, γ =

(
0 −1
1 0

)
.

The norm of H can be identified with the determinant

t2 + x2 + y2 + z2 = det(t + xi + yj + zk).

This gives another isomorphism

SU(2) ∼= {a ∈H||a|2 = 1}.

It follows that Spin3
∼= SU(2). If we identify R3 as the imaginary part of H, then the homomor-

phism Spin(3)→ SO(3) is realized by

Âda : v→ ava†, a ∈ Spin(3) ⊂ H, v ∈ Im(H).

• Spin(4). SU(2) acts on H ∼= R4 from both sides, which gives the following map

SU(2)L × SU(2)R → GL(4, R), AL × AR : q→ ALqA−1
R .

Since the norm is given by the derminant, it actually maps to SO(4). It follows that Spin4 can be
identified with two copies of SU(2)

Spin(4) ∼= SU(2)× SU(2).

• Spin(3, 1). We consider R3,1 with metric η = diag(−1, 1, 1, 1). We define the Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Let x = {x0, x1, x2, x3} be coordinates on R3,1. The Pauli representation

x → A(x) =
3

∑
i=0

xiσi

identifies R3,1 with the space of 2× 2 Hermitian matrices. It is easy to see that

det A(x) = −
3

∑
µ,ν=0

ηµ,νxµxν.

Let SL∗(2, C) = {A ∈ GL(2, C)|det A = ±1}. Then the following Z2-covering

π : SL∗(2, C) → SO(3, 1)

N → {A(x)→ det(N)NA(x)N†}

identifies Spin(3, 1) with SL∗(2, C). The two cases det A = ±1 correspond to matrix M in SO(3, 1)
with M00 > 0 or M00 < 0. Sometimes Spin(3, 1) just refers to the universal cover SL(2, C) of the
connected component SO+(3, 1) of SO(3, 1) containing identity.
• Spin(6). Since Cl0

6
∼= Cl5 ∼= C(4), we get a map Spin(6) → SU(4) which turns out to be an

isomorphism. This can be explicitly realized as follows.
Let V = C4 with basis {e1, e2, e3, e4}. Let h be the standard hermitian metric such that h(ei, ej) =

δij. It induces a SU(4)-equivariant C-conjugate linear isomorphism

α : V → V∗, α(v)→ h(v,−).

Let ω = −e1 ∧ e2 ∧ e3 ∧ d4 ∈ ∧4V. Let us consider the composition

J : ∧2V −∧2α→ ∧2V∗ yω→ ∧2V.
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Then J is SU(4)-equivariant, C-conjugate linear, and J2 = 1. In particular, J defines a real structure
on ∧2V, whose real points can be identified with R6. The induced hermitian metric on ∧2V gives a
real metric on R6, which is preserved by SU(4). This gives a double cover

SU(4)→ SO(6)

and identifies Spin(6) ∼= SU(4).
• Spin(5, 1). Recall the reprsentation H ↪→ M2(C) above. This identifies

SL(2, H) ∼=
(

A ∈ SL(4, C)|Ā = ΓAΓ−1
)

, Γ =

(
γ

γ

)
, γ =

(
0 −1
1 0

)
.

Consider the SL(2, H)-equivariant C-conjugate linear map

J : ∧2C4 → ∧2C4, J(a ∧ b) = Γ−1 ā ∧ Γ−1b̄.

Let 〈−,−〉 be the SL(4, C)-invariant pairing on ∧2C4

〈−,−〉 : ∧2C4 ⊗∧2C4 → ∧4C4 ∼= C.

We identify R6 with real points of ∧2C4 with respect to J. In terms of standard basis {ei}4
i=1 of C4,

R6 = SpanR {e1 ∧ e2, e1 ∧ e3 + e2 ∧ e4, i(e1 ∧ e3 − e2 ∧ e4), e1 ∧ e4 − e2 ∧ e3, i(e1 ∧ e4 + e2 ∧ e3), e3 ∧ e4} .

It is easy to check that 〈−,−〉 gives R6 an inner product with signature (−1, 1, 1, 1, 1, 1). SL(2, H)

acts on R6 and preserves 〈−,−〉, leading to

SL(2, H)→ SO(5, 1).

3. SPINOR

Definition 3.1. Let A be an algebra or group over k. Let k ⊂ K. Then a K-representation of A is a k-linear
homomorphism

A→ HomK(W, W)

for a K-vector space W. Equivalently, W is a representation of A⊗k K.

In this section k = R, C or H. We are interested in k-representations of Spin(p, q).

3.1. Real spin representation. Let e1, · · · , ep+q be orthonormal basis of Rn=p+q. Define volume forms

ω = e1 · · · ep+q, ωC = i[
n+1

2 ]+qω.

ω is a central element of Cl(V, q) if n is odd. We have

ω2
C = 1, ω2 =

(−1)q n ≡ 0, 3 mod 4

(−1)q+1 n ≡ 1, 2 mod 4

Definition 3.2. For n ≡ 3 mod 4, q even, or n ≡ 1 mod 4, q odd, we define the chirality decomposition

Clp,q = Cl+p,q ⊕ Cl−p,q, Cl±p,q =
1±ω

2
Clp,q.

Similarly, for n odd in the complex case, we have chirality decomposition

Cln = Cl+n ⊕Cl−n , Cl±n =
1±ωC

2
Cln.

Example 3.3. Table 1 illustrates chirality decompositions in Euclidean and Minkowsky spaces.
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Proposition 3.4. If n ≡ 3 mod 4, q even, or n ≡ 1 mod 4, q odd, then Clp,q has two inequivalent irreducible real
representations. Otherwise Clp,q has an unique irreducible real representation.

Proof. This follows from the fact that K(n) are simple R-algebras for K = R, C, H. �

Proposition 3.5. Let n ≡ 3 mod 4, q even, or n ≡ 1 mod 4, q odd. Let W be the unique irreducible representation
of Clp+1,q, ωp+1,q be the corresponding volume form. Then

(1) ω2
p+1,q = 1, which induces a decomposition W = W+ ⊕W− as Cl0

p+1,q-modules.
(2) Under Clp,q ∼= Cl0

p+1,q, W± are the two inequivalent irreducible real representations of Clp,q.

Proof. (1) is obvious. (2) is proved by comparing the volume forms. �

Lemma 3.6. Let q even, n ≡ 3 mod 4, or q odd, n ≡ 1 mod 4. Let W± be the two irreducible representations of
Clp,q. Let

∆± : Spin(p, q) ⊂ Cl0
p,q ⊂ Clp,q → GL(W±, R)

be the induced real representations. Then ∆± are equivalent real representations of Spin(p, q).

Proof. The reflection automorphism switches Cl+p,q ↔ Cl−p,q since ω̂ = −ω. It follows that

Cl0
p,q = {x⊕ x̂|x ∈ Cl+p,q}.

The lemma follows immediately. �

Definition 3.7. We define the real spinor representation S = Sp,q of Spin(p, q) as the induced representation

∆p,q : Spin(p, q)→ GL(S, R)

from an irreducible representation S of Clp,q under Spin(p, q) ⊂ Cl0
p,q ⊂ Clp,q.

Lemma 3.6 implies that this definition is well-defined for any (p, q). By construction, ∆p,q does not come
from a representation of SO(p, q). Proposition 3.4 implies that Sp,q is reducible when n ≡ 0 mod 4, q even
or n ≡ 2 mod 4, q odd.

Example 3.8. Euclidean space.

n 1 2 3 4 5 6 7 8

Cln,0 C H H⊕H H(2) C(4) R(8) R(8)⊕R(8) R(16)
Sn,0 C H H± H2 C4 R8 R8

± R16

Irreducible R-spinors R C H H± H2 C4 R8 R8
±

Using Cln−1,0 = Cl0
n,0, we find

• n ≡ 3, 5, 6, 7 mod 8. S is irreducible, quaternion for n = 3, 5, complex for n = 6, real for n = 7.
• n ≡ 1 mod 8. S is a direct sum of two equivalent irreducible R-representations.
• n ≡ 2 mod 8. S is a direct sum of two equivalent irreducible C-representations.
• n ≡ 4 mod 8. S is a direct sum of two inequivalent irreducible H-representations.
• n ≡ 8 mod 8. S is a direct sum of two inequivalent irreducible R-representations.

Example 3.9. Minkowski space.



10 SI LI

n 1 2 3 4 5 6 7 8

Cln−1,1 R⊕R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)
Sn−1,1 R± R2 C2 H2 H2

± H4 C8 R16

Irreducible R-spinors R R± R2 C2 H2 H2
± H4 C8

• n ≡ 1, 5, 7, 8 mod 8. S is irreducible, quaternion for n = 5, 7, complex for n = 8, real for n = 1.
• n = 3 mod 8. S is a direct sum of two equivalent irreducible R-representations.
• n = 4 mod 8. S is a direct sum of two equivalent irreducible C-representations.
• n = 2 mod 8. S is a direct sum of two inequivalent irreducible R-representations.
• n = 6 mod 8. S is a direct sum of two inequivalent irreducible H-representations.

3.2. Complex spin representation. Consider VC = Cn, and ωC be the volume form as above, ω2
C = 1. We

have the chirality decomposition
Cln = Cl+n ⊕Cl−n , n odd.

The following proposition is the complex analogue of the previous discussion.

Proposition 3.10. For n even, Cln has a unique irreducible representation W. Moreover,

(1) W is decomposed W = W+ ⊕W− as Cl0
n−1-modules.

(2) Under Cln−1
∼= Cl0

n, W± are the two inequivalent irreducible representations of Cln−1.
(3) W± are equivalent SpinC(n− 1) representations under SpinC(n− 1) ⊂ Cl0

n−1 ⊂ Cln+1.

Definition 3.11. Let p + q = n. We define the complex spinor representation S = Sn of SpinC(n)

∆C
n : SpinC(n)→ GL(S, C)

to be the induced one from an irreducible representation S of Cln under SpinC(n) ⊂ Cl0
n ⊂ Cln.

Example 3.12. In the complex case, we have the following table

n 2m 2m+1

Cln C(2m) C(2m)⊕C(2m)

Sn C2m
C2m

Irreducible C-spinors C2m−1
± C2m

We have the following concrete realization of the above complex represenations.

• n = 2m . V = R2m = Cm, VC = V⊗RC = V1,0
C
⊕V0,1

C
. Let us represent

V = SpanR{dxi, dyi}1≤i≤m, V1,0
C

= SpanC{dzi}1≤i≤m, V0,1
C

= SpanC{dz̄i}1≤i≤m.

Then the Clifford action Cl(V)→ EndC(∧∗V1,0
C

) has a geometric realization

dxi → dzi − ιzi , dyi → 1√
−1

(dzi + ιzi ).

The two irreducible C-spinors S± are given by

S+ = ∧evenV1,0
C

, S− = ∧oddV1,0
C

, Sn ∼= ∧∗V1,0
C

.

Similarly there is a Clifford acton Cl(V)→ EndC(∧∗V0,1
C

) realized by

dxi → dz̄i − ιz̄i , dyi → − 1√
−1

(dz̄i + ιz̄i ).

∧∗V1,0
C

and ∧∗V0,1
C

are isomorphic Cl2m-modules under the complex conjugation.
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Proposition 3.13. Let Sn be the complex spinor representation. Then we have isomorphic Spin(n)-modules

Sn ⊗C Sn ∼=

∧∗Cn, for n even.

∧evenCn ∼= ∧oddCn, for n odd.

Proof. Assume n = 2m. By dimension reason, S2m ⊗C S2m is the irreducible Cl2m ⊗C Cl2m ∼= Cl4m-module.
On the other hand, Cl2m is the irreducible Cl2m ⊗C Cl2m-module by

Φ : Cln ⊗C Cln → EndC(Cln), Φx,y(u) = xuyt.

It follows that we have equivalent Cl2m ⊗C Cl2m-modules

S2m ⊗C S2m ∼= Cl2m.

Restricting to Spin(2m)-modules, and observing that for x ∈ Spin(2m), xt = x−1, x = x̂, we find

S2m ⊗C S2m ∼= ∧∗C2m as Spin(2m)-modules.

Assume n = 2m + 1. Cl2m+1 = Cl+2m+1 ⊕Cl−2m+1, with diagonal embedding

Cl0
2m+1 = {x⊕ x̂|x ∈ Cl+2m+1}.

Let S2m+1 denote the irreducible representation of Cl+2m+1
∼= Cl0

2m+1. Similar argument as above shows

S2m+1 ⊗C S2m+1
∼= Cl0

2m+1 = ∧evenC2m+1.

�

3.3. Spinors in physics.

Definition 3.14. Let V be a C-representation of a real group G.

• V is said to be of real type if there exists a G-equivariant real structure J : V → V (i.e. J is complex
conjugate linear and J2 = 1). The real points Re(V) = {v ∈ V|J(v) = v} is a R-representation of G.
• V is said to be of quaternionic type if there exists a G-equivariant quaternionic structure J : V → V

(i.e. J is complex conjugate linear and J2 = −1). We can define symplectic real points on even copies
of V as follows: let

ΦJ =

(
0 J
−J 0

)
: V2m → V2m,

which defines a G-equivariant real structure on V2m. Then ReΦJ (V
2m) defines a real G-representation.

Various spinors in physics terminology have the following interpretation.

(1) Dirac spinor. Sn=p+q gives a C-representation of Spin(p, q) under an isomorphism

Spin(p, q)⊗R C ∼= SpinC(n).

This representation is called a Dirac spinor.
(2) Weyl spinor. When n = 2m is even, Sn is decomposed into two irreducible C-representations

Sn = S+
n ⊕ S−n .

Each S±n is called a Weyl spinor.
(3) Majorana spinor. If the C-representation Sn=p+q of Spin(p, q) is of real type, then its real points Mn

is called a Majorana spinor.
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(4) Symplectic-Majorana spinor. If the C-representation Sn=p+q of Spin(p, q) is of quaternionic type,
we can impose the symplectic-Majorana reality condition. The symplectic real points of even copies
of Sn is called a symplectic-Majorana spinor.

(5) Majorana-Weyl spinor. When n = 2m = p + q is even and the weyl spinors S±n are of real type,
then the real points are called Majorana-Weyl spinors.

(6) Symplectic-Majorana-Weyl spinor. When n = 2m = p + q is even and the weyl spinors S±n are of
quaternionic type, we can impose the symplectic-Majorana-Weyl reality condition. The symplectic
real points of even copies of S±n is called a Symplectic-Majorana-Weyl spinor.

Example 3.15 (Euclidean space). The real and complex representations for Euclidean spaces are summa-
rized as follows.

n 1 2 3 4 5 6 7 8

Cln,0 C H H⊕H H(2) C(4) R(8) R(8)⊕R(8) R(16)
Sn,0 C H H± H2 C4 R8 R8

± R16

Irred R-spinor R (M) C (W) H (SM) H± (SMW) H2 (SM) C4 (W) R8 (M) R8
± (MW)

Cln C⊕C C(2) C(2)⊕C(2) C(4) C(4)⊕C(4) C(8) C(8)⊕C(8) C(16)
Sn C C2 C2 C4 C4 C8 C8 C16

Irred C-spinors C C± C2 C2
± C4 C4

± C8 C8
±

(1) n ≡ 8 mod 8. The two chiral irreducible R-spinors are Majorana-Weyl (MW) spinors.
(2) n ≡ 4 mod 8. The two chiral irreducible R-spinors are Symplectic-Majorana-Weyl (SMW) spinor.
(3) n ≡ 2, 6 mod 8. The irreducible chiral C-spinors are Weyl spinors. They give rise to equivalent

R-spinors which are complex conjugate of each other.
(4) n ≡ 1, 7 mod 8. The irreducible R-spinors are Majorana spinors.
(5) n ≡ 3, 5 mod 8. The irreducible R-spinors are Symplectic-Majorana spinors.

Example 3.16 (Minkowski space). The real and complex representations for Minkowski spaces are summa-
rized as follows.

n 1 2 3 4 5 6 7 8

Cln−1,1 R⊕R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)
Sn−1,1 R± R2 C2 H2 H2

± H4 C8 R16

Irred R-spinor R (M) R± (MW) R2 (M) C2 (W) H2 (SM) H2
± (SMW) H4 (SM) C8 (W)

Cln C⊕C C(2) C(2)⊕C(2) C(4) C(4)⊕C(4) C(8) C(8)⊕C(8) C(16)
Sn C C2 C2 C4 C4 C8 C8 C16

Irred C-spinors C C± C2 C2
± C4 C4

± C8 C8
±

(1) n ≡ 2 mod 8. The two chiral irreducible R-spinors are Majorana-Weyl (MW) spinors.
(2) n ≡ 6 mod 8. The two chiral irreducible R-spinors are Symplectic-Majorana-Weyl (SMW) spinor.
(3) n ≡ 4, 8 mod 8. The irreducible chiral C-spinors are Weyl spinors. They give rise to equivalent

R-spinors which are complex conjugate of each other.
(4) n ≡ 1, 3 mod 8. The irreducible R-spinors are Majorana spinors.
(5) n ≡ 5, 7 mod 8. The irreducible R-spinors are Symplectic-Majorana spinors.

3.4. Unitarity.
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Definition 3.17. Let V be a vector space over k 1. A k-hermitian form h is a R-bilinear pairing

h (−,−) : V ⊗R V → k

such that for any v1, v2 ∈ V, λ ∈ k

• h (v1, v2λ) = h (v1, v2) λ.
• h (v1, v2) = h (v2, v1).

h is called positive-definite if h(v, v) > 0 for any nonzero v ∈ V.

Remark 3.18. We have the alternate description of hermitian forms

(1) R-hermitian form is the same as an inner product.
(2) C-hermitian form is the same as a I-invariant sympletic pairing ω : ∧2

RV → R. Here I (I2 = −1)
defines the complex structure on V. Then

h(v1, v2) = ω(v1, Iv2) + i ω(v1, v2).

(3) H-hermitian form is the same as a sympletic pairing ωC : ∧2
CV → C such that

ωC(v1 J, v2 J) = ωC(v1, v2).

Here J : V → V (J2 = −1) is the complex conjugate linear operator defining the quaternionic
structure on V. Then

h(v1, v2) = ωC(v1, v2 J) + j ωC(v1, v2).

Note that ωC(· j, ·) defines a C-hermitian form on V.

Lemma 3.19. Let G be a finite group or compact Lie group. Let W be a k-representation of G. Then W carries a
G-invariant positive definite k-hermitian form.

Proof. Let h be any positive definite k-hermitian form. Averaging h over G gives a desired hermitian form.
�

3.4.1. Euclidean space. We consider the Euclidean space Rn and unitarity of spinors.

Proposition 3.20. Let W be a k-representation of Cln. Then there exists a positive definite k-hermitian form h on W
that is invariant under Clifford multiplication by unit vectors e ∈ Rn, i.e.,

h (e · s1, e · s2) = h (s1, s2) , ∀e ∈ Rn, |e|2 = 1, si ∈W.

In particular, h leads to group homomorphism

Spin(n)→


SO(W) k = R

SU(W) k = C

Sp(W) k = H.

Proof. Consider the finite group with presentation

Γn =
〈

e1, · · · , en,−1|e2
i = −1, (−1)2 = 1, eiej = (−1)ejei, (−1)ei = ei(−1)

〉
.

Then W carries a representation of Γn such that (−1) acts as −Id. Then h is given by a Γn-invariant positive
definite k-hermitian form. �

1When k = H, V is a right H-module
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Remark 3.21. For later applications, we collect formulae for real dimensions
dimR SO(n) = 1

2 n(n− 1)

dimR SU(n) = n2 − 1

dimR Sp(n) = n(2n + 1).

Example 3.22. The irreducible real spinor of Euclidean R6 is C4. This leads to an isomorphism

Spin(6)→ SU(4).

This is explicitly realized in Example 2.11.

3.4.2. Minkowski space. Now we consider the Minkowski space. Let {ei}i=1,··· ,n be the orthonormal genera-
tors of Cln,0. Then the generators ẽ0, ẽ1, · · · , ẽn−1 of Cln−1,1 can be realized inside Cln via

ẽ1 = e1, · · · , ẽn−1 = en−1, ẽ0 =
√
−1en.

Let S be a C-representation of Cln, with a C-hermitian form h by Proposition 3.20. Then

h (ẽ0s1, s2) = h (s1, ẽ0s2) , h (ẽis1, s2) = −h (s1, ẽis2) , 1 ≤ i ≤ n− 1.

Let us denote
〈s1, s2〉0 = h (ẽ0s1, s2) .

Then 〈s1, s2〉 is a C-hermitian form satisfying

〈s1, ẽis2〉0 = 〈ẽis1, s2〉0 , 0 ≤ i ≤ n− 1.

In particular, 〈−,−〉0 is Spin(n− 1, 1)-invariant but not positive definite.

Proposition 3.23. Let x ∈ ∧kRn−1,1 ⊂ Cln−1,1. Then

〈s1, x · s2〉0 = (−)k(k−1)/2〈s2, x · s1〉0.

In particular, ik(k−1)/2 〈s, xs〉0 is real.

Remark 3.24. In physics application, this proposition shows the reality of the following expression∫
ψ†γ0(iγµ∂µ −m)ψ.

3.5. Charge conjugation.

Definition 3.25. Let S be a k-representation of Spin(p, q). We define a charge conjugation on S to be a
Spin(p, q)-invariant non-degenerate bilinear form C : S⊗kS→ k.

We consider charge conjugation for complex spinors.

Definition 3.26. Let Cl(V) be a Clifford algebra, W be a Clifford k-module. We define two Clifford struc-
tures ons its k-linear dual, denoted by W∨, W∨̄ respectively, via

W∨ : (x · ϕ)(w) = ϕ(xt · w), ∀w ∈W, x ∈ Cl(V).

and
W∨̄ : (x · ϕ)(w) = ϕ(x̂t · w), ∀w ∈W, x ∈ Cl(V).

They induce identical spin representations. A charge conjugation C on W is a Clifford module isomorphism
between W and W∨ or W∨̄.
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Equivalently, C can be viewed as a non-degenerate bilinear form C : W⊗kW → k such that

C(e · s1, s2) = ηC(s1, e · s2) ∀si ∈W, e ∈ V.

Here η is either +1 or −1. We divide our discussion into cases when n is even or odd.

3.5.1. n=2m.

Lemma/Definition 3.27. Let S2m be the complex spin representation. Then there exists unique (up to rescaling)
Cl2m-module isomorphisms

C+ : S2m → S∨2m, C− : S2m → S∨̄2m.

The corresponding charge conjugation is denoted by

C± : S2m ⊗C S2m → C.

It satisfies the following symmetry properties

C±(α, β) = (−)m(m∓1)/2C±(β, α) , α, β ∈ S2m.

Proof. The definition of C± follows from the uniqueness of Cl2m-representation.

To see the symmetry property, we use the presentation in Example 3.12. Let V = R2m = Cm, VC =

V⊗RC = V1,0
C
⊕V0,1

C
. Let us represent S2m = ∧∗V1,0

C
. Then the pairing

C± : ∧∗V1,0
C
⊗∧∗V1,0

C
→ ∧mV1,0

C
∼= C

is given by

C+(α, β) = (αt ∧ β)top, C−(α, β) = (α̂t ∧ β)top, α, β ∈ ∧∗V1,0
C

.

Here (dzi1 · · · dzik )
t = dzik · · · dzi1 , ̂(dzi1 · · · dzik )

t
= (−1)kdzik · · · dzi1 . The symmetry property follows.

�

Definition 3.28. Let VC = C2m. We define the pairing

Γk
± : S2m ⊗C S2m → ∧kV∨C

by the formula

Γk
±(s1, s2)(α) = C±(s1, α · s2)

where α · s2 is the Clifford action.

Proposition 3.29. Γk
± has the following symmetry property:

Γk
±(s1, s2) = (−1)k(k∓1)/2+m(m∓1)/2Γk

±(s2, s1) , si ∈ S2m.

Proof.

Γk
±(s1, s2)(α) = C±(s1, αs2) = (±)kC±(αts1, s2) = (±)k(−)k(k−1)/2C±(αs1, s2)

=(±)k(−)k(k−1)/2(−)m(m∓1)/2C±(s2, αs1) = (−1)k(k∓1)/2+m(m∓1)/2Γk
±(s2, s1)(α).

�

Remark 3.30. Let ωC be the complex volume form. Then C± are related by

C+(·, ·) = C−(ωC·, ·).
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Remark 3.31. Note that for m + k is odd, the pairing Γk
± is in fact on different chiral spinors

Γk
± : S+ ⊗ S− → ∧kV∨C .

On the other hand, when m + k is even, then Γk
± have the same symmetry property.

3.5.2. n = 2m + 1. Let us first describe the charge conjugation. Let S = S2m+1 be the irreducible represen-
tation of Cl+2m+1. Observe that the volume form has the property

ωt = (−1)mω, ω̂t = −(−1)mω.

This implies that

S2m+1
∼=

S∨2m+1 m even

S∨̄2m+1 m odd
.

Definition 3.32. When n = 2m + 1, there is only one charge conjugation (up to rescaling) by

C+ : S2m+1 ⊗ S2m+1 → C, m even

C− : S2m+1 ⊗ S2m+1 → C, m odd

We will just denote it by C : S2m+1 ⊗ S2m+1 → C.

Lemma 3.33. The charge conjugation C has the following symmetry property

C(α, β) = (−)m(m+1)/2C(β, α) .

Proof. Let us consider the embedding

j : Cl2m ∼= Cl0
2m+1 ⊂ Cl2m+1.

It is easy to see that

j(x̂t) = j(x)t = j(x)
t
.

Therefore the symmetry property of C on S2m+1 is the same as C− on S2m for any m. �

Definition 3.34. Let VC = C2m+1. We can define the pairing

Γk : S2m+1 ⊗ S2m+1 → ∧kV∨C .

Similarly,

Proposition 3.35. Γk has the following symmetry property:

Γk(s1, s2) = (−1)k(k−1)/2+mk+m(m+1)/2Γk(s2, s1) , si ∈ S2m+1.

Note that (−1)k(k−1)/2+mk+m(m+1)/2 = (−1)(m−k)(m−k+1)/2.
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3.5.3. Majorana spinor revisited. Now we revisit the meaning of Majorana spinor for Spin(p, q). Let ei be the
Clifford generator of Cl(p, q) such that

e2
i =

−1 if 1 ≤ i ≤ p

+1 if p + 1 ≤ i ≤ n = p + q.

Let Sn be the complex spin representation. Let (−,−) be a hermitian form on Sn such that

(ei · s1, s2) = η (s1, ei · s2) , 1 ≤ i ≤ n, s1, s2 ∈ Sn.

Here η = ±1 is a fixed sign (we can choose η = (−1)q+1). In the Euclidean case, (−,−) is the hermitian
inner product with η = −1. In the Minkowski case, (−,−) = 〈−,−〉0 defined in Section 3.4.2 with η = 1.

Let C(−,−) be a charge conjugation. We define a complex conjugate linear map ∗ : Sn → Sn, s→ s∗

h(s1, s2) = C(s∗1 , s2), ∀si ∈ Sn.

For any unit generator ei and s ∈ Sn,

(ei · s)∗ = ±ei · s∗.

where the sign ± depends on the signature and charge conjugation. In particular, ∗ is Spin(n)-equivariant.

Majorana-type conditions for Sn appear precisely when ∗2 = ±1. Precisely,

(∗)2 =

1 Majorana

−1 Symplectic-Majorana
.

• When ∗2 = 1, ∗ defines a real structure. The Majorana spinors can be expressed by

s∗ = s, s ∈ Sn.

• When ∗2 = −1, ∗ defines a quaternionic structure. We need several spinors S⊕N
n to impose the

symplectic-Majorana condition

s∗ = Ωs, s ∈ S⊕N
n ,

where Ω is a anti-symmetric N × N-matrix with ΩΩ = −1.

4. POINCARÉ GROUP

The Poincaré group is the isometry group of Rp,q. We work with its universal cover and denote by

Poin(p, q) = Rp,q o Spin(p, q).

In physics, particles are organized into unitary representations of Poincaré group. There is an essential
difference between Euclidean and Minkowski cases: Spin(d) is a compact simple Lie group while Spin(d−
1, 1) is a non-compact simple Lie group. It is known that every non-trivial irreducible unitary representation
of a non-compact simple Lie group is infinite dimensional, while for compact Lie groups they are all finite
dimensional. We will focus on the Minkowski space in this section.
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4.1. Poincaré algebra. Let poin(d− 1, 1) be the Lie algebra of Poin(d− 1, 1), called the Poincaré algebra.

Let us choose linear coordinates xµ of Rd−1,1 with metric

η = −(dx0)2 + (dx1)2 + · · ·+ (dxd−1)2.

A basis of poin(d− 1, 1) can be represented by

Pµ = −i
∂

∂xµ , Mµν = −i
(

xµ
∂

∂xν
− xν

∂

∂xµ

)
satisfying the Poincaré algebra relations[

Pµ, Pν

]
= 0[

Mµν, Pρ

]
= iηµρPν − iηνρPµ[

Mµν, Mρσ

]
= iηµρMνσ − iηνρMµσ − (ρ↔ σ)

There are two Casimir operators

C1 = −P2 = −PµPµ, C2 = −1
2

P2MµνMµν + MµρPρMµσPσ.

Remark 4.1. When d = 4, C2 is the square of the Pauli-Lubanski vector

Wµ =
1
2

εµνρσMνρPσ.

Wµ commutes with Pµ, transfers as a vector under Mµν, and with its own commutator relation[
Wµ, Wν

]
= iεµνρσWρPσ.

C1, C2 essentially classify unitary irreducible representations in four dimension. More Casimir operators
are present in higher dimensions.

4.2. Unitary representation. We discuss Wigner’s classification of nonnegative-energy irreducible unitary
representations of Poin(d− 1, 1) in terms of induced representations of the little group.

The first Casimir operator

C1 = −PµPµ = m2

has the physics interpretation of mass and P0 is the energy. We only consider non-negative energy repre-
sentations, i.e., P0 ≥ 0. The second Casimir operator C2 is the spin operator. The representations will be
characterized by the mass and spin.

Let H be a irreducible unitary representation of Poin(d− 1, 1). Since the translation subgroup is Abelian,
we can decompose into common eigenvalues

H =
⊕
p∈O

Hp, Pµ = pµ on Hp .

Here O is a SO(d− 1, 1)-orbit in Rd−1,1. The eigenvalue p = {pµ} is called the momentum. Let StabO ⊂
Spin(d− 1, 1) be the stablizer subgroup of the orbit O. This is Wigner’s little group. Then H is induced by
a representation V of StabO

H = Spin(d− 1, 1)⊗StabO V

which carries a natural Poincaré group action. dim V is often called the physics degree of freedom.

• m2 > 0. This case is called massive . O is the orbit of p = (m, 0, · · · , 0). StabO = Spin(d− 1).
• m2 = 0. This case is called massless .
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– If p 6= 0, then O is the orbit of (E, 0, · · · , 0, E). StabO = Poin(d− 2, 0), which can be seen by
using the light cone coordinate

x± =
1√
2
(xd−1 ± x0).

In this light cone frame,O is the orbit of (p−, 0, · · · , 0). Then StabO is generated by {Mmn, Mm+}1≤m,n≤d−2.
The representation of Poin(d− 2, 0) is further induced: let ξm be the eigenvalue of Mm+.
∗ ξ 6= 0. The little group is Spin(d− 3). This case is called in f inite spin .

∗ ξ = 0. The little group is Spin(d− 2). This case is called helicity .

– If p = 0, then O is the origin. StabO = Spin(d− 1, 1). This case is called zero momentum .
• m2 < 0. This case is called tachyonic . O is the orbit of (0, · · · , 0,

√
−m2). StabO = Spin(d− 2, 1).

4.3. Coleman-Mandula Theorem. Let H be a unitary representation of Poin(d− 1, 1). The physics system
is described by the S-matrix, which is a Poin(d− 1, 1)-equivariant unitary operator

S : Sym(H)→ Sym(H).

H is Z2-graded and Sym is the graded symmetric product. By a symmetry of the S-matrix, we mean an
operator B : Sym(H)→ Sym(H) which is a derivation and commutes with S.

Under a suitable assumption in the massive case, Coleman-Mandula Theorem says that the Lie algebra
of all even symmetries of the S-matrix (d > 2) of is a direct sum

poin(d− 1, 1)⊕ I

I is called internal symmetry, which does not mix with Poincaré group. In the case when only massless
representations exist, Poincaré algebra may be enlarged to conformal algebra.

However, if we allow odd symmetries, then there exists nontrivial extensions of Poincaré algebra. They
are called super Poincaré algebras and classified by the Haag-Lopuszanski-Sohnius Theorem.

5. SUSY ALGEBRA

5.1. Super Lie algebra.

Definition 5.1. A super Lie algebra is a Z2-graded k-vector space g = g0 ⊕ g1 (g0 is called even and g1 is
called odd) together with a k-bilinear super Lie bracket [−,−] satisfying the following properties:

• [−,−] is even, i.e.,

[−,−] : g0 ⊗ g0 → g0, g0 ⊗ g1 → g1, g1 ⊗ g1 → g0.

• Super skew-symmetry:

[x, y] = −(−1)|x||y|[y, x].

Here |x| = i for x ∈ gi, i = 0, 1.
• Super Jacobi identity:

[[x, y], z] = [x, [y, z]]− (−1)|x||y|[y, [x, z]].

Example 5.2. Let V = V0 ⊕ V1 be a Z2-graded k-vector space. The space of linear operators Endk(V) is
naturally a super Lie algebra:
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• Endk(V) = Endk(V)0 ⊕ Endk(V)1 where

Endk(V)0 = Homk(V0, V0)⊕Homk(V1, V1), Endk(V)1 = Homk(V0, V1)⊕Homk(V1, V0).

• Given two linear operators A, B ∈ Endk(V), we define the super commutator

[A, B] = A ◦ B− (−1)|A||B|B ◦ A.

Notation 5.3. In this note, [−,−] always denote super commutator for linear operators on Z2-graded space.

Definition 5.4. A super Hilbert space is a super C-vector space H = H0⊕H1 together with a hermitian
inner product such that H0 and H1 are orthogonal. Let α : H→ H be a bounded linear operator. We define
its super adjoint α† : H→ H by

α† :=

α∗ α is even

−
√
−1α∗ α is odd

.

Here α∗ is the usual adjoint. α will be called super hermitian (or simply just hermitian in this lecture) if

α† = α.

Definition 5.5. We define the space of anti-hermitian operators on a super Hilbert space H by

u(H) := {α ∈ Hom(H, H)|α† = −α}.

A unitary representation of a super Lie algebra g on H is a super Lie algebra morphism g→ u(H).

Remark 5.6.

• Our definition of super adjoint implies that u(H) forms a super Lie algebra. In fact, the following
equation always holds

(αβ)† = (−1)|α||β|β†α†, [α, β]† = − [β, α]† .

• For an odd operator Q on H, the following expression is semi-positive definite
√
−1(QQ† + Q†Q) = QQ∗ + Q∗Q ≥ 0.

• For an odd operator, [Q, Q] = 2Q2 may not vanish.

5.2. Super Poincaré algebra. Let (V, Q) be a real vector space with quadratic from Q. Let S be a real
representation of Spin(V, Q), together with a symmetric Spin(V, Q)-equivariant pairing

Γ : S⊗ S→ V.

This defines a super Lie algebra
V ⊕ S

where V is the even component and S is the odd component. The Lie-algebra structure given by

[v1 ⊕ s1, v2 ⊕ s2] = −2Γ(s1, s2), vi ∈ V, si ∈ S.

We denote by expL the corresponding super Lie group, which is in fact the super linear space

V ×ΠS.

Here Π is the parity changing operator. ΠS means that the underlying vector space is S, but is purely odd
(fermionic). V ×ΠS carries a natural Spin(V, Q)-action with equivariant group law

(v1, s1) · (v2, s2) = (v1 + v2 +
1
2
[s1, s2], s1 + s2).
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Definition 5.7. We define the super Poincaré group (or SUSY group) by the semi-product

PoinS(V) = (V ×ΠS)o Spin(V).

Its Lie algebra
poinS(V) = V ⊕ S⊕ so(V)

is called the super Poincaré algebra (or SUSY algebra).

We will be mainly interested in super Poincaré groups PoinS(d− 1, 1) in Minkowski spaces V = Rd−1,1.
Recall the following minimal real spinors in Rd−1,1

d 1 2 3 4 5 6 7 8 10

Cld−1,1 R⊕R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16) R(32)
Irred R-spinor R (M) R± (MW) R2 (M) C2 (W) H2 (SM) H2

± (SMW) H4 (SM) C8 (W) R±(16)(MW)

dimR(Irred) 1 1 2 4 8 8 16 16 16

[h]

Definition 5.8. We introduce the following notations

• We denote our super space and super Poincaré group by

Rd−1,1 o ΠS =

Md|s

Md|(s+ ,s−)
Rd−1,1 o ΠS =

Poin(d|s) if d 6≡ 2, 6 mod 8

Poin(d|(s+, s−)) if d ≡ 2, 6 mod 8.

Here in the first case s = dimR S. In the second case, let S = S+ ⊕ S− be decomposed into copies of
two chiral components, then s± = dimR S±.
• A representation of (globla) N = n (or N = (n+, n−)) supersymmetry is a representation of

Poin(d|s) (or Poin(d|(s+, s−))) where

s = N dimR(Irred) or s± = N± dimR(Irred).

The dimensions s or s± are called the number of super charges.

SUSY algebra can be extended in various ways. In general, let us consider the decomposition

Sym2(S) ∼= V ⊕Rm ⊕
⊕

i
∧pi V.

• The first component V = Rd−1,1 gives our super Poincaré algebra.
• The second component gives several copies of R, which we can add into SUSY algebra as a central

extension. Their values in a SUSY representation are ofter called central charges.
• We can also add part of the third component into SUSY algebra. They are not central extensions,

and play the role of central charges when coupled with “extended objects” such as “D-branes”.
• Outer automorphisms of the super Poincaré algebra that commutes with the Poincaré subalgebra

are called R-symmetries.

We will be interested in unitary representations of SUSY algebra. This is similar to Wigner’s classifica-
tion. A new phenomenon arises when central charges are nonzero, leading to the notion of BPS state.

5.3. Physics degree of freedom.

Theorem 5.9. Let the super Hilbert space H = H0⊕H1 be a unitary representation of super Poincare algebra
(without the zero momentum irreducible components), then H0 and H1 have the same physics degree of freedom.
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5.4. d=2 and R×. V = R1,1. In this case

SO(1, 1) =

{
eθ J

∣∣∣∣∣θ ∈ R, J =

(
0 1
1 0

)}
∼= R>0, Spin(1, 1) = R×.

We have two Majorana-Weyl spinors R± and R± ∼= R∨∓. Then

Sym2(R±) ∼= V±, R+ ⊗R− ∼= R, V = V+ ⊕V−.

Let Q± be a basis of R±, ∂± be a basis of V±. Then N = (N+, N−)-SUSY algebra reads[
Qa

+, Qb
+

]
= −2δab∂+,[

Qã
−, Qb̃

−

]
= −2δãb̃∂−,[

Qa
+, Qb̃

−

]
= 2Zab̃

where 1 ≤ a, b ≤ N+, 1 ≤ ã, b̃ ≤ N−. Zab̃ are central charges.

For unitary representations, the reality condition reads

(Qa
+)

† = Qa
+, (Qã

−)
† = Qã

−.

For example, consider unitary representation of N = (1, 1) SUSY algebra. We have

1
4
[Q+ ±Q−, Q+ ±Q−] = −∂t ± Z.

Here ∂t =
1
2 (∂+ + ∂−) is the time direction, whose eigenvalue is

√
−1E. E is the energy. Reality condition

says that Z is pure imaginary and
√
−1 [Q+ ±Q−, Q+ ±Q−] =

√
−1
[

Q+ ±Q−, Q†
+ ±Q†

−

]
= [Q+ ±Q−, Q∗+ ±Q∗−] ≥ 0.

This implies the BPS bound
E ≥ |Z|.

Representations which saturate the BPS bound (when Z 6= 0) are called BPS.

5.5. d=3 and SL(2, R). V = R2,1, Spin(2, 1) = SL(2, R). The irreducible Majorana spinor S = R2 is the
fundamental representation of SL(2, R).

V can be identified with symmetric 2-by-2 matrices which are spanned by

σ0 =

(
1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
.

Let e0, e1, e2 be orthonormal basis of V. Then we have the following correspondence

v =
2

∑
µ=0

xµeµ ⇐⇒ A(v) =
2

∑
µ=0

xµσµ

|v|2 = −det(A(v)).

The Spin(2, 1)-action on V is realized by

N : A(x)→ (Nt)−1 A(x)N−1, N ∈ SL(2, C), At(x) = A(x) ∈ V.

There is a natural isomorphism of spinors

Sym2
R(S)→ V∨ ∼= V
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given by the Spin-equivariant expression

st A(v)s ∈ R, s ∈ S, v ∈ V.

This leads to the minimal N=1 supersymmetry[
Qα, Qβ

]
= −2σ

µ
αβ∂µ , 1 ≤ α, β ≤ 2.

The reality condition reads
Q†

α = Qα.

Explicitly,

[Q1, Q1] = −2∂0 − 2∂1

[Q1, Q2] = 2∂2

[Q2, Q2] = −2∂0 + 2∂1.

In particular, when ∂2 is represented by a constant, this algebra is reduced to d = 2, N = (1, 1) supersym-
metry. This is precisely the method of dimensional reduction.

d=3, N=1 =⇒ d=2, N=(1,1) .

5.6. d=4 and SL(2, C). V = R3,1, Spin(3, 1) = SL(2, C). The irreducible Weyl spinor S = C2 is the funda-
mental representation of SL(2, C).

V can be identified with hermitian 2-by-2 matrices which are spanned by Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
Let e0, e1, e2, e3 be an orthonormal basis of V. Then we have the following correspondence

v =
3

∑
µ=0

xµeµ ⇐⇒ A(v) =
3

∑
µ=0

xµσµ

|v|2 = −det(A(v)).

The Spin(3, 1)-action on V is realized by

N : A→ (N†)−1 AN−1, N ∈ SL(2, C), A = A†.

Let S̄ be the complex conjugate representation. S and S̄ are equivalent R-representations but inequivalent
C-representations of Spin(3, 1). The direct sum

S = S⊕ S̄

forms the Dirac spinor. The Clifford multiplication eµ on S is represented by gamma matrices

γµ =

(
0 σµ

σ̂µ 0

)
, γµγν + γνγµ = −2ηµν.

Here
σ̂µ = (i σ2)σ̄µ(i σ2)

t, or equivalently σ̂0 = σ0, σ̂i = −σi , 1 ≤ i ≤ 3.

The volume form is represented on S by

ω = γ0γ1γ2γ3 =

(
i σ0 0
0 − i σ0

)
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which gives the complex structure on S.

The Dirac spinor S has a quaternionic structure that is compatible with the Clifford acton. This is realized
by the complex conjugate linear map

J : S→ S, (x, ȳ)→ (i σ2y, i σ2 x̄)

which satisfies the relation

J ◦ eµ = eµ ◦ J, J2 = −1.

The charge conjugations

〈−,−〉± : S⊗C S→ C

are given by

〈s1, s2〉± =


i st

1σ2s2 s1, s2 ∈ S

± i st
1σ2s2 s1, s2 ∈ S̄

0 s1 ∈ S, s2 ∈ S̄ or s1 ∈ S̄, s2 ∈ S.

It is easy to check directly that for s1, s2 ∈ S

〈s1, s2〉± = − 〈s2, s1〉± ,
〈
s1, eµs2

〉
± = ±

〈
eµs1, s2

〉
± .

The reality properties are

〈s1, s2〉± = ± 〈s̄1, s̄2〉± , 〈J(s1), J(s2)〉± = ±〈s1, s2〉±.

By Remark 3.18, we have the H-hermitian form on S

h(s1, s2) = 〈s1, J(s2)〉+ + j 〈s1, s2〉+ , si ∈ S,

satisfying h(eµs1, s2) = h(s1, eµs2) and

h(S, S), h(S̄, S̄) ∈ j C, h(S, S̄), h(S̄, S) ∈ C.

Lemma 5.10. Let α ∈ ∧k
RV, s1, s2 ∈ S, we have

h(s1, αs2) = (−1)k(k−1)/2h(s2, αs1).

Proof.

h(s1, αs2) = h(αs2, s1) = h(s2, αts1) = (−1)k(k−1)/2h(s2, αs1).

�

Proposition 5.11. We have the following isomorphisms of Spin-representations

∧2
RS ∼= R⊕∧3V ⊕∧4V, Sym2

R(S) ∼= V ⊕∧2V.

Proof. Consider morphisms of Spin-representations

h(k) : S⊗R S→ ∧k
RV∨ ⊗R H

defined by the pairing

h(k)(s1, s2)(α) = h(s1, αs2), α ∈ ∧k
RV, si ∈ S.
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By the previous lemma,

h(k)(s1, s2)(α) =


h(k)(s2, s1)(α) ∈ j C k = 0, 4

h(k)(s2, s1)(α) ∈ C k = 1

−h(k)(s2, s1)(α) ∈ j C k = 2

−h(k)(s2, s1)(α) ∈ C k = 3

It follows that we have morphisms

∧2
RS h(k)→ ∧0V∨ ⊕∧3V∨ ⊕∧4V∨, Sym2

R S h(k)→ V∨ ⊕∧2V∨

which can be shown to be isomorphisms. The proposition follows since V ∼= V∨. �

The main part of N = 1 SUSY algebra in d = 4 is obtained from the pairing

Sym2
R(S)→ V, s→

〈
s, σ̂µ J(s)

〉
+

ηµνeν = −(stσµ s̄)eµ. σµ = ηµνσν.

The SUSY generator is a Majorana spinor {Qα}α=1,2. h(1) gives the SUSY commutator relation[
Qα, Q̄β̇

]
= −2σ

µ

αβ̇
∂µ .

For unitary representations, the reality condition reads

Q†
α = Q̄α̇.

Explicitly, we find

[Q1, Q̄1] = −2(∂0 + ∂3)

[Q2, Q̄2] = −2(∂0 − ∂3)

[Q1, Q̄2] = −2(∂1 − i ∂2)

[Q2, Q̄1] = −2(∂1 + i ∂2).

We observe that under dimensional reduction along the direction ∂3, {Re(Q1), Re(Q2)} and {Im(Q1), Im(Q2)}
give two sets of N = 1 SUSY algebra in d = 3. In other words, dimensional reduction leads to

d=4, N=1 =⇒ d=3, N=2 .

5.7. d=6 and SL(2, H). V = R5,1, Spin(5, 1) = SL(2, H). There are two symplectic-Majorana-Weyl spinor
S± ∼= H2:

S+ =

(
H

H

)
, g :

(
q1

q2

)
→ g

(
q1

q2

)
, g ∈ SL(2, H).

S− =

(
H

H

)
, g :

(
q1

q2

)
→ (g†)−1

(
q1

q2

)
, g ∈ SL(2, H).

We can identify V by 2-by-2 Hermitian quaternion matrices

V = {A ∈ M2(H)|A = A†} =
{

A(x) =

(
x0 + x5 x1 + i x2 + j x3 + k x4

x1 − i x2 − j x3 − k x4 x0 − x5

)}
xi∈R

.

where
det A(x) = −|x|2.

SL(2, H) acts on V by
g : A→ (g†)−1 Ag−1, A ∈ V, g ∈ SL(2, H).
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We also deonte their H-hermitian conjugate by

S†
+ =

(
H H

)
, g :

(
q1 q2

)
→
(

q1 q2

)
g†, g ∈ SL(2, H).

S†
− =

(
H H

)
, g :

(
q1 q2

)
→
(

q1 q2

)
g−1, g ∈ SL(2, H).

S± and S†
± are H-bimodules. Spin action on S± are right H-linear while on S†

± are left H-linear.

Consider the Dirac spinor

S = S+ ⊕ S−.

We define the Spin-equivariant H-hermitian form on S

h (−,−) : S⊗R S→H

by

h (s1, s2) = s†
1s2 = h (s2, s1), s1 ∈ S−, s2 ∈ S+.

By Remark 3.18, this is equivalent to a Spin-equivariant symplectic pairing

〈−,−〉+ : ∧2
CS→ C, such that 〈s1 j, s2 j〉+ = 〈s1, s2〉+.

〈−,−〉+ is precisely the charge conjugation C+. Explicitly,

〈s1, s2〉+ = Imj s†
1s2, s1 ∈ S±, s2 ∈ S∓,

where

Imj(z1 + j z2) = z2, zi ∈ C, z1 + j z2 ∈H.

The charge conjugation C− is given by

〈−,−〉− = 〈ω−,−〉+ .

The analogue of Pauli matrices are

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
− i 0

)
, σ3 =

(
0 j
− j 0

)
, σ4 =

(
0 k
− k 0

)
, σ5 =

(
1 0
0 −1

)
.

They represent the Clifford multiplication

eµ : S+ → S−.

Similarly we have σ̂µ representing the Clifford action

eµ : S− → S+

by

σ̂µ = {σ0,−σ1,−σ2,−σ3,−σ4,−σ5}, σ̂µ = i σ2σ̄µ(i σ2)
−1.

They together represent the Clifford multiplication eµ on S+ ⊕ S− by

γµ =

(
0 σµ

σ̂µ 0

)
, γµγν + γνγµ = −2ηµν.

Proposition 5.12. We have isomorphisms of spin representations

Sym2
R(S±) ∼= V ⊕ 3∧3

± V, ∧2
R(S±) = 3V ⊕∧3

±V, S+ ⊗R S− = 2∧even V.

Here ∧3
±V ⊂ ∧3

RV are ±1-eigenvectors of the Hodge star operator ? : ∧3
RV → ∧3

RV.



LECTURES ON GEOMETRY OF SUPERSYMMETRY 27

Proof. The pairing

Sym2
R(S+)→ V∨ ∼= V

is realized by

h(s, vs) ∈ R, s ∈ S+, v ∈ V.

Three copies of

Sym2
R(S+)→ ∧3

+V∨ ∼= ∧3
+V

are realized by

h(s, αs) ∈ Im(H), s ∈ S+, α ∈ ∧3
+V.

To see the self-duality, we observe that Clifford multiplication by the volume form ω

ω : ∧∗V → ∧6−∗V

is the Hodge star. For s ∈ S+, α± ∈ ∧3
±V,

h(s, α±s) = h(ωs, α±s) = h(s, ωα±s) = ±h(s, α±s).

�

N = (1, 0) SUSY algebra in d = 6 is obtained by

Sym2
R(S)→ V.

{εαQα, εβQβ} = −2ε̄ασ
µ
αβεβ∂µ , ε1, ε2 ∈H.

Dimensional reduction leads to

d=6, N=(1,0) =⇒ d=4, N=2 .

5.8. d=10. V = R9,1, Cl9,1 = R(32). This case is related to the Octonions. We give a detailed discussion
later in N=1 super Yang-Mills theory.

We have two Majorana-Weyl spinors S± = R16
± , which are dual of each other by a natural pairing

〈−,−〉 : S+ ⊗R S− → R,
〈
eµ−,−

〉
=
〈
−, eµ−

〉
.

Here e0, e1, · · · , e9 is an orthonormal basis of V. The pairingΓk : S± ⊗R S± → Vk k odd

Γk : S+ ⊗R S− → Vk k even

leads to the isomorphisms of spin representations

S± ⊗R S± = V ⊕∧3V ⊕∧5
±V

S+ ⊗R S− = R⊕∧2V ⊕∧4V

where ∧5
±V are the ±1-eigenvectors of the Hodge star ? : ∧5V → ∧5V. The symmetry properties are

Sym2
R S± = V ⊕∧5

±V, ∧2
RS± = ∧3V.

We can have chiral supersymmetry in d = 10 from either Sym2 S± → V.
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6. N=1 SUPER YANG-MILLS

6.1. Normed division algebra.

Definition 6.1. A normed division algebra K is a (finite-dimensional, possibly nonassociative) R-algebra
equipped with a multiplicative unit and a norm | · | : K→ R satisfying

|a · b| = |a||b|, ∀a, b ∈ K.

There are only four normed division algebras: the real numbers R, the complex numbers C, the quater-
nions H, and the octonions O. These algebras have real dimension 1, 2, 4, and 8. Each one has a conjugation
∗ : K→ K such that

(a∗)∗ = a, ab∗ = b∗a∗, |a|2 = aa∗ = a∗a, ∀a.b ∈ K.

The real part and imaginary part are defined by

Re(a) =
a + a∗

2
, Im(a) =

a− a∗

2
.

The norm is polarized to an inner product on K by

(a, b) = Re(ab∗) = Re(a∗b).

Example 6.2. O can be represented by two copies of H with

(p, q) · (r, s) = (pr− s∗q, sp + qr∗), (p, q)∗ = (p∗,−q).

O is neither commutative nor associative.

We define the associator

[−,−,−] : K×K×K→ K, [a, b, c] = (ab)c− a(bc).

For normed division algebra, this is only nontrivial for K = O. In this case it is easy to see that

[−,−,−] : ∧3(O/R)→ Im(O).

The fact that the associator is completely anti-symmetric (such property is called alternative) implies that
the subalgebra generated by any two elements of O is associative. In particular, this implies that

Re((ab)c) = Re(a(bc)) = cyclic permutations, ∀a, b, c ∈ O.

Given a normed division algebra K, we consider the vector space

V = {A ∈ M2(K)|A = A†} =
{

A(x) =

(
t + x y

y∗ t− x

)}
t,x∈R,y∈K

.

V is the Minkowski space whose inner product is identified with determinant

|v|2 = −det(v), v ∈ V.

The spin group Spin(V) is naturally identified with SL(2, K). Let us define

ṽ =

(
t− x −y
−y∗ t + x

)
, for v =

(
t + x y

y∗ t− x

)
.

Then it is easy to see that

vṽ = ṽv = −|v|2, ∀v ∈ V.
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The inner product is polarized as

(v1, v2) = −
1
2

Re Tr(ṽ1v2).

The Dirac spinor is given by

S = S+ ⊕ S−

where each S± ∼= K2 as a vector space. The Clifford multiplication is

γ : V → End(S+ ⊕ S−), γ(v) =

(
0 ṽ
v 0

)
,

that is,

γ(v) = v : S+ → S−, γ(v) = ṽ : S− → S+.

The charge conjugation

〈−,−〉+ : Sym2
R(S)→ R

is induced by

S+ ⊗ S− → R, 〈A, B〉+ = Re(A†B).

It is compatible with Clifford multiplication as a consequence of the property of associator

〈γ(v)A, B〉+ = 〈A, γ(v)B〉+ .

It leads to the pairing for chiral SUSY algebra

Γ : S± ⊗R S± → V, (v, Γ(A, B)) = 〈A, γ(v)B〉+ , ∀v ∈ V, A, B ∈ S±.

Explicitly, we can check that

−Γ(A, B) =

 ˜AB† + BA† A, B ∈ S+

AB† + BA† A, B ∈ S−

Proposition 6.3 (3-ψ’s rule). For any ψ ∈ S±,

Γ(ψ, ψ) · ψ = 0 .

Here · is the Clifford multiplication. Equivalently, for any A1, A2, A3 ∈ S±,

Γ(A1, A2) · A3 + Γ(A2, A3) · A1 + Γ(A3, A1) · A3 = 0.

Proof. Assume ψ ∈ S+, then

Γ(ψ, ψ) · ψ = −2(ψ̃ψ†)ψ = 2(ψψ† − Tr ψψ†)ψ = 2[ψ, ψ†, ψ] = 0.

�
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6.2. N=1 Super Yang-Mills. We consider a principle G-bundle over the Minkowski space V

P→ V.

The charge conjugation 〈−,−〉+, Killing pairing on the Lie algebra g of G, and the Minkowski metric on V
define an inner product on Ω∗(V, g) and a pairing between Ω∗(V, S± ⊗ g), all denoted by 〈−,−〉. We will
always identify V ∼= V∨ when its meaning is clear from the context.

The field space of N=1 super Yang-Mills theory is given by the superspace

E = Ω1(V, g)⊕Ω0(V, S+ ⊗ g).

Here A ∈ Ω1(V, g) is even and represents a connection 1-form, while ψ ∈ Ω0(V, S+ ⊗ g) is odd and
represents a fermion. We consider the following odd action of S+ on E by

S+ : Ω0(V, S+ ⊗ g)→ Ω1(V, g), ε : ψ→ Γ(ε, ψ)

and
S+ : Ω1(V, g)→ Ω0(V, S+ ⊗ g), ε : A→ 1

2
FA · ε.

Here FA = dA + 1
2 [A, A] is the curvature 2-form, and · is the Clifford multiplication. In terms of the usual

convention of variation,

δε A = Γ(ε, ψ), δεψ =
1
2

FA · ε.

Definition 6.4. Consider the following lagrangian density on E

L[A, ψ] =
1
4
〈FA, FA〉+

1
2
〈ψ, /DAψ〉 .

Here /DA = /D + A and /D = γµ∂µ is the Dirac operator. N=1 super Yang-Mills functional is defined by

SN=1
YM [A, ψ] =

∫
V
L[A, ψ].

Proposition 6.5. SN=1
YM is invariant under the odd transformation

δεSN=1
YM = 0, ∀ε ∈ S+.

Proof.

δε 〈FA, FA〉 = 2 〈FA, dAδε A〉 = 2 〈d∗AFA, δε A〉+ divergence

= 2 〈ε, d∗AFA · ψ〉+ divergence = −2 〈ψ, d∗AFA · ε〉+ divergence.

Here there is an extra minus sign in the last line since ψ, ε are odd.

δε 〈ψ, /DAψ〉 = 2 〈ψ, /DAδεψ〉+ 〈ψ, δε A · ψ〉+ divergence

= 〈ψ, /DA(FA · ε)〉+ 〈ψ, Γ(ε, ψ) · ψ〉+ divergence

= 〈ψ, /DA(FA · ε)〉+ 〈ε, Γ(ψ, ψ) · ψ〉+ divergence.

Observe that
/DA(FA · ε) = (dAFA + d∗AFA) · ε = d∗AFA · ε.

It follows that
δεL =

1
2
〈ε, (ψ · ψ) · ψ〉+ divergence.

By the 3-ψ’s rule, the first term vanishes. The proposition follows. �

Let us examine the SUSY algebra relation. Let δG denote the gauge transformation

δG
λ A = dAλ, δG

λ ψ = [λ, ψ], λ ∈ Ω0(V, g).
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Proposition 6.6. For any ε1, ε2 ∈ S+,

[δε1 , δε2 ]A = −Lλ A− δG
ιλ A A, [δε1 , δε2 ]ψ = −Lλψ− δG

ιλ Aψ + /DAψ-terms

Here λ = Γ(ε1, ε2).

Proof. Since εi are odd and chiral, for αk ∈ ∧kV,

〈ε1, αk · ε2〉 =

− 〈ε2, αk · ε1〉 k = 1

〈ε2, αk · ε1〉 k = 3

It follows that

[δε1 , δε2 ]A =
1
2

Γ(ε2, (FA · ε1))− (ε1 ↔ ε2) = −ιλFA = −Lλ A− δG
ιλ A A.

Here λ = Γ(ε1, ε2) is viewed as a vector field. On the other hand,

[δε1 , δε2 ]ψ =
1
2

dAΓ(ε1, ψ) · ε2 − (ε1 ↔ ε2)

=
1
2

/DA(Γ(ε1, ψ) · ε2)−
1
2

d∗AΓ(ε1, ψ) · ε2 − (ε1 ↔ ε2)

=
1
2

/DA(Γ(ε1, ψ) · ε2 − Γ(ε2, ψ) · ε1) +
1
2
(〈ε1, /DAψ〉 ε2 − 〈ε2, /DAψ〉 ε1)

3ψ
=

1
2

/DA (Γ(ε1, ε2) · ψ) +
1
2
(〈ε1, /DAψ〉 ε2 − 〈ε2, /DAψ〉 ε1)

= −Lλψ− δG
ιλ Aψ− 1

2
Γ(ε1, ε2) · /DAψ +

1
2
(〈ε1, /DAψ〉 ε2 − 〈ε2, /DAψ〉 ε1)

�

Theorem 6.7. The solution space of equation of motions of SN=1
YM modulo gauge transformations

Crit(SN=1
YM )/Gauge

carries a representation of N=1 SUSY algebra.

Proof. This is a direct consequence of the previous two lemmas and the gauge invariance of SN=1
YM . �

Remark 6.8. Since SUSY algebra of our model is closed modulo equation of motion, we call it on-shell
supersymmetry. In case when equation of motion is not needed, we call it off-shell supersymmetry.

6.3. Berkovits construction. Berkovits gives a remarkable formulation of 10d N=1 super Yang-Mills theory
in terms of Chern-Simons type theory via pure spinor formalism. Let S+ be a minimal chiral spinor in
d = 10. Let us define the Berkovits algebra

B = Ω0(V)⊗∧(S+)⊗ Sym(S+)/Γ

Here Γ : Sym2(S+) → V gives 10 quadratic polynomials on S+, and Sym(S+)/Γ is the quotient by these
quadratic relations. Let us use {θα}1≤α≤16 to represent odd coordinate of S+, {uα}1≤α≤16 to represent even
coordinate of S+, and {xµ}0≤µ≤9 to represent coordinate of V, then

B = R{xµ}[θα, λα]/
〈
λ, eµλ

〉
.

An element λ ∈ S+ satisfying Γ(λ, λ) = 0 is also called a pure spinor in this case.

Let us define a differential

Q = λα ∂

∂θα
+ LΓ〈λ,θ〉
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where L is the Lie derivative. Then Berkovits shows [?B-superparticle] that Maurer-Carton elements of
the dga (B, Q) can be identified with Crit(Sd=10,N=1

YM )/Gauge. In particular, a Chern-Simons type action
functional can be constructed to reformulate d=10 N=1 super Yang-Mills theory.

7. SUPERSYMMETRY IN D=4

7.1. SUSY representations. Let S be the minimal Majorana spinor for V = R3,1, S̄ its complex conjugate.
We can also identify S, S̄ with the two Weyl spinors S+, S−, and the Dirac spinor is given by

S = S⊕ S̄.

The Clifford multiplication is realized by

γµ =

(
0 σ̂µ

σµ 0

)
, γµγν + γνγµ = −2ηµν

where

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σ̂0 = σ0, σi = −σi, i = 1, 2, 3.

There are isomorphisms of Spin-representations

∧2
RS ∼= R⊕∧3V ⊕∧4V, Sym2

R(S) ∼= V ⊕∧2V.

The simplest N-SUSY with scalar central charges is

(QA
α )

† = Q̄A
α̇ (Reality)[

QA
α , Q̄B

β̇

]
= −2δABσ

µ

αβ̇
∂µ[

QA
α , QB

β

]
= −2 i εαβZAB[

Q̄A
α̇ , Q̄B

β̇

]
= −2 i εα̇β̇Z̄AB

where 1 ≤ A, B ≤ N, 1 ≤ α, β̇ ≤ 2, ε12 = −ε21 = 1. ZAB are central charges and ZAB = −ZBA. The
R-symmetry group is U(N)

R : QA
α → RA

B QB
α , R ∈ U(N).

The unitary representations of SUSY algebra are similar to Wigner’s classification, except that the represen-
tation of the little group carries extra odd operators from N copies of minimal spinors.

7.1.1. N=1 massless supermultiplet. The little group is the stabilizer of Pµ = −i∂xµ = (E, 0, 0, E). Then[
Qα, Q̄β̇

]
= −2 i E(σ0

αβ̇
+ σ3

αβ̇
) = −4 i

(
E 0
0 0

)
αβ̇

.

Since Q̄β̇ = Q†
β̇
= − i Q∗

β̇
where Q∗β is the usual Hilbert space adjoint, we find

QαQ∗
β̇
+ Q∗

β̇
Qα =

(
4E 0
0 0

)
αβ̇

.

For unitary representation, Q2Q∗2 + Q∗2Q2 = 0 implies that Q2 = 0.

We consider the helicity case, then the little group is SO(2) ∼= U(1)

U(1) ↪→ Spin(3, 1) = SL(2, C), ei θ →
(

ei θ 0
0 e− i θ

)
.
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Irreducible representations are spanned by orthonormal basis

Hλ = C |λ〉 ⊕C |λ + 1/2〉

where λ represents the spin. Then

Q1 |λ〉 = 0, Q∗1 |λ〉 = 2
√

E |λ + 1/2〉 , Q∗1 |λ + 1/2〉 = 0, Q1 |λ + 1/2〉 = 2
√

E |λ〉 .

(1) λ = 0. This is called a chiral multiplet. It consists of

|0〉 scalar, |1/2〉 fermion

(2) λ = 1/2. This is called a vector multiplet or gauge multiplet. It consists of

|1/2〉 fermion, |1〉 gauge boson

(3) λ = 1. This is called a gravity multiplet. It consists of

|3/2〉 gravitino, |2〉 graviton.

7.1.2. N=1 massive supermultiplet. The little group is the stabilizer of Pµ = −i∂xµ = (m, 0, 0, 0). Then[
Qα, Q̄β̇

]
= −2 i mσ0

αβ̇
= −2 i

(
m 0
0 m

)
αβ̇

.

Equivalently,

QαQ∗
β̇
+ Q∗

β̇
Qα = 2

(
m 0
0 m

)
αβ̇

.

The little group is Spin(3) ∼= SU(2), whose irreducible C-representations J are indexed by the spin J ∈
1
2 Z≥0 with dimension 2J + 1. Then the irreducible massive representation of N=1 SUSY is represented by

J ⊕Q∗α J ⊕Q∗1Q∗2 J ∼= J ⊕
(

1
2
⊗ J
)
⊕ J.

Its dimension is 4(2J + 1).

7.1.3. N > 1 massless supermultiplet. Pµ = −i∂xµ = (E, 0, 0, E).

QA
α (Q

B
β̇
) ∗+(QB

β̇
)∗QA

α = δAB

(
4E 0
0 0

)
αβ̇

QA
α QB

β + QB
β QA

α = −2 i εαβZAB.

where 1 ≤ A, B ≤ N. For unitary representations, QA
2 = 0. This implies that ZAB = 0. The irreducible

representation is generated by a state |λ0〉 of helicity λ0 via

SpanC{Q
A1
1 · · ·Q

Ak
1 |λ0〉}1≤A1<···<Ak≤N .

The dimension is 2N . The helicity λ of QA1
1 · · ·Q

Ak
1 |λ〉 is λ0 +

k
2 .

(1) N = 2 vector multiplet. λ0 = 0. We have

λ = 0

λ =
1
2

λ =
1
2

λ = 1

We see that the N = 2 vector multiplet consists of one N = 1 vector and one N = 1 chiral multiplet.
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(2) N = 2 hyper multiplet. λ0 = − 1
2 . We have

λ = −1
2

λ = 0 λ = 0

λ =
1
2

The N = 2 hyper multiplet consists of two N = 1 chiral multiplets.
(3) N = 4 vector multiplet. λ0 = −1. We have

1× {λ = −1}

4× {λ = −1/2}

6× {λ = 0}

4× {λ = 1/2}

1× {λ = 1}.

It contains one N = 2 vector-multiplet and two N = 2 hyper-multiplet and their conjugates.

7.1.4. N > 1 massive supermultiplet. Pµ = −i∂xµ = (m, 0, 0, 0). Then

QA
α (Q

B
β̇
)∗ + (QB

β̇
)∗QA

α = 2δAB

(
m 0
0 m

)
αβ̇

QA
α QB

β + QB
β QA

α = −2 i εαβZAB

where 1 ≤ A, B ≤ N.

(1) ZAB = 0. Then this is similar to N = 1 massive case. The irreducible representation is generated
from J by (QA

α )
∗, whose complex dimemsion is 22N(2J + 1).

(2) ZAB 6= 0. To see the structure, let us start with N = 2 and

Z =

(
0 z
−z 0

)
, ZAB = εABz.

Consider the combination

ΓA
α (θ) = QA

α − ei θεαβ̇εAB(QB
β)
∗.

Then [
ΓA

α (θ), ΓA
α (θ)

∗
]
= 4(m− Im(e− i θz)).

Since the left hand side is semi-positive, we have

m− Im(e− i θz) ≥ 0 ∀θ.

Equivalently,

m ≥ |z| .
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This is called BPS bound (due to Bogomolnyi, Prasad and Sommerfeld). Elements for m = |z| are
called BPS state, which are characterized by the vanishing of ΓA

α (θ). In general, for N even and

ZAB =



0 z1

−z1 0
0 · · · 0

0
0 z1

−z1 0
· · · 0

· · · · · · · · · · · ·

0 0 0
0 zN/2

−zN/2 0


,

the BPS bound is

m ≥ |zi| , 1 ≤ i ≤ N/2.

Let us assume k BPS conditions are saturated: |zi| = m, 1 ≤ i ≤ k.
(a) k = 0. Long multiplet with 22N states, each of dim 2J + 1.
(b) 0 < k < N/2. Short multiplet with 22(N−k) states, each of dim 2J + 1.
(c) k = N/2. Ultra-short multiplet with 2N states, each of dim 2J + 1.

7.2. Superspace. Let S be a spinor for V and

Γ : Sym2 S→ V

generates the SUSY algebra. We obtain a superspace

VS = V ×ΠS

which carries a natural Spin(V)-action with equivariant group law

(v1, s1) · (v2, s2) = (v1 + v2 +
1
2

Γ(s1, s2), s1 + s2).

Let O(VS) denote smooth functions on VS, then

O(VS) = C∞(V)⊗∧∗(S∨).

Let Der(VS) be the space of super derivations on O(VS), which can be identified with vector fields on VS.
Der(VS) is a super Lie algebra

Der(VS) = Der0(VS)⊕Der1(VS).

For Di ∈ Deri(VS), f , g ∈ O(VS),

Di( f g) = (Di f )g + (−1)|i|| f | f Dig.

We choose linear coordinate xµ on V and θα on S,

xµxν = xνxµ, θαθβ = −θβθα.

A general function f on VS can be expanded by

f (x, θ) = ∑
I

f I(x)θ I , θ I = θi1 · · · θik for I = {i1 < · · · < ik}.

We will denote the left derivations with respect to coordinates

∂xµ =
∂

∂xµ ∈ Der0(VS), ∂θα =
∂

∂θα
∈ Der1(VS).
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We treat VS as a super Lie group with the above multiplication group law. Then we have∂xµ , Dα = ∂θα − Γµ
αβθβ∂

µ
x , left invariant vector fields

∂xµ , Qα = ∂θα + Γµ
αβθβ∂

µ
x , right invariant vector fields

Left and right invariant vectors super commute with each other and both satisfy SUSY Lie algebra[
Dα, Dβ

]
= −

[
Qα, Qβ

]
= −2Γµ

αβ∂xµ ,
[
Dα, Qβ

]
= 0.

This immediately implies that O(VS) is naturally a representation of our SUSY algebra.

We recall the definition of integration on superspace. Given an odd variable θ,∫
dθ(a + θb) := b.

It carries similar properties with ordinary integrations. For example∫
dθ ∂θ f = 0,

∫
dθ1dθ2 = −

∫
dθ2dθ1.

7.3. N=1 chiral multiplet. We consider N = 1 superspace in d = 4. We have Weyl spinor S and its complex
conjugate S̄. The super coordinates are denoted by xµ, θα, θ̄α̇, where 0 ≤ µ ≤ 3, 1 ≤ α, α̇ ≤ 2.

Qα = ∂θα + σ
µ

αβ̇
θ̄ β̇∂xµ Dα = ∂θα − σ

µ

αβ̇
θ̄ β̇∂xµ

Q̄α̇ = −∂θ̄α̇ − σ
µ
βα̇θβ∂xµ D̄α̇ = −∂θ̄α̇ + σ

µ
βα̇θβ∂xµ

The reality conditions are θ† = θ̄, ∂†
θ = −∂θ̄ such that Q† = Q̄. Here (−)† is the super-adjoint.

Definition 7.1. For convenience, let us introduce the notation

∂αβ̇ := σ
µ

αβ̇
∂µ .

Then the SUSY operators can be written as

Qα = ∂θα + θ̄ β̇∂αβ̇ Dα = ∂θα − θ̄ β̇∂αβ̇

Q̄α̇ = −∂θ̄α̇ − θβ∂βα̇ D̄α̇ = −∂θ̄α̇ + θβ∂βα̇

Definition 7.2. Given two Weyl spinors λα, χα, λ̄α̇, χ̄α̇, we denote

λα = εαβλβ, λα = εαβλβ, λχ = λαχα, λ̄χ̄ = λ̄α̇χ̄α̇, λσµχ̄ = σ
µ

αβ̇
λαχ̄β̇, λ̄σ̄µχ = λ̄α̇σ

µ
βα̇χβ .

Here ε12 = −ε21 = 1 = ε21 = −ε12.

Note that in the above definition the super adjoint has the property

λχ = −(−1)|λ||χ|χλ, (λχ)† = (−1)|λ||χ|χ†λ† = −λ†χ†, (λσµχ̄)† = (−1)|λ||χ|χ̄†σµλ† = λ†σ̄µχ̄† .

We denote
θ2 = θαθα, θ̄2 = θ̄α̇ θ̄α̇

which are nonvanishing since θ’s are odd. It is useful to note that

θαθβ = −1
2

εαβθ2, θ̄α̇ θ̄ β̇ =
1
2

εα̇β̇ θ̄2,
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which implies the following formula

θσµ θ̄θλ =
1
2

θ2θ̄σ̄µλ, θσµ θ̄θ̄λ̄ = −1
2

θ̄2θσµλ̄, θσµ θ̄θσν θ̄ =
1
2

θ2θ̄2ηµν

7.3.1. Super function. A general N = 1 super function can be expanded as

Φ = φ(x) + θψ(x)− θ̄ψ̄(x) + θ2m(x)− θ̄2m̄(x) + θσµ θ̄vµ(x) + θ2θ̄λ̄(x) + θ̄2θλ(x) + θ2θ̄2D(x).

From the property of super adjoint, the reality condition reads

Φ = Φ† ⇔ φ = φ†, ψ̄ = ψ†, m̄ = m†, v†
µ = −vµ, λ̄ = λ†, D = D† .

Proposition 7.3. Let O(VS) be the space of N = 1 super functions. Then

• O(VS) is naturally a SUSY representation.
• The functional ∫

VS

: O(VS)→ C, Φ→
∫

d4xdθ2dθ̄2Φ

is invariant under SUSY transformation.

Remark 7.4. Note that ∫
d4xdθ2dθ̄2Φ =

∫
d4xD(x)

where D(x) is the top θ-component in the above decomposition.

7.3.2. Chiral superfield.

Definition 7.5. A chiral superfield is a function Φ(xµ, θα, θ̄α̇) on N = 1 superspace such that

D̄α̇Φ = 0.

Since D commutes Q, chiral superfields form a representation of N = 1 SUSY. Let us denote

yµ = xµ − σ
µ

αβ̇
θα θ̄ β̇.

In the new coordinates {yµ, θα, θ̄α̇},

Qα = ∂θα Dα = ∂θα − 2θ̄ β̇∂αβ̇

Q̄α̇ = −∂θ̄α̇ − 2θβ∂βα̇ D̄α̇ = −∂θ̄α̇

If Φ is a chiral superfield, then Φ is a function of {θα, yµ} and can be expanded in components

Φ = Φ(θα, yµ) = φ(y) + θαψα(y) + θ2F(y)

= φ(x) + θψ(x)− θσµ θ̄∂µφ + θ2F(x)− 1
2

θ2θ̄σ̄µ∂µψ +
1
4

θ2θ̄2∂µ∂µφ(x).

Equivalently,

φ = Φθ=θ̄=0, ψα = DαΦ|θ=θ̄=0, F = −1
4

DαDαΦ|θ=θ̄=0.

The SUSY transformation

δε = εαQα + ε̄αQ̄α
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on chiral superfields can be read off easily
δεφ = εαψα

δεψα = 2εαF− 2ε̄β̇∂αβ̇φ

δεF = −ε̄β̇∂αβ̇ψα.

Observe that F component transforms as a total derivative under SUSY, therefore∫
d4xF(x) =

∫
d4xdθ2Φ|θ̄=0

defines a SUSY invariant functional on chiral superfields.

7.3.3. D-term and Kahler potential. Let

Och(VS) = {chiral superfields} ⊂ O(VS).

We consider n copies of chiral superfields {Φi}1≤i≤n. Given a smooth function K(zi, z̄i) on Cn, we can
define an functional

SK(Φi) =
∫

d4xdθ2dθ̄2K(Φi, (Φi)†).

Since SK comes from the D-term of a superfield, SK is automatically SUSY invariant.

Geometrically, let us think about Och(VS) as a function ring of a superspace Vch
S . Then

Φi : Vch
S → Cn

can be viewed as a σ-model whose target is Cn with Kahler potential K. It is easy to see that SK is invariant
under the transformation:

K → K(z, z̄) + f (z) + f̄ (z̄).

This implies that the above construction can be glued to a general Kahler manifold (X, ω). The space of
fields describes the σ-model

Φ : Vch
S → X

where the action functional SK is the same above with the interpretation that

Φi = Φ∗(zi)

where zi’s are local coordinates on X, and K(z, z̄) is a local choice of Kahler potential. The SUSY transfor-
mation acts on Map(Vch

S , X) via its domain geometry, and SK is SUSY invariant.

7.3.4. F-term and superpotential. Let us again consider n chiral superfields

Φ : Vch
S → Cn.

Let W(zi) be a holomorphic function on Cn. We define the following action functional

SF(Φ) =
∫

d4xdθ2W(Φi)|θ̄=0.

SInce this picks up the F-term of the chiral superfield W(Φi), this action functional is automatically SUSY
invariant. This is sometimes call the F-term construction.

In general, given a Kahler manifold (X, ω) with a holomorphic function

W : X → C,

we can define both D-term and F-term SUSY invariant action functionals on the mapping space

Φ : Vch
S → X.
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For a nontrivial W, X is necessarily non-compact.

7.4. N=1 vector multiplet. Geometrically, we consider a principal G-bundle P over the N = 1 superspace
VS. We can assume P is trivial, and g be the Lie algebra of G. Let ∇ denote the covariant derivative and

∇µ = ∇∂µ
= ∂µ + Aµ, ∇α = ∇Dα = Dα + Aα, ∇α̇ = ∇Dα̇

= Dα̇ + Aα̇

be the covariant derivatives along ∂µ, Dα, Dα̇ respectively. Here Aµ, Aα, Aα̇ are g-valued superfunctions.

Let Fµν, Fµα, Fαβ be the corresponding curvatures (along the vectors ∂µ, Dα, Dα̇).

Definition 7.6. ∇ is called a N = 1 connection if the following components vanish

Fαβ = Fαβ̇ = Fα̇β̇ = 0 .

We let AN=1 = {N = 1 connections}, and GaugeN=1 = {gauge transformations}

∇ → eS∇e−S

where S is a g-valued superfield.

Using [Dα, Dβ̇] = 2∂αβ̇, this is equivalent to

[∇α,∇β] = 0, [∇α̇,∇β̇] = 0, [∇α,∇β̇] = 2∇αβ̇ .

The Bianchi identity
[∇µ, [∇α,∇β̇]] = [[∇µ,∇α],∇β̇] + [∇α, [∇µ,∇β̇]]

implies that

2σν
αβ̇

Fµν = [Fµα,∇β̇] + [∇α, Fµβ̇]

which expresses Fµν in terms of Fµα, Fµα̇. The Bianchi identity

[∇α, [∇β̇,∇γ̇]] = [[∇α,∇β̇],∇γ̇]− [[∇β̇, [∇α,∇γ̇]].

implies that

σ
µ

αβ̇
Fµγ̇ = εβ̇γ̇Σα , and similarly σ

µ

αβ̇
Fµγ = εαγΣβ̇ .

Σ can be expressed in terms of curvatures by

Σα = −2σ
µ

αβ̇
Fβ̇

µ , Σβ̇ = −2σ
µ

αβ̇
Fα

µ .

The Bianchi identity
[∇µ, [∇α̇,∇β̇]] = [[∇µ,∇α̇],∇β̇] + [[∇α̇, [∇µ,∇β̇]]

further implies that
∇α̇Σβ = 0 and similarly ∇αΣβ̇ = 0 .

Definition 7.7. Let ∇ be a N = 1 connection. ∇ is said to be

(1) chiral if Aα̇ = 0, i.e., Dα̇ = Dα̇. We write ∇ = ∇c and define a chiral gauge transformation to be

∇c → eΛ∇ce−Λ.

Here Λ is a g-valued chiral superfield. We let

Ac = {chiral connections}, Gaugec = {chiral gauge transformations}.
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(2) anti-chiral if Aα = 0, i.e., Dα = Dα. We write ∇ = ∇ac and define an anti-chiral gauge transforma-
tion to be

∇ac → eΛ†∇ace−Λ†
.

Here Λ† is a g-valued anti-chiral sueprfield. We let

Aac = {anti-chiral connections}, Gaugeac = {anti-chiral gauge transformations}.

Proposition 7.8. There are natural identifications of quotients

AN=1/GaugeN=1 ∼= Ac/Gaugec ∼= Aac/Gaugeac.

Definition 7.9. Given a (real) N=1 connection∇, let∇c and∇ac be a choice of chiral and anti-chiral gauge.
We define the N=1 vector superfield representing the gauge transformation

∇ac = eV∇ce−V .

Here V is a g-valued real superfield: V = V†. V is defined up to the chiral gauge transformation

eV → e−Λ†
eVe−Λ

where Λ is a g-valued chiral superfield. The reality condition is compatible with ∇ac = (∇c)†.

Let us work with the chiral gauge ∇c. In the Dα component ∇c
α = Dα + Ac

α, ∇ac
α = Dα, we find

Dα = eV ◦ (Dα + Ac
α) ◦ e−V =⇒ Ac

α = e−V DαeV .

The curvature relation

[∇α,∇β̇] = 2σ
µ

αβ̇
∇µ

implies that

Dβ̇ Ac
α = 2σ

µ

αβ̇
Aµ.

In the chiral gauge, the curvature

Σα = −2σ
µ

αβ̇
Fβ̇

µ = −2σ
µ

αβ̇
[∇µ,∇β̇] = 2σ

µ

αβ̇
Dβ̇ Ac

µ = Dβ̇Dβ̇ Ac
α,

i.e.,

Σα = −D̄2(e−V DαeV) ,

which is a chiral superfield. Under the gauge transformation eV → e−Λ†
eVe−Λ, we find

Σα → eΛΣαe−Λ .

Definition 7.10. The N=1 Super Yang-Mills functional

SN=1
YM : {N=1 vector superfield}/Gauge→ C

is defined by

SN=1
YM (V) =

1
16

∫
d4xd2θ Tr ΣαΣα|θ̄=0 + c.c.

where Σα = −D̄2(e−V DαeV).
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Under the gauge transformation, the vector superfield V can be put into the form

VWZ = θσµ θ̄vµ + θ2θ̄λ̄ + θ̄2θλ + θ2θ̄2D, v†
µ = −vµ, λ† = λ̄, D† = D.

This is called Wess-Zumino gauge. Under this gauge, SN=1
YM becomes the N=1 SYM that we discussed

before, except with an extra auxiliary field D.

More general, let us introduce a complex coupling constant

τ =
Θ
2π

+
4π i

g
.

Then in the Wess-Zumino gauge,

SN=1
YM (V) =

1
32

Im
∫

d4xd2θτ Tr ΣαΣα|θ̄=0

=
1
g2

∫
d4x Tr

(
−1

4
〈F, F〉 − 1

2
〈λ, /Dλ〉+ 1

2
D2
)
+

Θ
32π2

∫
Tr F ∧ F.

7.5. N=1 gauge theory with matter. We consider N = 1 vector superfield V coupled with chiral superfields
Φ in a representation R of the gauge group G. The gauge transformation reads

Φ→ eΛΦ, eV → e−Λ†
eVe−Λ.

The full N = 1 action for gauge theory coupled with matter is

S =
∫

d4xLgauge + Lmatter + LFI

where

Lgauge =
1

32
Im
∫

τd2θ Tr ΣαΣα|, τ =
Θ
2π

+
4π i

g
,

Lmatter =
∫

d2θd2θ̄Φ†eVΦ +
∫

d2θW(Φ) +
∫

d2θ̄W(Φ)†.

Here the superpotential W(Φ) is a G-invariant holomorphic function.

The term LFI is called the Fayet-Iliopoulos term. It is present if there is a U(1) factor of the gauge group.
Let VA be the component of the vector multiplet along the abelian U(1) factor. Then

LFI = ∑
A∈abelian factors

∫
d2θd2θ̄VA

which is invariant under the gauge transformation VA → VA −Λ−Λ† for a chiral superfield Λ.

7.6. N=2 vector multiplet. An N = 2 vector multiplet consists of an N = 1 vector multiplet and an N = 1
chiral multiplet in the adjoint representation of g:

λα, Aµ N=1 vector multiplet

φ, ψα, N=1 chiral multiplet

The easiest way to construct N = 2 SUSY is to start with N = 1 SUSY and require the SU(2)R symmetry
rotating λ and ψ. Then N = 1 SUSY and SU(2)R will generate N = 2 SUSY.

The simplest N = 2 gauge action is

1
4π

Im
∫

d4x
(

τ
∫

d2θd2θ̄Φ†eVΦ +
τ

2

∫
d2θ Tr ΣαΣα

)
.
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More generally, N = 2 SUSY action for N = 2 vector multiplet is expressed by a single gauge-invariant
holomorphic function F (Φ), called the prepotential. In the abelian case of our main interest here, the
action takes the form

1
4π

Im
∫

d4x
(∫

d2θd2θ̄Φ†eV ∂F (Φ)

∂Φ
+

1
2

∫
d2θ

∂F (Φ)

∂Φ2 ΣαΣα

)
.

In other words, N = 2 SUSY relates the Kahler potential with the superpotential. When F = τ
2 Φ2, this

reduces to the above form.

7.7. N=2 hyper multiplet. An N = 2 hyper multiplet consists of two N = 1 chiral multiplets H, H̃.

q, ψα H : N=1 chiral

ψ̃†
α̇, q̃†, H̃† : N=1 anti-chiral

N = 2 SUSY is achieved by requiring SU(2)R symmetry rotating q and q̃†. The N = 2 action is∫
d4xd2θd2θ̄2(H† H + H̃†H̃) + m

∫
d4xd2θ(H̃H) + m

∫
d4d2θ̄H̃† H†.

7.8. N=2 gauge theory with matter. We consider N = 2 vector multiplet coupled with N = 2 hyper
multiplet. We have N = 2 g-valued vector multiplet V, Φ, and N = 2 hyper multiplet H, H̃ living in
conjugate representations of g. The massless N = 2 action reads

1
4π

Im
∫

d4x
(

τ
∫

d2θd2θ̄
(

Φ†eVΦ + H†eV H + H̃†e−V H̃
)
+

τ

2

∫
d2θ Tr ΣαΣα + H̃ΦH

)
.

8. SEIBERG-WITTEN THEORY

Seiberg-Witten theory deals with non-perturbative dynamics of N = 2 super-Yang-Mills theory in the
low energy limit.

8.1. Electro-Magnetic duality.

8.1.1. Dirac quantization condition. Let us consider Maxwell’s abelian gauge theory. The field strength F is
2-form on spacetime, decomposed as

F = dt ∧ E + ?(dt ∧ B)

where E = ∑3
i=1 Eidxi is the electric field and B = ∑3

i=1 Bidxi is the magnetic field. ? is the Hodge star in
Minkowski space and ?2 = −1. The field strength satisfies Maxwell equation

dF = Jm

d ? F = Je

Here Je is the electric current for the electric source, and Jm is the magnetic current. Je, Jm’s are closed
3-forms, usually representing the Poincare dual of curves in spacetime. We write

Je = qeδ(γe), Jm = qmδ(γm).

qe is called the electric charge and qm is called the magnetic charge. For example, a static electron or mono-
pole produces a current supported in the curve with xi’s fixed and moving along the time t. Even though
the monopole has not been observed in the lab, the above Maxwell equation has a manifest duality

F ↔ ?F, Je ↔ Jm

which switches the role of electric field and magnetic field.
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Geometrically, in the electric picture and away from the support of Jm, Maxwell theory describes a U(1)-
bundle with connection 1-form A such that F = dA plays the role of curvature form. For simplicity, let us
assume Jm = 0. Then Maxwell equation comes from the action functional

−1
4

∫
F ∧ ?F + 2πqe

∫
γe

A.

When γe is a loop, 2πqe
∫

γe
A represents the holonomy. There is a similar description in the magnetic

picture.

Let us assume the existence of a monopole sitting at the origin o of the space R3, in other words,

γm = Rt × {o} ⊂ Rt ×R3.

Let us consider electric current moving along γe away from the origin o with electric charge qe. Then 2πqe A
defines a connection for a U(1)-bundle on R4 − {γm}, whose curvature is 2πqedA = 2πqeF. Note

R4 − {γm} = Rt × (R3 − o)

which is topologically S2. Let S2 be the unit sphere in the space R3, then∫
S2

qeF ∈ Z

is integer valued representing the 1st Chern class. On the other hand, Maxwell equation says that∫
S2

F =
∫

B
dF =

∫
B

qmδ(γm) = qm

where B is the unit ball. It follows that
qeqm ∈ Z

which is the celebrated Dirac quantization condition. In particular, the assumption of existence of mono-
pole would imply that electric charges are integer multiples of a single unit.

Example 8.1 (Dirac monopole). The field strength of Dirac monopole is

F =
k

2|x|3 (x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2), |x| =
√
|x1|2 + |x2|2 + |x3|2, k ∈ Z.

Then E = 0 and B = − 1
2|r|3 ∑3

i=1 xidxi. Topologically, it represents the complex line bundle O(k) on P1 = S2.

In general, we can consider dyons, which are particles with both electric and magnetic charges. Consider
the configuration with two dyons moving with charges (qe, qm) and (q′e, q′m), then a similar argument gives
the Dirac quantization condition

qeq′m − qmq′e ∈ Z.

In other words, the charges (qe, qm) form a symplectic lattice.

8.1.2. SL(2, Z) duality. Let us consider Maxwell theory with a topological Θ-angle

S = − 1
4g2

∫
F ∧ ?F +

Θ
32π2

∫
F ∧ F.

If we introduce the complex coupling constant

τ =
Θ
2π

+
4π i
g2 ,

then the above action can be written as

− 1
32π

Im
∫

τ(F + i F̃) ∧ ?(F + i F̃), where F̃ = ?F.
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The physics is described by a path integral ∫
e

iS
2π .

By the topological property, 1
32π2

∫
F ∧ F represents second Chern-class an is always integer. It follows that

the physics is period in Θ by the T-transformation

T : τ → τ + 1 .

To implement the constraint dF = 0, we introduce a 1-form lagrangian multiplier AD

− 1
32π

Im
∫

τ(F + i F̃) ∧ ?(F + i F̃) +
1

8π

∫
FD ∧ F, (FD = dAD)

=− 1
32π

Im
∫

τ(F + i F̃) ∧ ?(F + i F̃) +
1

16π
Im
∫

i(FD + i F̃D) ∧ (F + i F̃), (F̃D = ?FD).

By completing the square and integrating out F, we find the dual description

FD =
4π

g2 ? F− Θ
2π

F = Im τ ? (F + i F̃).

and the dual action

SD = − 1
32π

Im
∫ −1

τ
(FD + i F̃D) ∧ ?(FD + i F̃D), where F̃D = ?FD.

We find
∫

eiS =
∫

eiSD as a ∞-dim version of Fourier transform. In particular, S and SD describe equivalent
physics, and we find the following duality S-transformation

S : τ → − 1
τ

.

When Θ = 0, this gives g→ 4π
g , which turns a strongly coupled system to weakly coupled system.

All together, T and S generate PSL(2, Z) transformations

τ → aτ + b
cτ + d

, a, b, c, d ∈ Z, ad− bc = 1.

The electric magnetic charge (qe, qm) will transform under SL(2, Z) via(
qe qm

)
→
(

qe qm

)(a b
c d

)−1

We take a closer look at the duality transformation. Let us denote

G = −8π
δS
δF

=
4π

g2 ? F− Θ
2π

F.

The action functional takes the form

− 1
16π

∫
F ∧ G.

The S-transformation gives

S :
(

F G
)
→
(

FD GD

)
=
(

F G
)(0 −1

1 0

)
Similarly, the T-transformation gives

T :
(

F G
)
→
(

F G
)(1 −1

0 1

)
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We find the general SL(2, Z)-transformation(
F G

)
→
(

F G
)

γ−1 , γ =

(
a b
c d

)
∈ SL(2, Z).

Such transformation rotates Bianchi identities and equations of motion.

Geometrically, let Ω2 be 2-forms on spacetime, and we consider

(F, G) ∈ Ω2 ⊗R2.

Ω2 carries a natural symmetric pairing via integration, and R2 carries a natural symplectic paring that is
invariant under SL(2, Z)-transformations. Therefore Ω2⊗R2 has a SL(2, Z)-invariant symplectic structure.
The expression

Lτ = {(F, G)|G =
4π

g2 ? F− Θ
2π

F} ⊂ Ω2 ⊗R2

defines a linear Lagrangian subspace parametrized by τ, whose generating function is − 1
4g2

∫
F ∧ ?F +

Θ
32π2

∫
F ∧ F. Under a SL(2, Z) transformation γ, it changes the lagrangian to

Lτ → Lγτ .

8.2. Seiberg-Witten’s exact solution. We consider N = 2 super Yang-Mills theory with gauge group
SU(2). It contains a SU(2) N = 1 vector multiplet V and a chiral multiplet Φ valued in the adjoint repre-
sentation of SU(2). The N = 2 action takes the form

S =
1

4π
Im
∫

d4x
(

τ
∫

d2θd2θ̄ Tr Φ†eVΦ +
τ

2

∫
d2θ Tr ΣαΣα

)
.

If we expand in terms of components for

λα, Aµ N=1 vector multiplet

φ, ψα, N=1 chiral multiplet

we find the lagrangian density

L =
1
g2 Tr

(
−1

4
〈F, F〉 − 1

2
〈λ, /Dλ〉 − 1

2
〈ψ, /Dψ〉+ 1

2
(Dµφ)†Dµφ + φ†[λ, ψ] + [ψ̄, λ̄]φ +

1
2
[φ†, φ]2

)
+

Θ
32π2 Tr F ∧ F

To find the low energy physics, we need to figure out the vacua (ground state) of the theory. At the semi-
classical level, a solution of vanishing energy will require

Fµν = 0, Dµφ = 0, Tr[φ†, φ]2 = 0.

The first equation says that the gauge field Aµ is pure gauge and can be chosen to be zero under gauge
transformation. Then the second equation says that φ is a constant. The third equation says that

[φ†, φ] = 0.

Then up to a SU(2) gauge transformation

φ =
1
2

(
a 0
0 −a

)
where a is a complex number labelling the vacua. Using the identification

g/G = h/W,
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we see that a nonvanishing a breaks the SU(2) gauge symmetry into U(1) with Weyl group Z2 : a → −a.
The gauge invariant quantity that parametrizes the space of vacus is

u =
1
2

a2 = Tr φ2.

Therefore we find the low energy effective theory by a family of abelian N = 2 super Yang-Mills theory
parametrized by the vacua moduli u.

By N = 2 SUSY, the low energy effective lagrangian with at most two derivatives is completely deter-
mined by a prepotential F

1
4π

Im
∫

d4x
(∫

d2θd2θ̄Φ†eV ∂F (Φ)

∂Φ
+

1
2

∫
d2θ

∂F (Φ)

∂Φ2 ΣαΣα

)
.

Seiberg and Witten figured out an exact solution of F via symmetry considerations that we now describe.

First of all, renormalization of N = 2 SUSY implies that F would take the general form

F (Φ) = Fone−loop +Finst =
i

2π
Φ2 ln

Φ2

Λ2 +
∞

∑
k=1
Fk

(
Λ
Φ

)4k
Φ2.

Here the first term is for the exact one-loop perturbative renormalization, and the second term comes from
instanton corrections. Λ is a parameter for the renormalization scale.

Geometrically, letM be the complex manifold of vacua moduli parametrized by u. The D-term has the
interpretation of Kahler metric onM, whose Kahler potential is

K = Im(āF ′(a)).

The Kahler metric is
ds2 = Im τ(a)dadā, τ(a) = F ′′(a).

The positivity of the metric requires Im τ(a) > 0.

There is an analogue of the electro-magnetic duality transformation for N = 2 super Yang-Mills. It is
again by a version of Fourier transformation

φ→ φD,F → FD

such that
φD = F ′(φ), F ′D(φD) = −φ .

It follows that

τD(aD) =
dF ′D(aD)

daD
= − da

daD
= − 1
F ′′(a)

= − 1
τ(a)

.

In other words, τ transforms

τ → − 1
τ

as what we expect for electro-magnetic duality.

To give a geometric interpretation, let us introduce a complex manifold X = C2 parametrized by (a, aD)

with a holomorphic 2-form
Ω = da ∧ daD

and a sympletic 2-form

ω =
1
2
(da ∧ dāD − daD ∧ dā).

The function a(u), aD(u) can be described by a map

f :M→ X, f ∗Ω = 0.
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This says thatM is mapped to a holomorphic lagragian submanifold of X, whose generating function gives
rise to the prepotential F (a). Then the Kahler metric onM is simply

ds2 = f ∗ω.

Note that this requires a special positivity condition: f ∗ω is a Kähler form even though ω is far from being
Kähler. There is a SL(2, Z)-action on X which preserves Ω, ω. It changes the role of a, aD as well as the
lagrangian submanifold of X, hence the prepotential.

It turns out that the pair (a, aD) has a physical meaning: for a dyon with eletric charge ne and magnetic
charge nm, its central charge from N=2 SUSY is given by

Z = ane + aDnm.

Therefore this gives also the mass formula for the corresponding BPS particle. Now we analyze the possible
monodromy property when we move around the moduli.

(1) Singularity at ∞: when u→ ∞ (a→ ∞), Fone−loop dominates the large a behaviour. Then

aD =
∂F
∂a
∼ 2i

π
a ln

a
Λ

+
ia
π

.

Under the monodromy
u→ e2πiu,

we find
a→ −a, aD → −aD + 2a.

Therefore there is an nontrivial monodromy at ∞ in the u-plane

M∞ =

(
−1 2
0 −1

)
such that (

aD

a

)
→ M∞

(
aD

a

)
(2) Singularity at small u: this is the region for strong coupling. Singularities will appear when cer-

tain BPS particle becomes massless at certain point of the moduli. It turns out that there are two
singularities

u = ±u0.

We may assume that u0 = 1. At u0, a magnetic monopole becomes massless, implying that

aD(u0) = 0.

At this point the coupling constant will become divergent, and it is better to go to the dual magnetic
picture to describe the weak coupling theory. The monopole in the dual theory will be described by
N = 2 hypermultiplet. Another analysis of one-loop renormalization implies that near aD = 0,

τD ≈ −
i
π

ln aD.

On the other hand, since aD is a good local coordinate

aD ≈ c0(u− u0).

Then

a = −F ′D(aD) = −
∫

daDτD =
i
π

aD ln aD + a0 ≈ a0 +
i
π

c0(u− u0) ln(u− u0).
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Then the monodromy around (u− u0)→ e2πi(u− u0) reads

aD → aD, a→ a− 2aD.

The monodromy matrix is

M1 =

(
1 0
−2 1

)
.

The third monodromy M−1 around the other singularity −u0 = −1 has to satisfy the relation

M1M−1 = M∞,

which is solved by

M−1 =

(
−1 2
−2 3

)
.

It turns out that the above three monodromies for (a, aD) are enough to solve the model exactly. We can
think about (a, aD) as defining a holomorphic section of a flat SL(2, Z) bundle V over

V →M∗ :=M−{±1}

whose monodromy around ±1, ∞ are described above. Consider the following family of elliptic curves

Eu : y2 = (x− 1)(x + 1)(x− u).

It becomes singular precisely when u = ±1, ∞. We find an elliptic fibration

π : E →M∗.

Now the bundle V is given by

V = R1π∗E ,

whose fiber over u is

Vu = H1(Eu, C).

We consider the following Seiberg-Witten differential

λ =

√
2

2π

ydx
x2 − 1

.

We check that λ has no pole of order 1. It follows that∮
λ : H1(Eu, Z)→ C, γ→

∮
γ

λ

is well-define. Now locally if we choose A-cycle and B-cycle on Eu such that

A · B = 1.

Then the coupling constants are given by

aD =
∮

A
λ, a =

∮
B

λ.

To get precisely our model, A is the cycle loop around the branch points at 1 and u, and B is the cycle loop
around the branch points at ±1. Observe that

τ =
daD/du
da/du

=

∮
A

dx
y∮

B
dx
y



LECTURES ON GEOMETRY OF SUPERSYMMETRY 49

where dx
y is a holomorphic 1-form on Eu. It follows that τ is an element of the upper half plane which

parametrizes the complex structure of Eu. In particular,

Im τ > 0

is achieved for a well-defined Kahler metric on the moduli space.

9. N=4 SUPER YANG-MILLS

9.1. Reduction from N=1 d=10. The easiest way to obtain N = 4 super Yang-Mills theory in d = 4 is to
start with N = 1 super Yang-Mills in d = 10 and do dimensional reduction to d = 4.

The lagrangian density of N = 1 d = 10 super Yang-Mills is

L[A, ψ] =
1
4
〈FA, FA〉+

1
2
〈ψ, /DAψ〉 .

Here A ∈ Ω1(V, g) is even and represents a connection 1-form, while ψ ∈ Ω0(V, S+ ⊗ g) is odd and
represents a chiral fermion. S+ is a 16-dim chiral spinor. If we identify Spin(9, 1) ∼= SL(2, O), then S+ = O2

is given by two copies of octonions.

We consider its dimension reduction to d = 4. If we write

R9,1 = R3,1 ×R6,

then this is amount to declare that our fields A, λ only vary along R3,1 and are constant in the extra R6.

The connection 1-form in d = 10 Aµ → Aµ 0 ≤ µ ≤ 3

A3+i → φi 1 ≤ i ≤ 6

decomposes into a connection 1-form Aµ in d = 4 and six scalars φi in the adjoint representation.

The spin group is reduced to

Spin(9, 1)→ Spin(3, 1)× Spin(6).

Spin(3, 1) plays the role of spin group in d = 4 while Spin(6) = SU(4)R plays the role of R-symmetry
group. Under this reduction, the chiral spinor S+ is decomposed into

S+ ⊗R C = (S⊗ 4̄)⊕ (S̄⊗ 4)

Here S is the Weyl spinor in d = 4, S̄ its complex conjugate, 4 is the fundamental reppresentation of SU(4),
and 4̄ its complex conjugate. Therefore the chiral fermion is reduced to four Weyl fermions

ψ→ λa
α, α = 1, 2 a = 1, 2, 3, 4.

Under dimensional reduction, the Yang-Mills term becomes∫
d4x Tr

(
1
4
〈F, F〉+ 1

2

6

∑
i=1

DµφiDµφi +
1
4

6

∑
i,j=1

[φi, φj]
2

)
.

The fermionic part becomes∫
d4x

1
2
〈
λ̄a, /DAλa〉+ 4

∑
a=1
〈λa, [φ, λa]〉+

4

∑
a=1

〈
λ̄a, [φ, λ̄a]

〉
.

Here [φ, λa] involves a bracket in g as well as a Clifford multiplication in the SU(4)R factor.
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The SUSY relations are now reduced to[
Qa

α, Q̄b
β̇

]
= −2δabσ

µ

αβ̇
∂µ, [Q, Q] = [Q̄, Q̄] = 0.

The last condition can be modified to have central charges due to certain boundary conditions.

From the point of view of N = 1 superspace, the theory contains one N = 1 vector multiplet V and three
N = 1 chiral multiplets ΦA

V = (Aµ, λ4), ΦA = (ϕA, λA), A = 1, 2, 3.

{φi}6
i=1 is related to {Re ϕA, Im ϕA}3

A=1.

9.2. Geometric Langlands twist. The twist in the context of supersymmetric gauge theories was intro-
duced by Witten. The basic idea is to twist Poincare symmetry by global symmetry to formulate the theory
on a curved manifold while preserving certain global supercharge Q. Then we can obtain a cohomological
field theory which makes Q-operation homologous. The twisting process will in general change the spins
of the original fields. The procedure is usually taken in the following steps

(1) Consider a theory on V with symmetry Spin(V)× GR, where GR is the R-symmetry group. Choose
a homomorphism

ρ : Spin(V)→ GR.

(2) Find an odd operator Q (this is one of the reason we need SUSY) such that [Q, Q] = 0 and invariant
under twisted action of Spin(V) by id× ρ.

In this case, we can use id× ρ to declare as part of the “new” Poincare symmetry (this amounts to shift
the spins of the fields) and consider observables which are Q-closed. Moreover, Q-exact observables will
drop out naturally in this sector. Since Q is a scalar in the new Poincare symmetry, it is often possible to
formulate the theory on a nontrivial manifold V while Q survives as a globally defined fermionic symmetry.

(3) If furthermore we find the energy momentum tensor Tµν to be Q-exact, then the twisted theory is
independent of the metric tensor. Precisely, varying metric is Q-homologous. This often leads to
theory which can be computed exactly at the semiclassical limit.

A typical example is that twisting N=2 super Yang-Mills theory produces Donaldson’s theory. Another
example is that twisting N = (2, 2) σ-model in two dimensions produces topological A-model and B-model
that play essential roles in mirror symmetry.

For geometric applications, we consider N = 4 in d = 4 Euclidean space with global symmetry

Spin(4)× Spin(6) ∼= SU(2)l × SU(2)r × SU(4)R.

We will indicate a complex representation of SU(n) and its conjugate by its dimension d and d̄. The super-
charges Qa

α, Q̄α̇,a lie in

(2, 1, 4̄)⊕ (1, 2, 4).

Specifying a topological twist amounts to understand how the 4 of SU(4)R is decomposed into a represen-
tation of SU(2)r × SU(2)l . There are essentially three inequivalent twists

(1) 4 → (2, 1)⊕ (2, 1). This is the Vafa-Witten twist with two scalar supercharges. It leads to explicit
test of S-duality on four-manifolds.

(2) 4 → (2, 1) ⊕ (1, 1) ⊕ (1, 1). This is “half-twisted theory” with only one scalar supercharge. It is
reminiscent of twisted N = 2 supersymmetric gauge theory.
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(3) 4 → (2, 1) ⊕ (1, 2). This is the GL twist with two scalar supercharges. It is shown by Kapustin-
Witten that this twist is related to the geometric Langlands program.

We will be interested here in the GL twist, which amounts to

ρ : SU(2)l × SU(2)r → SU(4)R, via

(
SU(2)l 0

0 SU(2)r

)
.

This embedding is compatible with an additional U(1) action

K : U(1)→ SU(4)R, via


(

eiθ

eiθ

)
0

0

(
e−iθ

e−iθ

)
 .

We will write our decomposition as

4→ (2, 1)1 ⊕ (1, 2)−1

where the superscript represents the U(1)-charge. Let us work out the field contents in the twist:

(1) The supercharges Q̄ ∈ (2, 1, 4̄) transform in the new Spin(4)×U(1) as

(2, 1)0 ⊗
(
(2, 1)−1 ⊕ (1, 2)1

)
= (1, 1)−1 ⊕ (3, 1)−1 ⊕ (2, 2)1.

We find a scalar supercharge denoted by

Ql ∈ (1, 1)−1.

The supercharges Q ∈ (1, 2, 4) transform in the new Spin(4)×U(1) as

(1, 2)0 ⊗
(
(2, 1)1 ⊕ (1, 2)−1

)
= (1, 1)−1 ⊕ (1, 3)−1 ⊕ (2, 2)1.

We find a scalar supercharge denoted by

Qr ∈ (1, 1)−1.

(2) Aµ is central for SU(4)R, hence remains as connection 1-form.
(3) φi lies in 6 of SU(4)R. Since

6 = ∧24 = ∧2
(
(2, 1)1 ⊕ (1, 2)−1

)
= (2, 2)0 ⊕ (1, 1)2 ⊕ (1, 1)−2,

we see that four components of φi becomes a 1-form φµ while two other scalers combine into a
complex scalar σ with U(1) charge 2 and its complex conjugate σ̄.

(4) λ behaves the same as supercharges. It decomposes into

λ→ (ψµ, ψ̃µ, χµν, η, η̃)

where the fields

ψ, ψ̃ ∈ (2, 2)1

are 1-forms. The fields

χ+ ∈ (3, 1)−1, χ− ∈ (1, 3)−1

are selfdual and anti-selfdual parts of a two-form χ. The fields

η ∈ (1, 1)−1, η̃ ∈ (1, 1)−1

are two 0-forms.
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We have a P1-family of topological twisted theory parametrized by

Q = uQl + vQr, [u, v] ∈ P1.

The SUSY variation can be read off by

Qφµ = ivψµ − iuψ̃ν

Qσ = 0

Qσ̄ = iuη + ivη̃.

Qχ+ = u(F− φ ∧ φ)+ + v(Dφ)+

Qχ− = v(F− φ ∧ φ)− − u(Dφ)−

Qη = vD∗φ + u[σ̄, σ]

Qη̃ = −uD∗φ + v[σ̄, σ].

Qψ = uDσ + v[φ, σ]

Qψ̃ = vDσ− u[φ, σ].

After twisting, the theory can be defined on an arbitrary four manifold M. The topological action is

S =
2
e2

∫
M

dvol Tr
(
−1

2
(D∗φ)2 +

1
2
[σ̄, σ]2 − Dµσ̄Dµσ− [φµ, σ][φµ, σ̄] + iη̃Dµψ̃µ + iηDµψµ

−iη̃[ψµ, φµ] + iη[φ̃µ, φµ]− i
2
[σ, η̃]η̃ − i

2
[σ, η]η + i[σ̄, ψµ]ψ

µ + i[σ̄, ψ̃µ]ψ̃
µ

)
− 1

e2

∫
M

dvol Tr
(

1
2

FµνFµν + DµφνDµφν + Rµνφµφν +
1
2
[φµ, φν]

2 − (D∗φ)2

−2iχµν(Dψ + i[ψ̃, φ])µν − 2iχ−µν(Dψ̃− [ψ, φ])µν − iχ+
µν[σ, χ+µν] + iχ−µν[σ, χ−µν]

)
+ i

θ

8π2

∫
M

Tr F ∧ F.

Here we again introduce the complex parameter

τ =
θ

2π
+

4π

e2 .

S itself is independent of t. However, in terms of the Qt-twisting, it can be written in the form

S = QtV +
iΨ
4π

∫
M

Tr F ∧ F

for some local action V. Here t = v/u and

Qt = Ql + tQr , Ψ =
τ + τ̄

2
+

τ − τ̄

2

(
t− t−1

t + t−1

)
.

This expression shows that S is Qt-closed, and the variation of metric is Qt-exact. Moreover, the topological
theory only depends on the coefficient Ψ, which is called the canonical parameter. The SL(2, Z) duality
transformation acts on Ψ as

Ψ→ aΨ + b
cΨ + d

,

(
a b
c d

)
∈ SL(2, Z).
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In the Qt-twisted theory, the path integral will usually be localized to subspace where the Qt-variation
of fermions vanishes. This becomes the equations (t = v/u)

(F− φ ∧ φ + tDφ)+ = 0

(F− φ ∧ φ− t−1Dφ)− = 0

D∗φ + t−1[σ̄, σ] = 0

D∗φ− t[σ̄, σ] = 0

Dσ + t[φ, σ] = 0

Dσ− t−1[φ, σ] = 0.

We will call this topological equations for the twist t. We just mention that for real t it is analogous to a
family of two-dimensional A-model, while for t = ±i it is analogous to two-dimensional B-model.

9.3. Higgs bundle and Hitchin moduli. Let C be a compact Riemann surface, G be a compact Lie group
and P→ C be a principal G-bundle. We consider pairs (A, φ) where A is a unitary connection on P and

φ ∈ Ω1,0(C, gC).

Here we have used g to denote the adjoint bundle ad P when it is clear from the context, and gC = g⊗C.
We are interested in pairs satisfying Hitchin’s equation

FA + [φ, φ∗] = 0, ∂̄Aφ = 0.

Here FA is the curvature of A, and ∂̄A is the (0,1)-part of the covariant derivative with respect to A. Hitchin’s
equation is the dimensional reduction of four dimensional self-dual Yang-Mills equation. We will denote
MH(C, G) the moduli space of solutions of Hitchin’s equations modulo gauge transformations. This mod-
uli space carries a hyperkähler structure that we now describe.

9.3.1. Hyperkähler manifold. Let us first recall the construction of symplectic reduction. Let (M, ω) be a
symplectic manifold. Let G be a connected Lie group with Hamiltonian action on M. Infinitesimally, this is
characterized by the moment map

µ : M→ g∗

where g is the Lie algebra of G. Given an element v ∈ g, the natural pairing 〈µ, v〉 is the Hamiltonian
function for the vector field on M generated by v. The classical Marsden-Weinstein Theorem says that

M // G := µ−1(0)/G

is again a symplectic manifold, whose symplectic form is induced by restricting ω to µ−1(0).

A complex structure on M is described by a bundle map

J : TM→ TM, J2 = −1

satisfying certain integrability condition. We can use J to decompose

TM⊗R C = T1,0M⊕ T0,1M

where T1,0M and T0,1M are eigenvectors of J with eigenvalues i and − i. The integrability condition says
that T1,0M is closed under commutators of vector fields.

Definition 9.1. M is a Kähler manifold if it is endowed with a triple (g, J, ω) where g is a metric, ω is a
symplectic form, J is an integrable complex structure such that the following compatibility condition holds

ω(−,−) = g(J(−),−).
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Kähler structure can be incorporated with symplectic reduction as follows. Let (M, g, J, ω) be a Kähler
manifold with a Hamiltonian isometric action by a connected Lie group G. Then the symplectic reduction
M // G is a Kähler manifold with the naturally induced Kähler structure.

Definition 9.2. A Riemannian manifold (M, g) is hyperkähler if it is equipped with three complex struc-
tures I, J, K, each of which defines a Kähler structure with g, and which satisfy the quaternion relations

I2 = J2 = K2 = −1, I J = −J I = K, JK = −KJ = I, KI = −IK = J.

On hyperkähler manifold, we have three symplectic forms

ωI(−,−) = g(I(−),−) ωJ(−,−) = g(J(−),−), ωK(−,−) = g(K(−),−).

Let M carry a G isometric action which is hamiltonian with respect to all the above three symplectic struc-
tures. We can organize three moment maps into a single one

µ : M→ g∗ ⊗R3, µ = (µI , µJ , µK).

Then the quotient

µ−1(0)/G

is naturally a hyperkähler manifold. This construction is called hyperkähler quotient.

9.3.2. Hitchin moduli as hyperkähler quotient. Let us consider an infinite dimensional space

W = A ×Ω

where A denotes the space of unitary connections on P, and Ω = Ω1(C, g).

TW = TA ⊕ TΩ = Ω1(C, g)⊕Ω1(C, g).

We define three complex structures on TW by

I(δA, δφ) = (?δA,− ? δφ)

J(δA, δφ) = (−δφ, δA)

K(δA, δφ) = (− ? δφ,− ? δA).

Here δA, δφ represent infinitesimal variation on W , and ? is the Hodge star on 1-forms. They define hy-
perkähler structure with respect to the metric

ds2 =
∫

C
Tr δA ∧ ?δA + δφ ∧ ?δφ.

The three corresponding symplectic forms read

ωI =
1
2

∫
C

Tr (−δA ∧ δA + δφ ∧ δφ)

ωJ =
∫

C
Tr (−δA ∧ ?δφ)

ωK =
∫

C
Tr δA ∧ δφ.

We consider the gauge transformation G

(A, φ)→ (gAg−1 + gdg−1, gφg−1)

whose infinitesimal form is

δ(A, φ) = (DAu, [φ, u]), u ∈ Ω0(C, g).
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It can be checked that the gauge transformation is hamiltonian with respect to the three symplectic forms.
The moment maps are given by

µI = FA −
1
2
[φ, φ]

µJ = DA ? φ

µK = −DAφ.

The vanishing locus of the moment maps are

FA −
1
2
[φ, φ] = 0, DAφ = D∗Aφ = 0.

We have found that Hitchin’s equation arises naturally as a hyerkähler quotient of W . It follows that
the Hitchin moduli MH(C, G) inherits a hyperkähler structure. We can describe this moduli in terms of
holomorphic data.

(1) We choose the complex structure I and consider the holomorphic symplectic form ΩI = ωj + i ωk.
The holomorphic moment map is

µJ + i µK = ∂̄A ϕ.

Here ∂̄A is the (0, 1)-component of the connection, defining a holomorphic G-bundle. ϕ ∈ Ω1,0(C, gC)

such that φ = ϕ + ϕ†. The vanishing of the holomorphic moment map says that ϕ defines a holo-
morphic section H0(C, KC ⊗ gC), which is called a Higgs field. The pair (∂̄A, ϕ) of a holomorphic
bundle with a Higgs field is also called a Higgs bundle. The other equation

FA − [ϕ, ϕ†] = 0

is the stability condition. From this perspective, the Hitchin moduli describes stable Higgs bundles.
(2) We choose the complex structure J and consider the holomorphic symplectic form ΩI = ωK + i ωI .

The holomorphic moment map is

µK + i µI = iF

where F is the curvature of the complex connection A + i φ. The vanishing of the holomorphic
moment map says that A + i φ defines a flat connection, or a group homomorphism

π1(C)→ GC.

The vanishing of µJ is again about stability condition.
(3) For a general complex structure

Iξ =
1− ξ̄ξ

1 + ξ̄ξ
I +

i(ξ − ξ̄)

1 + ξ̄ξ
J +

ξ + ξ̄

1 + ξ̄ξ
K,

for ξ 6= 0, ∞, an analog holomorphic moment map gives the vanishing[
∂̄A + ξϕ†, ∂A − ξ−1 ϕ

]
= 0.

They are equivalent to the case when Iξ = J.
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9.3.3. Hitchin fibration. For simplicity, we assume G = SU(N). The discussion is similarly for other compact
Lie groups. We define the Hitchin base

B =
N⊕

n=2
H0(C, Kn

C).

There exists the Hitchin fibration
π :MH(C, G)→ B

by sending a Higgs bundle (A, ϕ)

π(A, ϕ)→
N⊕

n=2
Tr ϕn.

The fibration π gives a complete integrable system for the holomorphic symplectic form ωJ + iωK onMH .

9.4. Low energy effective theory. We formulate the twisted theory on the product of two Riemann surfaces

M = Σ× C

where the size of Σ is much larger than the size of C.

We look at the low energy effective theory of the twisted theory around configurations that minimize the
topological action. Apart from the topological θ-term, the bosonic part of the action is minimized by

F = 0, D∗φ = 0, Dσ = [φ, σ] = [σ, σ̄] = 0.

Here F = dA + A ∧ A is the curvature of the complex connection A = A + iφ. This is equivalent to
topological equations for all t.

With certain appropriate assumption on the singularity, solutions of these equations is obtained by taking
A to be pullback from the curve C with σ = 0. The equations on C is

F− φ ∧ φ = 0, Dφ = D∗φ = 0

which is precisely Hitchin’s equation. Let us denote byMH for the moduli space of solutions of Hitchin’s
equations on C up to gauge transformations. Therefore the zero energy configurations are given by constant
maps Σ → MH . Assume that the size of Σ is much larger than C, the almost zero energy energy effective
theory on M = Σ× C is given by a supersymmetric σ-model

Σ→MH .

By choosing Σ = R1,1, we find that the σ-model has induced N = (4, 4) supersymmetry. This implies that
the target MH should be a hyper-Kahler manifold which is indeed the case. The topological twist Qt in
four dimension becomes a topologically twisted theory in two dimension:

(1) At t = ± i. We get B-model for the complex structure J onMH .
(2) At t = t̄ real. We get A-model for the complex structure It onMH .

Kapustin-Witten shows that S-duality maps G to its Langlands dual group LG. In particular, it identifies

MH(C, G) B-model in complex structure J
S-duality←→ MH(C, LG) A-model in complex structure K

as a mirror pair. The second one is also equivalent to A-model in complex structure J. S-duality acts on the
Hitchin fibration by T-duality on the fibers.

More generally, S-duality changes

IB ←→ IB
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IA ←→ IA

JB ←→ KA

JA ←→ KB

As we will see, boundary conditions of 2d topological theory form a category, called the category of branes.
Branes in the topological A-model are described by flat bundles on lagrangian submanifolds, and branes in
the topological B-modelare described by holomorphic bundles on holomorphic submanifolds. We can talk
about branes with respect to the three complex structures I, J, K. For example, a point p is holomorphic with
respect to any complex structure, defining a brane of type (B, B, B). Under S-duality, it will be transformed
into a brane of type (B, A, A).

9.5. Boundary conditions and line operators. We have seen that GL-twist of N=4 SYM gives rise to a P1-
family of topological field theory in four dimension. Formulated on Σ× C, its low energy effective theory
becomes topological σ-model Σ → MH(C, G) in two dimension. Let us write YG(C) for the moduli stack
of flat G-bundles on C, and ZG(C) for the moduli stack of holomorphic G-bundles. The very rough idea of
geometric Langlands correspondence asserts that the category of coherent sheaves in YLG(C) is equivalent
to the category of D-modules on ZG(C). The topological twist of N=4 SYM will be related to Geometric
Langlands when boundary conditions and line operators are considered under S-transformation.

9.5.1. TQFT. Let us first discuss some generalities about topological quantum field theory (TQFT). In terms
of the Atiyah-Segal formalism, path integrals of TQFT in n-dimension gives rise to a functor

F : (Bordn,t)→ (Vect,⊗).

Here Bordn is the category of n-dim bordisms, whose objects are oriented (n− 1)-manifolds without bound-
ary and morphisms are oriented bordisms. F is required to be monoidal sending the disjoint union

F(N1 t N2) = F(N1)⊗ F(N2)

and sending the empty manifold

F(∅) = C.

The functor F is related to the path integral as follows:

(1) Let N = ∂M. Let φ represent fields on M and φ∂ represents fields on the boundary ∂M. Typically,

F(N) = {φ∂||φ∂|L2 < ∞}

is given by certain L2-Hilbert space of boundary fields. F(M) gives rise to a vector |M〉, which is
determined by its inner product with an arbitrary element φ∂ ∈ F(N) by the path integral over φ

with fixed boundary condition φ∂

〈φ∂|M〉 =
∫

φ|∂M=φ∂

DφeiS[φ]/h̄.

(2) Let N be the orientation reversion of N, then

F(N) = F(N)∨.

(3) When ∂M = N1 t N2, similar path integrals with boundary conditions give

F(M) : F(N1)→ F(N2).
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(4) When ∂M = ∅, then

F(M) ∈ C = HomC(C, C)

is a complex number, called the partition function on M.

This definition is sufficient for n = 1, i.e., topological quantum mechanics. When n > 1, there exists finer
structures, and the above definition of TQFT will be generalized to the notion of Extended TQFT. To mo-
tivate the definition, consider a bordism M between two manifolds with boundaries (N1, ∂N1), (N2, ∂N2).
An extended TQFT F assigns a C-linear category F(∂Ni) to the (n− 2)-manifolds ∂Ni and assigns

F(Ni) ∈ Obj(F(Ni))

an object of this category. Then F assigns a morphism to the bordism M

F(M) ∈ Mor(F(N1), F(N2)).

Similar discussions apply to higher codimensional objects in n-dim TQFT. F assigns a C-linear category
to an (n− 2)-manifold, C-linear 2-category to an (n− 3)-manifold, and in general a k-category to an (n−
k− 1)-manifold. It is a subtle question on how to formulate a correction definition of n-categories that apply
appropriately to a quantum field theory. Let us live with the above naive picture so far. Another way of
saying this is that

boundary conditions of a n-dim TQFT form a (n− 1)-category.

Example 9.3. Boundary conditions in 2d extended TQFT form a C-linear category. They are known as
the category of D-branes. In topological A-model, D-branes are described by langrangian submanifolds.In
topological B-model, D-branes are described by coherent sheaves.

Besides boundary conditions, we can also talk about defects. Consider a TQFT on M and let L ⊂ M be
a submanifold of dim k. Roughly speaking, a defect on L is a local modification of states supported on L.
0-dim defects are local operators, 1-dim defects are line operators, 2-dim defects are surface operators and
etc. The point is that

k-dim defects of a TQFT form a k-category.

The idea is that we can view a k-dim defect on L as a boundary conditions for an effective (k + 1)-TQFT
with time direction pointing to the normal direction of L inside M. For example, a local operator creates a
state of the Hilbert space. As an illustration, we consider a path integral∫

DφeiS[φ]OL(φ)

whereOL is an operator supported at L. Let N be a tuber neighborhood of L. The path integral over M−N
creates a vector in the Hilbert space F(∂N) associated to ∂N. On the other hand, ∂N is a Sn−k−1-bundle over
L, and N− L can be viewed as giving an effective theory on L× I, whose boundary conditions are given by
the k-category F(Sn−k−1). The local operator OL creates a vector in the effective Hilbert space associated to
L, or a vector in F(∂N). Then the above path integral is simply the inner product of these two vectors.

The above idea of effective theory is related to the notion of Kaluza-Klein reduction. In general, suppose
we have a TQFT on the product Mk × Nn−k, we can get an effective TQFT on Mk. The boundary condi-
tions of the effective theory is precisely given by the (k− 1)-category F(Nn−k). However, the fact that the
theory comes from higher dimension is reflected by the fact that the boundary conditions carry additional
structures from the internal N. As an illustration, consider the case when N = [0, 1] is an interval. Then
objects of the boundary condition F(I) on Mk are 1-morphisms, which carries a natural monoidal structure.



LECTURES ON GEOMETRY OF SUPERSYMMETRY 59

Turning this around, if the boundary conditions of the theory on M carries a monoidal structure, it is very
likely that it comes from a higher dimensional theory.

9.5.2. Wilson and ’t Hooft operators. Geometric Langlands is a statement above two categories living on two
dimensional space C. With a physics interpretation, it is natural from a duality on four dimensional TQFT.

This is precisely what Kapustin-Witten formulated: Geometric Langlands is related to the S-duality of
the GL-twist of 4d N=4 SYM on Σ×C. In terms of effective 2d topological σ-model, coherent sheaves come
from the D-brane category of topological B-model, while flat bundles/D-modules come from the D-brane
category of topological A-model.

In our discussion of Electro-Magnetic duality for Maxwell’s equations

dF = Jm

d ? F = Je

The currents Jm, Je are supported on one-dimensional objects, which can be viewed as line defects. Je is
coupled to the gauge connection via the Wilson line operator∫

Je
A.

On the other hand, Jm creates certain singularity for A, which is called the ’t Hooft line operator. Under
S-duality transformation, Wilson line operators and ’t Hooft line operators transform to each other.

In the non-abelian case, we pick a representation R of the gauge group G to get the Wilson loop operator
as the holonomy around a loop S

W(R, S) = TrR P exp
(∮

S
A
)

.

Similarly, for a loop S, we can associate the ’t Hooft operator T(ρ, S) by specifying the singularity of the
connection along a U(1)-component of the gauge group, i.e. , a homomorphism ρ : U(1) → G. Such ρ

picks essentially a representation LR of the dual group LG. So we also denote the ’t Hooft operator by
T(LR, S). Again, S-duality transforms G to LG and turn Wilson and ’t Hooft operators into each other.

At i = ±1 (Ψ = ∞), we get an effective topological model for the complex structure J on MH . The
Wilson loop operator can be completed into a topological operator by replacing A → A± i φ. Similarly,
at t = 1, τ = imaginary (Ψ = 0), we can define topological t’ Hooft operator by picking up a compatible
singular behaviour of φ along S.

In the effective 2d topological model, we put topological line operator Xp of the form L× p ⊂ Σ× C.
Here L is a line or loop on Σ, and p is a point on C. When L is approaching the boundary ∂Σ, Xp acts
on boundary conditions in the 2d topological theory. Because of the extra freedom to move around C,
operators Xp will all commute with each other. In summary, we find

Xp’s form commuting functors on the category of branes in 2d topological theory

It makes sense to talk about a joint eigenbrane for relevant line operators. A joint eigenbrane of the Wilson
line operators will be called an electric eigenbrane, and a joint eigenbrane of the ’t Hooft line operator will
be called an magnetic eigvenbrane.

Kapustin-Witten argued that S-duality transforms the (B, B, B)-brane of a single point ofMH(C, G) to
the (B, A, A)-brane of a lagrangian fiber of the Hitchin fibration ofMH(C, LG). It enjoys features of SYZ
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mirror transformation. The above (B, B, B)-brane will be an electric eigenbrane, and the dual (B, A, A)-
brane will be a magnetic eigenbrane. The ’t Hooft line operators at t = 1, τ = imaginary will correspond to
the Hecke operators of the geometric Langlands program.
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