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Hypothesis: Missing information might be found in Medline abstracts
Goal: Improve the prediction of protein complexes through text mining
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PPI network

PPI network (Yeast-two hybrid) of yeast (Hu et al, 2004)

@ Summarizes PPl data into graph
“ \ertices represent proteins
“ Edges represent protein interactions

PPI data

@ Experimental methods
“ Yeast-two hybrid (Y2H)
@ Affinity Purification-Mass Spectrometry (AP-MS)
“ Protein Microarray
@ Non-experimental methods
“ PPI database

@ Natural Language Processing (NLP)
@ Text mining
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Text mining

@ Co-occurrences of two proteins in the same
sentence (Co).
@ Co and Dictionary of 4 verbs (Dict)
@ Interact, bind, complex, associate
% Ono et al, 2001
@ Bayesian Network (BN)
@ Chowdhary et al, 2009
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Bayesian Network (BN)

@ PPl triplet
@ 2 proteins + interacting word in same sentence

@ Evaluated using trained BN and Bayes’ theorem.

P(E|C)P(C
peiey - 27O

Bayes’ theorem

Bayesian Network (BN)

BN structure (Chowdhary et al, 2009)
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Dataset

@ Real PPIs
“ Liuetal, 2009

@ 3295 proteins, 15900 interactions, 10458
interactions have common neighbours

@ |nitial set of MEDLINE abstracts
@ Li, 2008
¥ 186798 non-empty abstracts
@ Augmenting set of MEDLINE abstracts
@ 43516 non-empty abstracts
@ Mutually excludes the initial set of abstracts




Dataset

“ Liu et al, 2009

¢ © €

@ Reference complexes

Aloy (62 complexes), MIPS(164 complexes)
AloyMIPS (213 complexes)
Only complexes of size 4 and above
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Protein Complex Prediction

@ Markov Clustering (MCL)
“ van Dougen, 2000
@ Molecular Complex Detection (MCODE)
“ Bader and Hogue, 2003
@ Clustering based on Maximal Cliques (CMC)
@ Liu et al, 2009
“ Higher recall and precision

Step 1: Clique generation step

o Iteratively weighting ' Maximal cliques Rank '
i s J » PPI network ‘ of min size=4 ‘ chques !

Step 2: Clique merging step

Inter-  Overlap-

i score < ‘k — scorez |

i merge | overlap

: No threshw \threshold

: - 1
i . ' ‘ Merge i
' Discard i
i { 1 clique J cliques l i

Result
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Recall + Precision

[terative weighting

Aloy MIPS
Number of Recall Precision Recall Precision
iteration
5 0.403 0.015 0.294 0.026
10 0.403 0.016 0.281 0.025
20 0.403 0.016 0.281 0.025
30 0.403 0.016 0.281 0.025

Recall and Precision for Co with different number of iteration
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Merge and overlap threshold
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Merge and overlap threshold
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Precision-Recall of PPl network using Dict under different threshold values
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Evaluation methods

@ Recall and Precision

© Recall: ratio of predicted clusters that match
reference complexes

“ Precision: ratio of reference complexes that match
predicted clusters

4/18/2010
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Evaluation methods

@ Subset score

@ Measures if 1 complex is a subset of another
complex

@ Terminology

@ High subset_score(Si,C) means large part of
predicted cluster is a subset of reference complexes

© High subset_score(Ci,S) means large of reference
complex is a subset of predicted complexes

Evaluation

@ Localization coherence (Lc)
@ Cellular component of Gene Ontology (GO)

@ Proteins that form complexes will seldom be in
different cellular component

@ Measures % of predicted clusters which have some
% of proteins that occur together in the same
cellular component

4/18/2010
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Outline

@ Background Information

@ What was done
% Which text mining method is best?
“ How to improve CMC?
@ How to deal with incomplete PPl data?

@ Future Work
@ Conclusion
@ Questions
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Which text mining is best?
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Which text mining is best?

Method Network | Avg node Number || Recall | Precision Localization
size degree of clusters| coherence (Ic)
PPI network of 1836 3.86 186 0.474 || 0.333 At least 69% of
real PPIs clusters show
86% Ic
PPI network of 2594 3.02 482 0.249 0.095 At least 66% of
Dict clusters show
78% Ic
Combined 3225 4.02 617 0.549 || 0.154 At least 66% of
network of real clusters show
PPIs and Dict 84% Ic
PPI network of 1283 1.53 138 0.061 0.065 At least 60% of
BN clusters show
80% Ic

Recall, precision and Ic from 4 different PPl networks

4/18/2010
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Which text mining is best?

@ Largest increase in recall from Dict to real+Dict
@ Recall is likely to be limited by number of abstracts
@ Highest recall in real+Dict

9 PPl abstracts may fill in missing edges of PPI
network

“ Helps to predict more protein clusters that match
the AloyMIPS

Which text mining is best?

— real PRI

abstract PPI

Graph of real complex 420

4/18/2010
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Which text mining is best?

Method Network{ | Avg node Number | Recall | Precision Localization
size degree ||of clusters coherence (Ic)
PPI network of 1836 3.86 186 0.474 0.333 At least 69% of
real PPIs clusters show
86% Ic
PPI network of 2594 3.02 482 0.249 | 0.095 At least 66% of
Dict clusters show
78% Ic
Combined 3225 4.02 617 0.549 0.154 At least 66% of
network of real clusters show
PPIs and Dict 84% Ic
PPI network of 1283 1.53 138 0.061 | 0.065 At least 60% of
BN clusters show
80% Ic

Recall, precision and Ic from 4 different PPI networks

Which text mining is best?

@ Highest average node degree of real+Dict
@ Combined network is better than individual
@ CMC uses clique finding strategy

4/18/2010
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Which text mining is best?

BN

Method Network | Avg node Number ||Recall|| Precision Localization

size degree || of clusters coherence (Ic)

PPI network of 1836 3.86 186 0.474 0.333 At least 69% of

real PPIs clusters show
86% Ic

PPI network of 2594 3.02 482 0.249 | 0.095 At least 66% of

Dict clusters show
78%Ic

Combined 3225 4.02 617 0.549 0.154 At least 66% of

network of real clusters show
PPIs and Dict 84% Ic

PPI network of 1283 1.53 138 0.061 | 0.065 At least 60% of

clusters show

80% Ic

Recall, precision and Ic from 4 different PPI networks

Which text mining is best?
Analyzing predicted clusters

@ Combined network is performing reasonably

well

% 20% more predicted clusters in real+Dict network

Real PPI
network

\ 1'26
D\

Venn diagram of correctly predicted clusters from 2 different networks

Real + Dict PPI
network

4/18/2010
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Which text mining is best?
Analyzing PPI

@ 32497 Dict abstract PPIs
@ 15900 Real PPIs
@ Comparison result
© 32493 abstract PPIs not in real PPIs
“ 15896 real PPIs not in abstract PPIs
@ The two set have little overlap
“ Abstracts can fill missing PPI
@ Considered too few abstracts

Which text mining is best?
Analyzing PPI

@ Manual verification
@ Randomly choosing PPIs from abstracts

Number of PPIs Definitely not Definitely interact Unsure
interact
161 21 95 45

@ Odds that an edge derived from abstract is real
@ 4:1
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How to improve CMC?
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How to improve CM(C?

@ |terative removal of non-hub proteins

Iterationn=0to 5

Dict | .
Medline Abstract + | . | Predicted Unique
abstracts ' Real PPIs by CMC |y clusters L'} clusters

% L L L 5 . -

1 J
Remove from PPI |

A== proteins that occur = J‘J—'q

y n clusters

L}: Evaluation

L

Iteration | Network | Avgnode | Number of|| Recall ||Precision [|Localization coherence
size degree clusters (Ic)

0 3225 4.02 617 0.549 0.154 At least 66% show
84% Ic

1 1514 3.34 617+163=|| 0.559 0.145 At least 69% show
780 84% Ic

2 1339 3.42 780+29= 0.559 0.142 At least 69% show
809 84% Ic

3 999 2.89 809+77= 0.563 0.132 At least 70% show
886 83% Ic

4 901 2.88 886+30= 0.563 0.13 At least 71% show
916 84% Ic

5 783 2.65 916+41= 0.563 0.126 At least 71% show
957 84% Ic

Recall, precision and Ic after different iteration of non-hub removal

4/18/2010

20



How to improve CM(C?
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subset score of AloyMIPS before and after iterated removal of non-hub proteins

@ 4 complexes improved their score while none
decreased

How to improve CMC?

@ subsel_scoreiS$1.C)
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3D graph of subset evaluation after iterated removal of non-hub proteins
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How to improve CMC?
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How to improve CM(C?

@ Cligues as a basis is stringent
@ PPl data is incomplete

| Dataset [
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Augmented set ‘
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) ) Abstract )
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How to deal with incomplete PPI?
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subset_score(Ci, U)

subset_score of AloyMIPS after augmentation vs before augmentation

I
Future Work

@ Evaluation by pathway coherence
@ Predicting protein complexes based on largest k-
connected sub-graphs

“ Connected sub-graph with size greater than k and
will remain connected after deleting k nodes

@ Improving the selection of abstracts for
augmentation

@ Bayesian Inference
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Conclusion

@ 3 rule-based methods of PPl extraction
@ Co, Dict, BN
@ Real PPIs + Dict network fared better

@ Noisy edges are pruned away by removing non-
hub proteins

9 Prediction of greater number of complexes that
were likely to be real

@ Augmentation improved the prediction of some
complexes

Questions
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