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Preface

This book is based on the lectures on partial differential equations that I
have given for many years at UCLA. It does not assume any knowledge
of partial differential equations and can be considered as a first graduate
course in linear PDE. However, some basic knowledge of the Fourier trans-
form, Lebesgue integrals and elementary functional analysis is required. It
is organized as lecture notes with emphasis on clarity and accessibility.

We shall briefly describe the content of the book. The first three chap-
ters are the elementary theory of distributions and Fourier transforms of
distributions with applications to partial differential equations with con-
stant coefficients. It is similar to the first chapters of the books by Gelfand
and Shilov [GSh] and Shilov [Sh]. Additional material includes the wave
front sets of distributions, Sobolev spaces, the stationary phase lemma, the
radiation conditions, and potential theory.

In Chapter IV the Dirichlet and the Neumann boundary value problems
are considered for second order elliptic equations in a smooth bounded do-
main. The existence, uniqueness, and regularity of solutions are proven. A
nontraditional topic of this chapter is the proof of the existence and unique-
ness of the solutions of the Neumann and Dirichlet problems for homoge-
neous equations in Sobolev spaces of negative order on the boundary.

Chapter V is devoted to scattering theory including inverse scattering,
inverse boundary value problem, and the obstacle problem.

Chapter VI starts with the theory of pseudodifferential operators with
classical symbols. It is followed by the theory of parabolic Cauchy problems
based on pseudodifferential operators with symbols analytic in the half-plane
and heat kernel asymptotics.

xv



xvi Preface

The next topic of Chapter VI is the Cauchy problem for hyperbolic equa-
tions of order m ≥ 2, the domains of dependence of solutions to hyperbolic
equations, and Hörmander’s theory [H1] of propagation of singularities for
the equations of real principal type with applications to hyperbolic equa-
tions.

In Chapter VII the Fredholm property for elliptic boundary value prob-
lems and parametrices in smooth domains are studied following the approach
of the author’s book [E1]. The main application of the parametrix is the
study of heat trace asymptotics as t → 0. The parametrix construction
allows one to compute explicitly two leading terms of the heat trace asymp-
totics for the cases of Dirichlet and Neumann boundary conditions. Chapter
VII concludes with elements of the spectral theory of elliptic operators and
the proof of the index theorem for elliptic operators in Rn following the
works of Atiyah-Singer [AtS1], [AtS2] and Seeley [Se3].

The last Chapter VIII is devoted to the theory of Fourier integral opera-
tors. Starting with the local theory of FIO, we proceed to the global theory.
We consider only a subclass of Hörmander’s FIOs (see [H1]), assuming that
the Lagrangian manifold of the FIO corresponds to the graph of a canoni-
cal transformation. In particular, having a global canonical transformation,
we construct a global FIO corresponding to this canonical transformation.
Next, following Maslov [M1], [M2], [MF], we construct a global geomet-
ric optic solution for a second order hyperbolic equation on arbitrary time
interval [0, T ].

Chapter VIII concludes with a section on the oblique derivative prob-
lem. The oblique derivative problem is a good example of nonelliptic bound-
ary value problem, and it attracted the attention of many mathematicians:
Egorov-Kondrat’ev [EgK], Malutin [Mal], Mazya-Paneah [MaP], Mazya
[Ma], and others. The section is based on the author’s paper [E3], and it
uses the FIOs to greatly simplify the problem. Similar results are obtained
independently by Sjöstrand [Sj] and Duistermaat-Sjöstrand [DSj].

At the end of each chapter there is a problem section. Some problems are
relatively simple exercises that help to study the material. Others are more
difficult problems that cover additional topics not included in the book. In
those cases hints or references to the original sources are given.
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[Sch] L. Schwartz, Théorie des distributions, I, II, Hermann, Paris, 1950–51.

[Se1] R. Seeley, Complex powers of elliptic operators, Proc. Symp. in Pure Math., vol. 10,
pp. 288–307, AMS, Providence, RI, 1967.

[Se2] R. Seeley, The resolvent of elliptic boundary problems, Amer. J. Math. 91 (1969),
889–920.

[Se3] R. Seeley, Integro-differential operators on vector bundles, Trans. Amer. Math. Soc.
117 (1965), 165–204.

[Sh] G. Shilov, Mathematical analysis (second special course), Nauka, Moscow, 1965.
(Russian)

[Shu1] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer series So-
viet Math., Springer, 1987.

[Shu2] M. A. Shubin, Pseudodifferential operators and spectral theory, Dobrosvet, Moscow,
2005. (Russian)

[Si] B. Simon, Functional integration and quantum physics, Academic Press, New York,
1979.
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Abel equation, 67

absence of discrete spectrum, 155
adjoint operator, 208
adjoint to ψdo, 214

Agmon’s estimates, 142
Airy function, 380

algebraic multiplicity of λj , 301
amplitude (or symbol) of FIO, 330

analytical index, 321
asymptotics of NB(λ), 305

backscattering amplitude, 191

Beals-Fefferman
classes of ψdo’s, 261

bicharacteristics, 247
Bott isomorphism, 321

Bott periodicity theorem, 321
boundary regularity, 124

boundary value problem, 270
boundary value problem in Rn

+, 267

canonical transformation, 333, 345, 350

generating function, 333, 346
Cantor function, 32

Carleman’s estimates, 154
Cauchy problem, 70, 72, 73, 223, 232

Cauchy problem with nonzero initial
data, 226

Cauchy-Riemann operator, 107
Cauchy-Schwartz inequality, 37

caustics, 371, 380
characterization of hypoelliptic

polynomials, 89

classes of homotopies, 317

classes of symbols

Pα,m, 224

P+
α,m, 225

Sα, 198

coboundary condition, 398

coboundary problem, 387

coercivity condition, 274

compact operator, 149, 150, 207, 302

composition of ψdo’s, 199

conductivity equation, 171, 300

conservation of energy, 74

continuous deformation, 313, 316

convex functional, 134

convex set, 134

convolution, 24

24

of f ∈ D′ and g ∈ E ′, 26

cotangent bundle T ∗(M), 264

critical point, 337

current flux, 171

delta-like sequence, 13

Dirichlet boundary condition, 78, 82,
175, 304

Dirichlet boundary problem, 108, 117,
296

nonhomogeneous, 121

Dirichlet Laplacian, 288

heat kernel, 288

Dirichlet-to-Neumann operator, 84, 168,
169, 297

distorted plane wave, 160, 161, 164, 175
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distribution, 6
(x1 ± i0)λ, 12
δ(S), 19

1
S±i0

, 19
1

x1±i0
, 16

p.v. 1
S
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p.v. 1
x1
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xλ
±, 16

tempered, 34
Fourier transform of, 39
singular support of, 57, 217
support of, 20
wave front set of, 58

distributions
direct product of, 27

domain of dependence, 77, 243, 246
domain of influence, 77, 243, 245
double layer potential, 83, 103, 177
duality of Sobolev spaces, 54

eigenvalues, 301
eigenvectors, 301
eikonal equation, 344
electrical impedance problem, 171
elliptic ψdo on a manifold, 266
elliptic boundary conditions, 274
elliptic class of symbols Ell(T ∗(Rn)),

316
elliptic differential operator, 204
elliptic Fourier integral operator, 338
elliptic pseudodifferential systems, 259
elliptic regularity, 206
elliptic symbol, 206
ellipticity of the boundary conditions,

277
embedding, 208
equivalent norm for s = m+ γ, 52, 117
existence of fundamental solution, 85
external product, 319

factorization of elliptic symbol, 266, 279
Faddeev’s fundamental solution, 85, 181
Faddeev’s scattering amplitude, 181
fiber, 264
finite rank operator, 210, 302
focal point, 371
formally adjoint operator, 118
Fourier integral operator (FIO), 330
Fourier inversion formula, 37
Fourier transform, 37

of convolutions, 45

of distributions, 39
Fourier-Laplace transform, 229
Fredholm alternative, 149, 209
Fredholm equation, 183
Fredholm operator, 208, 311
Fredholm property, 273
Friedrichs regularization, 260
function spaces

C(R1,Hs− 1
2
(Rn−1)), 54

C(R1, S′(Rn)), 72

C(BN), 149

C(R1
+, L2(R
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Cm(∂Ω), 178
Cm

0 (Rn), 51
C∞

0 (Rn), 2
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Cr
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Cm−1,s, 237
L1[(0, T ),Hs(R

n)], 237
L∞,α, 148
S, 33
S′, 34
Vm,s(R

n), 142
D, 4
D′, 8
D′(Ω), 8
D(Ω), 8
E ′, 22
H(s), 267
H(s)(Ω), 271

fundamental solution, 69, 72, 75
for the Cauchy problem, 74

G̊arding inequality, 234
general form of a ψdo, 212
generalized scattering amplitude, 164
global FIO, 360
Green’s formula, 107, 132, 136, 169, 176

Hamiltonian system, 334
heat equation, 70
heat kernel, 13, 71, 230, 302, 310
heat trace of an operator, 305
Helmholtz equation, 81, 91, 157
Hilbert-Schmidt operator, 150, 183,

207, 302, 304
homotopy, 314
hyperbolic Cauchy problem, 342
hypoelliptic operator, 87

index of Fredholm operator, 311
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initial-boundary value problem for heat
equation, 287

interior regularity, 123
invariance of Hs(R

n), 55
inverse boundary value problem, 168
inverse obstacle problem, 179
inverse scattering problem, 162
irreducible polynomial, 173

Jordan block corresponding to λj , 301,
304

Lagrangian manifold, 349
conic, 349

Laplace equation, 78
fundamental solution, 78

Laplace-Beltrami operator, 154, 288,
293, 296, 304

left regularizer, 210, 211, 274
Legendre transform, 373
lemma

Fatou, 123
Jordan, 79, 229, 268, 283, 291
Rellich’s, 173, 175, 177
stationary phase, 95, 334

limiting absorption principle, 157, 160
limiting amplitude principle, 102
line bundle, 363
Liouville’s formula, 315, 347
Lippmann-Schwinger equation, 193
local coordinates, 264

manifold, 264
Maslov bundle, 363
Maslov index, 379
maximum principle, 139
meromorphic operator function, 309
method of descent, 108
method of freezing coefficients, 270
metric tensor, 288, 300
microelliptic symbol, 218
minus-operator, 278, 280
minus-symbol, 280

Neumann boundary condition, 82, 175,
177, 293, 304

Neumann data, 84
Neumann Laplacian, 293

heat trace, 294
Neumann problem, 80, 108, 133
Newtonian potential, 78
nondegenerate phase function, 350
nonelliptic boundary value problem, 382

nonhomogeneous Schrödinger equation,
148

nonselfadjoint operator, 301
nonstationary Schrödinger equation,

148
null-bicharacteristic, 247

oblique derivative boundary condition,
328

oblique derivative problem, 382
obstacle problem, 175
operator of order ≤ α, 199
orthonormal basis, 302
orthonormal basis of eigenfunctions, 307
outgoing fundamental solution, 156,

161, 174
outgoing solution, 148, 150, 160

parabolic equation, 223
parabolic equation of higher order, 259
parabolic regularization, 235
parametrix, 205, 282
parametrix of a boundary value
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Parseval’s equality, 47, 229, 302
partial hypoellipticity, 28
partial hypoellipticity of elliptic
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phase function of FIO, 330
Plancherel’s theorem, 71
plus-operator, 278, 280
plus-symbol, 280
Poincaré inequality, 118
Poisson bracket, 203
Poisson summation formula, 30
principal symbol of a ψdo on a

manifold, 265
product of distributions, 61
propagation of singularities, 249
pseudodifferential operator on a

manifold, 265
pseudodifferential operator (ψdo), 198
pseudodifferential operator of real

principal type, 247
pseudolocal property of ψdo’s, 217

radiation conditions, 93, 156, 175
radiation conditions in R

n, 100
Rankine-Hugoniot condition, 32
reduced wave equation, 81
regular functional, 7
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regularity of a weak solution of
Neumann problem, 128

regularization problem, 14
regularizer, 209
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n) to ∂Ω, 115

restrictions of distributions to a surface,
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retarded potential, 76
right regularizer, 210, 211, 274
Robin boundary condition, 108
root vectors, 301, 309

scattering amplitude, 161, 177
scattering matrix, 168
Schrödinger equation, 72, 160
Schwartz’s kernel, 163, 168, 215, 341
second order elliptic operator, 117
second order hyperbolic operator, 342
section of a bundle, 363
selfadjoint operator, 305
semigeodesic coordinates, 290, 295, 300
Shapiro-Lopatinskii condition, 274
sharp G̊arding inequality, 262
signature of a matrix, 335
signature of a quadratic form, 95
simply connected domain, 314
single layer potential, 82, 103, 174
singular integral equation, 327
smoothing operator, 202
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duality of, 116
equivalent norm in Hm(Ω), 113

Sobolev’s inequality, 139
stationary phase lemma, 334
strict Huygens principle, 77
strictly hyperbolic operator, 255
strictly hyperbolic polynomial, 232
strongly elliptic operator, 204
symbol of real principal type, 247
symmetric first order hyperbolic

system, 260

tensor product, 319
theorem

Arzelà-Ascoli, 149
Bott, 320
Cauchy, 224
Egorov’s, 338
Hahn-Banach, 36
Karamata’s Tauberian, 306
Lebesgue convergence, 5
Lidskii’s, 304, 311
Liouville’s, 41, 280, 314
Paley-Wiener, 174
Plancherel’s, 47
Pleijel, 326
Riesz, 36
Sobolev’s embedding, 52

topological index (t-ind), 320
trace class operator, 303
trace of an operator, 304
traces, 53
transition matrices, 264
transport equation, 346
triples (E,F,A(x, ξ)), 318

equivalence classes of, 318
equivalent, 318
isomorphic, 318

triples(E,F,A(x, ξ))
sum of, 318

variational inequality, 135, 137
vector bundle, 264, 278, 319
voltage, 171

wave front set, 217, 348
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