GROUPS OF ORDER p^{3}

KEITH CONRAD

1. Introduction

For each prime p, we will describe all groups of order p^{3} up to isomorphism. This was done for $p=2$ by Cayley [3, 4] in 1859 and 1889 and Kempe [8, pp. 38-39, 45] in 1886, and for odd p by Cole and Glover [5, pp. 196-201], Hölder [7, pp. 371-373] and Young [13, pp. 133-139] independently in 1893. The groups were described by them using generators and relations, which sometimes leads to unconvincing arguments that the groups constructed to be of order p^{3} really have that order. ${ }^{1}$

From the cyclic decomposition of finite abelian groups, there are three abelian groups of order p^{3} up to isomorphism: $\mathbf{Z} /\left(p^{3}\right), \mathbf{Z} /\left(p^{2}\right) \times \mathbf{Z} /(p)$, and $\mathbf{Z} /(p) \times \mathbf{Z} /(p) \times \mathbf{Z} /(p) .^{2}$ These are nonisomorphic since they have different maximal orders for their elements: p^{3}, p^{2}, and p respectively. We will show there are two nonabelian groups of order p^{3} up to isomorphism. That number is the same for all p, but the actual description of the two nonabelian groups of order p^{3} will be different for $p=2$ and $p \neq 2$, so we will treat these cases separately.

2. GROUPS OF ORDER 8

Theorem 2.1. A nonabelian group of order 8 is isomorphic to D_{4} or to Q_{8}.
The groups D_{4} and Q_{8} are not isomorphic since there are 5 elements of order 2 in D_{4} and only one element of order 2 in Q_{8}.

Proof. Let G be nonabelian of order 8. The nonidentity elements in G have order 2 or 4. If $g^{2}=1$ for all $g \in G$ then G is abelian, so some $x \in G$ must have order 4 .

Let $y \in G-\langle x\rangle$. The subgroup $\langle x, y\rangle$ properly contains $\langle x\rangle$, so $\langle x, y\rangle=G$. Since G is nonabelian, x and y do not commute.

Since $\langle x\rangle$ has index 2 in G, it is a normal subgroup. Therefore $y x y^{-1} \in\langle x\rangle$:

$$
y x y^{-1} \in\left\{1, x, x^{2}, x^{3}\right\}
$$

Since $y x y^{-1}$ has order $4, y x y^{-1}=x$ or $y x y^{-1}=x^{3}=x^{-1}$. The first option is not possible, since it says x and y commute, but they don't. Therefore

$$
y x y^{-1}=x^{-1}
$$

The group $G /\langle x\rangle$ has order 2 , so $y^{2} \in\langle x\rangle$:

$$
y^{2} \in\left\{1, x, x^{2}, x^{3}\right\}
$$

Since y has order 2 or $4, y^{2}$ has order 1 or 2 . Thus $y^{2}=1$ or $y^{2}=x^{2}$.

[^0]Putting this together, $G=\langle x, y\rangle$ where either

$$
\begin{equation*}
x^{4}=1, \quad y^{2}=1, \quad y x y^{-1}=x^{-1} \tag{2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{4}=1, \quad y^{2}=x^{2}, \quad y x y^{-1}=x^{-1} . \tag{2.2}
\end{equation*}
$$

The relations in (2.1) resemble D_{4}, using $x \leftrightarrow r$ and $y \leftrightarrow s$, while the relations in (2.2) resemble Q_{8} using $x \leftrightarrow i$ and $y \leftrightarrow j$. We will construct isomorphisms $D_{4} \rightarrow G$ in the first case and $Q_{8} \rightarrow G$ in the second case. ${ }^{3}$

First suppose (2.1) is true. Each element of D_{4} has the form $r^{m} s^{n}$ for unique $m \in \mathbf{Z} /(4)$ and $n \in \mathbf{Z} /(2)$. Set $f: D_{4} \rightarrow G$ by $f\left(r^{m} s^{n}\right)=x^{m} y^{n}$.
f is well-defined. The product $r^{m} s^{n}$ determines $m \bmod 4$ and $n \bmod 2$, which makes $x^{m} y^{n}$ sensible since $x^{4}=1$ and $y^{2}=1$. Note $f(r)=x$ and $f(s)=y$, which was suggested by (2.1) originally. It remains to show f is a homomorphism and a bijection.
f is a homomorphism. For general elements $g=r^{m} s^{n}$ and $g^{\prime}=r^{m^{\prime}} s^{n^{\prime}}$ in D_{4}, we want to show $f\left(g g^{\prime}\right)=f(g) f\left(g^{\prime}\right)$. On the left side, $g g^{\prime}=r^{m} s^{n} r^{m^{\prime}} s^{n^{\prime}}$. To rewrite this as a power of r times a power of s, from $s r s^{-1}=r^{-1}$ we have $s^{n} r s^{-n}=r^{(-1)^{n}}$ for $n \in \mathbf{Z} /(2)$, so (raise both sides to the m^{\prime}-power) $s^{n} r^{m^{\prime}} s^{-n}=r^{(-1)^{n} m^{\prime}}$. Thus

$$
\begin{equation*}
g g^{\prime}=r^{m} s^{n} r^{m^{\prime}} s^{n^{\prime}}=r^{m} r^{(-1)^{n} m^{\prime}} s^{n} s^{n^{\prime}}=r^{m+(-1)^{n} m^{\prime}} s^{n+n^{\prime}} \tag{2.3}
\end{equation*}
$$

so $f\left(g g^{\prime}\right)=x^{m+(-1)^{n} m^{\prime}} y^{n+n^{\prime}}$. Also

$$
\begin{equation*}
f(g) f\left(g^{\prime}\right)=f\left(r^{m} s^{n}\right) f\left(r^{m^{\prime}} s^{n^{\prime}}\right)=x^{m} y^{n} x^{m^{\prime}} x^{n^{\prime}} . \tag{2.4}
\end{equation*}
$$

The rewriting of $r^{m} s^{n} r^{m^{\prime}} s^{n^{\prime}}$ in (2.3) was based only on the relations $s r s^{-1}=r^{-1}$ and $s^{2}=1$, so from the similar relations $y x y^{-1}=x^{-1}$ and $y^{2}=1$ in (2.1), the right side of (2.4) is $x^{m+(-1)^{n} m^{\prime}} y^{n+n^{\prime}}$, which is $f\left(g g^{\prime}\right)$. So f is a homomorphism.
f is a bijection. Since f is a homomorphism to G and its image includes $x=f(r)$ and $y=f(s)$, the image of f contains $\langle x, y\rangle$, which is all of G. Thus f is onto. Since $\left|D_{4}\right|=|G|$, a surjection $D_{4} \rightarrow G$ is a bijection, so f is a bijection.

Now suppose (2.2) is true. We want to build an isomorphism $Q_{8} \rightarrow G$ mapping i to x and j to y. Every element of Q_{8} looks like $i^{m} j^{n}$ where $m, n \in \mathbf{Z} /(4)$. Set $f: Q_{8} \rightarrow G$ by $f\left(i^{m} j^{n}\right)=x^{m} y^{n}$.
f is well-defined. A representation of an element of Q_{8} as $i^{m} j^{n}$ is not unique: if $i^{m} j^{n}=$ $i^{m^{\prime}} j^{n^{\prime}}$ then $i^{m-m^{\prime}}=j^{n^{\prime}-n}$, so $m-m^{\prime}=2 a$ and $n^{\prime}-n=2 b$ where $a \equiv b \bmod 2$ (why?). Then $x^{m-m^{\prime}}=\left(x^{2}\right)^{a}=\left(y^{2}\right)^{a}=\left(y^{2}\right)^{b}=y^{n^{\prime}-n}$ by the first two relations in (2.2), so $x^{m} y^{n}=x^{m^{\prime}} y^{n^{\prime}}$.
$\underline{f \text { is a homomorphism. Since } j i j^{-1}=i^{-1} \text { and } j^{2} \text { commutes with } i \text {, check } j^{n} i j^{-n}=i^{(-1)^{n}}, ~ . ~}$ for all $n \in \mathbf{Z} /(4)$. This and the first two relations in (2.2) imply $f: Q_{8} \rightarrow G$ is a homomorphism for reasons similar to the previous mapping $D_{4} \rightarrow G$ being a homomorphism.
f is a bijection. This follows for the same reasons as before, since the image of f includes $f(\bar{i})=x$ and $f(j)=y$ and $\langle x, y\rangle=G$.

[^1]
3. The case of odd p

From now, $p \neq 2$. We'll show the two nonabelian groups of order p^{3}, up to isomorphism, are

$$
\operatorname{Heis}(\mathbf{Z} /(p))=\left\{\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): a, b, c \in \mathbf{Z} /(p)\right\}
$$

and

$$
G_{p}=\left\{\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right): a, b \in \mathbf{Z} /\left(p^{2}\right), a \equiv 1 \bmod p\right\}=\left\{\left(\begin{array}{cc}
1+p m & b \\
0 & 1
\end{array}\right): m, b \in \mathbf{Z} /\left(p^{2}\right)\right\},
$$

where m actually only matters modulo $p .{ }^{4}$ These two constructions both make sense at the prime 2, but in that case the two groups are isomorphic to each other, as we'll see below.

We can distinguish between $\operatorname{Heis}(\mathbf{Z} /(p))$ and G_{p} for $p \neq 2$ by counting elements of order p. In $\operatorname{Heis}(\mathbf{Z} /(p))$,

$$
\left(\begin{array}{ccc}
1 & a & b \tag{3.1}\\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 & n a & n b+\frac{n(n-1)}{2} a c \\
0 & 1 & n c \\
0 & 0 & 1
\end{array}\right)
$$

for $n \in \mathbf{Z}$, so

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)^{p}=\left(\begin{array}{ccc}
1 & 0 & \frac{p(p-1)}{2} a c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

When $p \neq 2, \frac{p(p-1)}{2} \equiv 0 \bmod p$, so all nonidentity elements of $\operatorname{Heis}(\mathbf{Z} /(p))$ have order p. On the other hand, $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ in G_{p} has order p^{2} since $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{n}=\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)$. So $\operatorname{Heis}(\mathbf{Z} /(p)) \neq G_{p}$.

At the prime 2, $\operatorname{Heis}(\mathbf{Z} /(2))$ and G_{2} each contain more than one element of order 2, so $\operatorname{Heis}(\mathbf{Z} /(2))$ and G_{2} are both isomorphic to D_{4} (Theorem 2.1).

Let's look at how matrices combine and decompose in $\operatorname{Heis}(\mathbf{Z} /(p))$ and G_{p} when $p \neq 2$, since this will inform some of our computations later when we classify the nonabelian grousp of order p^{3}. In $\operatorname{Heis}(\mathbf{Z} /(p))$,

$$
\left(\begin{array}{ccc}
1 & a & b \tag{3.2}\\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & a^{\prime} & b^{\prime} \\
0 & 1 & c^{\prime} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & a+a^{\prime} & b+b^{\prime}+a c^{\prime} \\
0 & 1 & c+c^{\prime} \\
0 & 0 & 1
\end{array}\right)
$$

and in G_{p}

$$
\left(\begin{array}{cc}
1+p m & b \tag{3.3}\\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1+p m^{\prime} & b^{\prime} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1+p\left(m+m^{\prime}\right) & b+b^{\prime}+p m b^{\prime} \\
0 & 1
\end{array}\right)
$$

In $\operatorname{Heis}(\mathbf{Z} /(p))$,

$$
\begin{align*}
\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)^{c}\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{a}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{b} \text { by }(3 \tag{3.1}
\end{align*}
$$

[^2]and a particular commutator is
\[

\left[\left($$
\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
$$\right),\left($$
\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}
$$\right)\right]=\left($$
\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
$$\right) .
\]

So if we set

$$
x=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and } y=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

then

$$
\left(\begin{array}{ccc}
1 & a & b \tag{3.4}\\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)=y^{c} x^{a}[x, y]^{b} .
$$

In $G_{p} \subset \operatorname{Aff}\left(\mathbf{Z} /\left(p^{2}\right)\right)$,

$$
\left(\begin{array}{cc}
1+p m & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1+p m & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{b}\left(\begin{array}{cc}
1+p & 0 \\
0 & 1
\end{array}\right)^{m} .
$$

If we set

$$
x=\left(\begin{array}{cc}
1+p & 0 \\
0 & 1
\end{array}\right) \text { and } y=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

then

$$
\left(\begin{array}{cc}
1+p m & b \\
0 & 1
\end{array}\right)=y^{b} x^{m}
$$

and

$$
[x, y]=\left(\begin{array}{lr}
1 & p \\
0 & 1
\end{array}\right)=y^{p}
$$

Lemma 3.1. In a group G, if g and h commute with $[g, h]$ then $\left[g^{m}, h^{n}\right]=[g, h]^{m n}$ for all m and n in \mathbf{Z}, and $g^{n} h^{n}=(g h)^{n}[g, h]^{\binom{n}{2}}$.

Proof. Exercise.
Lemma 3.2. Let p be prime and G be a nonabelian group of order p^{3} with center Z. Then $|Z|=p, G / Z \cong(\mathbf{Z} /(p)) \times(\mathbf{Z} /(p))$, and $[G, G]=Z$.

Proof. Since G is a nontrivial group of p-power order, its center is nontrivial. Therefore $|Z|=p, p^{2}$, or p^{3}. Since G is nonabelian, $|Z| \neq p^{3}$. For a group G, if G / Z is cyclic then G is abelian. So G being nonabelian forces G / Z to be noncyclic. Therefore $|G / Z| \neq p$, so $|Z| \neq p^{2}$. The only choice left is $|Z|=p$, so G / Z has order p^{2}.

Up to isomorphism the only groups of order p^{2} are $\mathbf{Z} /\left(p^{2}\right)$ and $\mathbf{Z} /(p) \times \mathbf{Z} /(p)$. Since G / Z is noncyclic, $G / Z \cong \mathbf{Z} /(p) \times \mathbf{Z} /(p)$.

Since G / Z is abelian, we have $[G, G] \subset Z$. Because $|Z|=p$ and $[G, G]$ is nontrivial, necessarily $[G, G]=Z$.
Theorem 3.3. For $p \neq 2$, a nonabelian group of order p^{3} is isomorphic to $\operatorname{Heis}(\mathbf{Z} /(p))$ or G_{p}.

Proof. Let G be a nonabelian group of order p^{3}. Each $g \neq 1$ in G has order p or p^{2}.
By Lemma 3.2, we can write $G / Z=\langle\bar{x}, \bar{y}\rangle$ and $Z=\langle z\rangle$. For $g \in G, g \equiv x^{i} y^{j} \bmod Z$ for some integers i and j, so $g=x^{i} y^{j} z^{k}=z^{k} x^{i} y^{j}$ for some $k \in \mathbf{Z}$. If x and y commute then G is abelian (since z^{k} commutes with x and y), which is a contradiction. Thus x and y do not commute. Therefore $[x, y]=x y x^{-1} y^{-1} \in Z$ is nontrivial, so $Z=\langle[x, y]\rangle$. Therefore we can use $[x, y]$ for z, showing $G=\langle x, y\rangle$.

Let's see what the product of two elements of G looks like. Using Lemma 3.1,

$$
\begin{equation*}
x^{i} y^{j}=y^{j} x^{i}[x, y]^{i j}, \quad y^{j} x^{i}=x^{i} y^{j}[x, y]^{-i j} . \tag{3.5}
\end{equation*}
$$

This shows we can move every power of y past every power of x on either side, at the cost of introducing a (commuting) power of $[x, y]$. So every element of $G=\langle x, y\rangle$ has the form $y^{j} x^{i}[x, y]^{k}$. (We write in this order because of (3.4).) A product of two such terms is

$$
\begin{aligned}
y^{c} x^{a}[x, y]^{b} \cdot y^{c^{\prime}} x^{a^{\prime}}[x, y]^{b^{\prime}} & =y^{c}\left(x^{a} y^{c^{\prime}}\right) x^{a^{\prime}}[x, y]^{b+b^{\prime}} \\
& =y^{c}\left(y^{c^{\prime}} x^{a}[x, y]^{a^{\prime}}\right) x^{a^{\prime}}[x, y]^{b+b^{\prime}} \quad \text { by (3.5) } \\
& =y^{c+c^{\prime}} x^{a+a^{\prime}}[x, y]^{b+b^{\prime}+a c^{\prime}} .
\end{aligned}
$$

Here the exponents are all integers. Comparing this with (3.2), it appears we have a homomorphism $\operatorname{Heis}(\mathbf{Z} /(p)) \rightarrow G$ by

$$
\left(\begin{array}{ccc}
1 & a & b \tag{3.6}\\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \mapsto y^{c} x^{a}[x, y]^{b} .
$$

After all, we just showed multiplication of such triples $y^{c} x^{a}[x, y]^{b}$ behaves like multiplication in $\operatorname{Heis}(\mathbf{Z} /(p))$. But there is a catch: the matrix entries a, b, and c in $\operatorname{Heis}(\mathbf{Z} /(p))$ are integers modulo p, so the "function" (3.6) from $\operatorname{Heis}(\mathbf{Z} /(p))$ to G is only well-defined if x, y, and $[x, y]$ all have p-th power 1 (so exponents on them only matter $\bmod p$). Since $[x, y]$ is in the center of G, a subgroup of order p, its exponents only matter modulo p. But maybe x or y could have order p^{2}.

Well, if x and y both have order p, then there is no problem with (3.6). It is a well-defined function $\operatorname{Heis}(\mathbf{Z} /(p)) \rightarrow G$ that is a homomorphism. Since its image contains x and y, the image contains $\langle x, y\rangle=G$, so the function is onto. $\operatorname{Both} \operatorname{Heis}(\mathbf{Z} /(p))$ and G have order p^{3}, so our surjective homomorphism is an isomorphism: $G \cong \operatorname{Heis}(\mathbf{Z} /(p))$.

What happens if x or y has order p^{2} ? In this case we anticipate that $G \cong G_{p}$. In G_{p}, two generators are $g=\left(\begin{array}{cc}1+p & 0 \\ 0 & 1\end{array}\right)$ and $h=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, where g has order p, h has order p^{2}, and $[g, h]=h^{p}$. We want to show our abstract G also has a pair of generators like this.

Starting with $G=\langle x, y\rangle$ where x or y has order p^{2}, without loss of generality let y have order p^{2}. It may or may not be the case that x has order p. To show we can change generators to make x have order p, we will look at the p-th power function on G. For all $g \in G, g^{p} \in Z$ since $G / Z \cong \mathbf{Z} /(p) \times \mathbf{Z} /(p)$. Moreover, the p-th power function on G is a homomorphism: by Lemma 3.1, $(g h)^{p}=g^{p} h^{p}[g, h]^{p(p-1) / 2}$ and $[g, h]^{p}=1$ since $[G, G]=Z$ has order p, so

$$
(g h)^{p}=g^{p} h^{p} .
$$

Since y^{p} has order p and $y^{p} \in Z, Z=\left\langle y^{p}\right\rangle$. Therefore $x^{p}=\left(y^{p}\right)^{r}$ for some $r \in \mathbf{Z}$, and since the p-th power function on G is a homomorphism we get $\left(x y^{-r}\right)^{p}=1$, with $x y^{-r} \neq 1$ since $x \notin\langle y\rangle$. So $x y^{-r}$ has order p and $G=\langle x, y\rangle=\left\langle x y^{-r}, y\right\rangle$. We now rename $x y^{-r}$ as x, so $G=\langle x, y\rangle$ where x has order p and y has order p^{2}.

We are not guaranteed that $[x, y]=y^{p}$, which is one of the relations for the two generators of G_{p}. How can we force this relation to occur? Well, since $[x, y]$ is a nontrivial element of $[G, G]=Z, Z=\langle[x, y]\rangle=\left\langle y^{p}\right\rangle$, so

$$
\begin{equation*}
[x, y]=\left(y^{p}\right)^{k}, \tag{3.7}
\end{equation*}
$$

where $k \not \equiv 0 \bmod p$. Let ℓ be a multiplicative inverse for $k \bmod p$ and raise both sides of (3.7) to the ℓ th power: using Lemma 3.1,

$$
[x, y]^{\ell}=\left(y^{p k}\right)^{\ell} \Longrightarrow\left[x^{\ell}, y\right]=y^{p} .
$$

Since $\ell \not \equiv 0 \bmod p,\langle x\rangle=\left\langle x^{\ell}\right\rangle$, so we can rename x^{ℓ} as x : now $G=\langle x, y\rangle$ where x has order p, y has order p^{2}, and $[x, y]=y^{p}$.

Because $[x, y]$ commutes with x and y and $G=\langle x, y\rangle$, every element of G has the form $y^{j} x^{i}[x, y]^{k}=[x, y]^{k} y^{j} x^{i}=y^{p k+j} x^{i}$. Let's see how such products multiply:

$$
\begin{aligned}
y^{b} x^{m} \cdot y^{b^{\prime}} x^{m^{\prime}} & =y^{b}\left(x^{m} y^{b^{\prime}}\right) x^{m^{\prime}} \\
& =y^{b}\left(y^{b^{\prime}} x^{m}[x, y]^{m b^{\prime}}\right) x^{m^{\prime}} \\
& =y^{b+b^{\prime}} x^{m}\left(y^{p}\right)^{m b^{\prime}} x^{m^{\prime}} \\
& =y^{b+b^{\prime}+p m b^{\prime}} x^{m+m^{\prime}} .
\end{aligned}
$$

Comparing this with (3.3), we have a homomorphism $G_{p} \rightarrow G$ by

$$
\left(\begin{array}{cc}
1+p m & b \\
0 & 1
\end{array}\right) \mapsto y^{b} x^{m} .
$$

(This function is well-defined since on the left side m matters $\bmod p$ and b matters $\bmod p^{2}$ while $x^{p}=1$ and $y^{p^{2}}=1$.) This homomorphism is onto since x and y are in the image, so it is an isomorphism since G_{p} and G have equal order: $G \cong G_{p}$.

4. Nonisomorphic groups with the same subgroup lattice

When $p=2$, the five groups of order 8 have different subgroup lattices. This is almost entirely explained by counting subgroups of order 2 (equivalently, counting elements of order 2): 1 for $\mathbf{Z} /(8), 3$ for $\mathbf{Z} /(2) \times \mathbf{Z} /(4), 7$ for $(\mathbf{Z} /(2))^{3}, 5$ for D_{4}, and 1 for Q_{8}. While the count is the same for $\mathbf{Z} /(8)$ and Q_{8}, these groups have different numbers of subgroups of order 4: 1 for $\mathbf{Z} /(8)$ and 3 for Q_{8}.

For $p \neq 2$, we'll show the subgroup lattices of G_{p} and $\mathbf{Z} /(p) \times \mathbf{Z} /\left(p^{2}\right)$ are the same.
Theorem 4.1. For odd prime p, both G_{p} and $\mathbf{Z} /(p) \times \mathbf{Z} /\left(p^{2}\right)$ have the same subgroup lattice:

- $p+1$ subgroups of order p and $p+1$ subgroups of order p^{2},
- a unique subgroup H_{0} of order p^{2} that contains all subgroups of order p,
- a unique subgroup K_{0} of order p that is contained in all subgroups of order p^{2},
- each subgroup of order p^{2} besides H_{0} contains K_{0} as its only subgroup of order p,
- each subgroup of order p besides K_{0} has H_{0} as the only subgroup of order p^{2} containing it.

Figure 1. Subgroup lattice for G_{3}.
Figure 1 is the subgroup lattice for G_{3}. It reflects all 5 properties of Theorem 4.1.
Theorem 4.1 is false for $p=2: G_{2} \cong D_{4}$ has 5 subgroups of order 2 and 3 subgroups of order 4 while $\mathbf{Z} /(2) \times \mathbf{Z} /(4)$ has 3 subgroups of order 2 and 3 subgroups of order 4. All nonisomorphic groups of order 8 have different subgroup lattices.
Proof. Case 1: subgroups of $\mathbf{Z} /(p) \times \mathbf{Z} /\left(p^{2}\right)$. Elements of order 1 or p are (a, b) where $b \in p \mathbf{Z} /\left(p^{2}\right)$, so there are $p^{2}-1$ elements of order p. Different subgroups of order p intersect trivially, so the number of subgroups of order p is $\left(p^{2}-1\right) /(p-1)=p+1$.

The elements of order 1 or p fill up the subgroup $H_{0}:=\left\{(a, b): b \in p \mathbf{Z} /\left(p^{2}\right)\right\}$, which has order p^{2} and is not cyclic. Since H_{0} contains all the subgroups of order p, other subgroups of order p^{2} must have an element of order p^{2} and are therefore cyclic. Elements of order p^{2} are (a, b) where $b \in\left(\mathbf{Z} /\left(p^{2}\right)\right)^{\times}$, and the subgroup $\langle(a, b)\rangle$ has a generator of the form $(c, 1)$. As c varies in $\mathbf{Z} /(p)$, the p subgroups $\langle(c, 1)\rangle$ have order p^{2} and are distinct, so the number of subgroups of order p^{2} is $p+1$.

In each cyclic subgroup $\langle(c, 1)\rangle$ of order p^{2}, the subgroup of order p is $K_{0}=\langle p(c, 1)\rangle=$ $\langle(p, 0)\rangle$, which is independent of c. So K_{0} is the only subgroup of order p in subgroups of order p^{2} besides H_{0}.

Case 2: subgroups of G_{p}. Check by induction that for integers $n \geq 0$,

$$
\left(\begin{array}{cc}
1+p m & b \\
0 & 1
\end{array}\right)^{n}=\left(\begin{array}{cc}
1+n p m & \left(n+\frac{n(n-1)}{2} p m\right) b \\
0 & 1
\end{array}\right)
$$

Since p is odd, $p(p-1) / 2$ is divisible by p, so

$$
\left(\begin{array}{cc}
1+p m & b \\
0 & 1
\end{array}\right)^{p}=\left(\begin{array}{cc}
1 & p b \\
0 & 1
\end{array}\right)
$$

Therefore $\left(\begin{array}{cc}1+p m & b \\ 0 & 1\end{array}\right)^{p}$ is trivial if and only if $b \in p \mathbf{Z} /\left(p^{2}\right)$. Writing $b \equiv p \ell \bmod p^{2}$,

$$
\left(\begin{array}{cc}
1+p m & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1+p m & p \ell \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & p \ell \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1+p m & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & p \\
0 & 1
\end{array}\right)^{\ell}\left(\begin{array}{cc}
1+p & 0 \\
0 & 1
\end{array}\right)^{m}
$$

for $\ell, m \in \mathbf{Z} /(p)$. So there are $p^{2}-1$ elements of order p.
Check $\left(\begin{array}{ll}1 & p \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}1+p & 0 \\ 0 & 1\end{array}\right)$ commute, so the elements of G_{p} with order p are the nontrivial elements of the subgroup $H_{0}:=\left\langle\left(\begin{array}{cc}1 & p \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1+p & 0 \\ 0 & 1\end{array}\right)\right\rangle$, which has order p^{2} and is not cyclic. A subgroup of G_{p} with order p^{2} besides H_{0} must have an element of order p^{2}, so subgroups of order p^{2} besides H_{0} are cyclic. Elements of G_{p} with order p^{2} are $\left(\begin{array}{cc}1+p m & b \\ 0 & 1\end{array}\right)$ where $b \in\left(\mathbf{Z} /\left(p^{2}\right)\right)^{\times}$and $\left\langle\left(\begin{array}{cc}1+p m & b \\ 0 & 1\end{array}\right)\right\rangle$ has a generator of the form $\left(\begin{array}{c}1+p c \\ 0\end{array} 1\right.$ subgroups for different c are distinct, so the number of subgroups of order p^{2} is $p+1$. In $\left\langle\left(\begin{array}{cc}1+p c & 1 \\ 0 & 1\end{array}\right)\right\rangle$, the subgroup of order p is $K_{0}=\left\langle\left(\begin{array}{cc}1+p c & 1 \\ 0 & 1\end{array}\right)^{p}\right\rangle=\left\langle\left(\begin{array}{ll}1 & p \\ 0 & 1\end{array}\right)\right\rangle$, which is independent of
c. Therefore K_{0} is the only subgroup of G_{p} with order p that is contained in subgroups of order p^{2} other than H_{0}.

5. Counting p-Groups beyond order p^{3}

Let's summarize what is known about the count of groups of small p-power order.

- There is one group of order p up to isomorphism.
- There are two groups of order p^{2} up to isomorphism: $\mathbf{Z} /\left(p^{2}\right)$ and $\mathbf{Z} /(p) \times \mathbf{Z} /(p)$.
- There are five groups of order p^{3} up to isomorphism, but our explicit description of them is not uniform in p since the case $p=2$ used a separate treatment.
For groups of order p^{4}, the count is no longer uniform in p : there are 14 groups of order 2^{4} and 15 groups of order p^{4} for $p \neq 2$. This is due to Hölder [7] and Young [13]. A recent account of this result by Adler, Garlow, and Wheland is on the arXiv [1]. For groups of order p^{5}, the count depends on $p \bmod 12$ as shown in the table below. This is due to Miller [9] for $p=2$ and Bagnera [2] for $p>2$. Tables listing groups of order 32 and 243 are available at Tim Dokchitser's site [6]. The first count of groups of order p^{6} is due to Potron [12], with a modern count being made by Newman, O'Brien, and Vaughan-Lee [10]. A count of groups of order p^{7} is due to O'Brien and Vaughan-Lee [11].

$$
\begin{array}{c|c|c|c|c|c|c}
p & 2 & 3 & 1 \bmod 12 & 5 \bmod 12 & 7 \bmod 12 & 11 \bmod 12 \\
\hline \text { Groups of order } p^{5} & 51 & 67 & 2 p+71 & 2 p+67 & 2 p+69 & 2 p+65
\end{array}
$$

References

[1] J. D. Adler, M. Garlow, and E. R. Wheland, "Groups of order p^{4} made less difficult." Online at https:// arxiv.org/abs/1611.00461.
[2] G. Bagnera, "La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo," Ann. Mat. Pura Appl. 1 (1898), 137-228.
[3] A. Cayley, "On the theory of groups, as depending on the symbolic equation $\theta^{n}=1$, Part III" Philos. Mag. 18 (1859), 34-37. Online at https://www.tandfonline.com/doi/abs/10.1080/ 14786445908642716.
[4] A. Cayley, "On the theory of groups," Amer. J. Math. 11 (1889), 139-157. Online at https://archive. org/details/jstor-2369415.
[5] F. N. Cole and J. W. Glover, "On groups whose orders are products of three prime factors," Amer. J. Math. 15 (1893), 191-220. Online at https://www.jstor.org/stable/2369839.
[6] T. Dokchitser, Group Names, https://people.maths.bris.ac.uk/~matyd/GroupNames/.
[7] O. Hölder, "Die Gruppen der Ordnungen p^{3}, $p q^{2}$, pqr, p^{4}," Math. Ann. 43 (1893), 301-412. Online at https://eudml.org/doc/157685.
[8] A. B. Kempe, "A memoir on the theory of mathematical form," Phil. Trans. 177 (1886), 1-70. Online at https:/ /royalsocietypublishing.org/doi/10.1098/rstl.1886.0002.
[9] G. A. Miller, "The regular substitution groups whose order is less than 48," Quart. J. Math. 28 (1896), 232-284.
[10] M. F. Newman, E. A. O’Brien, and M. R. Vaughan-Lee, "Groups and nilpotent Lie rings whose order is the sixth power of a prime," J. Algebra 278 (2004), 383-401.
[11] E. A. O'Brien and M. R. Vaughan-Lee, "The groups of order p^{7} for odd prime p," J. Algebra 292 (2005), 243-258.
[12] M. Potron, "Sur quelques groupes d'ordre p^{6}," Ph.D. thesis, Gauthier-Villars, Paris, 1904.
[13] J. Young, "On the determination of the groups whose order is a power of a prime," Amer. J. Math. 15 (1893), 124-178. Online at https://www.jstor.org/stable/2369564.

[^0]: ${ }^{1}$ The page https://math.stackexchange.com/questions/1023341 gives a nonobvious description of the trivial group by generators and relations.
 ${ }^{2}$ See https://kconrad.math.uconn.edu/blurbs/grouptheory/finite-abelian.pdf.

[^1]: ${ }^{3}$ We map from D_{4} or Q_{8} to G rather than in the other direction because D_{4} and Q_{8} are known groups, so it is better to start there.

[^2]: ${ }^{4}$ The notation G_{p} for this group is not standard. I don't know a standard "matrix group" notation for it.

