
µLeech: A Side-Channel Evaluation Platform for

Next Generation Trusted Embedded Systems

by

Michael Moukarzel

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Electrical Computer Engineering

August 2015

APPROVED:

_________________________ _________________________

Professor Berk Sunar Professor Thomas Eisenbarth

ECE Department ECE Department

Thesis Adviser Thesis Committee

Professor Yehia Massoud

ECE Department Head

Abstract

We propose a new embedded trusted platform module for next generation power scavenging

devices. Such power scavenging devices are already in the current market. For instance, the Square

point-of-sale reader uses the microphone/speaker interface of a smartphone for both communications

and to charge up the power supply. While such devices are already widely deployed in the market and

used as trusted devices in security critical applications they have not been properly evaluated yet. Our

trusted module is a dedicated microprocessor that can preform cryptographic operations and store

cryptographic keys internally. This power scavenging trusted module will provide a secure

cryptographic platform for any smartphone.

The second iteration of our device will be a side-channel evaluation platform for power

scavenging devices. This evaluation platform will focus on evaluating leakage characteristics, it will

include all the features of our trusted module, i.e. complicated power handling including scavenging

from the smartphone and communications through the microphone/speaker interface. Our design will

also included the on-board ports to facilitate easy acquisition of high quality power signals for further

side-channel analysis. Our evaluation platform will provide the ability for security researchers to

analyze leakage in next generation mobile attached embedded devices and to develop and enroll

countermeasures.

– i –

Preface

In this work I describe the research that was conducted during my graduate master studies at

Worcester Polytechnic Institute. I designed and produced µLeech, a power scavenging Trusted Platform

Module for smartphones. The next iteration of µLeech will be as a side-channel evaluation board to

help secure other similar power scavenging devices.

The work I presented in this thesis would not have been possible without the help and support

of a few people. First and foremost many thanks go out to my adviser Professor Berk Sunar. His advice

and expertise resolved many hurdles that I encountered throughout my research. I am also grateful to

Professor Thomas Eisenbarth for the valuable suggestions, comments and advise that he gave me as a

member of my thesis committee. I would also like to thank Professor Stephen J. Bitar, his hardware

expertise where essential in the design and understanding of the power aspect of µLeech.

I would also like to thank my colleague and friend Yarkin Doroz. His friendship and support

helped me throughout the course of this thesis. Last but not least, I would like to thank my family for

being patient with me and for their support during my graduate studies. Special thanks to my Mother

and Father who continued to push and support me from start to finish.

To all of you thank you very much!

Michael Moukarzel

– ii –

Table of Contents

 1 Introduction...1

 1.1 Motivation...1

 1.2 Thesis Outline..2

 2 Evaluation Platform..3

 2.1 Existing Side-Channel Evaluation Platforms and Tools...3

 2.2 µLeech Side-Channel Evaluation Platform...5

 3 Methodology...6

 3.1 Design Cycle...6

 3.2 Tools..7

 3.2.1 Android App..7

 3.2.2 Processor Firmware...8

 3.2.3 Hardware Design...8

 4 Power..10

 4.1 Power Siphoning...10

 4.2 Capacitor Bank..14

 4.3 Sleep Mode..14

 4.4 Processor Power Mode..16

 5 Data Communication..17

 5.1 Manchester Encoding..18

 5.2 Transmit...21

 5.3 Receive..25

– iii –

 6 Performance..29

 6.1 Sleep Mode..29

 6.2 Active Mode..30

 6.3 128-bit AES...31

 7 Development...33

 7.1 Smartphone App..33

 7.2 Hardware...35

 7.2.1 Protoboarding..35

 7.2.2 Power Optimization...36

 7.2.3 Final PCB..37

 8 Conclusion..38

 8.1 Summary of Results..38

 8.2 Recommendations for future work..39

 A. Processor Code: main.c..41

 B. Processor Code: conf_board.h..55

 C. Processor Code: conf_clock.h..57

 D. Processor Code: asf.h...59

 E. Android Code: ApplicationInterface.java...62

 F. Android Code: MainActivity.java...67

 G. Android Code: activity_main.xml..71

 H. Android Code: strings.xml...82

 I. Andriod Code: AndriodManifest.xml..83

 Bibliography..84

– iv –

List of Tables

Table 1: Power Circuit Analysis Key...13

Table 2: Processor Transmission Burst..22

Table 3: Smartphone Transmission Burst..27

Table 4: Power Consumption in Sleep Modes...30

Table 5: Power Consumption in Active Modes..31

Table 6: 128-bit AES Performance..31

– v –

List of Figures

Figure 1: Nexus 4 headset jack available power..11

Figure 2: Power Circuit..12

Figure 3: Power Circuit Analysis...13

Figure 4: Sleep Circuit...15

Figure 5: Processor Flow Chart...18

Figure 6: Manchester Encoding of header 0xDD..20

Figure 7: Manchester Encoding of length 0x0A..20

Figure 8: Manchester Encoding of data 0xFF..20

Figure 9: Manchester Encoding of data 0x00..20

Figure 10: Processor Transmit Flow Chart..21

Figure 11: Transmit Circuit..22

Figure 12: Processor Transmission Zoomed..23

Figure 13: Processor Transmission..24

Figure 14: Processor Receive Flow Chart..25

Figure 15: Receive Circuit...26

Figure 16: Smartphone Transmission Zoomed..27

Figure 17: Smartphone Transmission..28

Figure 18: Android App...34

Figure 19: UC3-l0 bread-board socket...35

Figure 20: Power generation PCB Bottom..36

Figure 21: Power generation PCB Top..36

– vi –

Figure 22: Power Evaluation PCB Bottom..36

Figure 23: Power Evaluation PCB Top..36

Figure 24: µLeech Board...37

Figure 25: µLeech PCB Circuit...37

– vii –

Chapter 1

 1 Introduction

 1.1 Motivation

With the proliferation of cheap bulk SSD storage and better batteries in the last few years we are

experiencing an explosion in the number of devices flooding the market, e.g. smartphone connected

point-of-sale devices, home monitoring devices, e.g. NEST, fitness monitoring devices, e.g Fitbit, and

smart-watches. The Square point-of-sale unit, in particular, has gained traction in the market. The

versatility and convenience of the design has propelled the product into widespread adoption. What

makes the Square design unique is that it uses the microphone/speaker interface to power the unit as

well as to facilitate the communication between the device and the smartphone. Since

speaker/microphone is the only universal interface present in all smartphones the Square device can be

transparently moved from one smartphone to the other.

In the development of our design we started by examining the project Hijack. Hijack was a

project developed at the University of Michigan by Professor Prabal Dutta, and his graduate students

Sonal Verma and Andrew Robinson. They designed Hijack a cubic-inch peripheral sensor ecosystem

for the mobile phone. Hijack was developed to optimally generate power from an iPhone to an

MSP430 to collect sensor data and relay that information back to the iPhone. In this way we modeled

our power generation circuit and communication protocol off of Hijack's. Although ultimately our

communication protocol differs as we do not need to communicate continuous sensor data, but short

burst of data, draining less power in the process.

– 1 –

Ultimately µLeech will act as a universal power scavenging Trusted Platform Module (TPM)

for smartphones. The next iteration of µLeech will include a modified TPM, that will server as a side-

channel evaluation platform. Such an evaluation platform can be used to help secure µLeech and other

such power scavenging devices from side channel leakage.

 1.2 Thesis Outline

Chapter 2 explains the need for a side-channel evaluation platform for power scavenging devices. That

one design of µLeech will be to act as a side-channel evaluation platform.

Chapter 3 describes the design and implementation cycles that µLeech underwent. Giving an overview

of the hardware and software tools used for its development.

Chapter 4 focuses on the power circuit of our µLeech. Focusing on our power siphoning circuit, sleep

circuit, and capacitor bank implementations.

Chapter 5 describes the communication protocol in detail. Illustrating the Manchester encoding used,

as well as the actual implementation. This section focuses on the two-way communication between a

smart phone and our µLeech device.

Chapter 6 presents the results of our design implementation. Comparing on the different sleep modes,

power consumptions, and AES implementations. Focusing on their influence on the overall design.

Chapter 7 shows the final stages of development for our µLeech. This includes the smartphone app

developed to communicated with our devices. As well as the PCB prototype developed after our bread-

boarded implementation.

Chapter 8 concludes this work with a short summary of the results and some recommendations for

further work and optimizations

– 2 –

Chapter 2

 2 Evaluation Platform

µLeech will have two final design iterations. The initial iteration will be to develop µLeech as a

power scavenging Trusted Platform Module (TPM) for smartphones. The next iteration will be to

transform µLeech into an embedded side-channel evaluation platform for next generation power

scavenging devices.

 2.1 Existing Side-Channel Evaluation Platforms and Tools

There are many existing evaluation boards, tools, and platforms available that can be used to

assess vulnerabilities to side-channel attacks. Some are commercially available and others were

developed for academic use. The following is a list of a few existing FPGA based side-channel

evaluation platforms

Side-channel Attack Standard Evaluation Boards (SASEBO) are standard evaluation boards

developed by National Institute of Advanced Industrial Science and Technology at Tohoku University

by Toppan Technical Desin Center Co, Ltd. [7]. SASEBO Boards were developed to perform security

tests for side-channel attacks. Their goal was to standardize the testing requirements of cryptographic

modules. They are capable of evaluating side-channel attacks against cryptographic hardware with

FPGAs and cryptographic software with micro processor function.

– 3 –

Flexible Open-source Board for Side-channel analysis (FOBOS) is an academic platform developed

at George Mason University [5]. FOBOS is a platform for implementation attack resistance testing.

FOBOS aims to provide an open-source platform. Their platform can be used to evaluate the

effectiveness of side-channel analysis countermeasures on different FPGA platforms. FOBOS includes

support for multiple FPGA devices and the necessary software to run differential power analysis

attacks.

Side Channel Analysis Resistant Framework (SCARF) is an open-source academic tool developed

by the Electronics and Telecommunications Research Institute [9]. SCARF can be use for testing

countermeasures for side-channel and fault attacks. They include a number of custom evaluation boards

to test the attack resistance of smart-cards, microprocessors, and FPGAs. SCARF only supports testing

of the devices included in its custom evaluation boards.

The following are a few tools that can be used in conjunction with the previously listed side-

channel evaluation platforms:

ChipWhisperer is an open-source tool-chain originally developed by Colin O'Flynn . His tool-chain is

an open-source tool-chain for embedded hardware security research. It can be used for side-channel

power analysis and glitching. This tool-chain is especially known for their innovative synchronous

capture technology. Similar tools are commercially available but far more expensive and closed-source.

The DPA Workstation is a closed-source device developed by Cryptography Research Inc, a division

of Rambus Inc. [10]. It can be used to perform side-channel analysis including differential power or

electromagnetic analysis on embedded systems. The DPA Workstation includes its own environment

and proprietary software that can perform side-channel analysis on all major standard ciphers.

InspectorSCA is a closed-source device developed by Riscure [11]. This platform can be used for side-

channel analysis and fault analysis. It includes fault injection hardware and includes proprietary

– 4 –

software that can perform side-channel and fault attacks on standard ciphers.

 2.2 µLeech Side-Channel Evaluation Platform

As smartphones and tablet continue to grow in popularity, there will be a growing development

of power scavenging devices that can interface with your these devices using the auxiliary port. The

Square point-of-sale reader is an example of a power scavenging device that has become extremely

popular. The Square acts as a credit-card reader for you mobile devices, sending sensitive information

to you mobile devices thru the auxiliary port. The square and other such devices are already widely

deployed in the current market. They are used as trusted devices in security critical applications, such

as credit-card information, and yet they have not been properly evaluated for side-channel leakage.

The initial iteration of µLeech is a power scavenging TPM that can be used with all mobile

devices. It includes all the features expected of a device that uses the auxiliary port: Power is scavenged

from the right audio channel, two-way communication through the left audio channel and the

microphone.

The next iteration of our platform will be a side-channel evaluation platform. This platform will

provided the ability for security researchers to analyze side channel leakage in next generation mobile

attached embedded devices. Just like SASEBO, FOBOS, and SCARF the µLeech evaluation platform

will include high quality on-board peripherals to our power and clock signals. Allowing for easy access

of signals necessary for side-channel analysis. This platform will allow for the development and

enrollment of countermeasures.

– 5 –

Chapter 3

 3 Methodology

This chapter describes the design procedures used in the development of our device, µLeech. It

also includes a description of the hardware and software tools used in the development of µLeech.

 3.1 Design Cycle

The general design cycle for µLeech consisted of the following steps:

1. Research of other side-channel evaluation platforms

2. Research of smartphone power siphoning platforms

3. Focused research on Hijack

4. Modifying Hijack to work with an Android platform

5. µLeech hardware prototype, bread-boarded

6. µLeech firmware development

7. AES implementation on µLeech

8. Power measurements and optimizations of µLeech

9. µLeech PCB development and side-channel evaluation platform version

The steps outlined above were not all completed in this order, and some of the steps were

– 6 –

continuously being completed during the entire development process.

Steps 1 and 2 consisted of background research that was continuously performed during the

entire development process. Step 3 was a focused research on Hijack, a result from our background

research. We used Hijack as a template for our device, specifically for our power generation and

communication protocol. Step 4 through 9 deal with the development of the software and hardware

prototype of µLeech.

 3.2 Tools

There were many different tools and environments used in the development of µLeech. The

tools used can be broken into three main development parts: android app, processor firmware, and

hardware design. The development of each of these parts used different programs, programming

languages, and software environments. Even though each of these parts were developed independently,

they eventually had to work together to create µLeech.

First we had to develop the smartphone application that would need to be installed and run to

generate power and interface with our µLeech device. Then we had to develop the AVR processor

firmware that would be running on our µLeech's UC3-L0 processor. Initially the processor firmware

was being tested on an AVR development board, UC3-L0 explained. However as the development of

firmware progress custom hardware had to be built. The hardware development progressed parallel to

the firmware development. The hardware was initially bread-boarded and followed by a PCB iteration,

once the hardware design was completed and tested.

It is important to note that the tools we used are not the only possible tools that could have been

used. There are many programs and programing environments available, the following tools are the

ones we decided to use in our development process.

 3.2.1 Android App

Three software tools were used in the hardware design of µLeech: Eclipse Integrated

Development Environment (IDE), Android Development Tool (ADT) Plugin, and Android Software

Development Kit(SDK). Android apps are Java based and therefore can be programmed in Eclipse.

There are many different programming environments that can be used for android app development.

However the android SDK and ADT are required for android app development. These can be

– 7 –

conveniently downloaded and installed directly through Eclipse.

 3.2.2 Processor Firmware

Only one software product was used for our processor firmware development: Atmel Studio 6.0.

The AVR processor used in µLeech was Atmel's UC3-L0. As such Atmel provides the programming

environments and compilers needed for developing firmware. Atmel Studio is an environment that lets

you write, compile, and program your code. It also includes an Atmel Software Framework (ASF)

wizard. The ASF wizard allows you to use and add any of Atmel's development libraries directly to

your project. The processor firmware code we developed for µLeech is written in C and includes

several of Atmel's libraries. The libraries used and added using the ASF wizard can be found in asf.h,

Appendix D.

When programming the processor we used AVR ONE, a JTAG programmer. As our design is

intended for low power use we decided to simply use JTAG and not add a USB in circuit programmer.

 3.2.3 Hardware Design

Two software products were used in the hardware design of µLeech: ExpressPCB and CadSoft

Eagle. Both of these software are used in designing PCB schematics. Our eventual goal were two

separate PCBs, one of µLeech and the other its evaluation platform. Before we could manufacture or

even create the final PCB iterations we had to first create and prototype the design. The design

prototype was initially bread-boarded allowing us to build it in steps and to modify the circuit when we

needed. Once the hardware design was confirmed to be working properly then we manufactured the

final PCBs. However, some of the components could not be used on a bread-board because they were

surface mount (SMT).

There are some SMT components that have bread-boarding sockets available for them. Some of

the components we used had no sockets available. The biggest problem was our AVR processor, a 48-

pin SMT component, had no available bread-boarding sockets available. As a result we manufactured

our own. ExpressPCB was used to design the initial PCBs for bread-boarding and power measurement

optimization tests. ExpressPCB was used because its an easy to use and quick design software.

– 8 –

Eventually once the hardware design was completed and tested thoroughly, the whole design

was implemented using Eagle. CadSoft Eagle is a much more advanced PCB design environment

software. Eagle was used to develop the two final PCB versions of µLeech. Eagle has a much more

extensive library of component footprints for SMT layouts. There is also a user based library of custom

footprints that is very extensive. Many of the components used in our design had costume made

footprints or were downloaded from the user based library. The final PCB versions were designed using

eagle. The final µLeech PCB versions can be found in Figure 24 and Figure 25.

– 9 –

Chapter 4

 4 Power

When dealing with most cryptographic computations you are dealing with short highly

intensive computation. Taking advantage of this we designed our power circuit with a capacitor bank,

that could be discharged and recharged. This allows our processor to preform any cryptographic

operation while draining the capacitor bank. We optimized our design to allow one round of AES to be

computed before depleting our capacitor bank. Once the capacitor bank is depleted our processor will

hibernate in sleep mode allowing the capacitor bank to recharge again for another round of

computations when needed. To achieve this we developed a low power sleep circuit that could be used

to notify our processor when to sleep and wake. Allowing our processor to operate off of the limited

power generated by our smartphone.

 4.1 Power Siphoning

In keeping with the concept of a universal jack our power has to be generated from the auxiliary

jack. This would mean we would have to siphon power from an audio waveform. To determine the

available power from our Nexus 4 headset port, we generated a 500mV peak to peak AC audio

waveform. A load resistance was connected between the right audio channel and the common line of

the auxiliary jack. While measuring the output voltage across the resistor and the load current, the load

resistance was varied from 0Ω to 15KΩ. We measured a total of 24 different resistor values. Using this

– 10 –

data we generated a linear fit, represented by the red linear IV curve in Figure 1. Using this IV curve,

we then generated the blue power transfer curve in Figure 1. The power transfer curves shows that the

maximum power transfer for our Nexus 4 occurs at 85mVrms and 18.87mArms, with an ideal load of

4.51Ω.

Figure 1: Nexus 4 headset jack available power

The data in Figure 1 shows that it is possible to draw 1.61mW from an ideal matched load of

4.51Ω. For this power to be useful our power siphoning circuit will have to be rectify the 500mV peak

to peak waveform from AC to DC, boosted it, and filter it. The power siphoning circuit we

implemented was modeled off of the Hijack's power siphoning circuit, with modifications to their

voltage regulator and an additional capacitor bank. The circuit we implemented is depicted in Figure 2.

– 11 –

Figure 2: Power Circuit

The input of the circuit Figure 2 is the Right audio channel of the smartphone. The app we

implement will generate a continuous 500mV peak to peak audio waveform only onto the right audio

line. Using this audio line and this circuit we are able to generate a 1.8V source for our processor. Key

points of the transformation of the 400mV peak to peak audio waveform through the circuit in Figure 2

were captured and illustrated in Figure 3.

The yellow signal in Figure 3 is the raw waveform coming out off the smartphone. The first step

in trying to use this audio frequency is to step up the low supply voltage level. Using a 1:20 micro

transformer we step up the incoming supply voltage level as shown by the red signal in Figure 3.

Normally the next step would be to use a Schottky diode to preform low-loss blocking. However using

a combination of N and P Mosfets depicted in Figure 2, designed by Hijack, we can preform an FET-

based rectification from AC current to DC. This would allow us to be able to use the negative part of

our input waveform to generate power as well. The spikes on the low edge of the red signal in Figure 3

are generated by the FET bridge that would have otherwise been clipped out, optimizing our power

generating capability. Using the Schottky diode to provide low-loss blocking, will prevent the capacitor

bank from being discharged through the FET bridge. The output at this point is illustrated by the Blue

signal in Figure 3. The final step is to use a 1.8 voltage regulator to power our processor, the Green

signal in Figure 3.

– 12 –

Figure 3: Power Circuit Analysis

Color Position Description

Yellow before T1 original raw audio waveform

Red before D1 after the FET bridge

Blue after D1 after the Schottky diode

Green after U1 after the voltage regulator

Table 1: Power Circuit Analysis Key

Our goal was to allowed our processor to be able to perform more power intensive

cryptographic computations. Without using a battery and while staying within the limitations of our

smartphone power generating capability. Therefore using this power siphoning circuit and a series of

capacitors, that could be discharging and recharged simply by going into sleep mode, we are capable of

allowing our device to remain charged for at least one round of AES.

– 13 –

 4.2 Capacitor Bank

Not all cellphones can generate the same amount of power through the axillary port. Ever

smartphone model will have its own power draw model and ideal matched load. To aid with power

management we implemented a capacitor bank that will aid us in granting enough power for one round

of 128-bit AES. As our processor implementations continue to evolve we will continue to optimize our

power consumption. However, different cryptographic operations may consume more power than our

current 128-bit AES implementation.

The capacitor bank will provided enough power for one round of 128-bit AES. That means it

needs to contain enough of a charge between the time our sleep circuit switches between its wake and

sleep state. Knowing that our sleep circuit activates the processors wake state at 1.95V and sleep state

at 1.65V we can calculate the necessary capacitor bank we would need for one round of 128-bit AES, if

we know the current consumption and amount of time it takes. As shown later in Table 5 and Table 6

AES consumes approximately 555µA and takes 1.4ms. Therefore we would need a 2.8µF capacitor

bank to provided sufficient power for 1 round of AES.

Currently our capacitor bank was added after our 1.8 voltage regulator. This was done initially

because our measured voltage change where measured after our voltage regulator. For optimal

efficiency the capacitor bank should be recalculated and inserted before the voltage regulator.

Although the capacitor bank was initially design for one round of 128-bit AES, the design still

works with whatever implementation our processor is computing. As long as the power drops the sleep

circuit will activate sleep mode allowing for the capacitor bank to recharge. Such functionally will be

useful with any smartphones as the bank will aid in allowing for more continuous power.

 4.3 Sleep Mode

To allow the capacitor bank to recharge as efficiently as possible, we had to use as little power

as possible during sleep mode. In addition we would need a way of telling the processor to go to sleep

and not to wake up until the capacitor bank was adequately recharged. Otherwise our capacitor bank

would be depleted to quickly, therefore any internal processor functionality would not do. For this we

built a sleep circuit that would tell the processor through and external interrupt when to go to sleep, and

– 14 –

when to wake up. This circuit would also have to consume minimal power as to not draw too much

power while in sleep mode, nor to deplete the processors power while active. For this we developed the

sleep circuit illustrated in Figure 4.

Figure 4: Sleep Circuit

Our sleep circuit uses a total of four 1% tolerance resistors, one low power voltage ref, and one

low power comparator. This circuit has minimal power consumption and produces one output signal

from the comparator. This signal is driven either high or low, and can be used as a digital input. When

connected to the external interrupt controller of our processor this signal can be used to notifying our

processor when to go to sleep, low for optimal power performance, and when to wake up.

Atmel's AVR UC3-L0 has multiple interrupts and external Interrupts. We were looking for a

way to achieve the lowest power consumption in sleep mode, to allow our power capacitor bank to

recharge as optimal as possible. The UC3-L0 has a total of seven sleep modes. Only the two highest

power consumption sleep modes can wake up from a synchronous source, ruling out using an internal

interrupt routine. However all sleep modes, except for shutdown mode can be achieved with an

asynchronous source. Connecting the external signal generated from our sleep circuit to two external

interrupt pin, we can use two external interrupt routines to go to sleep (low) and wake up (high). Both

of these external sleep/wake interrupts have been given the highest priority and would supersede any

other interrupt. This is to guarantee that when our capacitor bank is almost drained the processor will

go to sleep before loosing power and allowing the capacitor bank to charge up again.

– 15 –

Our processor normally operates at 1.8V, but using its power thresholds our comparator will

notify the processor to go to sleep at approximately 1.65V and to wake up at approximately 1.95V.

Measuring the time it takes for one round of AES we modified our capacitor bank for ample time to

complete before recharging.

 4.4 Processor Power Mode

One of the many reasons we chose Atmel's low power AVR UC3-L0 is that it has three different

power modes: 3.3V Single Supply Mode, 1.8V Single Supply Mode, and 3.3V supply Mode with 1.8V

regulated I/O lines. For this design we used the 1.8V single supply mode with an external clock crystal

to achieve minimal power consumption. The dual supply mode is the most optimal low power mode

and the only way of achieving sleep shutdown mode, the lowest power consumption sleep mode. We

chose to use the single supply mode for our design instead as it would ultimately be less of a drain on

our siphoning circuit.

– 16 –

Chapter 5

 5 Data Communication

The communication protocol we designed for our devices was modeled off of Hijack's

communication protocol. The great thing about this design is that it does not require any analog to

digital converters, which results in less power drain but slower communication speeds. The smartphone

transmits in analog and the processor transmits in digital, but each communication is handled in the

time domain. We are able to do this because the communication is handled in Manchester Encoding.

Manchester Encoding is normally a form of digital encoding where bits are represented by

transitions from one logical state to the other, instead of being represented by a high or low signal. This

means that instead of having to detect an analog high and low period, we now have to measure the

periods between switches. This allows a smartphone that can only output and read audio oscillating

waveforms to transmit and receive a waveform with Manchester encoded data.

For the processor, transmitting in Manchester encoding to the smartphone is straight forward.

The processor can generate a square wave at any frequency, doubling the period for a bit flipping, that

can simply be interpreted by a smartphone as an oscillating waveform. On the other hand, interpreting

incoming data from a smartphone outputting an oscillating audio waveform instead of a digital signal

to the processor is not as straightforward. The processor instead will have to determine the period

lengths between the oscillations. Allowing the processor to determine if the incoming Manchester

encoded data is flipping its bit, double the period, or not.

We have modified our communication protocol to work serially and in conjunction with the

– 17 –

overall process of the processor. Unlike Hijack, we are not recording sensor data and do not need a

continuous transmission. We only transmit and receive data in bursts when necessary. This allows for

more computation cycles and over all less power drain on our system. A flow chart of our current

processor’s AES implementation can be found in Figure 5.

Figure 5: Processor Flow Chart

When in Idle our processor is continuously waiting to receive a transmission from the

smartphone. Once data is received it triggers Hijack's communication state-machine that grabs the

incoming data. The state-machine then converts the raw incoming Manchester data into binary data.

This incoming data includes the instructions for our processor. Using the obtained data our processor

then preforms it AES encryption/decryption. It then triggers the transmit state of the state-machine. The

state-machine will then converting the raw data into Manchester encoded data and transmit this to the

smartphone. The transmission burst is repeated four times by our processor, after which it returns to

Idle waiting to receive further instruction from the smartphone.

Currently we are transmitting at approximately an average of 0.9kbps. Our current transmission

speeds are unfortunately severely slower than normal digital communication. This is mainly due to the

fact that our data is transmitted in Manchester Encoding that doubles the number of cycles. In addition,

there are delays that are added through the use of Hijack's communication state-machine. In our next

iteration we will be redesigning our own communication state-machine that will be optimized for our

design implementation.

 5.1 Manchester Encoding

Manchester Encoding is a form of digital encoding in which data bits are represented by

transitions from one logical state to the other. The encoding of digital data in Manchester format

– 18 –

Idle
Tx

Buffer
Rx

Rx
Buffer

TxAES

defines the binary states of a 1-bit and 0-bit to be transitions rather than static values. Manchester

encoding was developed at the University of Manchester, where the coding was used to store data on

the magnetic drum of a Manchester Mark 1 computer. There are two opposing conventions for

Manchester encoding, both are used by numerous authors.

The first convention of Manchester Encoding was first published by G. E. Thomas in 1949. It

stated that for a 0-bit the signal levels would be low-high and for a 1-bit the signal levels would be

high-low. The second convention used by IEEE 802.4 and IEEE 802.3. It states that for a 0-bit the

signal levels would be high-low and for a 1-bit the signal levels would be low-high. These two

conventions are opposites of each other.

For our application we followed Hijack's implementation that follows the IEEE convention.

Illustration examples of Manchester Encoded data can be found in Figures 6 through 9. These examples

are illustrations of an implemented transmission using Hijack's communication protocol.

• Figure 6 is the header of the transmission.

• Figure 7 is the transmission byte length.

• Figure 8 and Figure 9 are two different data values that were transmitted.

We choose to only use two data values so that the illustration would be simpler to follow. The

transmissions are handled one byte at a time. Each byte has a start bit of 0 and a parity bit at the end.

The actual transmission streams of the processor and smartphone can be found in Figure 13 and Figure

17 respectively. The transmission captured match these illustration.

The reason we used Manchester Encoding is because Manchester Encoding ensures frequent

line voltage transitions, which are directly proportional to their clock rate. Therefore, an oscillating

audio waveform can be manipulated into representing Manchester Encoded data.

– 19 –

Figure 6: Manchester Encoding of header 0xDD Figure 7: Manchester Encoding of length 0x0A

Figure 8: Manchester Encoding of data 0xFF Figure 9: Manchester Encoding of data 0x00

– 20 –

0 1 1 1 1 1 1 00 0 1 1 1

Byte (LSB) IdleStart Parity

= 0xDD = 1101 1101 (MSB) = 1011 1011 (LSB)

Data

Clock

Byte

Manchester

0 0 0 1 0 0 0 01 0 1 1 1

= 9+1 = 10 = 0x0A = 0000 1010 (MSB) = 0101 0000 (LSB)

Byte (LSB) IdleStart

Data

Clock

Byte

Manchester

Parity

0 0 0 0 0 0 0 00 0 1 1 1Data

Clock

Byte (LSB) IdleStart

= 0x00 = 0000 0000 (MSB) = 0000 0000 (LSB)Byte

Manchester

Parity

0 1 1 1 1 1 1 01 1 1 1 1

= 0xFF = 1111 1111 (MSB) = 1111 1111 (LSB)

Byte (LSB) IdleStart

Data

Clock

Byte

Manchester

Parity

 5.2 Transmit

Data sent from the processor to the smartphone will be sent along the microphone channel of

the auxiliary port. The communication protocols used for creating this audio waveform were modeled

off of Hijack's communication protocol. The major difference being that when in this state we only use

the transmit portion of Hijack state-machine, as shown in Figure 5. The protocol we implemented to

activate the transmit portion of the state-machine is illustrated in Figure 10.

Figure 10: Processor Transmit Flow Chart

For our transmit protocol we used one of our processors built in synchronous counter and one

asynchronous counter. The counters are only activated when the processor is in the transmit state (Tx),

in Figure 5. When the counter is activated it will trigger an interrupt ever time it reaches a

predetermined value. This value is the frequency of our generated signal, every time the interrupt is

triggered is one clock cycle of our output stream. This event triggered interrupt will do two things:

trigger the transmit state of the state-machine and increment a second asynchronous counter B. The

second counter B is used to keep track of how many transmission have taken place, after four full

transmissions the counter will exit the transmission stat and turn off the counter.

– 21 –

Idle

Counter
B

Tx

Interrupt
Counter

On the hardware level the only important thing with the transmission circuit is to have a 1k load

resistor. The 1k Ohm resistor is necessary to activate the microphone channel on most smartphones,

without it the smartphone would not know there was data coming in on the microphone channel. The

processor will then output an oscillating square waveform approximately 800mv pk to pk. The

transmission circuit we implemented is shown in Figure 11.

Figure 11: Transmit Circuit

An example of a transmission stream from our µLeech to our smartphone was captured and

illustrated in Figure 13. Using the Manchester encoded byte examples in Figures 6 through 9 we can

see the data captured in Figure 13. The communication protocol of the processor transmits in the

format depicted in Table 2.

Byte 1 2 3 4 5 6 7 8 9 10 11 12

Content Header Length+1 Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 Check Sum

Value 0xDD 10 0xFF 0xFF 0x00 0xFF 0x00 0xFF 0x00 0xFF 0x00 -

Image Figure 6 Figure 7 Figure 8 Figure 8 Figure 9 Figure 8 Figure 9 Figure 8 Figure 9 Figure 8 Figure 9 -

Table 2: Processor Transmission Burst

– 22 –

Each byte has a start bit of 0 and a parity bit at the end. This means each byte transmission is

actually 10-bits which are then transmitted in LSB in Manchester encoding. However in between each

byte transmission the state-machine goes into an idle state, where it continuous to transmit digital high

for a fixed four delay count. Figure 12 depicts a zoomed in view of the Manchester encoded captured

data burst shown in Figure 13.

Figure 12: Processor Transmission Zoomed

– 23 –

0x00
(LSB)

Start ParityIdle
0xFF
(LSB)

Start ParityIdle
0x00
(LSB)

Start ParityIdle Idle

Figure 13: Processor Transmission

– 24 –

Header
Idle Idle Idle Idle Idle Idle Idle Idle Idle Idle Idle

Length Data0
0xFF

Data2
0x00

Data1
0xFF

Data3
0xFF

Data5
0xFF

Data4
0x00

Data6
0x00

Data7
0xFF

Check
Sum

Data8
0x00

Idle

 5.3 Receive

Data sent from the smartphone to the processor will be sent along the left audio channel of the

auxiliary port. The communication protocols used for interpreting this audio waveform were modeled

off of Hijack's communication protocol. The major difference being that when in this state we only use

the receive portion of Hijack state-machine, as shown in Figure 5. The protocol we implemented to

activate the receive portion of the state-machine is illustrated in Figure 14.

Figure 14: Processor Receive Flow Chart

For our receive protocol we used one of our processors built in synchronous comparator driven

interrupt and counter. The comparator and counter are only activate when the processor is in the receive

state (Rx), in Figure 5. When the comparator is activated it will trigger an interrupt ever time there is a

bit flip on the incoming Manchester encoded data stream. This event triggered interrupt will do two

things: trigger the receive state of the state-machine passing it the counter value and reset the counter.

This will allow the state-machine to know the length of time between bit-flips. Since the incoming data

is represented in Manchester encoding the state-machine will be able to determine if the previous bit

was flipped or not. Allowing us to decode the income Manchester data into binary data.

– 25 –

Idle

Rx

Counter

Interrupt
Comparator

What this means for our hardware, is that we have to feed the comparator in our processor two

inputs. The oscillating audio waveform from the smartphone's left audio channel and a constant signal

that is the mean voltage level of the oscillating audio wave, as shown in Figure 15.

Figure 15: Receive Circuit

The smartphone will output an oscillating waveform approximately 900mV pk to pk with a lot

of noise. The first step in our receive circuit is to drain out the noise with a capacitor, then using a pull

up resistor and a pull down resistor we can generate an 800mV peak to peak oscillating at a mean of

800mV. However, when you take into account the additional pull down resistor built into the processor,

on the input pin, the signal is oscillating at a mean of approximately 900mV. This means, for our

comparator to trigger we need to feed it another constant 900mV signal. Since our processor is

operating at 1.8V using a simple voltage divider on our voltage source with equal resistors we can

divide the voltage level by half and generate a constant input signal of 900mV, with minimal power

loss. This will allow our comparator to trigger exactly when our oscillating audio signal is switching

from low to high, allowing us to retrieve the period length determining if the Manchester encoded

audio waveform is bit flipping or not.

– 26 –

An example of a transmission stream from our smartphone to our µLeech was captured and

illustrated in Figure 17. Using the Manchester encoded byte examples in Figures 6 through 9 we can

see the data captured in Figure 17. The communication protocol of the smartphone transmits in the

format depicted in Table 3.

Byte 1 2 3 4 5 6 7 8 9 10 11 12

Content Header Length+1 Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 Check Sum

Value 0xDD 10 0xFF 0xFF 0x00 0xFF 0x00 0xFF 0x00 0xFF 0x00 -

Image Figure 6 Figure 7 Figure 8 Figure 8 Figure 9 Figure 8 Figure 9 Figure 8 Figure 9 Figure 8 Figure 9 -

Table 3: Smartphone Transmission Burst

Each byte has a start bit of 0 and a parity bit at the end. This means each byte transmission is

actually 10-bits which are then transmitted in LSB in Manchester encoding. However in between each

byte transmission the state-machine goes into an idle state, where it continuous to transmit digital high

for a fixed twenty delay count. Figure 12 depicts a zoomed in view of the Manchester encoded captured

data burst shown in Figure 13.

Figure 16: Smartphone Transmission Zoomed

– 27 –

0x00 (LSB) IdleStart Parity
0xFF
(LSB)

Start Parity
0xFF
(LSB)

IdleStart Parity

Figure 17: Smartphone Transmission

– 28 –

Header
Idle Idle Idle Idle Idle Idle Idle Idle Idle Idle Idle

Length Data0
0xFF

Data2
0x00

Data1
0xFF

Data3
0xFF

Data5
0xFF

Data4
0x00

Data6
0x00

Data7
0xFF

Check
Sum

Data8
0x00

Idle

Chapter 6

 6 Performance

The performance of our device is evaluated with a focus on power consumption. Our device is

designed to operate solely off of the power generated from an audio waveform. As a result, we have

made numerous modifications to optimize performance within our power generating capabilities. To

optimize power we had to modify our capacitor bank to meet our designs power consumption, with a

focus on allowing for one round of AES encryption before depletion. For this reason we measured

power consumption of our different modes: idle, sleep, communication, and AES. Then we measured

the duration of each of these modes, so that we could accurately estimate our capacitor bank.

 6.1 Sleep Mode

As mentioned earlier in Section 5.2, there are many different sleep modes available to the UC3-

L0. The ultimate sleep mode for minimal power consumption on the UC3-L0 would have been the

sleep shutdown mode. In this mode wake up can only be triggered with an external reset or an external

wake up pin. Although we are generating an external wake up signal with our sleep circuit, the

shutdown sleep mode can only be used in the 3.3V supply mode with 1.8V regulated I/O lines.

However, our setup uses the 1.8V single supply mode and therefore we cannot use the shutdown sleep

mode.

With the shutdown sleep mode we would have consumed the least amount of power in sleep

mode. However, a single supply mode is less of a constant power drain on the siphoning circuit and

– 29 –

therefore the whole system, than a dual supply mode. Table 4, shows the power consumption of the

lowest three power consumption sleep modes available for single supply mode.

Sleep Mode Power Consumption

Stop 92.6 µA

DeepStop 68.3 µA

Static 56.7 µA

Table 4: Power Consumption in Sleep Modes

The main differences between these three sleep modes are which clock sources are left enabled.

For this reason our design uses an external clock crystal that allows us to use DeepStop and Static sleep

modes. Static mode requires us to reinitialize some of our clock signal, and therefore the modules using

them, on every wake up. For this reason currently our design uses DeepStop, which is less of a power

drain on the overall system for every wake up cycle.

 6.2 Active Mode

Hijack's smart phone platform is about continuous transmission of sensor data. Our

communication data is based off of theirs but we are more interested in transmitting and receiving short

bursts of data and doing high levels of short computations. For this reason we have modified our

communication protocol, added a capacitor bank, and a sleep circuit. To that end we have tired to

optimize our power consumption. Our processor only checks for incoming data when it is idling and

waiting for instructions. Computations are only executed when the processor receives new incoming

data or new instruction sets. The processor transmissions are executed only when there is a change in

the outgoing data, computations have been completed. The transmissions are in short bursts repeated

four times for redundancy error checking. The measured power consumption of these processor states

is listed in Table 5.

– 30 –

Processor State Power Consumption

Idle 539 µA

Receiving Data Burst 588 µA

Transmitting Data Burst 575 µA

128-bit AES Encryption 555 µA

128-bit AES Decryption 555 µA

Table 5: Power Consumption in Active Modes

As illustrated in Table 5, our designs highest power consumption currently is in our

communication protocol. For this reason we implemented burst communication. Each data burst has its

own header that includes the number of bytes of data being transmitted. Our app and processor can

therefore read as many data bytes included in the communication burst. Therefore our communication

burst will vary in length and time, optimizing our power consumption even further. Currently we

measured an average data transmission of approximately 900bps or 0.9kbps.

 6.3 128-bit AES

Atmel's AVR UC3-L0 was chosen for its low power consumption and its computation capacity.

However, this chip has no additional built in cryptographic modules. 128-bit AES was software

implemented with no additional optimizations and tested for power consumption. The power

consumption of 128-bit AES encryption and decryption is shown in Table 5. The performance of the

same 128-bit AES implementation is shown in Table 6.

128-bit AES Clock Frequency Time

Encryption 1 MHz 1.378 ms

Decryption 1 MHz 1.400 ms

Table 6: 128-bit AES Performance

– 31 –

The measured performances of our processor illustrated in Table 6 are operating at a clock

speed of 1MHz. This clock is generated using an external 1MHz clock crystal. Modifying this crystal

we can achieve higher performance implementations of AES, but in the process increase our power

consumption.

One of our design goals was to allow for at least one round of AES to be completed before

depleting power. Using the measure power consumption, Table 5, and the measure time one round of

AES took, Table 6, we were able to modify our capacitor bank. Our capacitor bank will allow for at

least one round of AES to be implemented before our sleep circuit will notifying the processor to go to

sleep.

– 32 –

Chapter 7

 7 Development

The development of µLeech is the culmination of all the information included in this thesis. For

our hardware there are two final products to be developed: µLeech and µLeech Evaluation Platform. In

terms of software, there is the processor firmware and the android application to be developed. Both

hardware iterations will use the same processor firmware and communicate with the same smartphone

app.

 7.1 Smartphone App

The smartphone used during the development of µLeech was an android Nexus 4. The app we

developed only runs on android platforms. Currently, there is no iPhone app for µLeech. Development

of an iPhone app is a possibility, since the hardware will work with any smartphone. We decided to do

our initial app iteration on android platforms since development is free and coding is simpler. Now that

we have settle on a design and implementation we can develop a µLeech iPhone app.

It is important that the app we developed uses the same communication protocols as our µLeech

processor and therefore Hijack, as explained in Chapter 5. Hijack's app was originally designed for

iPhones, therefore written in Objective C, and included a library for the communication protocol.

Hijack-Infinity created by Anro Robinson is an android implementation of Hijack's app, written in java.

The Hijack libraries were converted to java to be used in Hijack-Infinity. Using the converted libraries

as our communication protocol framework, we developed our own source code and GUI that would

– 33 –

interface with our processor. Hijack's libraries allowed us to power, transmit, and receive data. These

libraries include the same state-machine and frame engine that preformed Manchester encoding on the

processor.

The main app we used in the development of µLeech is show in Figure 18. This app has full

functionality: it powers µLeech with a continuous oscillating waveform on the right audio channel,

transmits data on the left audio channel, and receives data on the microphone channel.

Figure 18: Android App

The app transmission is a continuous transmission of nine bytes that repeat. The nine bytes are

each different integer inputs that the user can input in the transmit column. The app's continuous

transmission is only updated when the send button is pushed. Eventually, like the processor the app can

be modified to do a burst transmissions when send is pushed. Inputs from the processor that come on

the microphone channel are displayed in the receive column. This column is only updated when a burst

transmission is received and verified, when this happens the status indicator will switch to green and

display connected.

As our processor implementations continues to evolve so will the app, reflecting the

functionality needed.

– 34 –

 7.2 Hardware

The hardware was a constantly changing design. As we our understanding and implementation

evolved so did our hardware implementation. The hardware underwent three major development stage:

protoboarding, power optimization, and final PCB iterations. Initial PCBs were developed using

ExpressPCB with the final product developed using CadSoft Eagle. The object was two final products:

µLeech and µLeech Evaluation Platform.

 7.2.1 Protoboarding

Before we could manufacture or even create the final PCB iterations we had to first create and

prototype the design. The prototype was initially bread-boarded. This allowed us to build the prototype

in steps and to modify the circuits as we needed to. Since nothing is soldered modifications can be

continuously made to the design. At this point we designed and implemented the processor, power

siphoning, sleep, transmit, and receive circuits discussed in chapters 4 and 5.

Not all of the components we used could be bread-boarded. For example the biggest problem

we had was our AVR processor, a 48-pin surface mount (SMT) component, that could not be bread-

boarded directly. In such cases a SMT bread-boarding socket is use, however not all SMT components

have bread-boarding sockets available for them. Most of the embedded chips we used were low power

SMT components that had no sockets available to them. As a result we manufactured our own SMT

breadboard sockets. Figure 19 is the bread-boarding socket we developed for our processor, using

ExpressPCB. With this PCB and others like it we were able to bread board all the parts of our design.

Allowing us to test our design before fabricating the final design on a PCB.

Figure 19: UC3-l0 bread-board socket

– 35 –

 7.2.2 Power Optimization

During the course of the protoboarding development before we design the final PCB iteration

we had one major PCB implementation iteration. This PCB iteration used all the same components that

would be included in the final design. The main goal of this iteration was to verify our power

measurements and consumptions. In addition this iteration verified that our design and components

were working as intended. The power measurements of this PCB iteration are the measurements used

in Chapter 6: tables 4, 5, and 6.

This PCB iteration was implemented using ExpressPCB, it includes most of our final design

except for the transmit and receive circuits. This PCB iteration produced two modules. One of the

modules included the power circuit and capacitor bank circuit: Figure 20 and Figure 21. The other was

the processor circuit and sleep circuit: Figure 22 and Figure 23. These modules were split up so that

they could be tested independently without affecting each other. After which, connecting the jumper

headers in the bottom right corner of each modulo allowed us to test all four circuits concurrently.

Verifying that our current implementation worked and measuring power consumption.

Figure 20: Power generation PCB Bottom Figure 21: Power generation PCB Top

Figure 22: Power Evaluation PCB Bottom Figure 23: Power Evaluation PCB Top

– 36 –

 7.2.3 Final PCB

Once the hardware design was completed and tested thoroughly, the whole design was

implemented using CadSoft Eagle. Eagle was used to develop the two final PCB versions of µLeech.

Eagle has a much more extensive library of component footprints for SMT layouts. However, many of

the components used in our design had costume made footprints or were downloaded from the user

based library. The final µLeech PCB versions can be found in Figure 24 and Figure 25. The next

iteration will include the µLeech Evaluation Platform, which will include high quality on-board

peripherals to our power and clock signals.

Figure 24: µLeech Board
Figure 25: µLeech PCB Circuit

– 37 –

Chapter 8

 8 Conclusion

µLeech is a fully functioning independent platform that can be used with any auxiliary port.

This chapter concludes the thesis and the initial development of µLeech. It presents a summary of the

current results and some recommendations for future work and development. The development and

prototyping of µLeech has reveled more optimal implementations and current bottle necks of our

design. Our current prototype is the platform on which we will continue to improve µLeech.

 8.1 Summary of Results

µLeech is a low power platform on which to run cryptographic operations. As such, its

performance is mainly determined in power consumption. The less power it consumes the less power it

ultimately needs to drain from your smartphone. The power consumption of µLeech was evaluated by

looking at different sleep and active implementation sates.

The current power consumption sleep implementations of µLeech are available in Table 4. This

table shows that currently the lowest power consuming sleep state is Static Sleep at 56.7 µA. Currently

we are using Deep Stop Sleep which consumes 68.3 µA. Using Static Sleep would require us to reset

our interrupts, counter, and comparator clocks. As a result there would be a clock initialization phase at

the start of ever wake cycle, ultimately consuming more power. In addition, depending on when the

sleep state was activated an event reset may be required at wake, due to the clock reset, resulting in

wasted cycles/power. For these reasons we are currently using Deep Stop Sleep, the second lowest

– 38 –

power consuming sleep state available. With the prototype completed now, further testing of the

different wake protocols may show which sleep state is ultimately more efficient.

The current power consumption active implementations of µLeech are available in Table 5. This

table shows that currently the highest power consuming phase of our µLeech is its communication

phase. Transmitting and receiving data is consuming 575 µA and 588 µA respectively. While 128-bit

AES is consuming 555 µA. This result shows that there are two things that need to be researched

further, to optimize our design. First, can we achieve lower power consumption from our

communication protocol implementation. Second, how far can we push our AES implementation while

keeping an eye on our power consumption and capacitor bank. Possible allowing us to increasing our

CPU clock speed, currently 1 MHz.

 8.2 Recommendations for future work

Every hardware design iteration shows possible improvements for the next design iteration

cycle. With the completion of our µLeech prototype, the development process has exposed several

firmware and hardware recommendations for the next iteration of µLeech.

Currently the biggest bottle neck in our design is the implementation of Hijack's communication

protocols. Implementing these protocols were necessary initial to develop a working platform. With

this platform and a working understanding of their protocol, a more efficient protocol can be developed

for our application. Hijack and µLeech transmit data in two very different ways. Hijack is a continuous

transmission of sensor data that is constantly being updated. µLeech is a burst transmission of

predetermined data, plain text, cipher text or keys. Therefore, a more efficient protocol for our device

can be implemented. This would replace the Hijack's libraries we use on the smartphone app and

Hijack's state-machine we use on the processor. In doing so, our communication protocol could:

• Only need 1 Idle cycle. At most we only need 1 Idle cycle between byte transmissions. Using

Hijack's protocol there are four idle cycles for our processor and twenty idle cycles for our

smartphone between every byte transmission. Ultimately improving transmission speeds.

• Possibly attain higher baud rates. Our data is predetermined at the start of the transmission,

therefore the buffer can be loaded entirely to optimize speed. We could achieve higher baud

rates, but the limitation will be the smartphone frequency modulation.

– 39 –

• Not need a state-machine. The communication protocols can be moved to the interrupt level

entirely. We do not need a state machine to determine when to go to idle, transmit, receive, and

when to build the transmit or receive buffers. Our communication occurs in a burst serial

sequence. Therefore receiving and transmitting are a serial process and can never happen at the

same time. In addition, the Manchester encoded buffers can be preloaded since the data is fixed

when transmitting.

• Not need a counter for our receive protocol. The counter used to determine the space between

comparisons when receiving data can be removed. Our AVR comparator is a synchronous

comparator and can be used to decode the Manchester input directly, without using a counter.

This would improve incoming data speeds and reduce power consumption.

• Allow our smartphone app to transmit in bursts. We have already modified our processor to

only transmit and receive when necessary. Currently our smartphone app uses Hijacks

converted java libraries for its communication protocol. Similarly, we could have our

smartphone continuously transmit on the power channel but only transmit and receive data

when necessary and in bursts. Optimizing smartphone power usage.

Such a communication protocol would allow for a much more efficient implementation protocol

for µLeech. However like Hijack, we would still be using Manchester encoding. There maybe other

methods to achieving higher baud rates for our communication protocol that do not involve Manchester

encoding. Currently Manchester encoding doubles the clock rate since ever bit is represent by two bits.

The reason for using Manchester encoding is because our smartphone is transmitting a continuously

oscillating waveform. Therefore there is no high and low, Manchester encoding allows use to transmit

by affecting the frequency without affecting the amplitude of the waveform. Other options may include

modifying the amplitude of the waveform without affecting its frequency, such as volume control. If we

could create a communication protocol that does not use Manchester encoding we could at the very

least double our baud rate.

– 40 –

Appendix A

 A. Processor Code: main.c

/*

 * Header files

 */

#include "asf.h"

#include "conf_board.h"

#include "framingEngine.h"

#include "codingStateMachine.h"

#include <aes.h>

/*

 * Method Declarations

 */

void initializeSystem(void);

void packetReceivedCallback(uint8_t * buf, uint8_t len);

void packetSentCallback(void);

void periodicTimerFn (void);

void captureTimerFn(uint16_t elapsedTime, uint8_t isHigh);

/*

 * Global variables to Store the module address

 */

volatile avr32_acifb_t *acifb = &AVR32_ACIFB; //volatile originally

volatile avr32_tc_t *tx_tc = TX_TC; //volatile originally

volatile avr32_tc_t *rx_tc = RX_TC; //volatile originally

– 41 –

/*

 * AES Global Variables

 */

unsigned char key[16];

unsigned char plain[16];

unsigned char cipher[16];

unsigned char result[16];

aes_encrypt_ctx enccx[1];

aes_decrypt_ctx deccx[1];

/*

 * Global Variables

 */

eic_options_t eic_options[2];

uint16_t tx_count = 0;

bool tx_update = false;

uint8_t outMessage[] = {0xFF, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00};

/*

 * EIC Interrupt Routine

 * - Sleep Interrupt

 */

__attribute__((__interrupt__))

static void int_handler_SLEEP(void){

 eic_clear_interrupt_line(&AVR32_EIC, EXT_INT_SLEEP_LINE);

 //SLEEP(AVR32_PM_SMODE_STOP);

 SLEEP(AVR32_PM_SMODE_DEEPSTOP);

 //SLEEP(AVR32_PM_SMODE_STATIC);

}

/*

 * EIC Interrupt Routine

 * - Wake Interrupt

 */

__attribute__((__interrupt__))

static void int_handler_WAKE(void){

 eic_clear_interrupt_line(&AVR32_EIC, EXT_INT_WAKE_LINE);

}

/*

 * ACIFB Interrupt Routine

 * - Counter Comparator Interrupt

– 42 –

 */

__attribute__((__interrupt__))

static void tx_tc_irq(void){

 // Increment counter

 tx_count++;

 // Clear the interrupt flag.

 // - This is a side effect of reading the TC SR.

 tc_read_sr(TX_TC, TX_TC_CHANNEL);

 //If transmission burst is completed

 // - stop transmitting

 // - startup comparator/receive interrupt

 if (tx_count>750){

 tx_update=false;

 tc_stop(tx_tc, TX_TC_CHANNEL);

 tc_start(rx_tc, RX_TC_CHANNEL);

 acifb_enable_interrupt(acifb, AVR32_ACIFB_ACINT4_MASK);

 tc_software_trigger(rx_tc,RX_TC_CHANNEL);

 //Else update the transmission line

 }else

 periodicTimerFn();

}

/*

 * ACIFB Interrupt Routine

 * - Comparator Interrupt

 */

__attribute__((__interrupt__))

static void int_handler_ACIFB(void){

 uint16_t timerCounter = tc_read_tc(rx_tc,RX_TC_CHANNEL);

 if(timerCounter > 5){

 //Reset Counter

 tc_software_trigger(rx_tc,RX_TC_CHANNEL);

 //High Trigger

 if (acifb->sr & AVR32_ACIFB_SR_ACCS4_MASK){

 captureTimerFn(timerCounter, 1);

 //Low Trigger

 }else if (!(acifb->sr & AVR32_ACIFB_SR_ACCS4_MASK)){

– 43 –

 captureTimerFn(timerCounter, 0);

 }

 }

 // Clear the ACIFB interrupt flag

 acifb->icr = AVR32_ACIFB_ACINT4_MASK; //Clear interrupt flag ACIFB_4

 acifb_clear_comparison_interrupt_flag(acifb, ACIFB_ACA_CHANNEL);

}

/**

 * \brief Transmit TC Initialization

 *

 * Initializes and start the TC module with the following:

 * - Counter in Up mode with automatic reset on RC compare match.

 * - fPBA/8 is used as clock source for TC

 * - Enables RC compare match interrupt

 *

 * \param tc Base address of the TC module

 */

static void tx_tc_init(volatile avr32_tc_t *tc)

{

 // Options for waveform generation.

 static const tc_waveform_opt_t waveform_opt = {

 // Channel selection.

 .channel = TX_TC_CHANNEL,

 // Software trigger effect on TIOB.

 .bswtrg = TC_EVT_EFFECT_NOOP,

 // External event effect on TIOB.

 .beevt = TC_EVT_EFFECT_NOOP,

 // RC compare effect on TIOB.

 .bcpc = TC_EVT_EFFECT_NOOP,

 // RB compare effect on TIOB.

 .bcpb = TC_EVT_EFFECT_NOOP,

 // Software trigger effect on TIOA.

 .aswtrg = TC_EVT_EFFECT_NOOP,

 // External event effect on TIOA.

 .aeevt = TC_EVT_EFFECT_NOOP,

 // RC compare effect on TIOA.

 .acpc = TC_EVT_EFFECT_NOOP,

 /*

 * RA compare effect on TIOA.

 * (other possibilities are none, set and clear).

– 44 –

 */

 .acpa = TC_EVT_EFFECT_NOOP,

 /*

 * Waveform selection: Up mode with automatic trigger(reset)

 * on RC compare.

 */

 .wavsel = TC_WAVEFORM_SEL_UP_MODE_RC_TRIGGER,

 // External event trigger enable.

 .enetrg = false,

 // External event selection.

 .eevt = 0,

 // External event edge selection.

 .eevtedg = TC_SEL_NO_EDGE,

 // Counter disable when RC compare.

 .cpcdis = false,

 // Counter clock stopped with RC compare.

 .cpcstop = false,

 // Burst signal selection.

 .burst = false,

 // Clock inversion.

 .clki = false,

 // Internal source clock 3, connected to fPBA / 8.

 .tcclks = TC_CLOCK_SOURCE_TC3

 };

 // Options for enabling TC interrupts

 static const tc_interrupt_t tc_interrupt = {

 .etrgs = 0,

 .ldrbs = 0,

 .ldras = 0,

 .cpcs = 1, // Enable interrupt on RC compare alone

 .cpbs = 0,

 .cpas = 0,

 .lovrs = 0,

 .covfs = 0

 };

 // Initialize the timer/counter.

 tc_init_waveform(tx_tc, &waveform_opt);

 //Set the compare triggers.

 tc_write_rc(tx_tc, TX_TC_CHANNEL, BOARD_OSC0_HZ/8/2320);

 // configure the timer interrupt

– 45 –

 tc_configure_interrupts(tx_tc, TX_TC_CHANNEL, &tc_interrupt);

}

/**

 * \brief Receive TC Initialization

 *

 * Initializes and start the TC module with the following:

 * - Counter in Up mode.

 * - fPBA/32 is used as clock source for TC

 *

 * \param tc Base address of the TC module

 */

static void rx_tc_init(volatile avr32_tc_t *tc)

{

 // Options for waveform generation.

 static const tc_waveform_opt_t waveform_opt = {

 // Channel selection.

 .channel = RX_TC_CHANNEL,

 // Software trigger effect on TIOB.

 .bswtrg = TC_EVT_EFFECT_NOOP,

 // External event effect on TIOB.

 .beevt = TC_EVT_EFFECT_NOOP,

 // RC compare effect on TIOB.

 .bcpc = TC_EVT_EFFECT_NOOP,

 // RB compare effect on TIOB.

 .bcpb = TC_EVT_EFFECT_NOOP,

 // Software trigger effect on TIOA.

 .aswtrg = TC_EVT_EFFECT_NOOP,

 // External event effect on TIOA.

 .aeevt = TC_EVT_EFFECT_NOOP,

 // RC compare effect on TIOA.

 .acpc = TC_EVT_EFFECT_NOOP,

 /*

 * RA compare effect on TIOA.

 * (other possibilities are none, set and clear).

 */

 .acpa = TC_EVT_EFFECT_NOOP,

 /*

 * Waveform selection: Up mode

 */

 .wavsel = TC_WAVEFORM_SEL_UP_MODE,

 // External event trigger enable.

– 46 –

 .enetrg = false,

 // External event selection.

 .eevt = 0,

 // External event edge selection.

 .eevtedg = TC_SEL_NO_EDGE,

 // Counter disable when RC compare.

 .cpcdis = false,

 // Counter clock stopped with RC compare.

 .cpcstop = false,

 // Burst signal selection.

 .burst = false,

 // Clock inversion.

 .clki = false,

 // Internal source clock 4, connected to fPBA / 32.

 .tcclks = TC_CLOCK_SOURCE_TC4

 };

 // Options for enabling TC interrupts

 static const tc_interrupt_t tc_interrupt = {

 .etrgs = 0,

 .ldrbs = 0,

 .ldras = 0,

 .cpcs = 0,

 .cpbs = 0,

 .cpas = 0,

 .lovrs = 0,

 .covfs = 0

 };

 // Initialize the timer/counter.

 tc_init_waveform(rx_tc, &waveform_opt);

}

/*

 * Initializes the ACIFB Comparator module

 * - Start the GCLK for ACIFB

 * - Initialize the trigger mode & compare interrupts for ACIFB

 */

static void acifb_init(void){

 genclk_enable_config(AVR32_SCIF_GCLK_ACIFB,GENCLK_SRC_CLK_CPU,40);

 /* GPIO pin/acifb - function map. */

 static const gpio_map_t ACIFB_GPIO_MAP = {

– 47 –

 {ACIFB_ACAP_PIN, ACIFB_ACAP_FUNCTION},

 {ACIFB_ACAN_PIN, ACIFB_ACAN_FUNCTION},

 };

 /* ACIFB Configuration */

 const acifb_t acifb_opt = {

 .sut = 6, /* Resolution mode */

 .actest = TESTMODE_OFF,

 .eventen = false

 };

 /* ACIFB Channel Configuration */

 const acifb_channel_t acifb_channel_opt = {

 /* Filter length */

 .filter_len = 0,

 /* Hysteresis value */

 .hysteresis_value = 0,

 /* Output event when ACOUT is zero? */

 .event_negative = true,

 /* Output event when ACOUT is one? */

 .event_positive = true,

 /* Set the positive input */

 .positive_input = PI_ACP,

 /* Set the negative input */

 .negative_input = NI_ACN,

 /* Set the comparator mode */

 .mode = MODE_CONTINUOUS,

 //.mode = MODE_EVENT_TRIGGERED,

 /* Interrupt settings */

 //.interrupt_settings = IS_COMP_DONE,

 .interrupt_settings = IS_OUTPUT_TGL,

 /* Analog comparator channel number */

 .ac_n = ACIFB_ACA_CHANNEL

 };

 /* Enable Analog Comparator clock */

 sysclk_enable_pba_module(SYSCLK_ACIFB);

 /* Disable pullup on ACIFB channel input pins */

 gpio_disable_pin_pull_up(ACIFB_ACAP_PIN);

 gpio_disable_pin_pull_up(ACIFB_ACAN_PIN);

 /* Enable the ACIFB pins */

 gpio_enable_module(ACIFB_GPIO_MAP, sizeof(ACIFB_GPIO_MAP) / sizeof(ACIFB_GPIO_MAP[0]));

– 48 –

 /* Configure the ACIFB peripheral */

 acifb_setup_and_enable(acifb, &acifb_opt);

 /* Configure the ACIFB channel with interrupt & trigger */

 acifb_channels_setup(acifb, &acifb_channel_opt, 1);

}

/*

 * MAIN Function

 * - Setup Low Power Mode

 * - Initialize Counters

 * - Initialize Comparator

 * - Initialize Hijack Communication protocol

 * - Start Receive mode and AES

 */

int main (void){

 uint8_t i;

 board_init();

 sysclk_init();

 //disabling unwanted modules on PBA

 //sysclk_disable_pba_module(AVR32_INTC_CLK_PBA);

 //sysclk_disable_pba_module(AVR32_GPIO_CLK_PBA);

 //sysclk_disable_pba_module(AVR32_EIC_CLK_PBA); // Disable EIC PBA clock

 sysclk_disable_pba_module(AVR32_PDCA_CLK_PBA); // Disable pdca

 sysclk_disable_pba_module(AVR32_WDT_CLK_PBA); // Disable WatchDog PBA clock

 sysclk_disable_pba_module(AVR32_FREQM_CLK_PBA); // Disable FREQM PBA clock

 sysclk_disable_pba_module(AVR32_USART0_CLK_PBA);// Disable USART0 PBA clock

 sysclk_disable_pba_module(AVR32_USART1_CLK_PBA);// Disable USART1 PBA clock

 sysclk_disable_pba_module(AVR32_USART2_CLK_PBA);// Disable USART2 PBA clock

 sysclk_disable_pba_module(AVR32_USART3_CLK_PBA);// Disable USART3 PBA clock

 sysclk_disable_pba_module(AVR32_SPI_CLK_PBA); // Disable SPI PBA clock

 sysclk_disable_pba_module(AVR32_TWIM0_CLK_PBA); // Disable TWIM0 PBA clock

 sysclk_disable_pba_module(AVR32_TWIM1_CLK_PBA); // Disable TWIM1 PBA clock

 sysclk_disable_pba_module(AVR32_TWIS0_CLK_PBA); // Disable TWIS0 PBA clock

 sysclk_disable_pba_module(AVR32_TWIS1_CLK_PBA); // Disable TWIS1 PBA clock

 sysclk_disable_pba_module(AVR32_PWMA_CLK_PBA); // Disable PWMA PBA clock

 //sysclk_disable_pba_module(AVR32_TC0_CLK_PBA); // Disable TC0 PBA clock

 sysclk_disable_pba_module(AVR32_TC1_CLK_PBA); // Disable TC1 PBA clock

 sysclk_disable_pba_module(AVR32_ADCIFB_CLK_PBA);// Disable ADCIFB PBA clock

 //sysclk_disable_pba_module(AVR32_ACIFB_CLK_PBA);// Disable ACIFB PBA clock

– 49 –

 sysclk_disable_pba_module(AVR32_CAT_CLK_PBA); // Disable CAT PBA clock

 sysclk_disable_pba_module(AVR32_GLOC_CLK_PBA); // Disable CAT PBA clock

 sysclk_disable_pba_module(AVR32_AW_CLK_PBA); // Disable CAT PBA clock

 //pbb modules

 sysclk_disable_pbb_module(AVR32_HMATRIX_CLK_PBB);

 sysclk_disable_pbb_module(AVR32_SAU_CLK_PBB);

 //hsb

 sysclk_disable_hsb_module(AVR32_PDCA_CLK_HSB);

 sysclk_disable_hsb_module(AVR32_SAU_CLK_HSB);

 sysclk_disable_hsb_module(AVR32_HMATRIX_CLK_HSB_PBB_BRIDGE);

 sysclk_disable_hsb_module(AVR32_PES_CLK_HSB);

 //cpu

 sysclk_disable_cpu_module(AVR32_OCD_CLK_CPU);

 sysclk_disable_cpu_module(AVR32_CORE_CLK_CPU_COUNT);

 //GPIO enable pin pull up

 for (i = 0; i<45; i++) {

 gpio_enable_gpio_pin(i);

 gpio_enable_pin_pull_up(i);

 }

 //Transmit pin

 gpio_disable_pin_pull_up(AVR32_PIN_PB10);

 gpio_configure_pin(AVR32_PIN_PB10, GPIO_INIT_LOW | GPIO_DIR_OUTPUT);

 //testing

 gpio_disable_pin_pull_up(my_GPIO_1);

 gpio_configure_pin(my_GPIO_1, GPIO_INIT_LOW | GPIO_DIR_OUTPUT);

 gpio_disable_pin_pull_up(my_GPIO_2);

 gpio_configure_pin(my_GPIO_2, GPIO_INIT_LOW | GPIO_DIR_OUTPUT);

 //Initialize the ACIFB

 acifb_init();

 //por disabled

 avr32_scif_t *scifopt=&AVR32_SCIF;

 SCIF_UNLOCK(AVR32_SCIF_VREGCR); scifopt->VREGCR.por33en=0;

 SCIF_UNLOCK(AVR32_SCIF_VREGCR); scifopt->VREGCR.por33mask=1;

– 50 –

 //External interrupt Controller - Sleep Mode

 eic_options[0].eic_mode = EIC_MODE_EDGE_TRIGGERED; // Enable edge-triggered interrupt.

 eic_options[0].eic_edge = EIC_EDGE_FALLING_EDGE; // Interrupt trig. on falling edge.

 eic_options[0].eic_filter = EIC_FILTER_ENABLED; // Enable filter.

 eic_options[0].eic_async = EIC_SYNCH_MODE; // Initialize in synchronous mode

 eic_options[0].eic_line = EXT_INT_SLEEP_LINE; // Set the interrupt line number.

 //External interrupt Controller - Wake Mode

 eic_options[1].eic_mode = EIC_MODE_EDGE_TRIGGERED; // Enable edge-triggered interrupt.

 eic_options[1].eic_edge = EIC_EDGE_RISING_EDGE; // Interrupt trig. on rising edge.

 eic_options[1].eic_filter = EIC_FILTER_ENABLED; // Enable filter.

 eic_options[1].eic_async = EIC_SYNCH_MODE; // Initialize in synchronous mode

 eic_options[1].eic_line = EXT_INT_WAKE_LINE; // Set the interrupt line number.

 Disable_global_interrupt(); // Disable all interrupts.

 INTC_init_interrupts(); // Initialize interrupt vectors.

 // Register the EIC interrupt handlers to the interrupt controller.

 INTC_register_interrupt(&int_handler_SLEEP, EXT_IRQ_SLEEP_LINE, AVR32_INTC_INT0);

 INTC_register_interrupt(&int_handler_WAKE, EXT_IRQ_WAKE_LINE, AVR32_INTC_INT0);

 // Map the interrupt line to the GPIO pin with the right peripheral function.

 gpio_enable_module_pin(EXT_INT_SLEEP_PIN_LINE, EXT_INT_SLEEP_FUNCTION_LINE);

 gpio_disable_pin_pull_up(EXT_INT_SLEEP_PIN_LINE);

 gpio_enable_module_pin(EXT_INT_WAKE_PIN_LINE, EXT_INT_WAKE_FUNCTION_LINE);

 gpio_disable_pin_pull_up(EXT_INT_SLEEP_PIN_LINE);

 // Init the EIC controller with the options

 eic_init(&AVR32_EIC, eic_options, 2);

 // Enable the chosen lines and their corresponding interrupt feature.

 eic_enable_line(&AVR32_EIC, EXT_INT_SLEEP_LINE);

 eic_enable_interrupt_line(&AVR32_EIC, eic_options[0].eic_line);

 eic_enable_line(&AVR32_EIC, EXT_INT_WAKE_LINE);

 eic_enable_interrupt_line(&AVR32_EIC, eic_options[1].eic_line);

 // Enable all interrupts.

 sysclk_enable_peripheral_clock(TX_TC);

 INTC_register_interrupt(&tx_tc_irq, AVR32_TC1_IRQ0, AVR32_INTC_INT0);

 INTC_register_interrupt(&int_handler_ACIFB, AVR32_ACIFB_IRQ, AVR32_INTC_INT0);

 acifb->ier = AVR32_ACIFB_ACINT4_MASK; //enable comparison interrupt

– 51 –

 Enable_global_interrupt();

 //Disable Comparator Interrupt at start

 acifb_disable_interrupt(acifb, AVR32_ACIFB_ACINT4_MASK);

 // Initialize the timer module

 tx_tc_init(tx_tc);

 rx_tc_init(rx_tc);

 tc_start(tx_tc, TX_TC_CHANNEL);

 //tc_start(rx_tc, RX_TC_CHANNEL);

 //Start Hijack's Communication Protocol

 initializeSystem();

 //Infinite AES encrypt and decrypt loop

 while (true){

 for (i=0; i<16; i++){

 key[i]=i;

 plain[i]=10*i;

 result[i] = 3;

 }

 aes_init();

 aes_encrypt_key128(key, enccx);

 aes_decrypt_key128(key, deccx);

 while (true){

 aes_encrypt(plain, cipher, enccx);

 gpio_set_pin_low(my_GPIO_1);

 aes_decrypt(cipher, result, deccx);

 gpio_set_pin_high(my_GPIO_1);

 }

 }

}

/*

 * Initialize Hijacks's Communication Protocol

 */

void initializeSystem(void) {

 // Initialize Hijack's State Machine

 csm_init();

 csm_registerReceiveByte(fe_handleByteReceived);

 csm_registerTransmitByte(fe_handleByteSent);

– 52 –

 // Initialize Hijack's Frame Engine

 fe_init();

 fe_registerPacketReceivedCb(packetReceivedCallback);

 fe_registerPacketSentCb(packetSentCallback);

 fe_registerByteSender(csm_sendByte);

 // Start transmitting

 fe_writeTxBuffer(outMessage, 9);

 fe_startSending();

}

/*

 * Functions to interact with Hijack's State Machine

 */

//Update Received Data

void packetReceivedCallback(uint8_t * buf, uint8_t len) {

 bool update = false;

 if(outMessage[0] != buf[0]){outMessage[0] = buf[0]; update=true;}

 if(outMessage[1] != buf[1]){outMessage[1] = buf[1]; update=true;}

 if(outMessage[2] != buf[2]){outMessage[2] = buf[2]; update=true;}

 if(outMessage[3] != buf[3]){outMessage[3] = buf[3]; update=true;}

 if(outMessage[4] != buf[4]){outMessage[4] = buf[4]; update=true;}

 if(outMessage[5] != buf[5]){outMessage[5] = buf[5]; update=true;}

 if(outMessage[6] != buf[6]){outMessage[6] = buf[6]; update=true;}

 if(outMessage[7] != buf[7]){outMessage[7] = buf[7]; update=true;}

 if(outMessage[8] != buf[8]){outMessage[8] = buf[8]; update=true;}

 if(update){

 tx_count=0;

 acifb_disable_interrupt(acifb, AVR32_ACIFB_ACINT4_MASK);

 tc_stop(rx_tc, RX_TC_CHANNEL);

 tc_start(tx_tc, TX_TC_CHANNEL);

 }

}

//Update Transmission Line

void periodicTimerFn (void) {

 uint8_t ats;

 ats = csm_advanceTransmitState();

– 53 –

 if (ats){

 gpio_set_pin_high(AVR32_PIN_PB10);

 }else{

 gpio_set_pin_low(AVR32_PIN_PB10);

 }

 csm_finishAdvanceTransmitState();

}

//Update transmit buffer

void packetSentCallback(void) {

 fe_writeTxBuffer(outMessage, 9);

}

//Pass Comparator information to Receive State

void captureTimerFn(uint16_t elapsedTime, uint8_t isHigh) {

 struct csm_timer_struct timingData;

 timingData.elapsedTime = elapsedTime;

 timingData.signal = !isHigh;

 csm_receiveTiming(&timingData);

}

– 54 –

Appendix B

 B. Processor Code: conf_board.h

/**

 * Board Configuration Header File

 * - External Interrupt Pin Mappings

 * - Timer Counter Module Pin Mappings

 * - Comparator Module Pin Mappings

 */

#ifndef CONF_BOARD_H

#define CONF_BOARD_H

/**

 * External Interrupt Pin Mappings - Sleep

 */

#define EXT_INT_SLEEP_PIN_LINE AVR32_EIC_EXTINT_3_0_PIN

#define EXT_INT_SLEEP_FUNCTION_LINE AVR32_EIC_EXTINT_3_0_FUNCTION

#define EXT_INT_SLEEP_LINE AVR32_EIC_INT3

#define EXT_IRQ_SLEEP_LINE AVR32_EIC_IRQ_3

/**

 * External Interrupt Pin Mappings - Wake

 */

#define EXT_INT_WAKE_PIN_LINE AVR32_EIC_EXTINT_5_0_PIN

#define EXT_INT_WAKE_FUNCTION_LINE AVR32_EIC_EXTINT_5_0_FUNCTION

#define EXT_INT_WAKE_LINE AVR32_EIC_INT5

#define EXT_IRQ_WAKE_LINE AVR32_EIC_IRQ_5

– 55 –

/**

 * Timer Counter Module Pin Mappings - Receive Counter

 */

#define RX_TC (&AVR32_TC0) //TC0 module is enabled

#define RX_TC_CHANNEL 0 //TC Channel 0

#define RX_TC_IRQ AVR32_TC0_IRQ0 //IRQ0 line of TC0 Channel0.

#define RX_TC_IRQ_PRIORITY AVR32_INTC_INT0 //Interrupt priority 0

/**

 * Timer Counter Module Pin Mappings - Transmit Counter

 */

#define TX_TC (&AVR32_TC1) //TC1 module is enabled

#define TX_TC_CHANNEL 0 //TC Channel 0 is used.

#define TX_TC_IRQ AVR32_TC1_IRQ0 //IRQ0 line of TC1 Channel0

#define TX_TC_IRQ_PRIORITY AVR32_INTC_INT0 //Interrupt priority 0

/**

 * Comparator Module Pin Mappings

 */

#define ACIFB_ACA_CHANNEL 4

#define ACIFB_ACAP_PIN AVR32_ACIFB_ACAP_2_PIN //AVR32_PIN_PB00 -> PIN 32

#define ACIFB_ACAP_FUNCTION AVR32_ACIFB_ACAP_2_FUNCTION

#define ACIFB_ACAN_PIN AVR32_ACIFB_ACAN_2_PIN //AVR32_PIN_PB02 -> PIN 34

#define ACIFB_ACAN_FUNCTION AVR32_ACIFB_ACAN_2_FUNCTION

/**

 * Test GPIO Pin Mappings

 */

#define my_GPIO_1 AVR32_PIN_PB03 //AVR32_PIN_PB03 -> PIN 35

#define my_GPIO_2 AVR32_PIN_PA22 //AVR32_PIN_PA22 -> PIN 22

#endif // CONF_BOARD_H

– 56 –

Appendix C

 C. Processor Code: conf_clock.h

/**

 * Clock Configuration Header File

 */

#ifndef CONF_CLOCK_H_INCLUDED

#define CONF_CLOCK_H_INCLUDED

//#define CONFIG_SYSCLK_INIT_CPUMASK (1 << SYSCLK_SYSTIMER)

//#define CONFIG_SYSCLK_INIT_PBAMASK (1 << SYSCLK_USART0)

//#define CONFIG_SYSCLK_INIT_PBBMASK (1 << SYSCLK_HMATRIX)

//#define CONFIG_SYSCLK_INIT_HSBMASK (1 << SYSCLK_MDMA_HSB)

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RCSYS

#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_OSC0

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_DFLL

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RC120M

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLL0

//#define BOARD_OSC0_HZ 32000 // 32 KHz

//#define BOARD_OSC0_HZ 100000 //100 KHz

#define BOARD_OSC0_HZ 1000000 // 1 MHz

#define BOARD_OSC0_TYPE XOSC_TYPE_XTAL

#define BOARD_OSC0_IS_XTAL true

#define BOARD_OSC0_STARTUP_US 17000

– 57 –

/* Fbus = Fsys / (2 ^ BUS_div) */

#define CONFIG_SYSCLK_CPU_DIV 0

#define CONFIG_SYSCLK_PBA_DIV 0

#define CONFIG_SYSCLK_PBB_DIV 0

//#define CONFIG_DFLL0_SOURCE GENCLK_SRC_OSC0

//#define CONFIG_DFLL0_SOURCE GENCLK_SRC_RCSYS

//#define CONFIG_DFLL0_SOURCE GENCLK_SRC_OSC32K

//#define CONFIG_DFLL0_SOURCE GENCLK_SRC_RC120M

//#define CONFIG_DFLL0_SOURCE GENCLK_SRC_RC32K

/* Fdfll = (Fclk * DFLL_mul) / DFLL_div */

//#define CONFIG_DFLL0_MUL (48000000UL / BOARD_OSC32_HZ)

//#define CONFIG_DFLL0_DIV 1

#endif /* CONF_CLOCK_H_INCLUDED */

– 58 –

Appendix D

 D. Processor Code: asf.h

/**

 * \file

 *

 * \brief Autogenerated API include file for the Atmel Software Framework (ASF)

 *

 * Copyright (c) 2012 Atmel Corporation. All rights reserved.

 *

 * \asf_license_start

 *

 * \page License

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are met:

 *

 * 1. Redistributions of source code must retain the above copyright notice,

 * this list of conditions and the following disclaimer.

 *

 * 2. Redistributions in binary form must reproduce the above copyright notice,

 * this list of conditions and the following disclaimer in the documentation

 * and/or other materials provided with the distribution.

 *

 * 3. The name of Atmel may not be used to endorse or promote products derived

 * from this software without specific prior written permission.

 *

 * 4. This software may only be redistributed and used in connection with an

 * Atmel microcontroller product.

– 59 –

 *

 * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE

 * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR

 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 *

 * \asf_license_stop

 *

 */

#ifndef ASF_H

#define ASF_H

/*

 * This file includes all API header files for the selected drivers from ASF.

 * Note: There might be duplicate includes required by more than one driver.

 *

 * The file is automatically generated and will be re-written when

 * running the ASF driver selector tool. Any changes will be discarded.

 */

// From module: ACIFB - Analog Comparator Interface

#include <acifb.h>

// From module: Common build items for user board support templates

#include <user_board.h>

// From module: Compiler abstraction layer and code utilities

#include <compiler.h>

#include <status_codes.h>

// From module: EIC - External Interrupt Controller

#include <eic.h>

// From module: FLASH Controller Double-Word (FLASHCDW)

– 60 –

#include <flashcdw.h>

// From module: GPIO - General-Purpose Input/Output

#include <gpio.h>

// From module: Generic board support

#include <board.h>

// From module: INTC - Interrupt Controller

#include <intc.h>

// From module: Interrupt management - UC3 implementation

#include <interrupt.h>

// From module: PM Power Manager - UC3 L0 implementation

#include <power_clocks_lib.h>

#include <sleep.h>

// From module: Part identification macros

#include <parts.h>

// From module: SCIF System Control Interface - UC3L implementation

#include <scif_uc3l.h>

// From module: System Clock Control - UC3 L0 implementation

#include <sysclk.h>

// From module: TC - Timer/Counter

#include <tc.h>

#endif // ASF_H

– 61 –

Appendix E

 E. Android Code: ApplicationInterface.java

/*

 * This file is part of hijack-infinity.

 *

 * hijack-infinity is free software: you can redistribute it and/or modify

 * it under the terms of the GNU General Public License as published by

 * the Free Software Foundation, either version 3 of the License, or

 * (at your option) any later version.

 *

 * hijack-infinity is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 * GNU General Public License for more details.

 *

 * You should have received a copy of the GNU General Public License

 * along with hijack-infinity. If not, see <http://www.gnu.org/licenses/>.

 */

package app.smartTPM;

import java.util.Timer;

import java.util.TimerTask;

import app.smartTPM.core.FramingEngine;

import app.smartTPM.core.OnByteSentListener;

import app.smartTPM.core.OnBytesAvailableListener;

import app.smartTPM.core.SerialDecoder;

– 62 –

import app.smartTPM.core.FramingEngine.IncomingPacketListener;

import app.smartTPM.core.FramingEngine.OutgoingByteListener;

public class ApplicationInterface {

 private SerialDecoder _serialDecoder;

 private FramingEngine _framer;

 private int[] _dataR = new int[] {0, 0, 0, 0, 0, 0, 0, 0, 0};

 private int[] _dataT = new int[] {0, 0, 0, 0, 0, 0, 0, 0, 0};

 private boolean _isConnected = false;

 private boolean _hasUpdated = false;

 private int _pendingTransmitBytes = 0;

 private Timer _watchdogConnectionTimer;

 private UpdateListener _listener = null;

 public ApplicationInterface() {

 _framer = new FramingEngine();

 _serialDecoder = new SerialDecoder();

 _serialDecoder.registerBytesAvailableListener(_bytesAvailableListener);

 _serialDecoder.registerByteSentListener(_byteSentListener);

 _framer.registerIncomingPacketListener(_incomingPacketListener);

 _framer.registerOutgoingByteListener(_outgoingByteListener);

 int[] toSend = encode();

 for (int i = 0; i < toSend.length; i++) {

 _framer.transmitByte(toSend[i]);

 }

 _framer.transmitEnd();

 }

 private OutgoingByteListener _outgoingByteListener = new OutgoingByteListener() {

 public void OutgoingByteTransmit(int[] outgoingRaw) {

 synchronized (ApplicationInterface.this) {

 _pendingTransmitBytes += outgoingRaw.length;

 }

 for (int i = 0; i < outgoingRaw.length; i++) {

 _serialDecoder.sendByte(outgoingRaw[i]);

– 63 –

 }

 }

 };

 private IncomingPacketListener _incomingPacketListener = new IncomingPacketListener() {

 public void IncomingPacketReceive(int[] packet) {

 for (int i = 0; i < packet.length; i++) {

 System.out.print(Integer.toHexString(packet[i]) + " ");

 }

 System.out.println();

 decodeAndUpdate(packet);

 }

 };

 private OnByteSentListener _byteSentListener = new OnByteSentListener() {

 public void onByteSent() {

 synchronized (ApplicationInterface.this) {

 _pendingTransmitBytes--;

 if (_pendingTransmitBytes == 0) {

 int[] toSend = encode();

 for (int i = 0; i < toSend.length; i++) {

 _framer.transmitByte(toSend[i]);

 }

 _framer.transmitEnd();

 }

 }

 }

 };

 private OnBytesAvailableListener _bytesAvailableListener = new

OnBytesAvailableListener() {

 public void onBytesAvailable(int count) {

 while(count > 0) {

 int byteVal = _serialDecoder.readByte();

 _framer.receiveByte(byteVal);

 count--;

 }

 }

 };

 private void decodeAndUpdate(int[] packet) {

 if (packet.length != 9) {

– 64 –

 return;

 }

 synchronized (this) {

 _hasUpdated = true;

 _dataR[0]=(int)(packet[0]&0xFF);

 _dataR[1]=(int)(packet[1]&0xFF);

 _dataR[2]=(int)(packet[2]&0xFF);

 _dataR[3]=(int)(packet[3]&0xFF);

 _dataR[4]=(int)(packet[4]&0xFF);

 _dataR[5]=(int)(packet[5]&0xFF);

 _dataR[6]=(int)(packet[6]&0xFF);

 _dataR[7]=(int)(packet[7]&0xFF);

 _dataR[8]=(int)(packet[8]&0xFF);

 }

 OnUpdateListener();

 }

 private int[] encode() {

 //return new int[] {_dataT[0], _dataT[1], _dataT[2]};

 return _dataT;

 }

 public void start() {

 _serialDecoder.start();

 _watchdogConnectionTimer = new Timer();

 _watchdogConnectionTimer.scheduleAtFixedRate(new TimerTask() {

 @Override

 public void run() {

 synchronized (ApplicationInterface.this) {

 _isConnected = _hasUpdated;

 _hasUpdated = false;

 }

 OnUpdateListener();

 }

 }, 1000, 1000);

 }

 public void stop() {

 _watchdogConnectionTimer.cancel();

– 65 –

 _watchdogConnectionTimer = null;

 _serialDecoder.stop();

 _isConnected = false;

 OnUpdateListener();

 }

 public synchronized void registerOnUpdateListener(UpdateListener listener) {

 _listener = listener;

 }

 public synchronized double getDataR(int i) {

 return _dataR[i];

 }

 public synchronized void setDataT(int i, int value) {

 _dataT[i]=value;

 }

 public synchronized boolean getIsConnected() {

 return _isConnected;

 }

 public interface UpdateListener {

 public abstract void Update();

 }

 public void OnUpdateListener() {

 if (_listener != null) {

 _listener.Update();

 }

 }

}

– 66 –

Appendix F

 F. Android Code: MainActivity.java

package app.smartTPM;

import java.text.DecimalFormat;

import app.smartTPM.ApplicationInterface.UpdateListener;

import android.os.Bundle;

import android.app.Activity;

import android.graphics.Color;

import android.view.Menu;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class MainActivity extends Activity {

 private ApplicationInterface _appInterface;

 private TextView _tvStatus;

 private TextView _tvDataR0, _tvDataR1, _tvDataR2, _tvDataR3, _tvDataR4, _tvDataR5,

_tvDataR6, _tvDataR7, _tvDataR8;

 private TextView _tvDataT0, _tvDataT1, _tvDataT2, _tvDataT3, _tvDataT4, _tvDataT5,

_tvDataT6, _tvDataT7, _tvDataT8;

 private Button _bSend;

– 67 –

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 _appInterface = new ApplicationInterface();

 bindControls();

 _appInterface.registerOnUpdateListener(_listener);

 attachButtonListener();

 }

 private UpdateListener _listener = new UpdateListener() {

 public void Update() {

 runOnUiThread(new Runnable() {

 public void run() {

 updateBindings();

 }

 });

 }

 };

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar if it is present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 @Override

 public void onPause() {

 _appInterface.stop();

 super.onPause();

 }

 @Override

 public void onResume() {

 _appInterface.start();

 super.onResume();

 }

– 68 –

 private void bindControls() {

 _tvStatus = (TextView) findViewById(R.id.textViewStatus);

 _bSend = (Button) findViewById(R.id.bSend);

 //

 _tvDataR0 = (TextView) findViewById(R.id.dataR_0);

 _tvDataR1 = (TextView) findViewById(R.id.dataR_1);

 _tvDataR2 = (TextView) findViewById(R.id.dataR_2);

 _tvDataR3 = (TextView) findViewById(R.id.dataR_3);

 _tvDataR4 = (TextView) findViewById(R.id.dataR_4);

 _tvDataR5 = (TextView) findViewById(R.id.dataR_5);

 _tvDataR6 = (TextView) findViewById(R.id.dataR_6);

 _tvDataR7 = (TextView) findViewById(R.id.dataR_7);

 _tvDataR8 = (TextView) findViewById(R.id.dataR_8);

 _tvDataT0 = (TextView) findViewById(R.id.dataT_0);

 _tvDataT1 = (TextView) findViewById(R.id.dataT_1);

 _tvDataT2 = (TextView) findViewById(R.id.dataT_2);

 _tvDataT3 = (TextView) findViewById(R.id.dataT_3);

 _tvDataT4 = (TextView) findViewById(R.id.dataT_4);

 _tvDataT5 = (TextView) findViewById(R.id.dataT_5);

 _tvDataT6 = (TextView) findViewById(R.id.dataT_6);

 _tvDataT7 = (TextView) findViewById(R.id.dataT_7);

 _tvDataT8 = (TextView) findViewById(R.id.dataT_8);

 }

 private void updateBindings() {

 DecimalFormat decimalFormat = new DecimalFormat("#.##");

 _tvStatus.setText(_appInterface.getIsConnected() ? R.string.status_connected :

R.string.status_disconnected);

 _tvStatus.setTextColor(_appInterface.getIsConnected() ?

Color.parseColor("#11FF11") : Color.parseColor("#FF1111"));

 _tvDataR0.setText(decimalFormat.format(_appInterface.getDataR(0)));

 _tvDataR1.setText(decimalFormat.format(_appInterface.getDataR(1)));

 _tvDataR2.setText(decimalFormat.format(_appInterface.getDataR(2)));

 _tvDataR3.setText(decimalFormat.format(_appInterface.getDataR(3)));

 _tvDataR4.setText(decimalFormat.format(_appInterface.getDataR(4)));

 _tvDataR5.setText(decimalFormat.format(_appInterface.getDataR(5)));

 _tvDataR6.setText(decimalFormat.format(_appInterface.getDataR(6)));

 _tvDataR7.setText(decimalFormat.format(_appInterface.getDataR(7)));

– 69 –

 _tvDataR8.setText(decimalFormat.format(_appInterface.getDataR(8)));

 }

 private void attachButtonListener() {

 _bSend.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 try {

 _appInterface.setDataT(0, Integer.parseInt(""+_tvDataT0.getText()));

 _appInterface.setDataT(1, Integer.parseInt(""+_tvDataT1.getText()));

 _appInterface.setDataT(2, Integer.parseInt(""+_tvDataT2.getText()));

 _appInterface.setDataT(3, Integer.parseInt(""+_tvDataT3.getText()));

 _appInterface.setDataT(4, Integer.parseInt(""+_tvDataT4.getText()));

 _appInterface.setDataT(5, Integer.parseInt(""+_tvDataT5.getText()));

 _appInterface.setDataT(6, Integer.parseInt(""+_tvDataT6.getText()));

 _appInterface.setDataT(7, Integer.parseInt(""+_tvDataT7.getText()));

 _appInterface.setDataT(8, Integer.parseInt(""+_tvDataT8.getText()));

 } catch (Exception e) {

 }

 }

 });

 }

}

– 70 –

Appendix G

 G. Android Code: activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="app.smartTPM.MainActivity" >

 <LinearLayout

 android:orientation="horizontal"

 android:layout_width="match_parent"

 android:layout_height="wrap_content" >

 <TextView

 style="@android:style/TextAppearance.Large"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginLeft="10dp"

 android:layout_marginTop="10dp"

 android:text="@string/status"

 tools:context=".FramJack" />

 <TextView

 android:id="@+id/textViewStatus"

 style="@android:style/TextAppearance.Large"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

– 71 –

 android:layout_marginLeft="5dp"

 android:layout_marginTop="10dp"

 android:text="@string/status_connected"

 android:textColor="#11ff11"

 tools:context=".FramJack" />

 </LinearLayout>

 <TableLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content" >

 <TableRow

 android:id="@+id/tableRow1"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center" >

 <TextView

 android:id="@+id/tableLegend_1"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:text="@string/tableLegend_text_1"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView

 android:id="@+id/tableLegend_2"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:text="@string/tableLegend_text_2"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView

 android:id="@+id/tableLegend_3"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:text="@string/tableLegend_text_3"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </TableRow>

– 72 –

 <TableRow

 android:id="@+id/tableRow2"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center" >

 <TextView

 android:id="@+id/dataID_0"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataID_text_0"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/dataT_0"

 android:layout_width="10dp"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:ems="10"

 android:gravity="center"

 android:inputType="number"

 android:text="@string/dataT_text" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/dataR_0"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataR_text"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </TableRow>

 <TableRow

 android:id="@+id/tableRow3"

– 73 –

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center" >

 <TextView

 android:id="@+id/dataID_1"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataID_text_1"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/dataT_1"

 android:layout_width="100dp"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:ems="10"

 android:gravity="center"

 android:inputType="number"

 android:text="@string/dataT_text" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/dataR_1"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataR_text"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </TableRow>

 <TableRow

 android:id="@+id/tableRow4"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center" >

– 74 –

 <TextView

 android:id="@+id/dataID_2"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataID_text_2"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/dataT_2"

 android:layout_width="100dp"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:ems="10"

 android:gravity="center"

 android:inputType="number"

 android:text="@string/dataT_text" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/dataR_2"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataR_text"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </TableRow>

 <TableRow

 android:id="@+id/tableRow5"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center" >

 <TextView

 android:id="@+id/dataID_3"

– 75 –

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataID_text_3"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/dataT_3"

 android:layout_width="100dp"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:ems="10"

 android:gravity="center"

 android:inputType="number"

 android:text="@string/dataT_text" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/dataR_3"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataR_text"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </TableRow>

 <TableRow

 android:id="@+id/tableRow6"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center" >

 <TextView

 android:id="@+id/dataID_4"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

– 76 –

 android:gravity="center"

 android:text="@string/dataID_text_4"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/dataT_4"

 android:layout_width="100dp"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:ems="10"

 android:gravity="center"

 android:inputType="number"

 android:text="@string/dataT_text" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/dataR_4"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataR_text"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </TableRow>

 <TableRow

 android:id="@+id/tableRow7"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center" >

 <TextView

 android:id="@+id/dataID_5"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataID_text_5"

 android:textAppearance="?android:attr/textAppearanceMedium" />

– 77 –

 <EditText

 android:id="@+id/dataT_5"

 android:layout_width="100dp"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:ems="10"

 android:gravity="center"

 android:inputType="number"

 android:text="@string/dataT_text" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/dataR_5"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataR_text"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </TableRow>

 <TableRow

 android:id="@+id/tableRow8"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center" >

 <TextView

 android:id="@+id/dataID_6"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataID_text_6"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/dataT_6"

– 78 –

 android:layout_width="100dp"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:ems="10"

 android:gravity="center"

 android:inputType="number"

 android:text="@string/dataT_text" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/dataR_6"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataR_text"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </TableRow>

 <TableRow

 android:id="@+id/tableRow9"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center" >

 <TextView

 android:id="@+id/dataID_7"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataID_text_7"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/dataT_7"

 android:layout_width="100dp"

 android:layout_height="match_parent"

 android:layout_gravity="center"

– 79 –

 android:ems="10"

 android:gravity="center"

 android:inputType="number"

 android:text="@string/dataT_text" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/dataR_7"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataR_text"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </TableRow>

 <TableRow

 android:id="@+id/tableRow10"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center" >

 <TextView

 android:id="@+id/dataID_8"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataID_text_8"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText

 android:id="@+id/dataT_8"

 android:layout_width="100dp"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:ems="10"

 android:gravity="center"

 android:inputType="number"

– 80 –

 android:text="@string/dataT_text" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/dataR_8"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_gravity="center"

 android:gravity="center"

 android:text="@string/dataR_text"

 android:textAppearance="?android:attr/textAppearanceMedium" />

 </TableRow>

 <Button

 android:id="@+id/bSend"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/buttonT_text" />

 </TableLayout>

</LinearLayout>

– 81 –

Appendix H

 H. Android Code: strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">smartTPM02</string>

 <string name="action_settings">Settings</string>

 <string name="status">Status:</string>

 <string name="status_connected">Connected</string>

 <string name="status_disconnected">Disconnected</string>

 <string name="tableLegend_text_1">Data</string>

 <string name="tableLegend_text_2">Transmit</string>

 <string name="tableLegend_text_3">Receive</string>

 <string name="dataT_text">0</string>

 <string name="dataR_text">0</string>

 <string name="buttonT_text">SEND</string>

 <string name="dataID_text_0">0</string>

 <string name="dataID_text_1">1</string>

 <string name="dataID_text_2">2</string>

 <string name="dataID_text_3">3</string>

 <string name="dataID_text_4">4</string>

 <string name="dataID_text_5">5</string>

 <string name="dataID_text_6">6</string>

 <string name="dataID_text_7">7</string>

 <string name="dataID_text_8">8</string>

</resources>

– 82 –

Appendix I

 I. Andriod Code: AndriodManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="app.smartTPM"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk

 android:minSdkVersion="16"

 android:targetSdkVersion="16" />

 <uses-permission android:name="android.permission.RECORD_AUDIO"/>

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <activity

 android:name=".MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

– 83 –

Bibliography

[1] Y.S. Kuo, T. Schmid, and P. Dutta. Hijacking Power and Bandwidth from the Mobile Phone's Audio

Interface, August 2010. In International Symposium on Low Power Electronics and Design.

ISLPED'10.

[2] Y.S. Kuo, S. Verma, T. Schmid, and P. Dutta. Hijacking Power and Bandwidth from the Mobile

Phone's Audio Interface, December 2010. In First Annual Symposium on Computing for

Development. DEV'10.

[3] Robinson, A. Hijack-infinity. DOI=https://github.com/anroOfCode/hijack-infinity

[4] R. Velegalati and J.-P. Kaps. Towards a Flexible, Opensource BOard for Side-channel analysis

(FOBOS), June 2013. In Cryptographic architectures embedded in reconfigurable devices,

CRYPTARCHI 2013.

[5] R. Velegalati and J.-P. Kaps. Introducing FOBOS: Flexible Open-source BOard for Side-channel

analysis, May 2012. In Work in Progress (WiP), Third International Workshop on Constructive

Side-Channel Analysis and Secure Design, COSADE 2012

[6] T. Katashita, Y. Hori, H. Sakane, and A. Satoh, Side-channel attack standard evaluation board

SASEBO-W for smartcard testing, 2012. In Power, vol. 3, page 400.

[7] Side-Channel Attack Standard Evaluation Board (SASEBO), 2014.

DOI=http://www.risec.aist.go.jp/project/sasebo

[8] C. O’Flynn and Z. Chen. ChipWhisperer: An Open-Source Platform for Hardware Embedded

Security Research, 2014. In IACR Cryptology ePrint Archive, page 204.

– 84 –

http://www.risec.aist.go.jp/project/sasebo
https://github.com/anroOfCode/hijack-infinity

[9] J. Kim, K. Oh, D. Choi, and H. Kim. SCARF: profile-based side channel analysis resistant

framework, July 2012. In Security and Management International Conference, SAM'12.

[10] Rambus. DPA Workstation Analysis Platform. DOI=http://www.rambus.com/security/dpa-

countermeasures/dpa-workstation-platform/

[11] Riscure. InspectorSCA. DOI=https://www.riscure.com/security-tools/inspector-sca/

[12] Atmel. 32-bit Atmel AVR Microcontroller, 2012. In datasheet for AT32UC3L064.

DOI=http://www.atmel.com/Images/doc32099.pdf

[13] Atmel. Atmel AVR32924: UC3-L0 XPLAINED Hardware User’s Guide, 2013. In datasheet for

UC3-L0 XPLAINED. DOI=http://www.atmel.com/Images/Atmel-32156-UC3-L0-XPLAINED-

Hardware-Users-Guide_Application-Note_AVR32924.pdf

[14] Atmel. 32-bit AVR Microcontrollers, 2013. In datasheet for UC3L.

DOI=http://www.atmel.com/Images/doc32129.pdf

– 85 –

http://www.atmel.com/Images/doc32129.pdf
http://www.atmel.com/Images/Atmel-32156-UC3-L0-XPLAINED-Hardware-Users-Guide_Application-Note_AVR32924.pdf
http://www.atmel.com/Images/Atmel-32156-UC3-L0-XPLAINED-Hardware-Users-Guide_Application-Note_AVR32924.pdf
http://www.atmel.com/Images/doc32099.pdf
https://www.riscure.com/security-tools/inspector-sca/
http://www.rambus.com/security/dpa-countermeasures/dpa-workstation-platform/
http://www.rambus.com/security/dpa-countermeasures/dpa-workstation-platform/

	1 Introduction
	1.1 Motivation
	1.2 Thesis Outline

	2 Evaluation Platform
	2.1 Existing Side-Channel Evaluation Platforms and Tools
	2.2 µLeech Side-Channel Evaluation Platform

	3 Methodology
	3.1 Design Cycle
	3.2 Tools
	3.2.1 Android App
	3.2.2 Processor Firmware
	3.2.3 Hardware Design

	4 Power
	4.1 Power Siphoning
	4.2 Capacitor Bank
	4.3 Sleep Mode
	4.4 Processor Power Mode

	5 Data Communication
	5.1 Manchester Encoding
	5.2 Transmit
	5.3 Receive

	6 Performance
	6.1 Sleep Mode
	6.2 Active Mode
	6.3 128-bit AES

	7 Development
	7.1 Smartphone App
	7.2 Hardware
	7.2.1 Protoboarding
	7.2.2 Power Optimization
	7.2.3 Final PCB

	8 Conclusion
	8.1 Summary of Results
	8.2 Recommendations for future work

	Bibliography

