GROUPS OF ORDER p^3

KEITH CONRAD

1. INTRODUCTION

For each prime p, we will describe all groups of order p^3 up to isomorphism. This was done for p = 2 by Cayley [3, 4] in 1859 and 1889 and Kempe [8, pp. 38–39, 45] in 1886, and for odd p by Cole and Glover [5, pp. 196–201], Hölder [7, pp. 371–373] and Young [13, pp. 133–139] independently in 1893. The groups were described by them using generators and relations, which sometimes leads to unconvincing arguments that the groups constructed to be of order p^3 really have that order.¹

From the cyclic decomposition of finite abelian groups, there are three abelian groups of order p^3 up to isomorphism: $\mathbf{Z}/(p^3)$, $\mathbf{Z}/(p^2) \times \mathbf{Z}/(p)$, and $\mathbf{Z}/(p) \times \mathbf{Z}/(p) \times \mathbf{Z}/(p)$.² These are nonisomorphic since they have different maximal orders for their elements: p^3 , p^2 , and p respectively. We will show there are two nonabelian groups of order p^3 up to isomorphism. That number is the same for all p, but the actual description of the two nonabelian groups of order p^3 will be different for p = 2 and $p \neq 2$, so we will treat these cases separately.

2. Groups of order 8

Theorem 2.1. A nonabelian group of order 8 is isomorphic to D_4 or to Q_8 .

The groups D_4 and Q_8 are not isomorphic since there are 5 elements of order 2 in D_4 and only one element of order 2 in Q_8 .

Proof. Let G be nonabelian of order 8. The nonidentity elements in G have order 2 or 4. If $g^2 = 1$ for all $g \in G$ then G is abelian, so some $x \in G$ must have order 4.

Let $y \in G - \langle x \rangle$. The subgroup $\langle x, y \rangle$ properly contains $\langle x \rangle$, so $\langle x, y \rangle = G$. Since G is nonabelian, x and y do not commute.

Since $\langle x \rangle$ has index 2 in G, it is a normal subgroup. Therefore $yxy^{-1} \in \langle x \rangle$:

$$yxy^{-1} \in \{1, x, x^2, x^3\}.$$

Since yxy^{-1} has order 4, $yxy^{-1} = x$ or $yxy^{-1} = x^3 = x^{-1}$. The first option is not possible, since it says x and y commute, but they don't. Therefore

$$yxy^{-1} = x^{-1}.$$

The group $G/\langle x \rangle$ has order 2, so $y^2 \in \langle x \rangle$:

$$y^2 \in \{1, x, x^2, x^3\}$$

Since y has order 2 or 4, y^2 has order 1 or 2. Thus $y^2 = 1$ or $y^2 = x^2$.

¹The page https://math.stackexchange.com/questions/1023341 gives a nonobvious description of the trivial group by generators and relations.

²See https://kconrad.math.uconn.edu/blurbs/grouptheory/finite-abelian.pdf.

KEITH CONRAD

Putting this together, $G = \langle x, y \rangle$ where either

(2.1)
$$x^4 = 1, y^2 = 1, yxy^{-1} = x^{-1}$$

or

(2.2)
$$x^4 = 1, y^2 = x^2, yxy^{-1} = x^{-1}.$$

The relations in (2.1) resemble D_4 , using $x \leftrightarrow r$ and $y \leftrightarrow s$, while the relations in (2.2) resemble Q_8 using $x \leftrightarrow i$ and $y \leftrightarrow j$. We will construct isomorphisms $D_4 \to G$ in the first case and $Q_8 \to G$ in the second case.³

First suppose (2.1) is true. Each element of D_4 has the form $r^m s^n$ for unique $m \in \mathbb{Z}/(4)$ and $n \in \mathbb{Z}/(2)$. Set $f: D_4 \to G$ by $f(r^m s^n) = x^m y^n$.

<u>f is well-defined</u>. The product $r^m s^n$ determines $m \mod 4$ and $n \mod 2$, which makes $x^m y^n$ sensible since $x^4 = 1$ and $y^2 = 1$. Note f(r) = x and f(s) = y, which was suggested by (2.1) originally. It remains to show f is a homomorphism and a bijection.

<u>f</u> is a homomorphism. For general elements $g = r^m s^n$ and $g' = r^m' s^{n'}$ in D_4 , we want to show f(gg') = f(g)f(g'). On the left side, $gg' = r^m s^n r^{m'} s^{n'}$. To rewrite this as a power of r times a power of s, from $srs^{-1} = r^{-1}$ we have $s^n rs^{-n} = r^{(-1)^n}$ for $n \in \mathbb{Z}/(2)$, so (raise both sides to the m'-power) $s^n r^{m'} s^{-n} = r^{(-1)^n m'}$. Thus

(2.3)
$$gg' = r^m s^n r^{m'} s^{n'} = r^m r^{(-1)^n m'} s^n s^{n'} = r^{m+(-1)^n m'} s^{n+n'},$$

so $f(gg') = x^{m+(-1)^n m'} y^{n+n'}$. Also

(2.4)
$$f(g)f(g') = f(r^m s^n)f(r^{m'} s^{n'}) = x^m y^n x^{m'} x^{n'}.$$

The rewriting of $r^m s^n r^{m'} s^{n'}$ in (2.3) was based only on the relations $srs^{-1} = r^{-1}$ and $s^2 = 1$, so from the similar relations $yxy^{-1} = x^{-1}$ and $y^2 = 1$ in (2.1), the right side of (2.4) is $x^{m+(-1)^n m'} y^{n+n'}$, which is f(gg'). So f is a homomorphism.

<u>f is a bijection</u>. Since f is a homomorphism to G and its image includes x = f(r) and y = f(s), the image of f contains $\langle x, y \rangle$, which is all of G. Thus f is onto. Since $|D_4| = |G|$, a surjection $D_4 \to G$ is a bijection, so f is a bijection.

Now suppose (2.2) is true. We want to build an isomorphism $Q_8 \to G$ mapping i to xand j to y. Every element of Q_8 looks like $i^m j^n$ where $m, n \in \mathbb{Z}/(4)$. Set $f: Q_8 \to G$ by $f(i^m j^n) = x^m y^n$.

<u>f</u> is well-defined. A representation of an element of Q_8 as $i^m j^n$ is not unique: if $i^m j^n = i^{m'} j^{n'}$ then $i^{m-m'} = j^{n'-n}$, so m-m' = 2a and n'-n = 2b where $a \equiv b \mod 2$ (why?). Then $x^{m-m'} = (x^2)^a = (y^2)^a = (y^2)^b = y^{n'-n}$ by the first two relations in (2.2), so $x^m y^n = x^{m'} y^{n'}$. f is a homomorphism. Since $jij^{-1} = i^{-1}$ and j^2 commutes with i, check $j^n i j^{-n} = i^{(-1)^n}$

for all $n \in \mathbb{Z}/(4)$. This and the first two relations in (2.2) imply $f: Q_8 \to G$ is a homomorphism for reasons similar to the previous mapping $D_4 \to G$ being a homomorphism.

<u>*f*</u> is a bijection. This follows for the same reasons as before, since the image of *f* includes f(i) = x and f(j) = y and $\langle x, y \rangle = G$.

³We map from D_4 or Q_8 to G rather than in the other direction because D_4 and Q_8 are known groups, so it is better to start there.

3. The case of odd p

From now, $p \neq 2$. We'll show the two nonabelian groups of order p^3 , up to isomorphism, are

$$\text{Heis}(\mathbf{Z}/(p)) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbf{Z}/(p) \right\}$$

and

$$G_p = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in \mathbf{Z}/(p^2), a \equiv 1 \mod p \right\} = \left\{ \begin{pmatrix} 1+pm & b \\ 0 & 1 \end{pmatrix} : m, b \in \mathbf{Z}/(p^2) \right\},$$

where m actually only matters modulo p.⁴ These two constructions both make sense at the prime 2, but in that case the two groups are isomorphic to each other, as we'll see below.

We can distinguish between $\text{Heis}(\mathbf{Z}/(p))$ and G_p for $p \neq 2$ by counting elements of order p. In $\operatorname{Heis}(\mathbf{Z}/(p))$,

(3.1)
$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & na & nb + \frac{n(n-1)}{2}ac \\ 0 & 1 & nc \\ 0 & 0 & 1 \end{pmatrix}$$

for $n \in \mathbf{Z}$, so

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}^p = \begin{pmatrix} 1 & 0 & \frac{p(p-1)}{2}ac \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

When $p \neq 2$, $\frac{p(p-1)}{2} \equiv 0 \mod p$, so all nonidentity elements of $\text{Heis}(\mathbf{Z}/(p))$ have order p. On the other hand, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ in G_p has order p^2 since $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$. So $\text{Heis}(\mathbf{Z}/(p)) \ncong G_p$. At the prime 2, $\text{Heis}(\mathbf{Z}/(2))$ and G_2 each contain more than one element of order 2, so

 $\text{Heis}(\mathbf{Z}/(2))$ and G_2 are both isomorphic to D_4 (Theorem 2.1).

Let's look at how matrices combine and decompose in $\text{Heis}(\mathbf{Z}/(p))$ and G_p when $p \neq 2$, since this will inform some of our computations later when we classify the nonabelian group of order p^3 . In Heis($\mathbf{Z}/(p)$),

(3.2)
$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a' & b' \\ 0 & 1 & c' \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+a' & b+b'+ac' \\ 0 & 1 & c+c' \\ 0 & 0 & 1 \end{pmatrix}$$

and in G_p

(3.3)
$$\begin{pmatrix} 1+pm & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1+pm' & b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1+p(m+m') & b+b'+pmb' \\ 0 & 1 \end{pmatrix}.$$

In $\operatorname{Heis}(\mathbf{Z}/(p))$,

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{c} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{a} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{b}$$
by (3.1)

⁴The notation G_p for this group is not standard. I don't know a standard "matrix group" notation for it.

and a particular commutator is

$$\begin{bmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

So if we set

$$x = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } y = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

then

(3.4)
$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} = y^c x^a [x, y]^b.$$

In $G_p \subset \operatorname{Aff}(\mathbf{Z}/(p^2)),$

$$\begin{pmatrix} 1+pm & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1+pm & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^b \begin{pmatrix} 1+p & 0 \\ 0 & 1 \end{pmatrix}^m$$

If we set

$$x = \begin{pmatrix} 1+p & 0\\ 0 & 1 \end{pmatrix}$$
 and $y = \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix}$

then

$$\begin{pmatrix} 1+pm & b\\ 0 & 1 \end{pmatrix} = y^b x^m$$

and

$$[x,y] = \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix} = y^p.$$

Lemma 3.1. In a group G, if g and h commute with [g,h] then $[g^m,h^n] = [g,h]^{mn}$ for all m and n in **Z**, and $g^nh^n = (gh)^n[g,h]^{\binom{n}{2}}$.

Proof. Exercise.

Lemma 3.2. Let p be prime and G be a nonabelian group of order p^3 with center Z. Then $|Z| = p, G/Z \cong (\mathbb{Z}/(p)) \times (\mathbb{Z}/(p)), and [G,G] = Z.$

Proof. Since G is a nontrivial group of p-power order, its center is nontrivial. Therefore $|Z| = p, p^2$, or p^3 . Since G is nonabelian, $|Z| \neq p^3$. For a group G, if G/Z is cyclic then G is abelian. So G being nonabelian forces G/Z to be noncyclic. Therefore $|G/Z| \neq p$, so $|Z| \neq p^2$. The only choice left is |Z| = p, so G/Z has order p^2 .

Up to isomorphism the only groups of order p^2 are $\mathbf{Z}/(p^2)$ and $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$. Since G/Z is noncyclic, $G/Z \cong \mathbf{Z}/(p) \times \mathbf{Z}/(p)$.

Since G/Z is abelian, we have $[G,G] \subset Z$. Because |Z| = p and [G,G] is nontrivial, necessarily [G,G] = Z.

Theorem 3.3. For $p \neq 2$, a nonabelian group of order p^3 is isomorphic to $\text{Heis}(\mathbf{Z}/(p))$ or G_p .

GROUPS OF ORDER p^3

Proof. Let G be a nonabelian group of order p^3 . Each $q \neq 1$ in G has order p or p^2 .

By Lemma 3.2, we can write $G/Z = \langle \overline{x}, \overline{y} \rangle$ and $Z = \langle z \rangle$. For $g \in G$, $g \equiv x^i y^j \mod Z$ for some integers *i* and *j*, so $g = x^i y^j z^k = z^k x^i y^j$ for some $k \in \mathbb{Z}$. If *x* and *y* commute then *G* is abelian (since z^k commutes with *x* and *y*), which is a contradiction. Thus *x* and *y* do not commute. Therefore $[x, y] = xyx^{-1}y^{-1} \in Z$ is nontrivial, so $Z = \langle [x, y] \rangle$. Therefore we can use [x, y] for *z*, showing $G = \langle x, y \rangle$.

Let's see what the product of two elements of G looks like. Using Lemma 3.1,

(3.5)
$$x^{i}y^{j} = y^{j}x^{i}[x,y]^{ij}, \quad y^{j}x^{i} = x^{i}y^{j}[x,y]^{-ij}.$$

This shows we can move every power of y past every power of x on either side, at the cost of introducing a (commuting) power of [x, y]. So every element of $G = \langle x, y \rangle$ has the form $y^j x^i [x, y]^k$. (We write in this order because of (3.4).) A product of two such terms is

$$y^{c}x^{a}[x,y]^{b} \cdot y^{c'}x^{a'}[x,y]^{b'} = y^{c}(x^{a}y^{c'})x^{a'}[x,y]^{b+b'}$$

= $y^{c}(y^{c'}x^{a}[x,y]^{ac'})x^{a'}[x,y]^{b+b'}$ by (3.5)
= $y^{c+c'}x^{a+a'}[x,y]^{b+b'+ac'}$.

Here the exponents are all integers. Comparing this with (3.2), it appears we have a homomorphism $\text{Heis}(\mathbf{Z}/(p)) \to G$ by

(3.6)
$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mapsto y^{c} x^{a} [x, y]^{b}.$$

After all, we just showed multiplication of such triples $y^c x^a [x, y]^b$ behaves like multiplication in Heis($\mathbf{Z}/(p)$). But there is a catch: the matrix entries a, b, and c in Heis($\mathbf{Z}/(p)$) are integers modulo p, so the "function" (3.6) from Heis($\mathbf{Z}/(p)$) to G is only well-defined if x, y, and [x, y] all have p-th power 1 (so exponents on them only matter mod p). Since [x, y] is in the center of G, a subgroup of order p, its exponents only matter modulo p. But maybe x or ycould have order p^2 .

Well, if x and y both have order p, then there is no problem with (3.6). It is a well-defined function $\text{Heis}(\mathbf{Z}/(p)) \to G$ that is a homomorphism. Since its image contains x and y, the image contains $\langle x, y \rangle = G$, so the function is onto. Both $\text{Heis}(\mathbf{Z}/(p))$ and G have order p^3 , so our surjective homomorphism is an isomorphism: $G \cong \text{Heis}(\mathbf{Z}/(p))$.

What happens if x or y has order p^2 ? In this case we anticipate that $G \cong G_p$. In G_p , two generators are $g = \begin{pmatrix} 1+p & 0 \\ 0 & 1 \end{pmatrix}$ and $h = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, where g has order p, h has order p^2 , and $[g,h] = h^p$. We want to show our abstract G also has a pair of generators like this.

Starting with $G = \langle x, y \rangle$ where x or y has order p^2 , without loss of generality let y have order p^2 . It may or may not be the case that x has order p. To show we can change generators to make x have order p, we will look at the p-th power function on G. For all $g \in G$, $g^p \in Z$ since $G/Z \cong \mathbb{Z}/(p) \times \mathbb{Z}/(p)$. Moreover, the p-th power function on G is a homomorphism: by Lemma 3.1, $(gh)^p = g^p h^p [g, h]^{p(p-1)/2}$ and $[g, h]^p = 1$ since [G, G] = Zhas order p, so

$$(gh)^p = g^p h^p.$$

Since y^p has order p and $y^p \in Z$, $Z = \langle y^p \rangle$. Therefore $x^p = (y^p)^r$ for some $r \in \mathbb{Z}$, and since the p-th power function on G is a homomorphism we get $(xy^{-r})^p = 1$, with $xy^{-r} \neq 1$ since $x \notin \langle y \rangle$. So xy^{-r} has order p and $G = \langle x, y \rangle = \langle xy^{-r}, y \rangle$. We now rename xy^{-r} as x, so $G = \langle x, y \rangle$ where x has order p and y has order p^2 .

KEITH CONRAD

We are not guaranteed that $[x, y] = y^p$, which is one of the relations for the two generators of G_p . How can we force this relation to occur? Well, since [x, y] is a nontrivial element of $[G, G] = Z, Z = \langle [x, y] \rangle = \langle y^p \rangle$, so

(3.7)
$$[x,y] = (y^p)^k,$$

where $k \not\equiv 0 \mod p$. Let ℓ be a multiplicative inverse for $k \mod p$ and raise both sides of (3.7) to the ℓ th power: using Lemma 3.1,

$$[x,y]^{\ell} = (y^{pk})^{\ell} \Longrightarrow [x^{\ell},y] = y^{p}.$$

Since $\ell \neq 0 \mod p$, $\langle x \rangle = \langle x^{\ell} \rangle$, so we can rename x^{ℓ} as x: now $G = \langle x, y \rangle$ where x has order p, y has order p^2 , and $[x, y] = y^p$.

Because [x, y] commutes with x and y and $G = \langle x, y \rangle$, every element of G has the form $y^j x^i [x, y]^k = [x, y]^k y^j x^i = y^{pk+j} x^i$. Let's see how such products multiply:

$$y^{b}x^{m} \cdot y^{b'}x^{m'} = y^{b}(x^{m}y^{b'})x^{m'}$$

= $y^{b}(y^{b'}x^{m}[x, y]^{mb'})x^{m}$
= $y^{b+b'}x^{m}(y^{p})^{mb'}x^{m'}$
= $y^{b+b'+pmb'}x^{m+m'}$.

Comparing this with (3.3), we have a homomorphism $G_p \to G$ by

$$\left(\begin{array}{cc} 1+pm & b\\ 0 & 1 \end{array}\right) \mapsto y^b x^m.$$

(This function is well-defined since on the left side m matters mod p and b matters mod p^2 while $x^p = 1$ and $y^{p^2} = 1$.) This homomorphism is onto since x and y are in the image, so it is an isomorphism since G_p and G have equal order: $G \cong G_p$.

4. Nonisomorphic groups with the same subgroup lattice

When p = 2, the five groups of order 8 have different subgroup lattices. This is almost entirely explained by counting subgroups of order 2 (equivalently, counting elements of order 2): 1 for $\mathbf{Z}/(8)$, 3 for $\mathbf{Z}/(2) \times \mathbf{Z}/(4)$, 7 for $(\mathbf{Z}/(2))^3$, 5 for D_4 , and 1 for Q_8 . While the count is the same for $\mathbf{Z}/(8)$ and Q_8 , these groups have different numbers of subgroups of order 4: 1 for $\mathbf{Z}/(8)$ and 3 for Q_8 .

For $p \neq 2$, we'll show the subgroup lattices of G_p and $\mathbf{Z}/(p) \times \mathbf{Z}/(p^2)$ are the same.

Theorem 4.1. For odd prime p, both G_p and $\mathbf{Z}/(p) \times \mathbf{Z}/(p^2)$ have the same subgroup lattice:

- p+1 subgroups of order p and p+1 subgroups of order p^2 ,
- a unique subgroup H_0 of order p^2 that contains all subgroups of order p,
- a unique subgroup K_0 of order p that is contained in all subgroups of order p^2 ,
- each subgroup of order p^2 besides H_0 contains K_0 as its only subgroup of order p,
- each subgroup of order p besides K_0 has H_0 as the only subgroup of order p^2 containing it.

FIGURE 1. Subgroup lattice for G_3 .

Figure 1 is the subgroup lattice for G_3 . It reflects all 5 properties of Theorem 4.1.

Theorem 4.1 is false for p = 2: $G_2 \cong D_4$ has 5 subgroups of order 2 and 3 subgroups of order 4 while $\mathbf{Z}/(2) \times \mathbf{Z}/(4)$ has 3 subgroups of order 2 and 3 subgroups of order 4. All nonisomorphic groups of order 8 have different subgroup lattices.

Proof. <u>Case 1</u>: subgroups of $\mathbf{Z}/(p) \times \mathbf{Z}/(p^2)$. Elements of order 1 or p are (a, b) where $b \in p\mathbf{Z}/(p^2)$, so there are $p^2 - 1$ elements of order p. Different subgroups of order p intersect trivially, so the number of subgroups of order p is $(p^2 - 1)/(p - 1) = p + 1$.

The elements of order 1 or p fill up the subgroup $H_0 := \{(a, b) : b \in p\mathbb{Z}/(p^2)\}$, which has order p^2 and is not cyclic. Since H_0 contains all the subgroups of order p, other subgroups of order p^2 must have an element of order p^2 and are therefore cyclic. Elements of order p^2 are (a, b) where $b \in (\mathbb{Z}/(p^2))^{\times}$, and the subgroup $\langle (a, b) \rangle$ has a generator of the form (c, 1). As c varies in $\mathbb{Z}/(p)$, the p subgroups $\langle (c,1) \rangle$ have order p^2 and are distinct, so the number of subgroups of order p^2 is p+1.

In each cyclic subgroup $\langle (c,1) \rangle$ of order p^2 , the subgroup of order p is $K_0 = \langle p(c,1) \rangle =$ $\langle (p,0) \rangle$, which is independent of c. So K_0 is the only subgroup of order p in subgroups of order p^2 besides H_0 .

<u>Case 2</u>: subgroups of G_p . Check by induction that for integers $n \ge 0$,

$$\begin{pmatrix} 1+pm & b\\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1+npm & (n+\frac{n(n-1)}{2}pm)b\\ 0 & 1 \end{pmatrix}$$

Since p is odd, p(p-1)/2 is divisible by p, so

$$\begin{pmatrix} 1+pm & b \\ 0 & 1 \end{pmatrix}^p = \begin{pmatrix} 1 & pb \\ 0 & 1 \end{pmatrix}.$$

Therefore $\begin{pmatrix} 1+pm & b \\ 0 & 1 \end{pmatrix}^p$ is trivial if and only if $b \in p\mathbf{Z}/(p^2)$. Writing $b \equiv p\ell \mod p^2$,

$$\begin{pmatrix} 1+pm & b\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1+pm & p\ell\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & p\ell\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1+pm & 0\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & p\\ 0 & 1 \end{pmatrix}^{\ell} \begin{pmatrix} 1+p & 0\\ 0 & 1 \end{pmatrix}^{m}$$

for $\ell, m \in \mathbb{Z}/(p)$. So there are $p^2 - 1$ elements of order p. Check $\begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1+p & 0 \\ 0 & 1 \end{pmatrix}$ commute, so the elements of G_p with order p are the nontrivial elements of the subgroup $H_0 := \langle \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix} \rangle$, which has order p^2 and is not cyclic. A subgroup of G_p with order p^2 besides H_0 must have an element of order p^2 , so subgroups of order p^2 besides H_0 are cyclic. Elements of G_p with order p^2 are $\begin{pmatrix} 1+pm & b \\ 0 & 1 \end{pmatrix}$ where $b \in (\mathbf{Z}/(p^2))^{\times}$ and $\langle \begin{pmatrix} 1+pm & b \\ 0 & 1 \end{pmatrix} \rangle$ has a generator of the form $\begin{pmatrix} 1+pc & 1 \\ 0 & 1 \end{pmatrix}$ for $c \in \mathbf{Z}/(p)$. These subgroups for different c are distinct, so the number of subgroups of order p^2 is p+1. In $\langle \begin{pmatrix} 1+pc & 1 \\ 0 & 1 \end{pmatrix} \rangle$, the subgroup of order p is $K_0 = \langle \begin{pmatrix} 1+pc & 1 \\ 0 & 1 \end{pmatrix} \rangle = \langle \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix} \rangle$, which is independent of

KEITH CONRAD

c. Therefore K_0 is the only subgroup of G_p with order p that is contained in subgroups of order p^2 other than H_0 .

5. Counting *p*-groups beyond order p^3

Let's summarize what is known about the count of groups of small *p*-power order.

- There is one group of order p up to isomorphism.
- There are two groups of order p^2 up to isomorphism: $\mathbf{Z}/(p^2)$ and $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$.
- There are five groups of order p^3 up to isomorphism, but our explicit description of them is not uniform in p since the case p = 2 used a separate treatment.

For groups of order p^4 , the count is no longer uniform in p: there are 14 groups of order 2^4 and 15 groups of order p^4 for $p \neq 2$. This is due to Hölder [7] and Young [13]. A recent account of this result by Adler, Garlow, and Wheland is on the arXiv [1]. For groups of order p^5 , the count depends on $p \mod 12$ as shown in the table below. This is due to Miller [9] for p = 2 and Bagnera [2] for p > 2. Tables listing groups of order 32 and 243 are available at Tim Dokchitser's site [6]. The first count of groups of order p^6 is due to Potron [12], with a modern count being made by Newman, O'Brien, and Vaughan-Lee [10]. A count of groups of order p^7 is due to O'Brien and Vaughan-Lee [11].

References

- J. D. Adler, M. Garlow, and E. R. Wheland, "Groups of order p⁴ made less difficult." Online at https://arxiv.org/abs/1611.00461.
- [2] G. Bagnera, "La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo," Ann. Mat. Pura Appl. 1 (1898), 137–228.
- [3] A. Cayley, "On the theory of groups, as depending on the symbolic equation $\theta^n = 1$, Part III" *Philos. Mag.* **18** (1859), 34-37. Online at https://www.tandfonline.com/doi/abs/10.1080/14786445908642716.
- [4] A. Cayley, "On the theory of groups," Amer. J. Math. 11 (1889), 139-157. Online at https://archive.org/details/jstor-2369415.
- [5] F. N. Cole and J. W. Glover, "On groups whose orders are products of three prime factors," Amer. J. Math. 15 (1893), 191-220. Online at https://www.jstor.org/stable/2369839.
- [6] T. Dokchitser, Group Names, https://people.maths.bris.ac.uk/~matyd/GroupNames/.
- [7] O. Hölder, "Die Gruppen der Ordnungen p³, pq², pqr, p⁴," Math. Ann. 43 (1893), 301-412. Online at https://eudml.org/doc/157685.
- [8] A. B. Kempe, "A memoir on the theory of mathematical form," *Phil. Trans.* 177 (1886), 1–70. Online at https://royalsocietypublishing.org/doi/10.1098/rstl.1886.0002.
- [9] G. A. Miller, "The regular substitution groups whose order is less than 48," Quart. J. Math. 28 (1896), 232–284.
- [10] M. F. Newman, E. A. O'Brien, and M. R. Vaughan-Lee, "Groups and nilpotent Lie rings whose order is the sixth power of a prime," J. Algebra 278 (2004), 383–401.
- [11] E. A. O'Brien and M. R. Vaughan-Lee, "The groups of order p^7 for odd prime p," J. Algebra **292** (2005), 243–258.
- [12] M. Potron, "Sur quelques groupes d'ordre p^6 ," Ph.D. thesis, Gauthier-Villars, Paris, 1904.
- [13] J. Young, "On the determination of the groups whose order is a power of a prime," Amer. J. Math. 15 (1893), 124-178. Online at https://www.jstor.org/stable/2369564.