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The Altera® Nios® II is a fully functional, 32-bit load/store, Wishbone-compliant 
processor that employs RISC architecture with a streamlined set of single word 
instructions. This core reference includes an architectural description and on-chip 
debugging functionality for the Nios II processor family. 

 

 

The Nios II is a 32-bit Wishbone-compatible RISC processor, for use in FPGA designs targeting 
supported Altera families of physical FPGA devices. Altium Designer currently supports 

use of the Nios II processor with 
the following Altera FPGA device 
families: 

The processor comes in three flavors – fast, standard and economy. Although each is placed in 
an Altium Designer-based FPGA project as a Nios II, this is essentially a Wishbone-compliant 
wrapper that allows use of Altera's corresponding 'soft' Nios II processor core.  Cyclone™ 

Cyclone™ II All instructions are 32-bits wide and most execute in a single clock cycle (standard and fast 
variants only). In addition to fast register access, the Nios II features a user-definable amount of 
zero-wait state block RAM, with true dual-port access. 
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®
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®
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®

 II GX. 

Only designs targeting supported Altera FPGA devices may make use of the processor. Should 
you wish the freedom of a both a device and FPGA Vendor-independent 32-bit system hardware 
platform, use the available TSK3000A 32-bit RISC processor. 
Important Notice: Supply of these soft cores under the terms and conditions of the Altium End-
User License Agreement does not convey nor imply any patent rights to the supplied 
technologies. Users are cautioned that a valid Nios II license from Altera is required for any use 
covered by such patent rights, including the implementation of this core in an Integrated Circuit or 
any other device. You will also need a licensed install of Altera's Quartus® II software. For further 
information: 

Altium Designer currently supports 
versions 3.0 – 6.0 (inclusive) of the 
Altera Quartus II software and 
versions 5.1 – 6.0 (inclusive) of the 
Altera Nios II Embedded Design 
Suite. http://www.altera.com

Features 
• Pipelined RISC processor 

- Nios2f: 6-stage pipeline 

- Nios2s: 5-stage pipeline 

- Nios2e: 1-stage pipeline 

• Internal Harvard architecture  

• Supports on-chip block RAM and/or external memory 

• 4GByte address space (incorporating 2GByte of external address space) 

• Wishbone I/O and memory ports for simplified peripheral connection 

• Full Viper-based software development tool chain – C compiler/assembler/source-level debugger/profiler 

• C-code compatible with other Altium Designer 8-bit and 32-bit Wishbone-compliant processor cores, for easy design 
migration. 

For further information on Nios II features, refer to the following document, available from www.altera.com/literature/lit-nio2.jsp: 

• Nios II Processor Reference Handbook 
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Available Devices 
Three variants of the Nios II processor core are available: 
• Nios2f – "fast" variant, optimal for performance-critical applications and applications with large amounts of code and/or data 

(e.g. a system running a full-featured operating system). This variant has separate instruction and data caches. It provides 
the highest performance but is much larger in size. 

• Nios2s – "standard" variant, optimal for cost-sensitive, medium-performance applications, including those with large 
amounts of code and/or data. This variant has an instruction cache, but no data cache. It provides a smaller-sized core, 
without sacrificing too much in the way of performance. 

• Nios2e – "economy" variant, optimal for cost-sensitive applications, such as those found in the automotive and consumer 
industries. This variant has no instruction or data cache. It is around half the size of the Nios2s, but this comes at the 
expense of execution performance. 

All devices can be found in the FPGA Processors integrated library (FPGA Processors.IntLib), located in the 
\Library\Fpga folder of the installation. 

For further information on these various core variants, including detailed feature comparison and differences, refer to the 
Nios II Core Implementation Details section of the Nios II Processor Reference Handbook. Feature information can also be 
obtained from the Nios II Processor Cores page of the Altera website. 

RISC Processor Background 
RISC, or Reduced Instruction Set Computer, is a term that is conventionally used to describe a type of microprocessor 
architecture that employs a small but highly-optimized set of instructions, rather than the large set of more specialized 
instructions often found in other types of architectures. This other type of processor is traditionally referred to as CISC, or 
Complex Instruction Set Computer. 

History 
The early RISC processors came from research projects at Stanford and Berkeley universities in the late 1970s and early 1980s. 
These processors were designed with a similar philosophy, which has become known as RISC. The basic design architecture of 
all RISC processors has generally followed the characteristics that came from these early research projects and which can be 
summarized as follows: 
• One instruction per clock cycle execution time: RISC processors have a CPI (clock per instruction) of one cycle. This is 

due to the optimization of each instruction on the CPU and a technique called pipelining. This technique allows each 
instruction to be processed in a set number of stages. This in turn allows for the simultaneous execution of a number of 
different instructions, each instruction being at a different stage in the pipeline. 

• Load/Store machine with a large number of internal registers: The RISC design philosophy typically uses a large 
number (commonly 32) of registers. Most instructions operate on these registers, with access to memory made using a very 
limited set of Load and Store instructions. This limits the need for continuous access to slow memory for loading and storing 
data. 

• Separate Data Memory and Instruction Memory access paths: Different stages of the pipeline perform simultaneous 
accesses to memory. This Harvard style of architecture can either be used with two completely different memory spaces, a 
single dual-port memory space or, more commonly, a single memory space with separate data and instruction caches for 
the two pipeline stages. 

Over the last 20-25 years, RISC processors have been steadily improved and optimized. In one sense, the original simplicity of 
the RISC architecture has been lost – replaced by super-scalar, multiple-pipelined hardware, often running in the gigahertz 
range. 

“Soft” FPGA Processors 
With the advent of low-cost, high-capacity programmable logic devices, there has been something of a resurgence in the use of 
processors with simple RISC architectures. Register-rich FPGAs, with their synchronous design requirements, have found the 
ideal match when paired with these simple pipelined processors. 

As a result, most 32-bit FPGA soft processors are adopting this approach. They could even be considered as “Retro-
processors”. 
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Why use “Soft” Processors? 
There are a number of benefits to be gained from using soft processors on reconfigurable hardware. The following sections 
explore some of the more significant of these benefits in more detail. 

Field Reconfigurable Hardware 
For certain specific applications, the ability to change the design once it is in the field can be a significant competitive advantage. 
Applications in general can benefit from this ability also. It allows commitment to shipping early in the development cycle. It also 
allows field testing to be used to help drive the latter part of the design cycle without requiring new “board-spins” based on the 
outcome. This is very similar to the way in which alpha, beta, pre-release and release cycles currently drive the closure of 
software products. 

The ability to update embedded software in a device in the field has long been an advantage enjoyed by designers of 
embedded systems. With FPGAs, this has now become a reality for the hardware side of the design. For end-users, this 
translates as “Field Upgradeable Hardware”. 

Faster Time to Market 
FPGAs offer the fastest time to market due to their programmable nature. Design problems, or feature changes, can be made 
quickly and simply by changing the FPGA design – with no changes in the board-level design. 

Improving and Extending Product Life-Cycles 
Fast time to market is usually synonymous with a weaker feature set – a traditional trade-off. With FPGA-based system designs 
you can have the best of both worlds. You can get your product to market quickly with a limited feature set, then follow-up with 
more extensive features over time, upgrading the product while it is already in the field. 

This not only extends product life-cycles but also lowers the risk of entry, allowing new protocols to be added dynamically and 
hardware bugs to be fixed without product RMA. 

Creating Application-Specific Coprocessors 
Algorithms can easily be moved between hardware and software implementations. This allows the design to be initially 
implemented in software, later off-loading intensive tasks into dedicated hardware, in order to meet performance objectives. 
Again, this can happen even after commitment to the board-level design. 

Implementing Multiple Processors within a Single Device 
Extra processors can be added within a single FPGA device, simply by modifying the design with which the device is 
programmed. Once again, this can be achieved after the board-level design has been finalized and a commitment to production 
made. 

Lowering System Cost 
Processors, peripherals, memory and I/O interfaces can be integrated into a single FPGA device, greatly reducing system 
complexity and cost. Once the FPGA-based embedded application moves to 32-bit, cost becomes an even more powerful driver. 

As large FPGAs become cheaper, both Hybrids and soft cores move into the same general cost area as dedicated processors. 
At the heart of this argument is also the idea that once you have paid for the FPGA, any extra IP that you place in the device is 
free functionality. 

Avoiding Processor Obsolescence 
As products mature, processor supply may become an increasing problem, particularly where the processor is one of many 
variants supplied by the semiconductor vendor. Switching to a new processor usually requires design software changes or 
logical hardware changes. 

With FPGA implementations, the design can be easily moved to a different device with little or no change to the hardware logic 
and probably no change to the application software. Peripherals are created dynamically in the hardware, so lack of availability 
of specific processor variants is never a problem. 

The Nios II 
The Nios II is a 32-bit RISC machine that follows the classic RISC architecture previously described. It is a load/store machine 
with 32 general purpose registers. 

All instructions are 32-bits wide. In the "standard" (Nios2s) and "fast" (Nios2f) variants of the core, most instructions execute in a 
single clock cycle. In the "economy" variant (Nios2e), instructions execute in six clock cycles. 
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In addition to fast register access the Nios II, relying on the commonly available fast block RAM in Altera FPGA devices, also 
features a user-definable amount of zero-wait state block RAM, with true dual-port access. 

Wishbone Bus Interfaces 
The Nios II uses the Wishbone bus standard. This standard is formally described as a “System-on-Chip Interconnection 
Architecture for Portable IP Cores”. The current standard is the Revision B.3 Specification, a copy of which is included as part of 
the software installation and can be found by navigating to the Documentation Library » Designing with FPGAs 
section of the Knowledge Center panel. 

The Wishbone standard is not copyrighted and resides in the public domain. It may be freely copied and distributed by any 
means. Furthermore, it may be used for the design and production of integrated circuit components without royalties or other 
financial obligations. 

Wishbone OpenBUS Processor Wrappers 
To normalize access to hardware and peripherals, each of the 32-bit processors supported in Altium Designer has a Wishbone 
OpenBUS-based FPGA core that 'wraps' around the processor. This enables peripherals defined in the FPGA to be used 
transparently with any type of processor. An FPGA OpenBUS wrapper around discrete, hard-wired peripherals also allows them 
to be moved seamlessly between processors. 

The OpenBUS wrappers can be implemented in any FPGA and allow the designer to implement FPGA-based portable cores, 
taking advantage of the device driver system in Altium Designer for both FPGA-based soft-core peripherals as well as 
connections to off-chip discrete peripherals and memory devices. 

Processor Abstraction System 
Use of OpenBUS wrappers creates a plug-in processor abstraction system that normalizes the interface to interrupt systems 
and other hardware specific elements. The system provides an identical interface to the processor's interrupt system, whether 
soft or hard-vectored. This allows different processors to be used transparently with identical source code bases. 

Design Migration 
With each 32-bit processor encased in a Wishbone OpenBUS wrapper, an embedded software design can be seamlessly 
moved between soft-core processors, hybrid hard-core processors and discrete processors. 

The Wishbone OpenBUS wrapper around the Altera Nios II processor makes it architecturally similar to the other 32-bit  
processors included with Altium Designer, both in terms of its memory map and its pinout. This allows for easy migration from 
the Nios II to any of the following devices: 
• TSK3000A – 32-bit RISC processor, device and vendor-independent. 

• PPC405A – 'hard' PowerPC® 32-bit RISC processor immersed on the Xilinx® Virtex®-II Pro. 

• MicroBlaze™ – 32-bit RISC processor targeted to Xilinx FPGA platforms. 

• PPC405CR – AMCC® PowerPC 32-bit RISC Microprocessor. 

• ARM®720T_LH79520 – Sharp Bluestreak® LH79520 with built-in ARM720T (32-bit RISC microprocessor). 

Altium Designer also features Wishbone-compliant versions of its TSK52x 8-bit processor. These Wishbone variants, along with 
true C-code compatibility between these and the Nios II, allow designs to be easily moved between the 8- and 32-bit worlds. 

For further information on the TSK3000A, refer to the TSK3000A 32-bit RISC Processor core reference. 

For further information on the PPC405A, refer to the PPC405A 32-bit RISC Processor core reference. 

For further information on the MicroBlaze, refer to the MicroBlaze 32-bit RISC Processor core reference. 

For further information on the TSK52x, refer to the TSK52x MCU core reference. 
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Architectural Overview 

Symbols 

 

  

Figure 1. Nios II symbols – Nios2f, Nios2s and Nios2e. 

Pin Description 
The pinout of the Nios II has not been fixed to any specific device I/O - allowing flexibility with user application. The Nios II 
contains only unidirectional pins (inputs or outputs). 

Table 1. Nios II pin description 

Name Type Polarity/Bus size Description 

Control Signals 

CLK_I I Rise External (system) clock 

RST_I I High External (system) reset 

Interrupt Signals 

INT_I I 32 Interrupt inputs. Note: The wrapper's interrupt signals are 
connected internally to the 32 Interrupt ports provided by the Nios II 
core. 
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Name Type Polarity/Bus size Description 

Wishbone External Memory Interface Signals 

ME_STB_O O High Strobe signal. When asserted, indicates the start of a valid 
Wishbone data transfer cycle 

ME_CYC_O O High Cycle signal. When asserted, indicates the start of a valid 
Wishbone bus cycle. This signal remains asserted until the end of 
the bus cycle, where such a cycle can include multiple data 
transfers 

ME_ACK_I I High Standard Wishbone device acknowledgement signal. When this 
signal goes High, an external Wishbone slave memory device has 
finished execution of the requested action and the current bus cycle 
is terminated 

ME_ADR_O O 32 Standard Wishbone address bus, used to select an address in a 
connected Wishbone slave memory device for writing to/reading 
from 

ME_DAT_I I 32 Data received from an external Wishbone slave memory device 

ME_DAT_O O 32 Data to be sent to an external Wishbone slave memory device 

ME_SEL_O O 4 Select output, used to determine where data is placed on the 
ME_DAT_O line during a Write cycle and from where on the 
ME_DAT_I line data is accessed during a Read cycle. Each of the 
data ports is 32-bits wide with 8-bit granularity, meaning data 
transfers can be 8-, 16- or 32-bit. The four select bits allow 
targeting of each of the four active bytes of a port, with bit 0 
corresponding to the low byte (7..0) and bit 3 corresponding to the 
high byte (31..24) 

ME_WE_O O Level Write enable signal. Used to indicate whether the current local bus 
cycle is a Read or Write cycle. 

0 = Read 
1 = Write 

ME_CLK_O O Rise External (system) clock signal (identical to CLK_I), made available 
for connecting to the CLK_I input of a slave memory device. 
Though not part of the standard Wishbone interface, this signal is 
provided for convenience when wiring your design 

ME_RST_O O High Reset signal made available for connection to the RST_I input of a 
slave memory device. This signal goes High when an external reset 
is issued to the processor on its RST_I pin. When this signal goes 
Low, the reset cycle has completed and the processor is active 
again. Though not part of the standard Wishbone interface, this 
signal is provided for convenience when wiring your design 

Wishbone Peripheral I/O Interface Signals 

IO_STB_O O High Strobe signal. When asserted, indicates the start of a valid 
Wishbone data transfer cycle 

IO_CYC_O O High Cycle signal. When asserted, indicates the start of a valid 
Wishbone bus cycle. This signal remains asserted until the end of 
the bus cycle, where such a cycle can include multiple data 
transfers 

IO_ACK_I I High Standard Wishbone device acknowledgement signal. When this 
signal goes High, an external Wishbone slave peripheral device 
has finished execution of the requested action and the current bus 
cycle is terminated 

IO_ADR_O O 24 Standard Wishbone address bus, used to select an internal register 
of a connected Wishbone slave peripheral device for writing 
to/reading from 

IO_DAT_I I 32 Data received from an external Wishbone slave peripheral device 

IO_DAT_O O 32 Data to be sent to an external Wishbone slave peripheral device 
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Name Type Polarity/Bus size Description 

IO_SEL_O O 4 Select output, used to determine where data is placed on the 
IO_DAT_O line during a Write cycle and from where on the 
IO_DAT_I line data is accessed during a Read cycle. Each of the 
data ports is 32-bits wide with 8-bit granularity, meaning data 
transfers can be 8-, 16- or 32-bit. The four select bits allow 
targeting of each of the four active bytes of a port, with bit 0 
corresponding to the low byte (7..0) and bit 3 corresponding to the 
high byte (31..24) 

IO_WE_O O Level Write enable signal. Used to indicate whether the current local bus 
cycle is a Read or Write cycle. 

0 = Read 
1 = Write 

IO_CLK_O O Rise External (system) clock signal (identical to CLK_I), made available 
for connecting to the CLK_I input of a slave peripheral device. 
Though not part of the standard Wishbone interface, this signal is 
provided for convenience when wiring your design 

IO_RST_O O High Reset signal made available for connection to the RST_I input of a 
slave peripheral device. This signal goes High when an external 
reset is issued to the processor on its RST_I pin. When this signal 
goes Low, the reset cycle has completed and the processor is 
active again. Though not part of the standard Wishbone interface, 
this signal is provided for convenience when wiring your design 

Configuring the Processor from the Schematic Design 
The architecture of the Nios II can be configured after placement on the schematic sheet. Simply right-click and choose the 
command to configure the processor from the pop-up menu that appears (e.g. Configure U_MCU1 (Nios2) for a processor with 
designator U_MCU1). Alternatively, click on the Configure button, available in the Component Properties dialog for the 
processor. 

The Configure (32-bit Processors) dialog will appear as shown in Figure 2. 

 

Figure 2. Options to configure the architecture of the Nios II 

The drop-down field at the top-right of the dialog enables you to choose the type of processor you want to work with. As the 
pinouts between the 32-bit processors are essentially the same, you can easily change the processor used in your design 
without having to extensively rewire the external interfaces. 
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As you select the processor type, the Configure (32-bit Processors) dialog will change accordingly to reflect the architectural 
options available. The symbol on the schematic will also change to reflect the type of processor and configuration options 
chosen. 

The following sections explore each of the regions in the dialog, providing configurable options specific to the Nios II processor. 

Internal Processor Memory 
This region of the dialog allows you to define the size of the internal memory for the processor. This memory, also referred to as 
‘Low’ or ‘Boot’ memory is implemented using true dual port FPGA Block RAM and will contain the boot part of a software 
application and the interrupt and exception handlers. 

Speed-critical (or latency-sensitive) parts of an application should also be placed in this memory space. 

The following memory sizes are available to choose from: 
• 1KB (256 x 32-bit Words) 

• 2KB (512 x 32-bit Words) 

• 4KB (1K x 32-bit Words) 

• 8KB (2K x 32-bit Words) 

• 16KB (4K x 32-bit Words) 

• 32KB (8K x 32-bit Words) 

• 64KB (16K x 32-bit Words) 

• 128KB (32K x 32-bit Words) 

Figure 3. Current configuration settings for the 
processor. 

• 256KB (64K x 32-bit Words) 

• 512KB (128K x 32-bit Words) 

• 1MB (256K x 32-bit Words) 

Your configuration choice will be reflected in the Current Configuration region 
of the processor’s schematic symbol (Figure 3). 

Multiply/Divide Unit (MDU) 
This region of the dialog allows you to define whether the processor should incorporate an MDU or not. Either choose to include 
an MDU in the architecture by selecting the Hardware MDU option, or leave the MDU out of the architecture by choosing No 
MDU Hardware. 

With MDU included in the architecture, the multiply (MULT, MULTU) and divide (DIV, DIVU) hardware instructions will be 
available. On Stratix and Stratix II families, extra multiply instructions (MULXSS, MULXSU, MULXUU) will also be available. 
Without the Multiply/Divide Unit, these instructions will be emulated in software by the C Compiler. 
Your configuration choice will be reflected in the Current Configuration region of the processor’s schematic symbol (Figure 3). 

On-Chip Debug System 
This region of the dialog allows you to add an On-Chip Debug System (OCDS) unit to the processor's architecture, allowing you 
to: 
• Control the processor from its associated instrument panel, which can be added to the Instrument Rack – Soft Devices 

panel. 

• Interrogate and modify memory and register values in real-time. 

• Perform source-level debugging of the embedded software application running on the processor. 
Simply ensure that the option is set to Include JTAG-Based On-Chip Debug System. 

For further information with respect to real-time debugging of the processor, refer to the On-Chip Debugging section of this 
reference. 

By specifying No On-Chip Debug System for the processor, the above capabilities will be removed, but the processor will 
naturally consume less FPGA resources. 
Your configuration choice will be reflected in the Current Configuration region of the processor’s schematic symbol (Figure 3). 

Breakpoints on Reset 
This region of the dialog allows you to specify whether debugging of the processor from a Hard Reset is enabled or not. If you 
choose the option to Enable Breakpoints on Hard Reset, then the processor will stop upon encountering a breakpoint 
immediately after an external reset is received on its RST_I input pin. 
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Memory & I/O Management 
The Nios II uses 32-bit address buses providing a 4GByte linear address space. All memory access is in 32-bit words, which 
creates a physical address bus of 30-bits. 

The processor's address space is broken into four main areas (three usable and one reserved), as illustrated in Figure 4 and 
described in the section – Division of Memory Space. 

Before detailing the nature of each of these memory regions, it is 
worthwhile discussing the difficulties with mapping devices into this 
memory, and the solution that Altium Designer brings to the problem. 

0000_0000h

00FF_FFFFh
0100_0000h

FEFF_FFFFh

FFFF_FFFFh

FF00_0000h
Peripheral I/O 

 

External Memory 

Internal Memory 

Figure 4. Memory organization in the Nios II 

 
 

RESERVED

8000_0000h
7FFF_FFFFh

Defining the Memory Map 
An area that can be difficult to manage in an embedded software 
development project is the mapping of memory and peripherals into the 
processor’s address space.  

The memory map, as it is often called, is essentially the bridge between 
the hardware and software projects – the hardware team allocating each 
of the various memory and peripheral devices their own chunk of the 
processor’s address space, the software team then writing their code to 
access the memory and peripherals at the given locations. 

To help manage the process of allocating devices into the space there are 
a number of features available to both the hardware designer and the 
embedded software developer in Altium Designer.  

This discussion is based around the Nios II processor, however the overall 
approach can be applied to any of the 32-bit processors available in 
Altium Designer. 

Building the Bridge between the Hardware and Software 
Defining the memory map on the hardware (FPGA project) side is 
essentially a 3 stage process: 

- Place the peripheral or memory 

- Define its addressing requirements (this is most easily done using a Wishbone Interconnect device) 

- Bring that definition into the processor’s configuration, which can then be accessed by the embedded tools 

Figure 5 shows an example of the addressable memory and IO space for the Nios II, with a number of memory and peripheral 
devices mapped into it. 
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Figure 5. The Nios II’s 232 addressable space (left) and the current set of memory and peripheral devices that have been mapped into it (right) 
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The adjacent flow chart shows the process that was followed to build this memory map in the FPGA 
project. This flow chart is only a guide, during the course of development it is likely that you will 
jump back and forth through this process as you build up the design. 

Place Processor

Place Wishbone
Interconnect

Configure Processor
to see Peripherals
(import settings from WB

intercon)

Peripheral memory
map ready for

embedded project
(repeat process for

memory)

              (peripheral n)
               (peripheral 2)

Place peripheral
component on

schematic
                (peripheral 1)

    (Add and Setup Pn)

  
(Add and Setup P2)

Configure
Wishbone

Interconnect
      (Add and Setup P1)

 
The flow of connecting and 
mapping the peripherals (or 
memory) to the processor 

Dedicated System Interconnect Components 
This process of being able to quickly build up the design and resolve the processor to memory & 
peripheral interface is possible because of specialized interconnection components, including the 
Wishbone Interconnect, the Wishbone Dual Master and the Wishbone Multi-Master.  
These three components solve the common system interconnect issues that face the designer, 
these being:  

- Interfacing multiple peripheral and memory blocks to a processor (handled by the Wishbone 
Interconnect component) 

- Allowing two or more system components, that must each be able to control the bus, to 
share access to a common resource (provided by the Wishbone Dual Master or Wishbone 
Multi-Master components).  

Use of the Wishbone Interconnection Architecture for all parts of the system that connect to the 
processor contributes to the system’s ‘building block’ behavior. The Wishbone standard resolves 
data exchange between system components – supporting popular data transfer bus protocols, while 
defining clocking, handshaking and decoding requirements (amongst others). 

With the lower-level physical interface requirements being resolved by the Wishbone interface, the 
other challenge is the structural aspects of the system – defining where components sit in the 
address space, providing address decoding, and allocating and interfacing interrupts to the 
processor. 

For more information on the Wishbone Interconnect component, refer to the WB_INTERCON 
Configurable Wishbone Interconnect core reference. 

For more information on the Wishbone Dual Master component, refer to the WB_DUALMASTER 
Configurable Wishbone Dual Master core reference. 

For more information on the Wishbone Multi-Master component, refer to the 
WB_MULTIMASTER Configurable Wishbone Multi-Master core reference. 

Configuring the Processor 
Each configurable component has its own configuration dialog, including the different processors. 
The processor has separate commands and dialogs to configure memory and peripherals, but it 
does support mapping peripherals into memory space (and the memory into peripheral space), if 
required.  
An important feature to point out is the Import from Schematic button in the processor’s Configure 
dialogs, clicking this will read in the settings from the Interconnects attached to the processor. This 
lets you quickly build the memory map, as shown in the figure earlier. You now have the memory 
map defined in the hardware, this data is stored with the processor component. 

The processor’s Configure dialogs include options to generate assembler and C hardware description files that can be included 
in your embedded project, simplifying the task of declaring peripheral and memory structures in your embedded code. You can 
also ‘pull’ the memory map configurations directly into the embedded project by enabling the Automatically import when 
compiling FPGA project option in the Configure Memory tab of the Options for Embedded Project dialog. 

For more information on mapping physical memory devices and I/O peripherals into the processor's address space, refer to 
the application note Allocating Address Space in a 32-bit Processor. 

Division of Memory Space 
As illustrated previously (Figure 4), the Nios II's 4GB address space is divided into four distinct areas (or ranges). These areas 
are detailed in the following sections. 

Internal Memory 
The internal "Low" or "Boot" RAM is contained within the processor core and is built using true dual-port FPGA block RAM 
memory. As such, it can be read or written on both sides, simultaneously, in a single cycle. 
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This memory still has the standard limitation of load delay slots, because the load from memory happens further down the 
pipeline, after the Execute stage. As a result, any operation that requires loaded data in the cycle immediately after the load will 
cause the processor to insert a load stall, holding the first half of the pipeline for one cycle while the data becomes available. 

Other than this single limitation, the RAM block is as fast as the internal processor registers themselves. 

The size of the RAM can vary between 1KB and 16MB, dependent on the availability of embedded block RAM in the target 
FPGA device used. Memory size is configured in the Internal Processor Memory region of the Configure (32-bit Processors) 
dialog (see the Internal Processor Memory section). 

Covering the processor's address space between 0000_0000h and 00FF_FFFFh, it will contain the reset and interrupt vectors, 
as well as any speed or latency-sensitive code or data. 

External Memory 
The processor's Wishbone External Memory Interface is used by both the instruction and data sides of the processor and 
provides access to the majority of the address space of the processor. It covers the address space between 0100_0000h and 
8000_0000h – 1. 

External Memory Interface Time-out 
A simple time-out mechanism for the interface handles the case when attempting to access an address that does not exist, or if 
the addressed target slave device is not operating correctly. This mechanism ensures that the processor will not be ‘locked’ 
indefinitely, waiting for an acknowledgement on its ME_ACK_I input. 

After the ME_STB_O output is taken High a timer built-in to Altium Designer's Nios II wrapper is started and the actual Nios II 
processor, which normally times out after 16 cycles, is requested to wait. If, after 4096 cycles of the external clock signal 
(CLK_I), an acknowledge signal fails to appear from the addressed slave memory device, the wait request to the Nios II is 
dropped, the processor times out normally and the current data transfer cycle is forcibly terminated. 

The ACK_O signal from a slave device should not be used as a ‘long delay’ hand-shaking mechanism. Where such a 
mechanism needs to be implemented, either use polling or interrupts. 

Reserved Memory Space 
The address space between 0800_0000h and FEFF_FFFFh is reserved. 

Peripheral I/O 
The processor's Wishbone Peripheral I/O Interface is a one-way Wishbone Master, handling I/O in a very similar way to external 
memory. The port can be used to communicate with any Wishbone Slave peripheral device and covers the address space 
between FF00_0000h and FFFF_FFFFh. This address space of 16MB allows a physical address bus size of 24 bits. 

Peripheral I/O Interface Time-out 
A simple time-out mechanism for the interface handles the case when attempting to access an address that does not exist, or if 
the addressed target slave device is not operating correctly. This mechanism ensures that the processor will not be ‘locked’ 
indefinitely, waiting for an acknowledgement on its IO_ACK_I input. 

After the IO_STB_O output is taken High a timer built-in to Altium Designer's Nios II wrapper is started and the actual Nios II 
processor, which normally times out after 16 cycles, is requested to wait. If, after 4096 cycles of the external clock signal 
(CLK_I), an acknowledge signal fails to appear from the addressed slave peripheral device, the wait request to the Nios II is 
dropped, the processor times out normally and the current data transfer cycle is forcibly terminated. 

The ACK_O signal from a slave peripheral should not be used as a ‘long delay’ hand-shaking mechanism. Where such a 
mechanism needs to be implemented, either use polling or interrupts. 

For more information on connection of slave physical memory and peripheral I/O devices to the processor's Wishbone 
interfaces, refer to the application note Connecting Memory and Peripheral Devices to a 32-bit Processor. 

Data Organization 
Data organization refers to the ordering of the data during transfers. There are two general types of ordering: 
• BIG ENDIAN – the most significant portion of an operand is stored at the lower address 

• LITTLE ENDIAN – the most significant portion of an operand is stored at the higher address. 

The Nios II uses LITTLE ENDIAN. 
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Words, Half-Words and Bytes 
The Nios II operates on the following data sizes: 

• 32-bit words 

• 16-bit half-words 

• 8-bit bytes. 

There are dedicated load and store instructions for these three data types. 

Figure 6 shows how these different sizes of data are organized relative to each other over an 8-byte memory range in the Nios II. 

Word-0 Word-1 

31              24 23              16 15             8 7               0 31              24 23              16 15             8 7               0 

        
Half-0 Half-1 Half-2 Half-3 

15                8 7                  0 15             8 7               0 15                8 7                  0 15             8 7               0 

        
Byte-0 Byte-1 Byte-2 Byte-3 Byte-4 Byte-5 Byte-6 Byte-7 

7                  0 7                  0 7               0 7               0 7                  0 7                  0 7               0 7               0 

Figure 6. Organization of data types for the Nios II (Little Endian). 

Physical Interface to Memory and Peripherals 
The Nios II's physical interface to the outside world is always 32 bits wide. Since the addressing has a byte-level resolution, this 
means that up to four "packets" of data (bytes) can be loaded or stored during a single memory access. To accommodate this 
requirement all memory accesses (8-bit, 16-bit and 32-bit) are handled in a specific way. 

Each 32-bit read and write can be considered as a read or write through four "byte-lanes". These byte-lanes are marked as valid 
by the corresponding bits in the SEL_O[3..0] signal of the relevant Wishbone interface (External Memory or Peripheral I/O). 
Each of these bits will be High if the byte data in that lane is valid. This allows a single byte to be written to 32-bit wide memory 
without needing to use a slower read-modify-write cycle. 

The instructions of the Nios II require that all 32-bit load/store operations be aligned on 4-byte boundaries and all 16-bit 
load/store operations be aligned on 2-byte boundaries. Byte operations (8-bit) can be to any address. 

To complete a byte load or store, the Nios II will position the byte data in the correct byte-lane and set the SEL_O signal for that 
lane High. The memory hardware must then only enable writing on the relevant 8-bits of data from the 32-bit word. 

When reading, the Nios II will put the relevant 8- or 16-bit value into the LSB's of the 32-bit word. What happens with the 
remaining bits depends on the operation: 

• for an unsigned read, the processor will pad-out the remaining 24 or 16 bits respectively with zeroes 

• for a byte load/store, the processor will sign-extend from bit 8 

• for a half-word load/store, the processor will sign-extend from bit 16. 

Peripheral I/O 
For memory I/O the process described happens transparently, because memory devices are always seen by the processor as 
32 bits wide. Even when connecting to small 8- or 16-bit physical memories, the interfacing Memory Controller device will, as far 
as the processor is concerned, make the memory look like it is 32 bits wide. 

For peripheral devices, the process is not so simple. 32-bit wide peripheral devices behave like memory devices, although they 
may or may not support individual byte-lanes. These devices should therefore be accessed using the 32-bit LW and SW 
instructions. For C-code, this means declaring the interface to the device as 32 bits wide, for example: 
#define Port32 (*(volatile unsigned int*) Port32_Address) 

This will result in the software using LW and SW instructions to access the device. 

If the 32-bit peripheral does support byte-lanes (i.e. it has a SEL_I[3..0] input), then smaller accesses can be performed using 
the 8-bit LBU and SB or 16-bit LHU and SH instructions. 

For smaller devices, there needs to be translation of the 8- or 16-bit values into the relevant byte-lanes in the processor. This is 
automatically handled by the Wishbone Interconnect device if it is used to access slave peripheral I/O devices. There is, 
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however, some hardware penalty for this since it requires an extra 4:1 8-bit multiplexer for 8-bit devices or a 2:1 16-bit 
multiplexer for 16-bit devices. 

16-bit peripheral devices should be accessed using the 16-bit LHU and SH instructions. For C-code, this means declaring the 
interface to the device as 16 bits wide, for example: 
#define Port16 (*(volatile unsigned short*) Port16_Address)

This will result in the software using LHU and SH instructions to access the device. 

8-bit peripheral devices should be accessed using the 8-bit LBU and SB instructions. For C-code, this means declaring the 
interface to the device as 8 bits wide, for example: 
#define Port8 (*(volatile unsigned char*) Port8_Address)

This will result in the software using LBU and SB instructions to access the device. 

There are some trade-offs that may need to be considered when deciding whether to use 8-, 16- or 32-bit wide devices. It may 
require significantly less hardware to implement a single 32-bit wide I/O port than it would to implement four separate 8-bit ports. 
If however, the natural format of the data packets is 8-bits and hardware size is not a constraint, then it may be better to use 8-
bit ports since there will be no need to use software to break up a 32-bit value into smaller components. 

If you are only accessing 8-bits at any one time, then software may also execute faster when using 8-bit wide peripherals, since 
there is need for extra instructions to extract the 8-bit values from the 32-bit values. 

Hardware Description 
For detailed information about the hardware and functionality of the Nios II processor, including internal registers, block 
diagrams and interrupt handling, refer to the following reference guide, available from the Altera website: 

• Nios II Processor Reference Handbook 

Wishbone Communications 
The following sections detail the standard handshaking that takes place when the processor communicates to a slave peripheral 
or memory device connected to the relevant Wishbone interface port. Both of the Nios II's Wishbone ports can be configured for 
8-, 16- or 32-bit data transfer, depending on the width of the data bus supported by the connected slave device. Configuration is 
achieved using the relevant IO_SEL_O or ME_SEL_O output, which defines where on the corresponding DAT_O and DAT_I 
lines the data appears when writing and reading respectively.  

Writing to a Slave Wishbone Peripheral Device 
Data is written from the host processor (Wishbone Master) to a Wishbone-compliant peripheral device (Wishbone Slave) in 
accordance with the standard Wishbone data transfer handshaking protocol. This data transfer cycle can be summarized as 
follows: 

• The host presents an address on its IO_ADR_O output for the register it wants to write to and valid data on its IO_DAT_O 
output. It then asserts its IO_WE_O output to specify a Write cycle 

• The host defines where the data will be sent on the IO_DAT_O line using its IO_SEL_O signal 

• The slave device receives the address at its ADR_I input and prepares to receive the data 

• The host asserts its IO_STB_O and IO_CYC_O outputs, indicating that the transfer is to begin. The slave device, monitoring 
its STB_I and CYC_I inputs, reacts to this assertion by latching the data appearing at its DAT_I input into the requested 
register and asserting its ACK_O signal – to indicate to the host that the data has been received 

• The host, monitoring its IO_ACK_I input, responds by negating the IO_STB_O and IO_CYC_O signals. At the same time, 
the slave device negates the ACK_O signal and the data transfer cycle is naturally terminated. 
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Reading from a Slave Wishbone Peripheral Device 
Data is read by the host processor (Wishbone Master) from a Wishbone-compliant peripheral device (Wishbone Slave) in 
accordance with the standard Wishbone data transfer handshaking protocol. This data transfer cycle can be summarized as 
follows: 

• The host presents an address on its IO_ADR_O output for the register it wishes to read. It then negates its IO_WE_O output 
to specify a Read cycle 

• The host defines where it expects the data to appear on its IO_DAT_I line using its IO_SEL_O signal 

• The slave device receives the address at its ADR_I input and prepares to transmit the data from the selected register 

• The host asserts its IO_STB_O and IO_CYC_O outputs, indicating that the transfer is to begin. The slave device, monitoring 
its STB_I and CYC_I inputs, reacts to this assertion by presenting the valid data from the requested register at its DAT_O 
output and asserting its ACK_O signal – to indicate to the host that valid data is present 

• The host, monitoring its IO_ACK_I input, responds by latching the data appearing at its IO_DAT_I input and negating the 
IO_STB_O and IO_CYC_O signals. At the same time, the slave device negates the ACK_O signal and the data transfer 
cycle is naturally terminated. 

Writing to a Slave Wishbone Memory Device 
Data is written from the host processor (Wishbone Master) to a Wishbone-compliant memory device or memory controller 
(Wishbone Slave) in accordance with the standard Wishbone data transfer handshaking protocol. This data transfer cycle can 
be summarized as follows: 

• The host presents an address on its ME_ADR_O output for the address in memory that it wants to write to and valid data on 
its ME_DAT_O output. It then asserts its ME_WE_O output to specify a Write cycle 

• The host defines where the data will be sent on the ME_DAT_O line using its ME_SEL_O signal 

• The slave device receives the address at its ADR_I input and prepares to receive the data 

• The host asserts its ME_STB_O and ME_CYC_O outputs, indicating that the transfer is to begin. The slave device, 
monitoring its STB_I and CYC_I inputs, reacts to this assertion by storing the data appearing at its DAT_I input at the 
requested address and asserting its ACK_O signal – to indicate to the host that the data has been received 

• The host, monitoring its ME_ACK_I input, responds by negating the ME_STB_O and ME_CYC_O signals. At the same time, 
the slave device negates the ACK_O signal and the data transfer cycle is naturally terminated. 

Reading from a Slave Wishbone Memory Device 
Data is read by the host processor (Wishbone Master) from a Wishbone-compliant memory device or memory controller 
(Wishbone Slave) in accordance with the standard Wishbone data transfer handshaking protocol. This data transfer cycle can 
be summarized as follows: 

• The host presents an address on its ME_ADR_O output for the address in memory that it wishes to read. It then negates its 
ME_WE_O output to specify a Read cycle 

• The host defines where it expects the data to appear on its ME_DAT_I line using its ME_SEL_O signal 

• The slave device receives the address at its ADR_I input and prepares to transmit the data from the selected memory 
location 

• The host asserts its ME_STB_O and ME_CYC_O outputs, indicating that the transfer is to begin. The slave device, 
monitoring its STB_I and CYC_I inputs, reacts to this assertion by presenting the valid data from the requested memory 
location at its DAT_O output and asserting its ACK_O signal – to indicate to the host that valid data is present 

• The host, monitoring its ME_ACK_I input, responds by latching the data appearing at its ME_DAT_I input and negating the 
ME_STB_O and ME_CYC_O signals. At the same time, the slave device negates the ACK_O signal and the data transfer 
cycle is naturally terminated. 

Wishbone Timing 
Figure 7 shows the signal timing for a standard single Wishbone Write Cycle (left) and Read Cycle (right), respectively. The 
timing diagrams are presented assuming point-to-point connection of the Master and Slave interfaces, with only signals on the 
Master side of the interface shown. Note that cycle speed can be throttled by the Slave device inserting wait states (represented 
as WSS on the diagrams) before asserting its acknowledgement line (ACK_I input at the Master side). 
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Figure 7. Timing diagrams for single Wishbone Write (left) and Read (right) cycles 
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On-Chip Debugging 
To facilitate real-time debugging of the processor, the Nios II can be configured to include JTAG-based On-Chip Debug System 
(OCDS) hardware. To add this functionality, simply choose the Include JTAG-Based On-Chip Debug System option, in 
the On-Chip Debug System region of the associated Configure (32-bit Processors) dialog (Figure 8). 

 

Figure 8. Enabling the Nios II's On-Chip Debug hardware. 

With this option enabled, the following set of additional functional features are provided: 

• Reset, Go, Halt processor control 

• Single or multi-step debugging 

• Read-write access for internal processor registers 

• Read-write access for memory and I/O space 

• Unlimited software breakpoints. 

Adding Debug Functionality to the Standard Core 
As mentioned in the previous section, debug functionality is provided through the use of an On-Chip Debug System unit (OCDS). 
The simplified block diagram of Figure 9 shows the connection between this unit and the standard Nios II core. 
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Figure 9. Simplified block diagram for the Nios II with OCDS hardware installed. 

The host computer is connected to the target core using the IEEE 1149.1 (JTAG) standard interface. This is the physical 
interface, providing connection to physical pins of the FPGA device in which the core has been embedded.  

The Nexus 5001 standard is used as the protocol for communications between the host and all devices that are debug-enabled 
with respect to this protocol. This includes all debug-enabled processors, as well as other Nexus-compliant devices such as 
frequency generators, logic analyzers, counters, etc. 

All such devices are connected in a chain – the Soft Devices chain – which is determined when the design has been 
implemented within the target FPGA device and presents in the Devices view (Figure 10). It is not a physical chain, in the sense 
that you can see no external wiring – the connections required between the Nexus-enabled devices are made internal to the 
FPGA itself. 

 

Figure 10. Nexus-enabled processor (Nios II) appearing in the Soft Devices chain 

For processors such as the debug-enabled Nios II, the Nexus protocol enables you to debug the core through communication 
with the processor’s debug hardware (OCDS unit). 

Accessing the Debug Environment 
Debugging of the embedded code within a Nios II processor is carried out by starting a debug session. Prior to starting the 
session, you must ensure that the design, including one or more debug-enabled processors and their respective embedded 
code, has been downloaded to the target FPGA device. 

To start a debug session for the embedded code of a specific processor in the design, simply right-click on the icon for that 
processor, in the Soft Devices region of the view, and choose the Debug command from the pop-up menu that appears. 
Alternatively, click on the icon for the processor (to focus it) and choose Processors » Pn » Debug from the main menus, 
where n corresponds to the number for the processor in the Soft Devices chain. 

The embedded project for the software running in the processor will initially be recompiled and the debug session will 
commence. The relevant source code document (either Assembly or C) will be opened and the current execution point will be 
set to the first line of executable code (see Figure 11). 
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Note: You can have multiple debug sessions running simultaneously – one per embedded software project associated with a 
processor in the Soft Devices chain. 

 

Figure 11. Starting an embedded code debug session. 

The debug environment offers the full suite of tools you would expect to see in order to efficiently debug the embedded code. 
These features include: 

• Setting Breakpoints 

• Adding Watches 
• Stepping into and over at both the source (*.C) and instruction (*.asm) level 

• Reset, Run and Halt code execution 

• Run to cursor 
All of these and other feature commands can be accessed from the Debug menu or the associated Debug toolbar. 

Various workspace panels are accessible in the debug environment, allowing you to view/control code-specific features, such as 
Breakpoints, Watches and Local variables, as well as information specific to the processor in which the code is running, such as 
memory spaces and registers. 
These panels can be accessed from the View » Workspace Panels » Embedded sub menu, or by clicking on the Embedded 
button at the bottom of the application window and choosing the required panel from the subsequent pop-up menu. 
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Figure 12. Workspace panels offering code-specific information and controls 

 

Figure 13. Workspace panels offering information specific to the parent processor. 

Full-feature debugging is of course enjoyed at the source code level – from within the source code file itself. To a lesser extent, 
debugging can also be carried out from a dedicated debug panel for the processor. To access1 this panel, first double-click on 
the icon representing the processor to be debugged, in the Soft Devices region of the view. The Instrument Rack – Soft 
Devices panel will appear, with the chosen processor instrument added to the rack (Figure 14). 

                                                           
1 The debug panels for each of the debug-enabled processors are standard panels and, as such, can be readily accessed from the View » 
Workspace Panels » Instruments sub menu, or by clicking on the Instruments button at the bottom of the application window and choosing 
the required panel – for the processor you wish to debug – from the subsequent pop-up menu. 
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Figure 14. Accessing debug features from the processor's instrument panel 

Note: Each core processor that you have included in the design will appear, when double-clicked, as an Instrument in the rack 
(along with any other Nexus-enabled devices). 
The Nexus Debugger button provides access to the associated debug panel (Figure 15), which in turn allows you to interrogate 
and to a lighter extent control, debugging of the processor and its embedded code, notably with respect to the registers and 
memory. 

One key feature of the debug panel is that it enables you to specify (and therefore change) the embedded code (HEX file) that is 
downloaded to the processor, quickly and efficiently. 

 

Figure 15. Processor debugging using the associated processor debug panel 

For more information on the content and use of processor debug panels, press F1 when the cursor is over one of these 
panels. 

For further information regarding the use of the embedded tools for the Nios II, see the Using the Nios II Embedded Tools 
guide. 

For comprehensive information with respect to the embedded tools available for the Nios II, see the Nios II Embedded Tools 
Reference. 
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Instruction Set 
For detailed information with respect to the instruction set for the Nios II, including instruction encoding and an alphabetical 
listing of all instructions by mnemonic, refer to the Instruction Set Reference section of the Nios II Processor Reference 
Handbook. This guide is available from the Altera website. 

Revision History 

Date Version No. Revision

16-Jul-2006 1.0 Initial release 

27-Jul-2006 1.1 Added information for support of three Nios II core variants – Nios2f, Nios2s and Nios2e. 

11-Mar-2008 2.0 Updated for Altium Designer Summer 08 
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