Lectures on Linear Partial Differential Equations

Gregory Eskin

Graduate Studies in Mathematics

Volume 123

Lectures on Linear Partial Differential Equations

Lectures on Linear Partial Differential Equations

Gregory Eskin

Graduate Studies in Mathematics
Volume 123

EDITORIAL COMMITTEE

David Cox (Chair)
Rafe Mazzeo
Martin Scharlemann
Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 35J25, 35L40, 35K30, 35L05, 35L30, 35P20, 35P25, 35S05, 35S30.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-123

Library of Congress Cataloging-in-Publication Data
Eskin, G. I. (Grigorii Il'ich)
Lectures on linear partial differential equations / Gregory Eskin.
p. cm. - (Graduate studies in mathematics ; v. 123)
Includes bibliographical references.
ISBN 978-0-8218-5284-2 (alk. paper)
1. Differential equations, Elliptic. 2. Differential equations, Partial. I. Title.

QA372.E78 2011
515'.3533-dc22
2010048243

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 2011 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

$$
10987654321 \quad 161514131211
$$

In memory of my brother Michael Eskin

Contents

Preface XV
Acknowledgments xvi
Chapter I. Theory of Distributions 1
Introduction to Chapters I, II, III 1
§1. Spaces of infinitely differentiable functions 2
1.1. Properties of the convolution 2
1.2. Approximation by C_{0}^{∞}-functions 3
1.3. Proof of Proposition 1.1 5
1.4. Proof of property b) of the convolution 5
§2. Definition of a distribution 6
2.1. Examples of distributions 6
2.2. Regular functionals 7
2.3. Distributions in a domain 8
§3. Operations with distributions 9
3.1. Derivative of a distribution 9
3.2. Multiplication of a distribution by a C^{∞}-function 9
3.3. Change of variables for distributions 10
§4. Convergence of distributions 10
4.1. Delta-like sequences 12
§5. Regularizations of nonintegrable functions 14
5.1. Regularization in \mathbb{R}^{1} 15
5.2. Regularization in \mathbb{R}^{n} 17
§6. Supports of distributions 20
6.1. General form of a distribution with support at 0 20
6.2. Distributions with compact supports 22
§7. The convolution of distributions 24
7.1. Convolution of $f \in \mathcal{D}^{\prime}$ and $\varphi \in C_{0}^{\infty}$ 24
7.2. Convolution of $f \in \mathcal{D}^{\prime}$ and $g \in \mathcal{E}^{\prime}$ 26
7.3. Direct product of distributions 27
7.4. Partial hypoellipticity 28
§8. Problems 30
Chapter II. Fourier Transforms 33
§9. Tempered distributions 33
9.1. General form of a tempered distribution 35
$\S 10$. Fourier transforms of tempered distributions 37
10.1. Fourier transforms of functions in S 38
10.2. Fourier transform of tempered distributions 39
10.3. Generalization of Liouville's theorem 41
§11. Fourier transforms of distributions with compact supports 42
§12. Fourier transforms of convolutions 45
§13. Sobolev spaces 46
13.1. Density of $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ in $H_{s}\left(\mathbb{R}^{n}\right)$ 49
13.2. Multiplication by $a(x) \in S$ 50
13.3. Sobolev's embedding theorem 51
13.4. An equivalent norm for noninteger 52
13.5. Restrictions to hyperplanes (traces) 53
13.6. Duality of Sobolev spaces 54
13.7. Invariance of $H_{s}\left(\mathbb{R}^{n}\right)$ under changes of variables 55
§14. Singular supports and wave front sets of distributions 57
14.1. Products of distributions 61
14.2. Restrictions of distributions to a surface 63
§15. Problems 65
Chapter III. Applications of Distributions to Partial Differential Equations 69
§16. Partial differential equations with constant coefficients 69
16.1. The heat equation 70
16.2. The Schrödinger equation 72
16.3. The wave equation 73
16.4. Fundamental solutions for the wave equations 74
16.5. The Laplace equation 78
16.6. The reduced wave equation 81
16.7. Faddeev's fundamental solutions for $\left(-\Delta-k^{2}\right)$ 84
§17. Existence of a fundamental solution 85
§18. Hypoelliptic equations 87
18.1. Characterization of hypoelliptic polynomials 89
18.2. Examples of hypoelliptic operators 90
§19. The radiation conditions 91
19.1. The Helmholtz equation in \mathbb{R}^{3} 91
19.2. Radiation conditions 93
19.3. The stationary phase lemma 95
19.4. Radiation conditions for $n \geq 2$ 98
19.5. The limiting amplitude principle 101
§20. Single and double layer potentials 102
20.1. Limiting values of double layers potentials 102
20.2. Limiting values of normal derivatives of single layer potentials 106
§21. Problems 107
Chapter IV. Second Order Elliptic Equations in Bounded Domains 111
Introduction to Chapter IV 111
$\S 22$. Sobolev spaces in domains with smooth boundaries 112
22.1. The spaces $\stackrel{\circ}{H}_{s}(\Omega)$ and $H_{s}(\Omega)$ 112
22.2. Equivalent norm in $H_{m}(\Omega)$ 113
22.3. The density of C_{0}^{∞} in $\stackrel{\circ}{H}_{s}(\Omega)$ 114
22.4. Restrictions to $\partial \Omega$ 115
22.5. Duality of Sobolev spaces in Ω 116
§23. Dirichlet problem for second order elliptic PDEs 117
23.1. The main inequality 118
23.2. Uniqueness and existence theorem in $\stackrel{\circ}{H}_{1}(\Omega)$ 120
23.3. Nonhomogeneous Dirichlet problem 121
§24. Regularity of solutions for elliptic equations 122
24.1. Interior regularity 123
24.2. Boundary regularity 124
§25. Variational approach. The Neumann problem 125
25.1. Weak solution of the Neumann problem 127
25.2. Regularity of weak solution of the Neumann problem 128
§26. Boundary value problems with distribution boundary data 129
26.1. Partial hypoellipticity property of elliptic equations 129
26.2. Applications to nonhomogeneous Dirichlet and Neumann problems 132
§27. Variational inequalities 134
27.1. Minimization of a quadratic functional on a convex set. 134
27.2. Characterization of the minimum point 135
§28. Problems 137
Chapter V. Scattering Theory 141
Introduction to Chapter V 141
§29. Agmon's estimates 142
§30. Nonhomogeneous Schrödinger equation 148
30.1. The case of $q(x)=O\left(\frac{1}{(1+|x|)^{\frac{n+1}{2}+\alpha+\varepsilon}}\right)$ 148
30.2. Asymptotic behavior of outgoing solutions (the case of

$$
\left.q(x)=O\left(\frac{1}{(1+|x|)^{\frac{n+1}{2}+\alpha+\varepsilon}}\right), \alpha>0\right)
$$149

30.3. The case of $q(x)=O\left(\frac{1}{(1+|x|)^{1+\varepsilon}}\right)$ 149
$\S 31$. The uniqueness of outgoing solutions 151
31.1. Absence of discrete spectrum for $k^{2}>0$ 155
31.2. Existence of outgoing fundamental solution (the case of

$$
\left.q(x)=O\left(\frac{1}{(1+|x|)^{\frac{n+1}{2}+\delta}}\right)\right)
$$ 156

§32. The limiting absorption principle 157
$\S 33$. The scattering problem 160
33.1. The scattering problem (the case of $\left.q(x)=O\left(\frac{1}{(1+|x|)^{n+\alpha}}\right)\right)$ 160
33.2. Inverse scattering problem (the case of $\left.q(x)=O\left(\frac{1}{\left(1+|x|^{n+\alpha}\right.}\right)\right)$ 162
33.3. The scattering problem (the case of $\left.q(x)=O\left(\frac{1}{(1+|x|)^{1+\varepsilon}}\right)\right)$ 163
33.4. Generalized distorted plane waves 164
33.5. Generalized scattering amplitude 164
§34. Inverse boundary value problem 168
34.1. Electrical impedance tomography 171
§35. Equivalence of inverse BVP and inverse scattering 172
§36. Scattering by obstacles 175
36.1. The case of the Neumann conditions 179
36.2. Inverse obstacle problem 179
§37. Inverse scattering at a fixed energy 181
37.1. Relation between the scattering amplitude and the Faddeev'sscattering amplitudes181
37.2. Analytic continuation of T_{r} 184
37.3. The limiting values of T_{r} and Faddeev's scattering amplitude 187
37.4. Final step: The recovery of $q(x)$ 190
§38. Inverse backscattering 191
38.1. The case of real-valued potentials 192
§39. Problems 193
Chapter VI. Pseudodifferential Operators 197
Introduction to Chapter VI 197
§40. Boundedness and composition of ψ do's 198
40.1. The boundedness theorem 198
40.2. Composition of ψ do's 199
§41. Elliptic operators and parametrices 204
41.1. Parametrix for a strongly elliptic operator 204
41.2. The existence and uniqueness theorem 206
41.3. Elliptic regularity 206
$\S 42$. Compactness and the Fredholm property 207
42.1. Compact operators 207
42.2. Fredholm operators 208
42.3. Fredholm elliptic operators in \mathbb{R}^{n} 211
§43. The adjoint of a pseudodifferential operator 211
43.1. A general form of ψ do's 211
43.2. The adjoint operator 214
43.3. Weyl's ψ do's 215
$\S 44$. Pseudolocal property and microlocal regularity 215
44.1. The Schwartz kernel 215
44.2. Pseudolocal property of ψ do's 217
44.3. Microlocal regularity 218
$\S 45$. Change-of-variables formula for ψ do's 221
$\S 46$. The Cauchy problem for parabolic equations 223
46.1. Parabolic ψ do's 223
46.2. The Cauchy problem with zero initial conditions 225
46.3. The Cauchy problem with nonzero initial conditions 226
$\S 47$. The heat kernel 228
47.1. Solving the Cauchy problem by Fourier-Laplace transform 228
47.2. Asymptotics of the heat kernel as $t \rightarrow+0$. 230
$\S 48$. The Cauchy problem for strictly hyperbolic equations 231
48.1. The main estimate 233
48.2. Uniqueness and parabolic regularization 235
48.3. The Cauchy problem on a finite time interval 237
48.4. Strictly hyperbolic equations of second order 240
§49. Domain of dependence 243
§50. Propagation of singularities 247
50.1. The null-bicharacteristics 247
50.2. Operators of real principal type 247
50.3. Propagation of singularities for operators of real principal type 249
50.4. Propagation of singularities in the case of a hyperbolic Cauchy problem 255
§51. Problems 258
Chapter VII. Elliptic Boundary Value Problems and Parametrices 263
Introduction to Chapter VII 263
§52. Pseudodifferential operators on a manifold 264
52.1. Manifolds and vector bundles 264
52.2. Definition of a pseudodifferential operator on a manifold 265
52.3. Elliptic ψ do's on a manifold 266
§53. Boundary value problems in the half-space 266
53.1. Factorization of an elliptic symbol 266
53.2. Explicit solution of the boundary value problem 268
§54. Elliptic boundary value problems in a bounded domain 270
54.1. The method of "freezing" coefficients 270
54.2. The Fredholm property 273
54.3. Invariant form of the ellipticity of boundary conditions 276
54.4. Boundary value problems for elliptic systems of differential equations 276
§55. Parametrices for elliptic boundary value problems 278
55.1. Plus-operators and minus-operators 278
55.2. Construction of the parametrix in the half-space 281
55.3. Parametrix in a bounded domain 284
§56. The heat trace asymptotics 285
56.1. The existence and the estimates of the resolvent 285
56.2. The parametrix construction 286
56.3. The heat trace for the Dirichlet Laplacian 288
56.4. The heat trace for the Neumann Laplacian 293
56.5. The heat trace for the elliptic operator of an arbitrary order 294
§57. Parametrix for the Dirichlet-to-Neumann operator 296
57.1. Construction of the parametrix 296
57.2. Determination of the metric on the boundary 300
§58. Spectral theory of elliptic operators 301
58.1. The nonselfadjoint case 301
58.2. Trace class operators 302
58.3. The selfadjoint case 305
58.4. The case of a compact manifold 309
§59. The index of elliptic operators in \mathbb{R}^{n} 311
59.1. Properties of Fredholm operators 311
59.2. Index of an elliptic ψ do 313
59.3. Fredholm elliptic ψ do's in \mathbb{R}^{n} 316
59.4. Elements of K-theory 317
59.5. Proof of the index theorem 321
§60. Problems 324
Chapter VIII. Fourier Integral Operators 329
Introduction to Chapter VIII 329
§61. Boundedness of Fourier integral operators (FIO's) 330
61.1. The definition of a FIO 330
61.2. The boundedness of FIO's 331
61.3. Canonical transformations 333
$\S 62$. Operations with Fourier integral operators 334
62.1. The stationary phase lemma 334
62.2. Composition of a ψ do and a FIO 335
62.3. Elliptic FIO's 337
62.4. Egorov's theorem 338
§63. The wave front set of Fourier integral operators 340
§64. Parametrix for the hyperbolic Cauchy problem 342
64.1. Asymptotic expansion 342
64.2. Solution of the eikonal equation 344
64.3. Solution of the transport equation 346
64.4. Propagation of singularities 348
§65. Global Fourier integral operators 349
65.1. Lagrangian manifolds 349
65.2. FIO's with nondegenerate phase functions 350
65.3. Local coordinates for a graph of a canonical transformation 353
65.4. Definition of a global FIO 358
65.5. Construction of a global FIO given a global canonical transformation 360
65.6. Composition of global FIO's 365
65.7. Conjugation by a global FIO and the boundedness theorem 369
§66. Geometric optics at large 370
66.1. Generating functions and the Legendre transforms 370
66.2. Asymptotic solutions 374
66.3. The Maslov index 377
§67. Oblique derivative problem 381
67.1. Reduction to the boundary 381
67.2. Formulation of the oblique derivative problem 382
67.3. Model problem 384
67.4. First order differential equations with symbols depending on x^{\prime} 387
67.5. The boundary value problem on $\partial \Omega$ 394
§68. Problems 399
Bibliography 403
Index 407

Preface

This book is based on the lectures on partial differential equations that I have given for many years at UCLA. It does not assume any knowledge of partial differential equations and can be considered as a first graduate course in linear PDE. However, some basic knowledge of the Fourier transform, Lebesgue integrals and elementary functional analysis is required. It is organized as lecture notes with emphasis on clarity and accessibility.

We shall briefly describe the content of the book. The first three chapters are the elementary theory of distributions and Fourier transforms of distributions with applications to partial differential equations with constant coefficients. It is similar to the first chapters of the books by Gelfand and Shilov [GSh] and Shilov [Sh]. Additional material includes the wave front sets of distributions, Sobolev spaces, the stationary phase lemma, the radiation conditions, and potential theory.

In Chapter IV the Dirichlet and the Neumann boundary value problems are considered for second order elliptic equations in a smooth bounded domain. The existence, uniqueness, and regularity of solutions are proven. A nontraditional topic of this chapter is the proof of the existence and uniqueness of the solutions of the Neumann and Dirichlet problems for homogeneous equations in Sobolev spaces of negative order on the boundary.

Chapter V is devoted to scattering theory including inverse scattering, inverse boundary value problem, and the obstacle problem.

Chapter VI starts with the theory of pseudodifferential operators with classical symbols. It is followed by the theory of parabolic Cauchy problems based on pseudodifferential operators with symbols analytic in the half-plane and heat kernel asymptotics.

The next topic of Chapter VI is the Cauchy problem for hyperbolic equations of order $m \geq 2$, the domains of dependence of solutions to hyperbolic equations, and Hörmander's theory [H1] of propagation of singularities for the equations of real principal type with applications to hyperbolic equations.

In Chapter VII the Fredholm property for elliptic boundary value problems and parametrices in smooth domains are studied following the approach of the author's book [E1]. The main application of the parametrix is the study of heat trace asymptotics as $t \rightarrow 0$. The parametrix construction allows one to compute explicitly two leading terms of the heat trace asymptotics for the cases of Dirichlet and Neumann boundary conditions. Chapter VII concludes with elements of the spectral theory of elliptic operators and the proof of the index theorem for elliptic operators in \mathbb{R}^{n} following the works of Atiyah-Singer $[\mathbf{A t S 1}],[\mathbf{A t S 2}]$ and Seeley $[\mathbf{S e 3}]$.

The last Chapter VIII is devoted to the theory of Fourier integral operators. Starting with the local theory of FIO, we proceed to the global theory. We consider only a subclass of Hörmander's FIOs (see [H1]), assuming that the Lagrangian manifold of the FIO corresponds to the graph of a canonical transformation. In particular, having a global canonical transformation, we construct a global FIO corresponding to this canonical transformation. Next, following Maslov [M1], [M2], [MF], we construct a global geometric optic solution for a second order hyperbolic equation on arbitrary time interval $[0, T]$.

Chapter VIII concludes with a section on the oblique derivative problem. The oblique derivative problem is a good example of nonelliptic boundary value problem, and it attracted the attention of many mathematicians: Egorov-Kondrat'ev [EgK], Malutin [Mal], Mazya-Paneah [MaP], Mazya [Ma], and others. The section is based on the author's paper [E3], and it uses the FIOs to greatly simplify the problem. Similar results are obtained independently by Sjöstrand $[\mathbf{S j}]$ and Duistermaat-Sjöstrand $[\mathbf{D S j}]$.

At the end of each chapter there is a problem section. Some problems are relatively simple exercises that help to study the material. Others are more difficult problems that cover additional topics not included in the book. In those cases hints or references to the original sources are given.

Acknowledgments

I want to thank my friend and collaborator Jim Ralston for many fruitful discussions and advice. I am very grateful to my former students Joe Bennish, Brian Sako, Carol Shubin, Borislava Gutarz, Xiaosheng Li and others who took notes during my classes. These notes were the starting point of this book. I express my deep gratitude to the anonymous referees whose
remarks and suggestions greatly improved the book. I am very thankful to Neelesh Tiruviluamala for pointing out a mistake in an earlier draft. I am also grateful to Bernard Lascar and Ciprian Manolescu for valuable comments. I am especially grateful to my wife Marina who prepared the manuscript. Without her help this book would not be written.

My deepest gratitude to the editor Natalya Pluzhnikov for the outstanding work of improving and correcting the manuscript. It is impossible to overestimate her contribution.

Finally, I am very grateful to Sergei Gelfand for encouragement to write a book.

Bibliography

[A1] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand, New York, 1964.
[A2] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa 2 (1975), 151-218.
[ADN] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions, CPAM 12 (1959), 623-727; II, CPAM 17 (1964), 35-92.
[AH] S. Agmon and L. Hörmander, Assymptotic properties of solutions of differential equations with simple characteristics, J. Analyse Math. 30 (1976), 1-38.
[AK] S. Agmon and Y. Kannai, On the asymptotic behaviour of spectral functions and resolvent kernels of elliptic operators, Israel J. Math. 5 (1967), 1-30.
[Ar1] V. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York, 1978.
[Ar2] V. Arnold, On the characteristic class entering in the quantization condition, Funct. Anal. Appl. 1 (1967), 1-13.
[At] M. Atiyah, K-theory, Lecture notes, Benjamin, Inc., New York-Amsterdam, 1967.
[AtB] M. Atiyah and R. Bott, The index problem for the manifolds with boundary, 1964, Differential Analysis, Bombay Colloq. 1964, pp. 175-186.
[AtS1] M. Atiyah and I. M. Singer, The index of elliptic operators I, Anal. of Math. (2) 87 (1968), 484-530.
[AtS2] M. Atiyah and I. M. Singer, The index of elliptic operators III, Anal. of Math. (2), 87 (1968), 546-604.
[B] R. Beals, A general calculus of pseudodifferential operators, Duke Math. J. 42 (1975), 1-42.
[BF] R. Beals and C. Feferman, Spatially inhomogeneous pseudodifferential operators I, Comm. Pure Appl. Math 27 (1974), 585-639.
[CH] R. Courant and D. Hilbert, Methods of mathematical physics, vol. II, New York, 1962.
[CK] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Springer-Verlag, 1992.
[ChP] J. Chazarain and A. Pirion, Introduction à la théorie des équations aux dérivée partielle linéaire, Gauthier Villars, Paris, 1981.
[D] J. J. Duistermaat, Fourier integral operators, Birkhäuser, Boston, 1996.
[DH] J. J. Duistermaat and L. Hörmander, Fourier integral operators II, Acta Math. 128 (1972), 183-269.
[DL] G. Duvaut and J.-P. Lions, Les inéquations en méchanique et en physique, Dunod, Paris, 1972.
[DSj] J. J. Duistermaat and J. Sjostrand, A global construction for pseudodifferential operators with non-involutive characteristics, Inv. Math. 20 (3) (1973).
[E1] G. Eskin, Boundary value problems for elliptic pseudodifferential operators, Translations of Mathematical Monographs, 52, AMS, Providence, R.I., 1981.
[E2] G. Eskin, Asymptotics near the boundary of spectral functions of elliptic selfadjoint boundary problems, Israel J. Math. 22 (1975), no. 3-4, 214-246.
[E3] G. Eskin, Degenerate elliptic pseudodifferential equations of principal type, Math. USSR Sbornik 11 (1970), no. 4, 539-582
[E4] G. Eskin, Elliptic pseudodifferential operators with a degeneracy of the first order in space variables, Trans. Moscow Math. Soc. 25 (1971), 91-130.
[Eg1] Yu. V. Egorov, On canonical transformations of pseudodifferential operators, Uspekhi Math. Nauk 25 (1969), 235-236.
[Eg2] Yu. V. Egorov, Linear differential equations of principal type, Nauka, Moscow, 1984. (Russian)
[EgK] Yu. V. Egorov and V. A. Kondratiev, On the oblique derivative problem, Mat. Sb. (NS) 78 (120), 1969, 148-176. (Russian)
[EgS] Yu. V. Egorov and B.-W. Schulze, Pseudodifferential operators, singularities, applications, Operator theory: Advances and Applications 93, Birkhäuser-Verlag, Basel, 1997.
[Ev] L. Evans, Partial differential equations, Graduate Studies in Mathematics, AMS, Providence, 1998.
[EIO] G. Eskin, H. Isozaki, and S. O'Dell, Gauge equivalence and inverse scattering for Aharonov-Bohm effect, Comm. in PDE 35 (2010), 2164-2194.
[ER1] G. Eskin and J. Ralston, Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy, Commun. Math. Phys. 173 (1995), 199-224.
[ER2] G. Eskin and J. Ralston, Inverse backscattering problem in three dimensions, Commun. Math. Phys. 124 (1989), 169-215.
[ER3] G. Eskin and J. Ralston, Inverse scattering problems in several dimensions, Journées EDP St. Jean de Monts, 1993, Exp. 17.
[F1] B. V. Fedosov, A direct proof of the formula for the index of an elliptic system in Euclidean space, Funct. Anal. Appl. 4 (1970), 339-391.
[F2] B. V. Fedosov, Theorems on the index, Modern problems in mathematics, Fundamental directions, VINITI, 1991, vol. 65, pp. 165-268. (Russian)
[Fo] G. Folland, Introduction to partial differential equations, Princeton University Press, 1995.
[FrW] L. Frank and W. Wendt, Coercive singular perturbations II, Reduction and convergence, J. Math. Anal. Appl. 88 (1982), no 2, 464-504.
[GS] A. Grigis and J. Sjöstrand, Microlocal analysis for differential operators, An Introduction, London Math. Soc. Lecture Notes Series 196, Cambridge University Press, 1994.
[GSh] I. M. Gelfand and G. E. Shilov, Generalized functions, vol. I, Academic Press, New York and London, 1964.
[GSt] V. Guillemin and Sh. Sternberg, Geometric asymptotics, Math. Surveys, vol. 14, AMS, Providence, R.I., 1977.
[GT] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order (2nd. ed.), Springer, 1983.
[H1] L. Hörmander, The analysis of linear partial differential operators, Springer-Verlag, Berlin, vols. 256 (1983), 257 (1983), 274 (1985), 275 (1985).
[H2] L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79-183.
[H3] L. Hörmander, Linear partial differential equations, Sringer-Verlag, 1963.
[H4] L. Hörmander, Pseudodifferential operators and non-elliptic boundary problems, Ann. of Math. (2) 83 (1966), 129-209.
[I] V. Ivrii, Precise spectral asymptotics for elliptic operators, Lecture Notes in Math., vol. 1100, Springer, Berlin, 1984.
[Isa] V. Isakov, Inverse problems for partial differential equations (2nd. ed.), Applied Mathematical Sciences, vol. 127, New York, 2006.
[Iso] H. Isozaki, Asymptotic properties of solutions to 3-particle Schrödinger equations, Commun. Math. Phys. 222 (2001), 371-413.
[KN] J. J. Kohn and L. Nirenberg, On the algebra of pseudodifferential operators, Comm. Pure. Appl. Math. 18 (1965), 269-305.
[KS] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, 1980.
[KV] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math. 37 (1984), 289-298.
[L] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non lineaires, Dunod, 1969.
[LM] J.-L. Lions and E. Magenes, Problèmes aux limites non homogenes et applications, vols. 1-3, Dunod, Paris, 1968.
[LU] J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42 (1989), 1097-1112.
[M1] V. P. Maslov, Perturbation theory and asymptotics methods, Moscow State University, Moscow, 1965. (Russian)
[M2] V. P. Maslov, Operator methods, Nauka, Moscow, 1973. (Russian)
[Ma] V. Mazya, The degenerate problem with an oblique derivative, Math. USSR Sbornik 16 (1972), 429-469.
[Mal] M. B. Malyutov, Oblique derivative problem in three-dimensional space, Soviet Math. Dokl. 8 (1967), 87-90.
[Me] R. Melrose, Geometric scattering theory, Cambridge University Press, 1995.
[MF] V. P. Maslov and M. V. Fedorjuk, Semi-classical approximation in quantum mechanics, Math. physics and applied mathematics, Reidel, Dordrecht, 1981.
[MaP] V. Mazya and B. Paneah, Degenerate elliptic pseudodifferential equations, Uspekhi Math. Nauk 25 (1970), 193-194. (Russian)
[N] L. Nirenberg, Lectures on partial differential equations, Proc. Reg. Conf. at Texas Tech., May 1972, Conf. Board of AMS.
[Na1] A. Nachman, A reconstruction from boundary measurements, Annals of Math. 128 (1988), 531-576.
[Na 2] A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Math. 143 (1996), 71-96.
[No1] R. Novikov, Multidimensional inverse spectral problem for the equation $-\Delta \psi+$ $(v(x)-E u(x)) \psi=0$, Funct. Anal. Appl. 22 (1988), 263-272.
[No2] R. Novikov, The inverse scattering problem at a fixed energy for the threedimensional Schrödinger equation with an exponentially decreasing potential, Commun. Math. Phys. 161 (1994), 569-595.
[NoKh] R. Novikov and G. Khenkin, The $\overline{\bar{\partial}}$-equation in the multidimensional inverse scattering problem, Russ. Math. Surveys 42 (1987), no. 3, 109-180.
[R] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1974.
[Sch] L. Schwartz, Théorie des distributions, I, II, Hermann, Paris, 1950-51.
[Se1] R. Seeley, Complex powers of elliptic operators, Proc. Symp. in Pure Math., vol. 10, pp. 288-307, AMS, Providence, RI, 1967.
[Se2] R. Seeley, The resolvent of elliptic boundary problems, Amer. J. Math. 91 (1969), 889-920.
[Se3] R. Seeley, Integro-differential operators on vector bundles, Trans. Amer. Math. Soc. 117 (1965), 165-204.
[Sh] G. Shilov, Mathematical analysis (second special course), Nauka, Moscow, 1965. (Russian)
[Shu1] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer series Soviet Math., Springer, 1987.
[Shu2] M. A. Shubin, Pseudodifferential operators and spectral theory, Dobrosvet, Moscow, 2005. (Russian)
[Si] B. Simon, Functional integration and quantum physics, Academic Press, New York, 1979.
[Sj] J. Sjöstrand, Operators of principal type with interior boundary conditions, Acta Math. 130 (1973), 1-51.
[St] E. Stein, Singular integrals and the differentiality of functions, Princeton Univ. Press, Princeton, N.J., 1972.
[SU] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math. 125 (1987), 153-169.
[T1] M. E. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, N.J., 1981.
[T2] M. E. Taylor, Partial differential equations I. Basic theory, Applied Math Sciences, vol. 116, Springer, 1996; II. Qualitative studies of linear equations, Applied Math. Studies, vol. 116, Springer, 1996; III. Nonlinear equations, Appl. Math. Sciences, vol. 117, Springer-Verlag, 1997.
[Tr] F. Treves, Introduction to pseudodifferential and Fourier integral operators, vols. 1, 2, Plenum Press, New York, 1980.
[W1] R. Weder, Global uniqueness at fixed energy in multidimensional inverse scattering theory, Inverse Problems 7 (1991), 927-938.
[W2] R. Weder, Completeness of averaged scattering solutions and inverse scattering at fixed energy, Comm. PDE 32 (2007), 675-691.
[Ya] D. Yafaev, Mathematical scattering theory: General theory, Translation of Math. Monographs, vol. 105, AMS, Providence, RI, 1992.

Index

Abel equation, 67
absence of discrete spectrum, 155
adjoint operator, 208
adjoint to ψ do, 214
Agmon's estimates, 142
Airy function, 380
algebraic multiplicity of $\lambda_{j}, 301$
amplitude (or symbol) of FIO, 330
analytical index, 321
asymptotics of $N_{B}(\lambda), 305$
backscattering amplitude, 191
Beals-Fefferman
classes of ψ do's, 261
bicharacteristics, 247
Bott isomorphism, 321
Bott periodicity theorem, 321
boundary regularity, 124
boundary value problem, 270
boundary value problem in $\mathbb{R}_{+}^{n}, 267$
canonical transformation, 333, 345, 350 generating function, 333, 346
Cantor function, 32
Carleman's estimates, 154
Cauchy problem, 70, 72, 73, 223, 232
Cauchy problem with nonzero initial data, 226
Cauchy-Riemann operator, 107
Cauchy-Schwartz inequality, 37
caustics, 371, 380
characterization of hypoelliptic polynomials, 89
classes of homotopies, 317
classes of symbols
$P_{\alpha, m}, 224$
$P_{\alpha, m}^{+}, 225$
$S^{\alpha}, 198$
coboundary condition, 398
coboundary problem, 387
coercivity condition, 274
compact operator, 149, 150, 207, 302
composition of ψ do's, 199
conductivity equation, 171,300
conservation of energy, 74
continuous deformation, 313, 316
convex functional, 134
convex set, 134
convolution, 24
24
of $f \in \mathcal{D}^{\prime}$ and $g \in \mathcal{E}^{\prime}, 26$
cotangent bundle $T^{*}(M), 264$
critical point, 337
current flux, 171
delta-like sequence, 13
Dirichlet boundary condition, 78,82 , 175, 304
Dirichlet boundary problem, 108, 117, 296
nonhomogeneous, 121
Dirichlet Laplacian, 288
heat kernel, 288
Dirichlet-to-Neumann operator, 84, 168, 169, 297
distorted plane wave, $160,161,164,175$
distribution, 6
$\left(x_{1} \pm i 0\right)^{\lambda}, 12$
$\delta(S), 19$
$\frac{1}{S \pm i 0}, 19$
$\frac{1}{x_{1} \pm i 0}, 16$
p.v. $\frac{1}{S}, 19$
p.v. $\frac{1}{x_{1}}, 15$
$x_{ \pm}^{\lambda}, 16$
tempered, 34
Fourier transform of, 39
singular support of, 57, 217
support of, 20
wave front set of, 58
distributions
direct product of, 27
domain of dependence, $77,243,246$
domain of influence, 77, 243, 245
double layer potential, $83,103,177$
duality of Sobolev spaces, 54
eigenvalues, 301
eigenvectors, 301
eikonal equation, 344
electrical impedance problem, 171
elliptic ψ do on a manifold, 266
elliptic boundary conditions, 274
elliptic class of symbols $\mathcal{E l l}\left(T^{*}\left(\mathbb{R}^{n}\right)\right)$, 316
elliptic differential operator, 204
elliptic Fourier integral operator, 338
elliptic pseudodifferential systems, 259
elliptic regularity, 206
elliptic symbol, 206
ellipticity of the boundary conditions, 277
embedding, 208
equivalent norm for $s=m+\gamma, 52,117$
existence of fundamental solution, 85
external product, 319
factorization of elliptic symbol, 266, 279
Faddeev's fundamental solution, 85, 181
Faddeev's scattering amplitude, 181
fiber, 264
finite rank operator, 210, 302
focal point, 371
formally adjoint operator, 118
Fourier integral operator (FIO), 330
Fourier inversion formula, 37
Fourier transform, 37
of convolutions, 45
of distributions, 39
Fourier-Laplace transform, 229
Fredholm alternative, 149, 209
Fredholm equation, 183
Fredholm operator, 208, 311
Fredholm property, 273
Friedrichs regularization, 260
function spaces
$C\left(\mathbb{R}^{1}, H_{s-\frac{1}{2}}\left(\mathbb{R}^{n-1}\right)\right), 54$
$C\left(\mathbb{R}^{1}, S^{\prime}\left(\mathbb{R}^{n}\right)\right), 72$
$C\left(\overline{B_{N}}\right), 149$
$C\left(\overline{\mathbb{R}_{+}^{1}}, L_{2}\left(\mathbb{R}^{n-1}\right)\right), 79$
$C^{m}(\partial \Omega), 178$
$C_{0}^{m}\left(\mathbb{R}^{n}\right), 51$
$C_{0}^{\infty}\left(\mathbb{R}^{n}\right), 2$
$C_{\alpha, N}, 191$
$C_{\alpha, N}^{r}, 191$
$C_{m-1, s}, 237$
$L^{1}\left[(0, T), H_{s}\left(\mathbb{R}^{n}\right)\right], 237$
$L_{\infty, \alpha}, 148$
S, 33
$S^{\prime}, 34$
$V_{m, s}\left(\mathbb{R}^{n}\right), 142$
D, 4
$\mathcal{D}^{\prime}, 8$
$\mathcal{D}^{\prime}(\Omega), 8$
$\mathcal{D}(\Omega), 8$
$\mathcal{E}^{\prime}, 22$
$\mathcal{H}_{(s)}, 267$
$\mathcal{H}_{(s)}(\Omega), 271$
fundamental solution, 69, 72, 75
for the Cauchy problem, 74

Gårding inequality, 234
general form of a ψ do, 212
generalized scattering amplitude, 164
global FIO, 360
Green's formula, 107, 132, 136, 169, 176

Hamiltonian system, 334
heat equation, 70
heat kernel, 13, 71, 230, 302, 310
heat trace of an operator, 305
Helmholtz equation, 81, 91, 157
Hilbert-Schmidt operator, 150, 183, 207, 302, 304
homotopy, 314
hyperbolic Cauchy problem, 342
hypoelliptic operator, 87
index of Fredholm operator, 311
initial-boundary value problem for heat equation, 287
interior regularity, 123
invariance of $H_{s}\left(\mathbb{R}^{n}\right), 55$
inverse boundary value problem, 168
inverse obstacle problem, 179
inverse scattering problem, 162
irreducible polynomial, 173
Jordan block corresponding to $\lambda_{j}, 301$, 304

Lagrangian manifold, 349
conic, 349
Laplace equation, 78
fundamental solution, 78
Laplace-Beltrami operator, 154, 288, 293, 296, 304
left regularizer, 210, 211, 274
Legendre transform, 373
lemma
Fatou, 123
Jordan, 79, 229, 268, 283, 291
Rellich's, 173, 175, 177
stationary phase, 95,334
limiting absorption principle, 157, 160
limiting amplitude principle, 102
line bundle, 363
Liouville's formula, 315, 347
Lippmann-Schwinger equation, 193
local coordinates, 264
manifold, 264
Maslov bundle, 363
Maslov index, 379
maximum principle, 139
meromorphic operator function, 309
method of descent, 108
method of freezing coefficients, 270
metric tensor, 288, 300
microelliptic symbol, 218
minus-operator, 278, 280
minus-symbol, 280
Neumann boundary condition, 82,175 , 177, 293, 304
Neumann data, 84
Neumann Laplacian, 293
heat trace, 294
Neumann problem, 80, 108, 133
Newtonian potential, 78
nondegenerate phase function, 350
nonelliptic boundary value problem, 382
nonhomogeneous Schrödinger equation, 148
nonselfadjoint operator, 301
nonstationary Schrödinger equation, 148
null-bicharacteristic, 247
oblique derivative boundary condition, 328
oblique derivative problem, 382
obstacle problem, 175
operator of order $\leq \alpha, 199$
orthonormal basis, 302
orthonormal basis of eigenfunctions, 307
outgoing fundamental solution, 156, 161, 174
outgoing solution, 148, 150, 160
parabolic equation, 223
parabolic equation of higher order, 259
parabolic regularization, 235
parametrix, 205, 282
parametrix of a boundary value problem, 284
Parseval's equality, 47, 229, 302
partial hypoellipticity, 28
partial hypoellipticity of elliptic equations, 130
phase function of FIO, 330
Plancherel's theorem, 71
plus-operator, 278, 280
plus-symbol, 280
Poincaré inequality, 118
Poisson bracket, 203
Poisson summation formula, 30
principal symbol of a ψ do on a manifold, 265
product of distributions, 61
propagation of singularities, 249
pseudodifferential operator on a manifold, 265
pseudodifferential operator (ψ do), 198
pseudodifferential operator of real principal type, 247
pseudolocal property of ψ do's, 217
radiation conditions, $93,156,175$
radiation conditions in $\mathbb{R}^{n}, 100$
Rankine-Hugoniot condition, 32
reduced wave equation, 81
regular functional, 7
regularity of a weak solution of
Neumann problem, 128
regularization problem, 14
regularizer, 209
resolvent, 285
restrictions of $H_{s}\left(\mathbb{R}^{n}\right)$ to hyperplanes, 53
restrictions of $H_{s}\left(\mathbb{R}^{n}\right)$ to $\partial \Omega, 115$
restrictions of distributions to a surface, 63
retarded potential, 76
right regularizer, 210, 211, 274
Robin boundary condition, 108
root vectors, 301, 309
scattering amplitude, 161, 177
scattering matrix, 168
Schrödinger equation, 72, 160
Schwartz's kernel, 163, 168, 215, 341
second order elliptic operator, 117
second order hyperbolic operator, 342
section of a bundle, 363
selfadjoint operator, 305
semigeodesic coordinates, 290, 295, 300
Shapiro-Lopatinskii condition, 274
sharp Gårding inequality, 262
signature of a matrix, 335
signature of a quadratic form, 95
simply connected domain, 314
single layer potential, 82, 103, 174
singular integral equation, 327
smoothing operator, 202
Sobolev spaces, 46, 62-67, 128-133
$H_{s}(\Omega), 112$
$H_{s}\left(\mathbb{R}^{n}\right), 46$
$H_{s}(\partial \Omega), 116$
$H_{s}^{p}\left(\mathbb{R}^{n}\right), 67$
$H_{p, s}\left(\mathbb{R}^{n+1}\right), 232$
$H_{p, s}\left(\mathbb{R}_{+}^{n+1}\right), 232$
$W^{1, p}\left(\mathbb{R}^{n}\right), 138$
$\Pi_{\frac{s}{m}, s, \tau}\left(\mathbb{R}_{+}^{n+1}\right), 223$
$\Pi_{\frac{s}{m}, s}\left(\mathbb{R}^{n+1}\right), 223$
$\stackrel{\circ}{H}_{s}(\Omega), 112$
$\stackrel{\circ}{H}_{p, s}\left(\mathbb{R}^{n+1}\right), 232$
$\stackrel{\circ}{\Pi}_{\frac{s}{m}, s}\left(\mathbb{R}^{n+1}\right), 223$
duality of, 116
equivalent norm in $H_{m}(\Omega), 113$

Sobolev's inequality, 139
stationary phase lemma, 334
strict Huygens principle, 77
strictly hyperbolic operator, 255
strictly hyperbolic polynomial, 232
strongly elliptic operator, 204
symbol of real principal type, 247
symmetric first order hyperbolic
system, 260
tensor product, 319
theorem
Arzelà-Ascoli, 149
Bott, 320
Cauchy, 224
Egorov's, 338
Hahn-Banach, 36
Karamata's Tauberian, 306
Lebesgue convergence, 5
Lidskii's, 304, 311
Liouville's, 41, 280, 314
Paley-Wiener, 174
Plancherel's, 47
Pleijel, 326
Riesz, 36
Sobolev's embedding, 52
topological index (t-ind), 320
trace class operator, 303
trace of an operator, 304
traces, 53
transition matrices, 264
transport equation, 346
triples $(E, F, A(x, \xi)), 318$
equivalence classes of, 318
equivalent, 318
isomorphic, 318
$\operatorname{triples}(E, F, A(x, \xi))$
sum of, 318
variational inequality, 135, 137
vector bundle, 264, 278, 319
voltage, 171
wave front set, 217, 348
of a FIO, 340
of solutions of the Cauchy problem, 255
weak solution of the Neumann problem, 127

Titles in This Series

124 David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, 2011
123 Gregory Eskin, Lectures on linear partial differential equations, 2011
122 Teresa Crespo and Zbigniew Hajto, Algebraic groups and differential Galois theory, 2011
121 Tobias Holck Colding and William P. Minicozzi II, A course in minimal surfaces, 2011
120 Qing Han, A basic course in partial differential equations, 2011
119 Alexander Korostelev and Olga Korosteleva, Mathematical statistics: asymptotic minimax theory, 2011
118 Hal L. Smith and Horst R. Thieme, Dynamical systems and population persistence, 2010
117 Terence Tao, An epsilon of room, I: pages from year three of a mathematical blog. A textbook on real analysis, 2010
116 Joan Cerdà, Linear functional analysis, 2010
115 Julio González-Díaz, Ignacio García-Jurado, and M. Gloria Fiestras-Janeiro, An introductory course on mathematical game theory, 2010
114 Joseph J. Rotman, Advanced modern algebra: Second edition, 2010
113 Thomas M. Liggett, Continuous time Markov processes: An introduction, 2010
112 Fredi Tröltzsch, Optimal control of partial differential equations: Theory, methods and applications, 2010
111 Simon Brendle, Ricci flow and the sphere theorem, 2010
110 Matthias Kreck, Differential algebraic topology: From stratifolds to exotic spheres, 2010
109 John C. Neu, Training manual on transport and fluids, 2010
108 Enrique Outerelo and Jesús M. Ruiz, Mapping degree theory, 2009
107 Jeffrey M. Lee, Manifolds and differential geometry, 2009
106 Robert J. Daverman and Gerard A. Venema, Embeddings in manifolds, 2009
105 Giovanni Leoni, A first course in Sobolev spaces, 2009
104 Paolo Aluffi, Algebra: Chapter 0, 2009
103 Branko Grünbaum, Configurations of points and lines, 2009
102 Mark A. Pinsky, Introduction to Fourier analysis and wavelets, 2009
101 Ward Cheney and Will Light, A course in approximation theory, 2009
100 I. Martin Isaacs, Algebra: A graduate course, 2009
99 Gerald Teschl, Mathematical methods in quantum mechanics: With applications to Schrödinger operators, 2009
98 Alexander I. Bobenko and Yuri B. Suris, Discrete differential geometry: Integrable structure, 2008
97 David C. Ullrich, Complex made simple, 2008
96 N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, 2008
95 Leon A. Takhtajan, Quantum mechanics for mathematicians, 2008
94 James E. Humphreys, Representations of semisimple Lie algebras in the BGG category O, 2008
93 Peter W. Michor, Topics in differential geometry, 2008
92 I. Martin Isaacs, Finite group theory, 2008
91 Louis Halle Rowen, Graduate algebra: Noncommutative view, 2008
90 Larry J. Gerstein, Basic quadratic forms, 2008
89 Anthony Bonato, A course on the web graph, 2008
88 Nathanial P. Brown and Narutaka Ozawa, C*-algebras and finite-dimensional approximations, 2008
87 Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag K. Singh, and Uli Walther, Twenty-four hours of local cohomology, 2007

TITLES IN THIS SERIES

86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, 2007
85 John M. Alongi and Gail S. Nelson, Recurrence and topology, 2007
84 Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, 2007
83 Wolfgang Ebeling, Functions of several complex variables and their singularities (translated by Philip G. Spain), 2007
82 Serge Alinhac and Patrick Gérard, Pseudo-differential operators and the Nash-Moser theorem (translated by Stephen S. Wilson), 2007
81 V. V. Prasolov, Elements of homology theory, 2007
80 Davar Khoshnevisan, Probability, 2007
79 William Stein, Modular forms, a computational approach (with an appendix by Paul E. Gunnells), 2007
78 Harry Dym, Linear algebra in action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton's Ricci flow, 2006
76 Michael E. Taylor, Measure theory and integration, 2006
75 Peter D. Miller, Applied asymptotic analysis, 2006
74 V. V. Prasolov, Elements of combinatorial and differential topology, 2006
73 Louis Halle Rowen, Graduate algebra: Commutative view, 2006
72 R. J. Williams, Introduction the the mathematics of finance, 2006
71 S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields, 2006
70 Seán Dineen, Probability theory in finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, 2005
67 T.Y. Lam, Introduction to quadratic forms over fields, 2004
66 Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional analysis, An introduction, 2004
65 S. Ramanan, Global calculus, 2004
64 A. A. Kirillov, Lectures on the orbit method, 2004
63 Steven Dale Cutkosky, Resolution of singularities, 2004
62 T. W. Körner, A companion to analysis: A second first and first second course in analysis, 2004
61 Thomas A. Ivey and J. M. Landsberg, Cartan for beginners: Differential geometry via moving frames and exterior differential systems, 2003
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003
58 Cédric Villani, Topics in optimal transportation, 2003
57 Robert Plato, Concise numerical mathematics, 2003
56 E. B. Vinberg, A course in algebra, 2003
55 C. Herbert Clemens, A scrapbook of complex curve theory, second edition, 2003
54 Alexander Barvinok, A course in convexity, 2002
53 Henryk Iwaniec, Spectral methods of automorphic forms, 2002
52 Ilka Agricola and Thomas Friedrich, Global analysis: Differential forms in analysis, geometry and physics, 2002
51 Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory, 2002
50 Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.

This book is a reader-friendly, relatively short introduction to the modern theory of linear partial differential equations. An effort has been made to present complete proofs in an accessible and self-contained form.

The first three chapters are on elementary distribution theory and Sobolev spaces with many examples and applications to equations with constant coefficients. The following chapters study the Cauchy problem for parabolic and hyperbolic equations, boundary value problems for elliptic equations, heat trace asymptotics, and scattering theory. The book also covers microlocal analysis, including the theory of pseudodifferential and Fourier integral operators, and the propagation of singularities for operators of real principal type. Among the more advanced topics are the global theory of Fourier integral operators and the geometric optics construction in the large, the Atiyah-Singer index theorem in \mathbb{R}^{n}, and the oblique derivative problem.

For additional information
and updates on this book, visit
www.ams.org/bookpages/gsm-I 23

