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Processes with only one output being controlled by a single manipulated variable are classified as 

single-input single-output (SISO) systems. Many processes, however, do not confirm to such a 

simple control configuration. In the industrial process for example, any unit operation capable of 

manufacturing or refining a product cannot do so with only a single control loop. In fact, each 

unit operation typically requires control over at least two variables, e.g. product rate and product 

quality. There are, therefore, usually at least two control loops to content with. Systems with more 

than one control loop are known as multi-input multi-output (MIMO) or multivariable systems. 

This chapter considers some important aspects of multivariable systems. MIMO interconnections, 

poles and zeros in MIMO system, Smith form for polynomial matrix, Smith McMillan form 

(SMM) form, matrix fraction description (MFD) and performance specification in MIMO 

systems are specified in this chapter. 

 
 
2-1 Multivariable Connections 

 

Figure 2-1 shows cascade (series) interconnection of transfer matrices. The transfer matrix of the 

overall system is: 

)()()()()()( 12 susGsGsusGsy ==  2-1

Note that the transfer matrices must have suitable dimensions. 

Parallel interconnection of transfer matrices is shown in Figure 2-2. The transfer matrix of the 

overall system is: 

)())()(()()()( 21 susGsGsusGsy +==  2-2

Note that the transfer matrices must have suitable dimensions. 

Feedback interconnection of transfer matrices is shown in figure 2-3. The transfer matrix of the 

overall system is: 

)()()())()(()()()( 12
1

12 susGsGsGsGIsusGsy −+== 2-3

Note that the transfer matrices must have suitable dimensions. 

 

 

 
)(1 sG )(2 sG

)(su )(sy
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Figure 2-1 Cascade interconnection of transfer matrices 

 
 
 

Figure 2-2 Parallel interconnection of transfer matrices 

 
Figure 2-3 Feedback connection of transfer matrices 

A useful relation in multivariable is push-through rule. Push-through rule is defined by: 
1

2122
1

12 ))()()(()())()(( −− +=+ sGsGIsGsGsGsGI 2-4

The cascade and feedback rules can be combined to evaluate closed loop transfer matrix from 

block diagram. 

MIMO rule: To derive the output of a system, start from the output and write down the blocks as 

you meet them when moving backward (against the signal flow) towards the input. If you exit 

from a feedback loop then include a term ( ) 1−− LI  or ( ) 1−+ LI  according to the feedback sign 

where L is the transfer function around that loop (evaluated against the signal flow starting at the 

point of exit from the loop). Parallel branches should be treated independently and their 

contributions added together. 

Example 2-1 

Derive the transfer function of the system shown in figure 2-4. 

)(1 sG )(2 sG
)(sy)(su +

−

)(1 sG

)(2 sG

)(su )(sy+
+
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Figure 2-4 System used in Example 2-1 

 
As it has two parallel ways from input to output by MIMO rule the transfer function is: 

( )ω21
1

221211 )( PKPIKPPz −−+=  
 
 
2-2 Multivariable Poles 

 

Poles of a system can be derived from the state space realizations and the transfer functions. 

 
2-2-1 Poles Derived from State Space Realizations 
 
For simplicity we here define the poles of a system in terms of the eigenvalues of the state space 

A matrix.  

Definition 2-1 

  The poles ip  of a system with state-space description ),,,( DCBA are eigenvalues 

niAi ,...,2,1,)( =λ  of the matrix A. The pole polynomial or characteristic polynomial )(sφ  is 

defined as )det()( AsIs −=φ . Thus the system’s poles are the roots of the characteristic polynomial 

0)det()( =−= AsIsφ  2-5

 
Note that if A does not correspond to a minimal realization then the poles by this definition will 

include the poles (eigenvalues) corresponding to uncontrollable and/or unobservable states. 

 
2-2-2 Poles Derived from Transfer Functions 
 

The poles of G(s) may be somewhat loosely defined as the finite values s=p where G(p) has a 

singularity ( is infinite ). The following theorem from MacFarlane and Karcanias allows one to 
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obtain the poles directly from the transfer function matrix G(s) and is also useful for hand 

calculations. It also has the advantage of yielding only the poles corresponding to a minimal 

realization of the system. 

Theorem 2-1 

The pole polynomial )(sφ  corresponding to a minimal realization of a system with transfer 

function G(s) is the least common denominator of all non-identically-zero minors of all orders of 

G(s). A minor of a matrix is the determinant of the square matrix obtained by deleting certain 

rows and/or columns of the matrix.  

Example 2-2 

Consider the plant se
s
s ϑ−

+
+

)1(
)13( 2

which has no state-space realization as it contains a delay and is 

also improper. However from Theorem 2-1 we have that the denominator is s+1 and as expected 

G(s) has a pole at s=-1 

 

Example 2-3 

Consider the square transfer function matrix  

⎥
⎦

⎤
⎢
⎣

⎡
−−

−
++

=
26

1
)2)(1(25.1

1)(
s

ss
ss

sG
 

The minors of order 1 are the four elements which all have (s+1)(s+2) in the denominator. The 

minor of order 2 is the determinant 

( )
( ) )2)(1(25.1

1
)2)(1(25.1
6)2)(1()(det 22 ++

=
++
+−−

=
ssss

ssssG  

Note the pole-zero cancellation when evaluating the determinant. The least common denominator 

of all the minors is then 

)2)(1()( ++= sssϕ  
so a minimal realization of the system has two poles one at 1−=s  and one at 2−=s  

Example 2-4 

Consider the following system with 3 inputs and 2 outputs. 
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⎥
⎦

⎤
⎢
⎣

⎡

+−+−++−
−+−

−++
=

)1)(1()1)(1()2)(1(
)1(0)2)(1(

)1)(2)(1(
1)(

2

ssssss
sss

sss
sG  

The minors of order 1 are the elements of G(s), so they are 

2
1,

2
1,

1
1,

)2)(1(
1,

1
1

++−
−

++
−

+ sssss
s

s
 

The minor of order 2 corresponding to the deletion of different columns are  

2)2)(1(
)1(,

)2)(1(
1,

)2)(1(
2

++
−−

++++ ss
s

ssss
 

By considering all minors we find their least common denominator 

)1()2)(1()( 2 −++= ssssϕ  

The system therefore has four poles one at 1−=s , one at 1=s  and two at 2−=s . From the above 

examples we see that the MIMO poles are essentially the poles of the elements. However by 

looking at only the elements it is not possible to determine the multiplicity of the poles. 

 
 
2-3 Multivariable Zeros 
 
Zeros of a system arises when competing effects internal to the system are such that the output is 

zero even when the inputs and the states are not themselves identically zero.  

 
2-3-1 Zeros Derived from State Space Realizations 
 

Zeros are usually computed from a state space description of the system. First note that the state 

space equations of a system may be written as 

⎥
⎦

⎤
⎢
⎣

⎡ −−
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
DC
BAsI

sP
yu

x
sP )(,

0
)(  2-6

 
The zeros are then the values of zs =  for which the polynomial system matrix P(s) loses rank 

resulting in zero output for some nonzero input. Numerically the zeros are found as non trivial 

solutions to the following problem 
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0)( =⎥
⎦

⎤
⎢
⎣

⎡
−

z

z
g u

x
MzI  2-7

where ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

00
0

,
I

I
DC
BA

M g . 

This is solved as a generalized eigenvalue problem. (In the conventional eigenvalue problem we 

have II g = ). 

The zeros resulting from a minimal realization are sometimes called the transmission zeros. If one 

does not have a minimal realization, then numerical computations may yield additional invariant 

zeros. These invariant zeros plus the transmission zeros are sometimes called the system zeros. 

The invariant zeros can be further subdivided into input and output decoupling zeros.  These 

cancel poles associated with uncontrollable or unobservable states and hence have limited 

practical significance.  

If the system outputs contain direct information about each of the states and no direct connection 

from input, then there are no transmission zeros. This would be the case if 0, == DIC , for 

example. 

For square systems with m=p inputs and outputs and n states, limits on the number of 

transmission zeros are: 

zerosmnExactlymCBrankandD
zerosCBrankmnmostAtD

zerosDrankmnmostAtD

−==
+−=
+−≠

:)(0
)(2:0

)(:0
2-8

 
Example 2-5 

Consider the following state space realization 

DuCxy
BuAxx

+=
+=&

 

where  

[ ] 0014
1
0
0

560
100
010

==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
= DCBA  

Determine the zeros of the system. 
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Solution: First we derive the number of transmission zeros according to equation 2-8. The product 

of CB is 

[ ] 0
1
0
0

014 =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=CB  

So since 0=D  according to equation 2-8 the system has at most  123)(2 =−=+− CBrankmn  

zero. To find the value of zero we construct M and gI  as follows 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
=⎥

⎦

⎤
⎢
⎣

⎡
=

0000
0100
0010
0001

00
0

0014
1560
0100
0010

I
I

DC
BA

M g  

Now by use of generalized eigenvalue problem one can find the zeros. The following Matlab 

m.file can be used to derive zeros. 

),( gIMeig  

It shows that the system has a zero at 4−=s . 

 
2-3-2 Zeros Derived from Transfer Functions 

For a SISO system the zeros iz  are the solutions to 0)( =izG . In general it can be argued that 

zeros are values of s at which )(sG  loses rank. This is the basis for the following definition of 

zeros for a multivariable system (MacFarlane and Karcanias). 

Definition 2-2 

 iz  is a zero of )(sG  if the rank of )( izG  is less than the normal rank of )(sG . The zero 

polynomial is defined as )()( 1 i
n
i zssz z −Π= = . Where zn  is the number of finite zeros of )(sG . 

We do not consider zeros at infinity. We require that iz  is finite. Recall that the normal rank of 

)(sG  is the rank of )(sG  at all values of s except at a finite number of singularities (which are the 

zeros) Note that this definition of zeros is based on the transfer function matrix corresponding to a 

minimal realization of a system. These zeros are sometimes called transmission zeros but we will 
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simply call them zeros. We may sometimes use the term multivariable zeros to distinguish them 

from the zeros of the elements of the transfer function matrix. 

The following theorem from MacFarlane and Karcanias is useful for hand calculating the zeros of 

a transfer function matrix )(sG . 

Theorem 2-2 

The zero polynomial )(sz  corresponding to a minimal realization of the system is the greatest 

common divisor of all the numerators of all order-r minors of G(s) where r is the normal rank of 

)(sG  provided that these minors have been adjusted in such a way as to have the pole polynomial 

)(sφ  as their denominators. 

Example 2-6 

Consider the transfer function matrix 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+

=
)1(25.4

41
2

1)(
s

s
s

sG  

The normal rank of G(s) is 2 and the minor of order 2 is the determinant of G(s) 

( )
2
42

)2(
18)1(2)(det 2

2

+
−

=
+

−−
=

s
s

s
ssG . From Theorem 2-1 the pole polynomial is 2)( += ssφ  and 

therefore the zero polynomial is 4)( −= ssz . Thus G(s) has a single RHP-zero at 4=s . 

This illustrates that in general multivariable zeros have no relationship with the zeros of the 

transfer function elements. This is also shown by the following example where the system has no 

zeros. 

 

Example 2-7 

Consider the following system 

⎥
⎦

⎤
⎢
⎣

⎡
−−

−
++

=
26

1
)2)(1(25.1

1)(
s

ss
ss

sG
 

according to example 2-3 the pole polynomial is: 

)2)(1()( ++= sssϕ  
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The normal rank of G(s) is 2 and the minor of order 2 is the determinant of G(s), where det(G(s)) 

with in )(sφ as its denominator is 

( )
( ) )2)(1(25.1

1
)2)(1(25.1
6)2)(1()(det 22 ++

=
++
+−−

=
ssss

ssssG  

Thus the zero polynomial is given by the numerator which is 1, and we find that the system has 

no multivariable zeros. 

 

Example 2-8 

Consider the system 

⎥⎦
⎤

⎢⎣
⎡

+
−

+
−

=
2
2

1
1)(

s
s

s
ssG  

The normal rank of G(s) is 1 and since there is no value of s for which both elements become 

zero, G(s) has no zeros. 

In general non-square systems are less likely to have zeros than square systems. The following is 

an example of a non square system which has a zero. 

 

Example 2-9 

Consider the following system 

⎥
⎦

⎤
⎢
⎣

⎡

+−+−++−
−+−

−++
=

)1)(1()1)(1()2)(1(
)1(0)2)(1(

)1)(2)(1(
1)(

2

ssssss
sss

sss
sG  

according to example 2-4 the pole polynomial is: 

)1()2)(1()( 2 −++= ssssϕ  

The minors of order 2 with )(sφ  as their denominators are  

)1()2)(1(
)1(,

)1()2)(1(
)2)(1(,

)1()2)(1(
)2)(1(2

2

2

22 −++
−−

−++
+−

−++
+−

sss
s

sss
ss

sss
ss  

The greatest common divisor of all the numerators of all order-2 minors is 1)( −= ssz . Thus, the 

system has a single RHP-zero located at s = 1. 
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We also see from the last example that a minimal realization of a MIMO system can have poles 

and zeros at the same value of s provided their directions are different. This is discussed in the 

next section. 

 
2-4 Directions of Poles and Zeros 

 

Zero directions: Let G(s) have a zero at s = z, Then G(s) loses rank at s = z and there will exist 

nonzero vectors zu  and zy  such that 

0)(0)( == zGyuzG H
zz  2-9

here zu is defined as the input zero direction and zy  is defined as the output zero direction. We 

usually normalize the direction vectors to have unit length i.e. 1
2
=zu  and 1

2
=zy . From a 

practical point of view the output zero direction zy  is usually of more important than zu  because 

zy  gives information about which output _or combination of outputs_ may be difficult to control. 

In principle we may obtain zu  and zy  from an SVD of HUYzG Σ=)( and we have that zu  is the 

last column in U, corresponding to the zero singular value of G(z) and zy  is the last column of Y. 

A better approach numerically is to obtain zu  from a state space description using the 

generalized eigenvalue problem in 2-7.  

Pole directions: Let G(s) have a pole at s = p. Then G(p) is infinite and we may somewhat 

crudely write 

∞=∞= )()( pGyupG H
pp  2-10

where pu  is the input pole direction and py  the output pole direction. As for zu  and zy  the 

vectors pu and py  may be obtained from an SVD of HUYpG Σ=)( . Then pu  is the first column in 

U corresponding to the infinite singular value and py  the first column in Y. If the inverse of G(p) 

exists then it follows from the SVD that 

0)(0)( 11 == −− pGuypG pp  2-11
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However if we have a state space realization of G(s) then it is better to determine the pole 

directions from the right and left eigenvectors of A. Specifically if p is pole of G(s) then p is an 

eigenvalue of A. Let pt  and pq  be the corresponding right and left eigenvectors i.e. 

H
p

H
ppp pqAqptAt ==  2-12

then the pole directions are  

p
H

ppp qBuCty ==  2-13
 

Example 2-10 

Consider the following plant 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+

=
)1(25.4

41
2

1)(
s

s
s

sG
 

It  has a RHP zero at 4=z  and a LHP pole at 2−=p .  We will use an SVD of G(z) and G(p) to 

determine the zero and pole directions. But we stress that this is not a reliable method 

numerically. 

To find the zero direction consider 
H

GzG ⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
==

6.08.0
8.06.0

00
001.9

55.083.0
83.055.0

6
1

65.4
43

6
1)4()(

 
The zero input and output directions are associated with the zero singular value of G(z) and we   

get  

⎥
⎦

⎤
⎢
⎣

⎡−
=

6.0
8.0

zu  and ⎥
⎦

⎤
⎢
⎣

⎡−
=

55.0
83.0

zy  

We see from yz that the zero has a slightly larger component in the first output. Next, to determine 

the pole directions consider 

⎥
⎦

⎤
⎢
⎣

⎡
+−

+−
=+−=+

)3(25.4
431)2()(
ε

ε
ε

εε GpG  

The SVD as 0→ε yields 

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡−
=+−

6.08.0
8.06.0

00
001.9

55.083.0
83.055.01)2(

ε
εG  
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The pole input and outputs directions are associated with the largest singular value, 
ε
01.9  and we 

get ⎥
⎦

⎤
⎢
⎣

⎡
−

=
8.0

6.0
pu and ⎥

⎦

⎤
⎢
⎣

⎡−
=

83.0
55.0

py  

 

2-5 Smith Form of a Polynomial Matrix 
 

Suppose that )(sΠ  is a polynomial matrix. Smith form of )(sΠ  is denoted by )(ssΠ , and it is a 

pseudo diagonal in the following form 

⎥
⎦

⎤
⎢
⎣

⎡Π
=Π

00
0)(

)(
s

s ds
s  2-14

and )(sdsΠ is a square diagonal matrices in the following form 

{ })(,,........)(,)()( 21 sssdiags rds εεε=Π  2-15

Furthermore, )(siε  is a factor of )(1 si+ε . )(siε  is derived from minors of )(sΠ  as
1

)(
−

=
i

i
i s

χ
χ

ε  

where iχ derived by: 

10 =χ  

=1χ gcd{all monic minors of degree 1} 
=2χ gcd{all monic minors of degree 2} 

. 

. 
=rχ gcd{all monic minors of degree r} 

2-16

gcd stands for greatest common divisor and monic is a polynomial that the coefficient of its 

greatest degree is one. 

The three elementary operations for a polynomial matrix are used to find Smith form. 

• Multiplying a row or column by a constant; 

• Interchanging two rows or two columns; and 

• Adding a polynomial multiple of a row or column to another row or column. 

These operations are carried out on a transfer matrix )(sΠ  by either pre-multiplication or post-

multiplication by unimodular polynomial matrices known as elementary matrices. A polynomial 
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matrix is unimodular if its inverse also is a polynomial matrix. Pre-multiplication of )(sΠ by an 

elementary matrix produces the corresponding row operation, while post-multiplication produces 

a column operation. )(ssΠ is Smith form of )(sΠ  and they are said to be equivalent, denoted by 

)(~)( sss ΠΠ if there exists a set of elementary matrices iL  and iR  such that 

)().......()()()()().....()( 121122 sRsRsRssLsLsLs nns Π=Π 2-17
 

Example 2-11  

Consider the following polynomial matrix  

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−+

+−
=Π

2
1)2(2

)2(4
)(

s

s
s  

so we have 10 =χ , 1}1,2,2,1gcd{1 =++= ssχ , )3)(1(}34gcd{ 2
2 ++=++= ssssχ  

and now )(siε  are: 

1)(
0

1
1 ==

χ
χ

ε s  and )3)(1()(
1

2
2 ++== sss

χ
χ

ε  

the Smith of )(sΠ  is:  

⎥
⎦

⎤
⎢
⎣

⎡
++

=Π
)3)(1(0

01
)(

ss
ss  

Example 2-12  

Consider the following polynomial matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−+
−−−+

−

=Π
)42)(2()2)(2(

824
11

)( 22

ssss
sssss  

so we have 
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10 =χ , 1}4,4,45.0,4,1gcd{ 2222
1 =−−−−−+= ssssssχ and 

)4()}4(,4,4gcd{ 2222
2 −=−−−= sssssχ  

and now )(siε  are: 

1)(
0

1
1 ==

χ
χ

ε s  and )4()( 2

1

2
2 −== ss

χ
χ

ε  

the Smith form of )(sΠ  is:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=Π
00

)4(0
01

)( 2sss  

2-6 Smith-McMillan Forms 

  

The Smith-McMillan form is used to determine the poles and zeros of the transfer matrices of 

systems with multiple inputs and/or outputs. The transfer matrix is a matrix of transfer functions 

between the various inputs and outputs of the system. The poles and zeros that are of interest are 

the poles and zeros of the transfer matrix itself, not the poles and zeros of the individual elements 

of the matrix. The locations of the poles of the transfer matrix are available by inspection of the 

individual transfer functions, but the total number of the poles and their multiplicity is not. The 

location of system zeros, or even their existence, is not available by looking at the individual 

elements of the transfer matrix.  

The transfer matrix will be denoted by G(s). The number of rows in G(s) is equal to the number 

of system outputs; that will be denoted by m. The number of columns in G(s) is equal to the 

number of system inputs; that will be denoted by p. Thus, G(s) is an m × p matrix of transfer 

functions. The normal rank of G(s) is r, where r ≤ min{p, m}. 

Following theorem gives a diagonal form for a rational transfer-function matrix: 

Theorem 2-3 (Smith-McMillan form)  
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Let )]([)( sgsG ij=  be an m × p matrix transfer function, where )(sgij  are rational scalar transfer 

functions, G(s) can be represented by:  

)(
)()(
sD

ssG
G

Π
=  2-18

where )(sΠ is an m × p polynomial matrix of rank r and )(sDG  is the least common multiple of 

the denominators of all elements of G(s) .  

Then, )(~ sG  is Smith McMillan form of G(s) and can be derived directly by 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡Π
=

Π
=

00
0)(

00
0)(

)(
1

)(
)(

)(~ sMs
sDsD

s
sG ds

GG

s  2-19

where )(sM is:  

⎭
⎬
⎫

⎩
⎨
⎧

=
)(
)(,,........

)(
)(,

)(
)()(

2

2

1

1

s
s

s
s

s
sdiagsM

r

r

δ
ε

δ
ε

δ
ε  2-20

where { })(,)( ss ii δε is a pair of monic and coprime polynomials for  ri ,...,2,1= .  

Furthermore, )(siε is a factor of )(1 si+ε and )(1 si+δ is a factor of )(siδ . Elements of the matrix M(s) 

can be defined by: 

)(
)(

)(
)(

)(
s
s

sD
s

sm
i

i

G

i
ii δ

εε
==  2-21

where )(siε  are diagonal elements of  )(ssΠ (Smith form of )(sΠ ) as 

{ })(,,........)(,)()( 21 sssdiags rds εεε=Π  2-22

We recall that a matrix G(s), and its Smith-McMillan form )(~ sG are equivalent matrices. Thus, 

there exist two unimodular matrices, L(s) and R(s), such that  

)()()()(~ sRsGsLsG =  2-23

L(s) and R(s) are the unimodular matrices that convert )(sΠ  to its Smith form )(ssΠ . Then there 

exist two matrices )(~ sL  and )(~ sR , such as  
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)(~)(~)(~)( sRsGsLsG =  2-24

where )(~ sL  and  )(~ sR are also unimodular and:  

11 )()(~,)()(~ −− == sRsRsLsL  2-25

The poles and zeros of the transfer matrix G(s) can be found from the elements of M(s). The pole 

polynomial is defined as 

)().....()()()( 211
sssss ri

r

i
δδδδφ =Π=

=
 2-26

Repeated poles can also be identified by inspection of )(sφ . The total number of poles in the 

system is given by ( ))(deg sφ , which is known as the McMillan degree. It is the dimension of a 

minimal state-space representation of G(s). 

A state-space representation of G(s) may be of higher order than the McMillan degree, indicating 

pole-zero cancellations in the system.  

In similar fashion, the zero polynomial is defined as 

)().....()()()( 211
sssssz ri

r

i
εεεε =Π=

=
 2-27

The roots of z(s) = 0 are known as the transmission zeros of G(s). It can be seen that any 

transmission zero of the system must be a factor in at least one of the )(siε  polynomials. The 

normal rank of both M(s) and G(s) is r. It is clear that if any )(siε  be zero, then the rank of M(s) 

drops below r. Therefore, since the ranks of M(s) and G(s) are always equal, so G(s) loses rank. 

We illustrate the Smith-McMillan form by a simple example.  

Example 2-13  

Consider the following transfer-function matrix  
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++
−

+

+
−

++=

)2)(1(2
1

)1(
2

)1(
1

)2)(1(
4

)(

sss

ssssG  

We can then express G(s ) in the form:  

)2)(1()(,
5.0)2(2

)2(4
)(,

)(
)()( ++=⎥

⎦

⎤
⎢
⎣

⎡
−+
+−

=Π
Π

= sssD
s

s
s

sD
ssG G

G

 

According example 2-11 the Smith form of )(sΠ is: 

⎥
⎦

⎤
⎢
⎣

⎡
++

=Π
)3)(1(0

01
)(

ss
ss  

So the Smith McMillan form of G(s) is:  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+

++
=

Π
=

2
30

0
)2)(1(

1

)(
)(

)(~

s
s

ss
sD
s

sG
G

s  

Clearly the pole polynomial and the zero polynomial are: 

2)2)(1()( ++= sssφ  , 3)( += ssz  

 

Example 2-14  

Consider the following example of a system with m = 3 outputs and p = 2 inputs. The transfer 

matrix is shown below; 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

+
−

++
−−

++
−+

++
−

++

=

)1(
42

)1(
2

)2)(1(
82

)2)(1(
4

)2)(1(
1

)2)(1(
1

)(
22

s
s

s
s

ss
ss

ss
ss

ssss

sG  

We can then express G(s ) in the form:  

)2)(1()(,
)2)(42()2)(2(

824
11

)(,
)(
)()( 22 ++=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−+−
−−−+

−

=Π
Π

= sssD
ssss

sssss
sD

ssG G
G

 

according example 2-12 the Smith form of )(sΠ is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=Π
00

)4(0
01

)( 2sss  

So the Smith McMillan form of G(s) is:  

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

++

=
Π

=

00

1
20

0
)2)(1(

1

)(
)(

)(~
s
s

ss

sD
s

sG
G

s  

Clearly pole polynomial and zero polynomial are: 

2)1)(2()( ++= sssφ  , 2)( −= ssz  

2-7 Matrix Fraction Description (MFD) 
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A model structure that is related to the Smith-McMillan form is matrix fraction description 

(MFD). There are two types, namely a right matrix fraction description (RMFD) and a left matrix 

fraction description (LMFD).  

First of all suppose )(~ sG  is a mm×  matrix and is the Smith McMillan form of G(s), define the 

following two matrices:  

( )0,...,0,)(,...,)()( 1 ssdiagsN rεε
∆

=  2-28

( )1,...,1,)(,...,)()( 1 ssdiagsD rδδ
∆

=  2-29

where )(sN and )(sD are mm×  matrices. Hence )(~ sG , can be written as  

1)()()(~ −= sDsNsG  2-30

Combining 2-24 and 2-30, we can write  

( ) 111 )()()()()()(~)(~)()()(~)(~)(~)(~)( −−− ==== sGsGsDsRsNsLsRsDsNsLsRsGsLsG DN  2-31

This is known as a right matrix fraction description (RMFD) where:  

)()()(,)()(~)( sDsRsGsNsLsG DN ==  2-32

If one start with )()()(~ 1 sNsDsG −= then combining with 2-24 

( ) )()()(~)()()()(~)()()(~)(~)(~)(~)( 111 sGsGsRsNsLsDsRsNsDsLsRsGsLsG ND
−−− ====  2-33

This is known as a left matrix fraction description (LMFD) where:  

)(~)()(,)()()( sRsNsGsLsDsG ND ==  2-34

The left and right matrix descriptions have been initially derived starting from the Smith-

McMillan form. Hence, the factors are polynomial matrices. However, it is immediate to see that 

they provide a more general description. In particular, )(,)(,)( sGsGsG DDN  and )(sGN are 
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generally matrices with rational entries. One possible way to obtain this type of representation is 

to divide the two polynomial matrices forming the original MFD by the same (stable) polynomial.  

We also observe that the RMFD (LMFD) is not unique, because, for any nonsingular mm×  

matrix )(sΩ we can write G(s) as  

( ) ( )( ) 111 )()()()()()()()()( −−− ΩΩ=ΩΩ= ssGssGsGsssGsG DNDN 2-35

where )(sΩ is said to be a right common factor. When the only right common factors of )(sGN  

and )(sGD  is unimodular matrix, then, we say that  )(sGN  and )(sGD are right coprime. In this 

case, we say that the RMFD ( ))(),( sGsG DN  is irreducible.  

It is easy to see that when a RMFD is irreducible, then  

• zs =  is a zero of G(s) if and only if )(sGN loses rank at zs = ; and  
• ps = is a pole of G(s) if and only if )(sGD is singular at ps = . This means that the pole 

polynomial of G(s) is ( ))(det)( sGs D=φ .  

An example showing the above concepts is considered next.  

Example 2-15  

Consider a 22× MIMO system having the transfer function  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+++

+
−

++=

)2)(1(
2

2
1

1
5.0

)2)(1(
4

)(

sss

ssssG  

a) Find the Smith-McMillan form by performing elementary row and column operations. 

b) Find the poles and zeros. 

c) Build a RMFD for the model. 
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Solution  

a) We first compute its Smith-McMillan form by performing elementary row and column 

operations. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++
++

++
==

)2)(1(
1830

0
)2)(1(

1

)()()()(~
2

ss
ss

ss
sRsGsLsG  

where  

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ +
=⎥

⎦

⎤
⎢
⎣

⎡
+−

=
10
8

21)(,
8)1(2
025.0

)(
s

sR
s

sL  

b) We see that the observable and controllable part of the system has zero and pole polynomials 

given by  

222 )2()1()(,183)( ++=++= ssssssz φ  

So the poles are -1, -1, -2 and -2 and zeros are -1.5± j3.97 

c) To derive RMFD we need   

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ +
−==⎥

⎦

⎤
⎢
⎣

⎡
+

== −−

00
8

21)()(~,
125.01
04

)()(~ 11
s

sRsR
s

sLsL  

⎥
⎦

⎤
⎢
⎣

⎡
++

++
=⎥

⎦

⎤
⎢
⎣

⎡
++

=
)2)(1(0

0)2)(1(
)(,

1830
01

)( 2 ss
ss

sD
ss

sN  

So 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++

+=⎥
⎦

⎤
⎢
⎣

⎡
++⎥

⎦

⎤
⎢
⎣

⎡
+

=
8

1831

04

1830
01

125.01
04

)( 2
2 ssssss

sGN  

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

++

++
++=⎥

⎦

⎤
⎢
⎣

⎡
++

++

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ +
=

)2)(1(0
8

)2)(1()2)(1(
)2)(1(0

0)2)(1(

10
8

21)(
2

ss

ssss
ss

sss
sGD  

 Matrix fraction description (MFD) can be extended to mn×  non square matrix G(s). In RMFD, 

)(sGN is mn×  and )(sGD  is mm×  and in LMFD, )(sGD  is nn×  and )(sGN is mn× . Following 

example shows the procedure of finding RMFD and LMFD for a non square matrix G(s).  

Example 2-16  

Consider the following transfer matrix; 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

+
−

++
−−

++
−+

++
−

++

=

)1(
42

)1(
2

)2)(1(
82

)2)(1(
4

)2)(1(
1

)2)(1(
1

)(
22

s
s

s
s

ss
ss

ss
ss

ssss

sG  

Find RMFD and LMFD of the system. 

 Solution  

According example 2-14 the SMM form of G(s) is: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

++

=
Π

=

00

1
20

0
)2)(1(
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)(
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)(~
s
s
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s

sG
G

s  
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To derive the RMFD and LMFD we must find the unimodular matrices that convert )(sΠ  to 

)(ssΠ . So 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−+−
−−−+

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+−=Π=Π

3
10

3
11

)2)(42()2)(2(
824
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11
01)4(
001

)()()()( 222

ssss
ssss

s
sssRssLss  

Now we write G(s) according to )(~ sG : 

=⎥
⎦
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Above equation leads to RMFD and 
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=
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s
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To derive LMFD the )(~ sG  must partitioned as LMFD so: 
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so we find 
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2-8 Scaling 

Scaling is very important in practical applications as it makes model analysis and controller 

design (weight selection) much simple. It requires the engineer to make a judgment at the start of 

the design process about the required performance of the system. To do this, decisions are made 

on the expected magnitudes of disturbances and reference changes, on the allowed magnitude of 

each input signal, and on the allowed deviation of each output. Let the unscaled (or original 

system) linear model of the process in Figure 2-5a be  

ryedGuGy d ˆˆˆ;ˆˆˆˆˆ −=+=  2-36

where a hat (^) is used to show that the variables are in their unscaled (or originally system) units. 

A useful approach for scaling is to make the variables less than one in magnitude. This is done by 

dividing each variable by its maximum expected or allowed change. For disturbances and 

manipulated inputs, we use the scaled variables 
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maxmax
ˆ

ˆ
,ˆ

ˆ

u
uu

d
dd ==  2-37

where 

_ maxd̂ : largest expected change in disturbance 

_ maxû : largest allowed input change 

The maximum deviation from the nominal value should be chosen by thinking of the maximum 

value one can expect (or allow) as a function of time. The variables ey ˆ,ˆ  and r̂ are in the same 

units, so the same scaling factor should be applied to each. Two alternatives are possible: 

_ maxê : largest allowed control error 

_ maxr̂ : largest expected change in reference value 

Since a major objective of control is to minimize the control error, we here usually choose to 

scale with respect to the maximum control error: 

maxmaxmax ˆ
ˆ

,
ˆ

ˆ
,

ˆ
ˆ

e
yy

e
rr

e
ee ===  2-38

 

(a)                                                               (b) 

Figure 2-5 Model in terms of (a) original variable and (b) scaled variable 
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To formalize the scaling procedure, introduce the scaling factors 

maxmaxmaxmax ˆ,ˆ,ˆ,ˆ rDdDuDeD rdue ==== 2-39

For MIMO systems each variable in the vectors urd ˆ,ˆ,ˆ  and ê  may have a different maximum 

value, in which case due DDD ,,  and rD  become diagonal scaling matrices. This ensures, for 

example, that all errors (outputs) are of about equal importance in terms of their magnitude. 

The corresponding scaled variables to use for control purposes are then 

rDreDeyDyuDudDd eeeud ˆ,ˆ,ˆ,ˆ,ˆ 11111 −−−−− ===== 2-40

On substituting 2-40 into 2-36 we get 

rDyDeDdDGuDGyD eeeddee −=+= ;
))

2-41

and introducing the scaled transfer functions 

ddedue DGDGDGDG ˆ,ˆ 11 −− ==  2-42

then yields the following model in terms of scaled variables 

ryedGGuy d −=+= ;  2-43

 Here u and d should be less than 1 in magnitude, and it is useful in some cases to introduce a 

scaled reference r~  which is less than 1 in magnitude. This is done by dividing the reference by 

the maximum expected reference change 

rD
r

rr r ˆ
ˆ

ˆ~ 1

max

−==  2-44

We then have that  
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rRr ~=  where  
max

max1

ˆ
ˆ
e
r

DDR re =≅ −  2-45

Here R is the largest expected change in reference relative to the allowed control error, typically, 

1≥R . The block diagram for the system in scaled variables may then be written as in Figure 2-5b 

for which the following control objective is relevant: 

In terms of scaled variables we have that 1)( ≤td  and 1)(~ ≤tr , and our control objective is to 

design u with 1)( ≤tu such that 1)()()( ≤−= trtyte  (at least most of the time). 

2-9 Performance Specification 
 
In the application of automatic controllers, it is important to realize that controller and process 

form a unit, credit or discredit for results obtained are attributable to one as much as the other. A 

poor controller is often able to perform acceptably on a process which is easily controllable. The 

finest controller made, when applied to a miserably designed process, may not deliver the desired 

performance. There are some important definitions in this matter. 

• Nominal stability NS: The system is stable with no model uncertainty. 

• Nominal Performance NP: The system satisfies the performance specifications with no 

model uncertainty. 

• Robust stability RS: The system is stable for all perturbed plants about the nominal model 

up to the worst case model uncertainty. 

• Robust performance RP: The system satisfies the performance specifications for all 

perturbed plants about the nominal model up to the worst case model uncertainty. 

Performance specification can be considered in time and frequency domain.  
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Figure 2-6 Step response of a system 

 
2-9-1 Time Domain Performance  

Although closed loop stability is an important issue, the real objective of control is to improve 

performance, that is, to make the output y(t) behave in a more desirable manner. Actually, the 

possibility of inducing instability is one of the disadvantages of feedback control which has to be 

traded off against performance improvement. The objective of this section is to discuss ways of 

evaluating closed loop performance. 

Step response analysis approach, often taken by engineers when evaluating the performance of a 

control system. That is, one simulates the response to a step in the reference input, and considers 

characteristics shown in Figure 2-6. 

 

• Rise time, tr , the time it takes for the output to first reach 90%  of its final value, which is 

usually required to be small. 

• Settling time, ts , the time after which the output remains within ± 5% ( or ± 2%) of its 

final value, which is usually required to be small. 

• Overshoot, P.O, the peak value divided by the final value, which should typically be less 

than 20% or less. 

• Decay ratio, the ratio of the second and first peaks, which should typically be 0.3 or less. 

• Steady state offset, ess, the difference between the final value and the desired final value, 

which is usually required to be small. 

• Excess variation, the total variation (TV) divided by the overall change at steady state, 

which should be as close to 1 as possible. The total variation is the total movement of the 
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output as illustrated in Figure 2-7. For the cases considered here the overall change is 1, so 

the excess variation is equal to the total variation.  

∑=
i

ivTV     Excess variation 0/ vTV=  2-46

Note that the step response is equal to the integral of the corresponding impulse response, e.g. 

set u=1 in the following convolution integral. 

τττ dtugty
t

)()()(
0∫ −=  2-47

where )(τg  is the impulse response. One can compute the total variation as the integrated 

absolute area (1-norm), of the corresponding impulse response  

10
)()( tgdgTV == ∫

∞
ττ  2-48

 

ISE, IAE, ITSE, ITAE: These measures are integral squared error, integral absolute error, 

integral time weighted squared error and integral time weighted absolute error respectively. 

For example IAE is defined as 

ττ deIAE ∫
∞

=
0

)(  2-49

 The rise time and settling time are measures of the speed of the response, whereas the 

overshoot, decay ratio, TV, ISE, IAE, ITSE, ITAE and steady state offset are related to the 

quality of the response. 

 

 
Figure 2-7 Total variation in the step response of a system 
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2-9-2 Frequency Domain Performance 
 
The frequency response of the loop transfer function, )( ωjL , or of various closed-loop transfer 

functions, may also be used to characterize closed-loop performance. Typical Bode plot of L is 

shown in Figure 2-8. One advantage of the frequency domain compared to a step response 

analysis is that it considers a broader class of signals (sinusoids of any frequency). This makes it 

easier to characterize feedback properties, and in particular system behaviors in the crossover 

(bandwidth) region. We will now describe some of the important frequency domain measures 

used to assess performance, e.g. gain and phase margins, the maximum peaks of T and S, and the 

various definitions of crossover and bandwidth frequencies used to characterize speed of 

response. 

Let L(s) denote the loop transfer function of a system which is closed-loop stable under negative 

feedback. A typical Bode plot and a typical Nyquist plot of )( ωjL  illustrating the gain margin 

(GM) and phase margin (PM) are given in Figures 2-8 and 2-9, respectively. 

From Nyquist’s stability condition, the closeness of the curve )( ωjL  to the point -1 in the 

complex plane is a good measure of how close a stable closed-loop system is to instability. 

We see from Figure 2-8 that GM measures the closeness of )( ωjL  to -1 along the real axis, 

whereas PM is a measure along the unit circle. 

 

 
Figure 2-8 Bode plot of )( ωjL . 
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Figure 2-9 Nyquist plot of )( ωjL . 

More precisely, if the Nyquist plot of )( ωjL crosses the negative real axis between -1 and 0, then 

the (upper) gain margin is defined as 

)(
1

180ωjL
GM =  2-50

where the phase crossover frequency 180ω  is where the Nyquist curve of )( ωjL  crosses the 

negative real axis between -1 and 0, i.e. 

180)( 180 =∠ ωjL  2-51

The phase margin is defined as 

180)( +∠= cjLPM ω  2-52

where the gain crossover frequency cω is the frequency where )( ωjL crosses 1, i.e. 

1)( =cjL ω  2-53

The PM is a direct safeguard against time delay uncertainty; the system becomes unstable if we 

add a time delay of 

cPM ωθ /max =  2-54
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Note that the units must be consistent, and so if cω is in [rad/s] then PM must be in radians. It is 

also important to note that by decreasing the value of cω  (lowering the closed-loop bandwidth, 

resulting in a slower response) the system can tolerate larger time delay errors. 

Stability margins are measures of how close a stable closed-loop system is to instability. From the 

above arguments we see that the GM and PM provide stability margins for gain and delay 

uncertainty. More generally, to maintain closed-loop stability, the Nyquist stability condition tells 

us that the number of encirclements of the critical point -1 by )( ωjL  must not change. As 

discussed next, the actual closest distance is equal to sM/1  where sM  is the peak value of the 

sensitivity )( ωjS . As expected, the GM and PM are closely related to sM , and since S  is also a 

measure of performance; they are therefore also useful in terms of performance. In summary, 

specifications on the GM and PM (e.g. GM > 2 and PM > o30 ) are used to provide the appropriate 

trade-off between performance and stability robustness. 

The maximum peaks of the sensitivity and complementary sensitivity functions are defined as 

)(max)(max ωω
ωω

jTMjSM Ts ==  2-55

Since S+T=1 so S and T differ at most by 1. A large value of sM  therefore occurs if and only if 

TM is large.  

We now give some justification for why we may want to reduce the value of sM . Consider the 

one degree-of-freedom configuration in Figure 2-10. Let we define error signal as rye −= , then 

without control and noise ( 0== nu ), we have rdGrye d −=−= , and with feedback control  

 
Figure 2-10 One degree-of-freedom configuration 
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Figure 2-11 Nyquist plot of )( ωjL . 

 

)( rdGSSrdSGrye dd −=−=−= . Thus, feedback control improves performance in terms of 

reducing e  at all frequencies where 1<S .  

One may also view sM  as a robustness measure. To maintain closed-loop stability, we want 

)( ωjL  to stay away from the critical point -1. According to Figure 2-11 the smallest distance 

between )( ωjL and -1 is 1−
sM , and therefore for robustness, the smaller sM , is better. In summary, 

both for stability and performance we want sM  close to 1. 

There is a close relationship between these maximum peaks and the GM and PM. Specifically, for 

a given sM we are guaranteed 

][1
2

1sin2;
1

1 rad
MM

PM
M

M
GM

sss

s ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

−
≥ −  2-56

For example, with 2=sM  we are guaranteed GM > 2 and PM > o29 . Similarly, for a given value 

of TM  we are guaranteed 

][1
2

1sin2;11 1 rad
MM

PM
M

GM
TTT

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥+≥ −  2-57

and specifically with 2=TM we have GM > 1.5  and  PM > o29 . 
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2-10 Trade-offs in Frequency Domain 
 
Consider the simple one degree-of-freedom configuration in Figure 2-10. The input to the 

controller )(sK is myr −  and the measured output is nyym +=  where n is the measurement noise. 

Thus, the input to the plant is  

( )nyrsKu −−= )(  2-58

The objective of control is to manipulate u (design K) such that the control error e remains small 

in spite of disturbances d and noises n. The control error e is defined as 
rye −=  2-59

where r denotes the reference value (set point) for the output. Note that we do not define e as the 

controller input myr −  which is frequently done. 

The plant model is written as 

dsGusGy d )()( +=  2-60

and for a one degree-of-freedom controller the substitution of 2-58 and 2-59 into 2-60 yields 

dsGnyrsKsGy d )())(()( +−−=  2-61

or 

dsGnrsKsGysKsGI d )())(()())()(( +−=+  2-62

and hence the closed-loop response is 

nsKsGsKsGIdsGsKsGIrsKsGsKsGIy

T

d

ST

4444 34444 2144 344 214444 34444 21
)()())()(()())()(()()())()(( 111 −−− +−+++=  

2-63

The control error is 

TndSGSrrye d −+−=−=  2-64

where we have used the fact IST =+ . The corresponding plant input signal is 

KSndKSGKSru d −−=  2-65

The following notation and terminology are used 

GKL =  loop transfer function 
11 )()( −− +=+= LIGKIS sensitivity function 

LLIGKGKIT 11 )()( −− +=+=  complementary sensitivity function 
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We see that S is the closed-loop transfer function from the output disturbances to the outputs, 

while T is the closed-loop transfer function from the reference signals to the outputs. The term 

complementary sensitivity for T follows from the identity 

IST =+  2-66

The term sensitivity function is natural because S gives the sensitivity reduction afforded by 

feedback. To see this, consider the “open-loop” case i.e. with no control (K=0). Then the error is 

ndGrrye d 0++−=−=  2-67

and a comparison with 2-64 shows that, with the exception of noise, the response with feedback is 

obtained by pre multiplying the right hand side by S. 

Remark: Actually, the above is not the original reason for the name “sensitivity” Bode first called 

S as sensitivity because it gives the relative sensitivity of the closed-loop transfer function T to the 

relative plant model error. In particular, at a given frequency ω  we have for a SISO plant, by 

straightforward differentiation of T, that 

GdG
TdTS

/
/

=
 

2-68

Recall equation 2-64 which yields the closed-loop response in terms of the control error e, 

TndSGSrrye d −+−=−=  

For “perfect control” we want 0=−= rye  that is, we would like 

0,0 == TS  2-69

The first requirements in 2-69 is namely disturbance rejection and command tracking, and is 

obtained with 0≈S or equivalently IT ≈ .  Since 1)( −+= LIS  this implies that the loop transfer 

function L must be large in magnitude. On the other hand, the requirement for zero noise 

transmission implies that 0≈T or equivalently IS ≈ , which is obtained with 0≈L . This 

illustrates the fundamental nature of feedback design which always involves a trade-off between 

conflicting objectives, in this case between large loop gains for disturbance rejection and tracking, 

and small loop gains to reduce the effect of noise. 

It is also important to consider the magnitude of the control action u, (which is the input to the 

plant). We want u small because this causes less wear and saves input energy, and also because u 
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is often a disturbance to other parts of the system (e.g. consider opening a window in your office 

to adjust your body temperature and the undesirable disturbance this will impose on the air 

conditioning system for the building. In particular, we usually want to avoid fast changes in u. 

The control action is given by )( myrKu −= and we find as expected that a small u corresponds to 

small controller gains and a small GKL = . 

The most important design objectives which necessitate trade-offs in feedback control are 

summarized below. 

1- Performance, good disturbance rejection: needs large controller gains, i.e. L large or IT ≈ . 

2- Performance, good command following: L large or IT ≈ . 

3- Stabilization of unstable plant: L large or IT ≈ . 

4- Mitigation of measurement noise on plant outputs: L small or 0≈T . 

5- Small magnitude of input signals: K small and L small or 0≈T . 

6- Physical controller must be strictly proper: L has approach to 0 at high frequencies 

or 0≈T . 

7- Nominal stability (stable plant): L small  

Fortunately, the conflicting design objectives mentioned above are generally in different 

frequency ranges, and we can meet most of the objectives by using a large loop gain )1( >L at 

low frequencies below crossover, and a small gain )1( <L  at high frequencies above crossover. 

 

2-11 Bandwidth and Crossover Frequency 
 
The concept of bandwidth is very important in understanding the benefits and trade-offs involved 

when applying feedback control. Above we considered peaks of closed-loop transfer functions, 

TM  and sM  which are related to the quality of the response. However, for performance we must 

also consider the speed of the response, and this leads to considering the bandwidth frequency of 

the system. In general, a large bandwidth corresponds to a smaller rise time, since high-frequency 

signals are more easily passed on to the outputs. A high bandwidth also indicates a system which 



Chapter 2                                                                                      Lecture Notes of Multivariable Control 

 38

is sensitive to noise. Conversely, if the bandwidth is small, the time response will generally be 

slow, and the system will usually be more robust.  

Loosely speaking, bandwidth may be defined as the frequency range [ ]21 ,ωω  over which control 

is effective. In most cases we require tight control at steady-state so 01 =ω , and we then simply 

call Bωω =2 . 

The word “effective” may be interpreted in different ways, and this may give rise to different 

definitions of bandwidth. The interpretation we use is that control is effective if we obtain some 

benefit in terms of performance. For tracking performance the error is Srrye =−= (see Figure 2-

10 and let 0== dn ) and we get that feedback is effective (in terms of improving performance) as 

long as the relative error Sre =/  is reasonably small, which we may define to be 707.0≤S . 

We then get the following definition: 

Definition 2-3 

The (closed-loop) bandwidth, Bω , is the frequency where )( ωjS  first crosses db3
2

1
−= from 

below. 

Remark. Another interpretation is to say that control is effective if it significantly changes the 

output response. For tracking performance, the output is Try = (see Figure 2-10 and let 

0== dn ), we may say that control is effective as long as T is reasonably large, which we may 

define to be larger than 0.707. 

This leads to an alternative definition which has been traditionally used to define the bandwidth 

of a control system. 

Definition 2-4 

The (closed-loop) bandwidth, BTω , is the highest frequency at which )( ωjT  crosses db3
2

1
−=  

from above.  

However, we would argue that this alternative definition, although being closer to how the term is 

used in some other fields, is less useful for feedback control. 

Another important definition for bandwidth is as follows: 
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 Definition 2-5 

The gain crossover frequency, cω , defined as the frequency where )( ωjL first crosses 1from 

above, is also sometimes used to define closed-loop bandwidth.  

It has the advantage of being simple to compute and usually gives a value between Bω and BTω . 

Specifically, for systems with PM < 90 o  (most practical systems) we have 

BTcB ωωω ≤≤  2-70

In conclusion Bω  (which is defined in terms of S) and also cω  (in terms of L) are good indicators 

of closed-loop performance, while BTω  (in terms of T) may be misleading in some cases.  

Example 2-17 Comparison of Bω  and BTω  as indicators of performance. 

Following is an example where BTω  is a poor indicator of performance. 

1,1.0;
1

1;
)2(

==
++

+−
=

++
+−

= τ
τττ

z
szs

zsT
zss

zsL  

For this system, both L and T have a RHP-zero at 1.0=z  and we have GM=2.1, PM= o1.60 , 

93.1=sM , and 1=TM .  We find that 036.0=Bω  and  054.0=cω  are both less than 1.0=z  (as 

one should expect because speed of response is limited by the presence of RHP-zeros), whereas 

1/1 == τωBT is ten times larger than 1.0=z . The closed-loop response to a unit step change in the 

reference is shown in Figure 2-12. The rise time is 31.0 sec which is close to sec0.28/1 =Bω but 

very different from sec0.1/1 =BTω illustrating that Bω  is a better indicator of closed-loop 

performance than BTω . 

 

Figure 2-12 Step response for system 
1

1
1.0
1.0

++
+−

=
ss

sT  
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Figure 2-13 Plot of S  and T  for system 
1

1
1.0
1.0

++
+−

=
ss

sT  

The Bode plots of S and T are shown in Figure 2-13. We see that 1≈T  up to about BTω . 

However, in the frequency range from Bω  to BTω  the phase of T (not shown) drops from about 
o40−  to about o220− , so in practice tracking is poor in this frequency range. For example, at 

frequency 46.0180 =ω  we have 9.0−=T  and the response to a sinusoidally varying reference 

ttr 180sin)( ω=  is completely out of phase, i.e.  )(9.0)( trty −≈ .  

We thus conclude that T  by itself is not a good indicator of performance, we must also consider 

its phase. The reason is that we want 1≈T  in order to have good performance, and it is not 

sufficient that 1≈T . On the other hand, S  by itself is a reasonable indicator of performance, it is 

not necessary to consider its phase. The reason for this is that for good performance we want S 

close to 0 and this will be the case if 0≈S  irrespective of the phase of S. 

 

 

Exercises  

2-1 Proof the equation 2-4. 

 

2-2 Derive the pre and post-multiplication matrices change )(sΠ  to )(ssΠ  in example 2-11. 

 

2-3 Derive the pre and post-multiplication matrices change )(sΠ  to )(ssΠ  in example 2-12. 
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2-4 Derive the LMFD of the system in example 2-15. 

 

2-5 Consider following system. 

xy

uxx

]001[
0
0
1

213
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131

=

⎥
⎥
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⎦
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⎤
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⎢

⎣

⎡
−

−
=&

  

a) Find the SMM form of the system. 

b) Find the pole and zero polynomials of the system. 

c) Find the RMFD and LMFD of the system. 

 

2-6 Consider following transfer matrix: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢
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⎡
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−
+

=
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2
2

1

)(
s
s
s
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d) Find the SMM form of the system. 

e) Find the pole and zero polynomials of the system. 

f) Find the RMFD and LMFD of the system. 

 

2-7 Consider following transfer matrix: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
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s
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g) Find the SMM form of the system. 

h) Find the pole and zero polynomials of the system. 
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i) Find the RMFD and LMFD of the system. 

 

2-8 Consider 
)2(

100)(
+

=
ss

sg with a unity negative feedback.  

a) Draw the step response of the system. 

b) From the figure derived in part “a” determine: rise time, settling time, overshoot, decay ratio, 

steady state offset and excess variation. 

c) Find excess variation and IAE by eq.2-48 and 2-49 respectively. 

 

2-9 By use of figure 2-6 derive equations 2-56 and 2-57. 

 

2-10 In the example 1.1 of the main reference (Skogestd,2005) suppose the acceptable variations 

in room temperature are 0.5 o  K, furthermore, the heat input can vary between 0 W and 1000 W, 

finally, the expected variations in outdoor temperature are -10 o  K, and +20 o  K. Find the scaled 

transfer function. 

 

2-11 By use of Figure 2-11 derive equations 2-70. 

 

2-12 By use of the main reference (Skogestd,2005) show by an example that Bω   is a better index 

for performance than BTω .  
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