
Lens on the endpoint: Hunting for malicious software
through endpoint data analysis

Ahmet Salih Buyukkayhan1, Alina Oprea1, Zhou Li2, and William Robertson1

1 Northeastern University, Boston, MA, USA,
2 RSA Laboratories, Bedford, MA, USA

Abstract. Organizations are facing an increasing number of criminal threats
ranging from opportunistic malware to more advanced targeted attacks. While
various security technologies are available to protect organizations’ perimeters,
still many breaches lead to undesired consequences such as loss of proprietary
information, financial burden, and reputation defacing. Recently, endpoint moni-
toring agents that inspect system-level activities on user machines started to gain
traction and be deployed in the industry as an additional defense layer. Their ap-
plication, though, in most cases is only for forensic investigation to determine the
root cause of an incident.
In this paper, we demonstrate how endpoint monitoring can be proactively used
for detecting and prioritizing suspicious software modules overlooked by other
defenses. Compared to other environments in which host-based detection proved
successful, our setting of a large enterprise introduces unique challenges, includ-
ing the heterogeneous environment (users installing software of their choice),
limited ground truth (small number of malicious software available for training),
and coarse-grained data collection (strict requirements are imposed on agents’
performance overhead). Through applications of clustering and outlier detection
algorithms, we develop techniques to identify modules with known malicious be-
havior, as well as modules impersonating popular benign applications. We lever-
age a large number of static, behavioral and contextual features in our algorithms,
and new feature weighting methods that are resilient against missing attributes.
The large majority of our findings are confirmed as malicious by anti-virus tools
and manual investigation by experienced security analysts.

Keywords: Endpoint data analysis, Enterprise malware detection, Software im-
personation, Security analytics, Outlier detection

1 Introduction
Malicious activities on the Internet are increasing at a staggering pace. The 2015 Ver-
izon DBIR report [36] highlighted that in 2015 alone 70 million pieces of malware
were observed across 10,000 organizations with a total estimated financial loss of 400
million dollars. Enterprises deploy firewalls, intrusion-detection systems, and other se-
curity technologies on premise to prevent breaches. However, most of these protections
are only in effect within the organization perimeter. When users travel or work remotely,
their devices lack the network-level protections offered within the organization and are
subject to additional threats.



Recently, many organizations started to deploy endpoint monitoring agents [34] on
user machines with the goal of protecting them even outside the enterprise perime-
ter. Mandiant [24] reports that in a set of 4 million surveyed hosts, 2.8 million hosts
have endpoint instrumentation installed. These agents record various activities related
to downloaded files, installed applications, running processes, active services, sched-
uled tasks, network connections, user authentication and other events of interest, and
send the collected data to a centralized server for analysis. Since stringent requirements
are imposed on the performance of these tools, they are usually lightweight and collect
coarse-grained information. Today, this data is used mainly for forensic investigation,
once an alert is triggered by other sources.

We believe that endpoint monitoring offers a huge opportunity for detection and
mitigation of many malicious activities that escape current network-side defenses. End-
point agents get visibility into different types of events such as registry changes and
creation of executable files, which do not appear in network traffic. Moreover, existing
research in host-based detection methods (e.g., [1, 12, 19, 2, 31, 27]) confirms our in-
sight that endpoint monitoring can be used successfully for proactive breach detection.
Nevertheless, to the best of our knowledge, endpoint monitoring technologies have not
yet been used for this goal, as a number of challenges need to be overcome. Most ac-
curate host-based detection technologies rely on much finer-grained data (e.g., system
calls or process execution) than what is collected by endpoint agents. Additionally, pro-
duction environments in large organizations need to handle up to hundreds of thousands
of machines, with heterogeneous software configurations and millions of software vari-
ants. Ground truth is inherently limited in this setting, since we aim to detect malware
that is already running on enterprise hosts, and as such has bypassed the security pro-
tections already deployed within the enterprise.

In this paper, we analyze endpoint data collected from a large, geographically dis-
tributed organization (including 36K Windows machines), and demonstrate how it can
be used for detecting hundreds of suspicious modules (executables or DLLs) overlooked
by other security controls. Our dataset includes a variety of attributes for 1.8 million dis-
tinct Windows modules installed on these machines. The enterprise of our study uses
multiple tools to partially label the modules as whitelisted (signed by reputable ven-
dors), blacklisted (confirmed malicious by manual investigation), graylisted (related to
adware), or unknown. Interestingly, only 6.5% of modules are whitelisted, very small
number (534) are blacklisted, while the large majority (above 90%) have unknown sta-
tus. As the ground truth of malicious modules in our dataset in very limited, well-known
techniques for malware detection such as supervised learning are ineffective.

We use several insights to make the application of machine learning successful in
our setting. We first leverage the set of behaviors observed in blacklisted modules to
identify other modules with similar characteristics. Towards that goal, we define a simi-
larity distance metric on more than 50 static, behavioral and contextual features, and use
a density-based clustering algorithm to detect new modules with suspicious behavior.
Second, while enterprise hosts have relatively heterogeneous software configuration, it
turns out that popular Windows executables or system processes have a large user base.
We exploit the homogeneity of these whitelisted applications for detecting an emerging
threat, that of software impersonation attacks [26]. We detect a class of attacks im-

2



personating static attributes of well-known files by a novel outlier-detection method.
In both settings we use new dynamic feature weighting methods resilient to missing
attributes and limited ground truth.

In summary, our contributions are highlighted below.
Endpoint-data analysis for malware detection. We are the first to analyze endpoint
data collected from a realistic deployment within a large enterprise with the goal of
proactively detecting suspicious modules on users’ machines. We overcome challenges
related to (1) lightweight instrumentation resulting in coarse-grained event capturing;
(2) the heterogeneous environment; (3) limited ground truth; (4) missing attributes in
the dataset.
Prioritization of suspicious modules. We propose a density clustering algorithm for
prioritizing the most suspicious modules with similar behavior as the blacklisted mod-
ules. Our algorithm reaches a precision of 90.8% and recall of 86.7% (resulting in
F1 score of 88.7%) relative to manually-labeled ground truth. Among a set of 388K
modules with unknown status, we identified 327 executable and 637 DLL modules
with anomalous behavior and the false positive rates are as low as 0.11% and 0.0284%
respectively.

:::::::
Through

::::::
manual

:::::::::::
investigation,

::::
we

::::::::
confirmed

:::
as

::::::::
malicious

::::::
94.2%

::
of

:::
the

:::
top

::::::
ranked

::
69

::::::::::
executables

::::
and

:::::
100%

:::
of

:::
the

:::
top

:::
20

:::::
DLL

::::::::
modules.

::::::
Among

::::::
these,

::
69

::::::::
malicious

:::::::
modules

:::::
were

::::
new

:::::::
findings

:::::::::
confirmed

:::::::::
malicious

::
by

:::::::
manual

:::::::::::
investigation,

:::
but

:::
not

:::::::
detected

::
by

::::::::::
VirusTotal.

Software impersonation. We propose an outlier-detection algorithm to identify mal-
ware impersonating popular software. Our algorithm detected 44 outlying modules in a
set of 7K unknown modules with similar characteristics as popular whitelisted modules,
with precision of 84.09%.

::::::
Among

:::::
them,

::
12

::::::::
modules

:::
are

:::
our

::::
new

:::::::
findings

:::::::::
considered

::::::::
malicious

::
by

:::::::
manual

:::::::::::
investigation,

:::
but

:::
not

:::::::
detected

:::
by

:::::::::
VirusTotal.

Novel feature weighting methods. To account for missing attributes and limited ground
truth, we propose new feature weighting methods taking into account the data distribu-
tion. We compare them with other well-known feature weighting methods and demon-
strate better accuracy across multiple metrics of interest.

2 Background and overview

In this section we first describe the problem definition, adversarial model, and chal-
lenges we encountered. We then give an overview of our system, provide details on the
dataset we used for analysis, and mention ethical considerations.

2.1 Problem statement

Organizations deploy network-perimeter defenses such as firewalls, anti-virus software,
and intrusion detection systems to protect machines within their network. To obtain
better visibility into user activities and offer protection outside of enterprise perimeter,
organizations started to deploy endpoint agents on user machines [34]. These agents
monitor processes running on end hosts, binaries downloaded from the web, modifi-
cations to system configuration or registries through lightweight instrumentation, and
report a variety of recorded events to a centralized server for analysis.

3



In the organization of our study, machines are instrumented with host agents that
perform regular and on-demand scans, collect aggregate behavioral events, and send
them to a centralized server. We address the problem of discovering highly risky and
suspicious modules installed on Windows machines through analysis of this realistic,
large-scale dataset. Specifically, we are looking for two common types of malicious
behavior:

- Starting from a set of blacklisted modules vetted by security experts, we are inter-
ested in discovering other modules with similar characteristics. With the availability
of malware building kits [7], attackers can easily generate slightly different malware
variants to evade signature detection tools. We leverage the insight that malicious vari-
ants produced by these toolkits share significant similarity in their behavior and other
characteristics.

- Starting from a set of whitelisted modules considered legitimate, we look for malicious
files impersonating them. System process impersonation has been used by Advanced
Persistent Threats (APT) campaigns for evasion [25, 26]. Detecting this in isolation is
difficult, but here we exploit the homogeneity of whitelisted files in an enterprise setting.
These files have a large user base and should have similar behavior across different ma-
chines they are installed on. Our main insight is that malicious files impersonating these
popular modules are significantly different in their behavior and contextual attributes.

Adversarial model. We assume that endpoint machines are subject to compromise
through various attack vectors. An infection could happen either inside the enterprise
network or outside when users travel or take their machines home. In modern attacks
there are multiple stages in the campaign lifecycle, e.g., a piece of malware is delivered
through email followed by download of second-stage malware that initiates communi-
cation with its command-and-control center and updates its code [23]. We assume that
before attackers have complete control of the machine, the endpoint agent is able to col-
lect and upload information to the centralized server. Of course, we cannot make any
assumptions about agents once a machine is completely subverted by attackers. How-
ever, our goal is to detect infection early, before it leads to more serious consequences
such as data leakage or compromise of administrator credentials.

We assume that the server storing the endpoint data is protected within the enterprise
perimeter. Breaches involving a compromise of monitoring tools or servers are much
more serious and can be detected through additional defenses, but they are not our
focus. Here we aim to detect and remediate endpoint compromise to prevent a number
of more serious threats.

Challenges. A number of unique challenges arise in our setting. Our dataset is col-
lected from a heterogeneous environment with 1.8 million distinct modules installed on
36K machines. Most users have administrative rights on their machines and can install
software of their choice. Second, we have limited ground truth with less then 10% of
modules labeled as whitelisted, blacklisted or graylisted and the majority having un-
known status. Third, a number of attributes are missing due to machine reboots or dis-
connection from corporate network. Lastly, the monitoring agents collect lightweight
information to minimize their overhead.

4



Analyst  

 

Whitelist 

Module Data 

Blacklist 

Unknown 

Data Querying 

and Processing 

Feature 

Weights 

Computation 

Cluster Blacklist 

Modules 

Detect Similar 

Modules  

Create Coarse 

Clusters 

Detect Outlier 

within Group 

Similarity-based detection 

Outlier detection 

Feature 

Extraction 

Fig. 1. System diagram.

2.2 System overview

Our system analyzes data collected from endpoint agents deployed in a large enterprise.
Our goal is to identify among the large set of modules with unknown status those with
suspicious behavior and prioritize them by their risk. In particular, we are looking for
two types of malicious modules: (1) those with similar behavior as known blacklisted
modules; and (2) those impersonating popular, legitimate whitelisted software. For our
analysis, we employ a large number of features from three categories: static (extracted
from the module’s PE headers), behavioral (capturing file access patterns, process cre-
ation and network access events); and contextual (related to module location on the
machines it is installed).

Our system architecture is illustrated in Figure 1. After we query the
:::
raw data from

the server, we
::::
apply

:::::
some

::::
data

::::::::::::
transformation

:::
and

::::::::::
aggregation

::
in

:::
the

:::::::::
processing

:::::
phase

and extract features from these three categories. We define a module distance metric that
assigns different feature weights for the two scenarios of interest. In case of similarity
detection, high-entropy features are given higher weight and we adapt the DBSCAN
algorithm to account for custom-defined distance metric and missing features. For soft-
ware impersonation we favor features that distinguish malicious from benign files best,
and design a novel two-stage outlier detection process. A detailed description of our
techniques follows in Section 3.

2.3 Dataset

Status #Total #Description #Company Name #Signature

BL 534 440 445 520
WL 117,128 19,881 13,070 2,430
UL 1,692,157 1,304,557 1,314,780 1,503,449

Table 1. Total number of modules in each cat-
egory (BL – blacklisted, WL – whitelisted, UL
– unknown), and those with missing description,
company name and signature fields.

The dataset is collected by endpoint
agents deployed on 36,872 Windows ma-
chines. Agents monitor executable and
DLL modules, and perform scheduled
scans at intervals of three days. Analysts
could also request scans on demand. Data
generated by agents is sent to a central-
ized server. We had access to a snapshot
of the database from August 2015, including 1.8 million distinct modules. Among them,
117K were marked as whitelisted (through custom tools). A small set (534 modules)
were labeled as blacklisted after detailed manual investigation by experienced security
analysts. Note that we did not augment this set with results from anti-virus (AV) soft-
ware, as these tools generate a large amount of alarms on low-risk modules, such as
adware or spyware, which were considered “graylisted” by security analysts.

5



We choose to only use the blacklisted modules as reference of highly risky malicious
activity. The remaining 1.7 million modules have unknown status, including lesser-
known applications and variants of known applications. In total, there are 301K distinct
file names in our dataset.

To illustrate the noisy aspect of our dataset, Table 1 lists the total number of mod-
ules, as well as the number of modules without description, company name or signature
in each category (BL – blacklisted, WL – whitelisted, UL – unknown). As seen in the
table, the large majority of blacklisted modules do not include these fields, but also a
fair number of unknown and whitelisted modules miss them.

To illustrate the heterogeneity of the environment, the left graph in Figure 3.3 shows
the CDF for the number of hosts installing the same file name. The large majority of file
names are installed on few hosts relative to the population. Even among whitelisted file
names, 95% of them are installed on less than 100 hosts. 95% of the blacklisted files
are installed on less than 20 hosts. Only a small percentage of files are extremely pop-
ular and these are mostly Windows executables and system processes or libraries (e.g.,
whitelisted svchost.exe and unknown presentationcore.ni.dll are installed on
36K and 29K machines, respectively).

The right graph in Figure 3.3 shows the CDF for the number of file variants with
same name but distinct SHA256 hashes. Whitelisted and unknown file names include
more variants than blacklisted ones. For instance, whitelisted setup.exe has 1300 vari-
ants, unknown microsoft.visualstudio∼.dll has 26K variants, while the maxi-
mum number of blacklisted variants is 25. This is due to the limited set of blacklisted
modules, as well as the evasive nature of malware changing file name in different vari-
ants.

0.7

0.8

0.9

1.0

0 100 200 300
Host Count

F
ra

ct
io

n 
of

 fi
le

na
m

es

Status
BL
UL
WL

0.7

0.8

0.9

1.0

0 25 50 75 100
Module Count

F
ra

ct
io

n 
of

 fi
le

na
m

es

Status
BL
UL
WL

Fig. 2. CDFs of hosts (left) and modules (right) sharing same filename.

2.4 Ethical considerations

The enterprise’s IT department consented to give us access to a snapshot of the data
for the purpose of this study. We had access to data only within the premises of the
enterprise and were only allowed to export the results presented in the paper. Our dataset
did not include any personal identifying information (e.g., username and source IP of
employee’s machine) that put users’ privacy at risk. We also took measures to prevent
potential information leakage: for instance, the behavior and contextual features were
aggregated across hosts installing the same module.

6



3 System design

We provide here details on our system design and implementation. Our first goal is pri-
oritizing the most suspicious unknown modules with similar behavior as known black-
listed modules. Our second goal is detecting malware impersonating popular file names
(e.g., system processes) through a novel outlier-detection algorithm. Both techniques
can be used to detect suspicious unknown modules, and enlarge the set of blacklisted
modules manually labeled by analysts. They both utilize the same set of 52 (static, be-
havioral, and contextual) features extracted from the dataset (see Section 3.1). However
feature weights and parameters are customized for the two algorithms, as discussed in
Sections 3.2 and 3.3.

3.1 Feature selection

For each module we extract a multi-dimensional feature vector, with features captur-
ing the module’s attributes according to three distinct categories: static, behavioral and
contextual. Table 7 in Appendix A provides a comprehensive list of all features.

Static features. These are mainly extracted from the module’s PE header and include:
(1) descriptive features represented as either string values (description and company
name) or sets (name of imported DLLs and section names); (2) numerical features such
as file size, PE size, PE timestamp, module entropy; and (3) binary features denoting
attributes such as signature present, signature valid, icon present, version information
present, PE type (32 or 64 bit), PE machine (e.g., AMD64), and module packed.

Behavioral features. These are related to the module’s behavior on all hosts where it is
installed. We include features related to: (1) file system access – number of executable
files created, deleted or renamed, files read, physical or logical drives opened; (2) pro-
cess access – number of regular processes, browser or OS processes opened, processes
or remote threads created; and (3) network connections such as set of domains and IP
addresses the module connects to. These events are stored cumulatively at the server
since the time the module was first observed on the network. Since a module might
exist on many machines, we compute average number of events per machine for file
system and process access features.

Contextual features. The endpoint agents collect information about the time when a
module is initially installed on a machine, its full file system path, the user account that
created the module and the full path of all files and processes captured by the behavior
events initiated by the module. We parse the file path and match it to different categories
such as Windows, Systems, ProgramFiles, ProgramData, or AppDataLocal. Addition-
ally, the agents monitor if modules have auto-start functionality and categorizes that
into different types (e.g., logon, services, startup, scheduled task). We also have access
to the user category owning the module (admin, trusted installer or regular user).

From this information, we extract a number of contextual features related to: (1)
file system path – number of directory levels, the path category, number of executable
and non-executable files in the same folder, and number of sub-folders in the path; (2)
path of destination events – the path category of destination files, and number of events
created by the module in the same and in different paths; (3) file’s metadata – file

7



owner, hidden attributes, and days from creation; (4) auto-start functionality – type of
auto-start if enabled. We took the average values across all hosts installing the module.
Final set of features.

::
We

:::::::
initially

:::::::::
considered

:
a
:::::
larger

:::
set

::
of

:::
70

:::::::
features,

:::
but

:::
we

::::::
reduced

::
the

:::
list

::
to

:::
52

:::::::
features

:::
that

:::
are

:::::::
available

::
in
::
at
::::
least

:::
10

:::::::::
blacklisted

::::::::
modules.

:::::
Some

::::::
features

:::::
related

:::
to

::::::
registry

::::::::::::
modifications,

:::::::
process

:::
and

::::
I/O

::::::
activity

:::::
were

:::
not

::::::::::
encountered

::
in

:::
our

::::::
dataset

::
of

:::::::::
blacklisted

::::::::
modules,

:::
but

:::::
could

::
be

:::::::::
applicable

::
to

:::
an

:::::::
enlarged

:::
set

::
of

::::::::
malicious

:::::::
modules.

::::
The

::::
final

:::
list

::
of

:::::::
features

:::
we

::::
used

::
is

:::::
given

::
in

:::::
Table

:
7
::
in

::::::::
Appendix

:::
A.

3.2 Prioritizing suspicious modules

For detecting modules with similar behavior as known blacklisted modules, we first
cluster the set of blacklisted modules, and then identify other unknown modules in these
clusters. We prioritize unknown modules according to their distance to the blacklisted
modules. We describe our definition of module similarity and distance metric, as well
as our feature weighting method that is resilient against missing features.
Clustering. Many clustering algorithms are available in the literature, and we choose
the DBSCAN [9] algorithm for clustering the blacklisted modules on the set of 52
features. Its advantages are that it does not require the number of clusters be specified in
advance, can find arbitrarily-shaped clusters, and can scale to large datasets. DBSCAN
creates clusters starting from core samples, points that have at leastmin sample points
in their neighborhood, and proceeds iteratively by expanding the clusters with points
within distance ε (called neighborhood radius).

We use standard distance metrics for each feature, according to the feature’s type:
L1 distance for integer and real values; binary distance for binary values (d(x, y) = 0
if x = y, and d(x, y) = 1, otherwise); edit distance for strings; Jaccard distance for
sets. The distance between two modules M1 = (x1, . . . , xn) and M2 = (y1, . . . , yn) is
a weighted sum of distances for individual features: d(M1,M2) =

∑n
i=1 wid(xi, yi),

where
∑n
i=1 wi = 1 [14].

Feature weights. One of our main observation is that features should contribute dif-
ferently to overall modules similarity. While there are many established methods for
feature selection and weighting in supervised settings [8, 15], the problem is less stud-
ied in unsupervised settings like ours.

We tested two methods for setting feature weights. Assume that we have n features
in our dataset X = (X1, . . . , Xn). First, a simple method is to set weights uniformly
across all features, wi = 1/n, for i ∈ [1, n]. In the second novel method we intro-
duce, we choose feature weights proportional to the feature’s entropy computed from
the dataset. If feature i is categorical and has m possible values v1, . . . , vm, we de-
fine pij as the probability that feature i takes value vj , for j ∈ [1,m]. If feature i is
numerical, we need to define a number m of bins b1, . . . , bm so that the probability
of feature i belonging to bin bj is pij , for j ∈ [1,m]. Then, the entropy for feature i
is H(Xi) = −

∑m
j=1 pij log(pij). We assign normalized feature weights proportional

to their entropy, according to our intuition that features with higher variability should
contribute more towards module similarity.

Our algorithms need to be resilient against missing features since a large fraction
of behavior features are not available (as machines are offline for extended periods of

8



time, or machines are sometimes rebooted before sending behavior events to the server).
When computing the distance between two missing values, rather than setting it at 0
we choose a fixed, penalty value which is a parameter of our algorithm (the distance
between a missing value and any other existing value is set at the maximum value of
1). Higher penalty results in lower similarity when computing the distance metric, thus
the value of the penalty needs to be carefully calibrated. We elaborate more on optimal
parameter selection in Section 4.
Prioritizing unknown modules. After clustering blacklisted modules with DBSCAN
and the distance metric described above, our next goal is to identify unknown modules
that belong to these clusters. The algorithm is run on 388K unknown modules and
assigns some of them to blacklisted clusters according to their distance to cluster points.
To prioritize the most suspicious ones, we order the unknown modules that belong to a
blacklisted cluster based on their minimum distance to known blacklisted modules. We
describe our results in Section 4.1.

3.3 Impersonation of popular software

For detecting malware impersonating popular, legitimate software, we leverage the
large machine base in our dataset to determine a set of popular modules and their com-
mon characteristics across machines. While it is relatively easy for malware to inherit
some of the static features of popular modules to appear legitimate, in order to imple-
ment its functionality malware will exhibit differences in its behavioral and contextual
features. We leverage this observation to detect a set of modules impersonating popular
file names (e.g., system processes or software installers).

Our algorithm proceeds in two steps. First, we generate a set of “coarse” clusters
whose large majority of modules are popular whitelisted files. Second, we identify a
set of outliers in these clusters whose distance to other whitelisted modules is larger
than the typical distance between legitimate modules in the cluster. The list of detected
outliers is prioritized by the largest distance from legitimate ones. We elaborate on
weight selection, distance computation, and our outlier detection algorithm below.
Weights and distance computation. As described in Section 3.2, the distance between
modules is a sum of feature distances adjusted by weights. However, feature weights
are computed differently in this case since we would like to give higher weights to
features distinguishing benign and malicious modules. Towards this goal, we compute
the information gain of the whole set of features over all whitelisted and blacklisted
modules and define static weights proportional to the feature’s information gain.

Assume thatX = (X1, . . . , Xn, y) is our dataset with n features and label y (black-
listed or whitelisted). Assume that feature i takes m values v1, . . . , vm and let Sij be
the set of records having Xi = vj . The information gain for feature i in dataset X is:

IG(X,Xi) = H(X)−
∑

j∈{1,··· ,m}

|Sij |
|X|

H(Sij)

Here the entropy values H(X) and H(Sij) are computed from two bins (malicious
and benign). We further refine our method to increase the weights of features with
relative stability within the set of whitelisted modules in a cluster. In particular, we

9



Fig. 3. Outlier detection example.

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4
Distance between a pair

F
ra

ct
io

n 
of

 p
ai

rs

Status
WLBL
WLUL
WLWL

Fig. 4. Distance CDF from whitelisted to
whitelisted (WLWL), unknown (WLUL) and
blacklisted (WLBL) modules.

compute the average distance for feature i for all pairs of whitelisted modules (denoted
Avgi) per cluster and use 1/Avgi as a factor proportional to feature i’s stability. We
set Min(1/Avgi,MaxW ) as dynamic weights (MaxW is a threshold that limits the
maximum weight – set at 20). The final feature weights for a cluster are defined as the
product of static (global) and dynamic (cluster-specific) weights and normalized to sum
up to 1. For missing values, we use a penalty value as in Section 3.2.

Coarse cluster selection. We create clusters of modules with popular file names. We
select file names present on a large number of machines (more than a parameter Oγ).
We enforce that our coarse clusters include sufficient benign samples through two con-
ditions: (1) the clusters include minimum Oα whitelisted modules; and (2) the ratio of
whitelisted modules to all modules in a cluster is at least a thresholdOβ . Coarse clusters
should also include at least one unknown (or blacklisted) module for being considered.

To account for generic file names (e.g., setup.exe or update. exe) with variable
behavior, we compute the average distance of all pairs of whitelisted modules in a clus-
ter (denoted Avgwdist) and remove the clusters with Avgwdist larger than a threshold
Oθ. We also remove the modules developed by the company providing us the dataset,
as most of the internal builds exhibit diverse behavior.

Detecting outliers. Figure 4 shows distance CDFs between whitelisted modules, as
well as between whitelisted and blacklisted, and whitelisted and unknown modules in
the coarse clusters. This confirms that blacklisted modules impersonating legitimate
file names are at a larger distance from other whitelisted modules compared to the typ-
ical distance between legitimate modules. Based on this insight, our goal is to identify
unknown modules substantially different from whitelisted ones in the coarse clusters.

Our approach involves measuring the neighborhood distance in a coarse cluster. For
each whitelisted module, we compute the minimum distance to other whitelisted files,
and the neighborhood distance (denoted DistWL) is the maximum of all the minimum
distances. For an unknown module U the distance to the closest whitelisted module
is DistU . Module U is considered an outlier if the ratio R =

DistU
DistWL

> Oλ. We

illustrate this process in Figure 3.3. We experiment with different values of Oλ ≥ 1
(see our results in Section 4.2).

10



4 Evaluation
We evaluated the effectiveness of our system using a snapshot of data from August
2015. Our dataset includes information about 534 blacklisted, 117K whitelisted and 1.7
million unknown modules installed on 36K Windows machines.

For prioritizing modules with known malicious behavior, we use 367 blacklisted
modules whose static features have been correctly extracted. These modules were la-
beled by security experts with the corresponding malware family and we use them as
ground truth to evaluate our clustering-based algorithm. Next, we selected a set of 388K
unknown modules (79K executable and 309K DLL) installed on at most 100 machines
(popular modules have lower chance of being malicious) and identified those that be-
long to the clusters generated by our algorithm. For validating the new findings, we
used external intelligence (VirusTotal), internal AV scan results, as well as manual in-
vestigation by tier 3 security analysts. The results are presented in Section 4.1.

For validating our software impersonation detection algorithm, we used two datasets.
First, we extracted all coarse-clusters with at least one whitelisted and one blacklisted
module, and tested the effectiveness in identifying the blacklisted modules. This dataset
(referred as DS-Outlier-Black) contains 15 clusters and 2K whitelisted, 19 black-
listed, and 2K unknown modules. Second, for higher coverage, we extracted all popular
coarse-clusters (file names installed on more than 10K machines) that had at least one
whitelisted and one unknown module. This dataset (DS-Outlier-Unknown) contains
314 clusters and a total of 11K whitelisted, 14 blacklisted, and 5K unknown modules.
Unknown modules at large minimum distance from other whitelisted modules in these
clusters were detected as outliers. The results are presented in Section 4.2.

::::::
Finally,

::::
both

:::::::::
approaches

:::
are

::::
able

::
to

:::::
detect

:::::::::
malicious

:::::::
modules

:::::
ahead

::
of

::::::::::
off-the-shelf

::::::::
anti-virus

:::::
tools.

::::::
Initally

::::
only

:::
25

:::
out

::
of
::::

327
::::::::
unknown

::::::::::
executables

::::
and

:::
463

:::
out

:::
of

:::
637

:::::::
unknown

::::::
DLLs

:::::
were

::::::
flagged

:::
by

:::::::::
VirusTotal

::::
but

:::::
eight

::::::
months

:::::
later

:::
(in

::::
May

::::::
2016),

::
we

::::::::
uploaded

::::
the

::::::
hashes

::
of

::::::::
detected

:::::::
modules

::
to
::::::::::

VirusTotal
:::::
again

:::
and

:::::::
noticed

::::
that

:
2

:::::::::
executables

::::
and

::
23

::::::
DLLs

::::
were

:::::::
detected

::
in

:::::::
addition

:::
to

:::::::
previous

:::::::
findings

:::::
(from

::::::
August

:::::
2015).

:::
We

::::::::
identified

::
a

::::
total

::
of

::
81

:::::::
modules

:::
(69

:::
by

::::::::
clustering

:::
and

:::
12

::
by

::::::
outlier

::::::::
detection)

::::::::
confirmed

::::::::
malicious

:::::::
through

::::::
manual

::::::::::::
investigation,

:::
but

:::
still

:::
not

:::::::
flagged

::
by

::::::::::
VirusTotal.

4.1 Results on prioritizing malicious modules

Number of modules 367 Blacklisted (273 EXE, 94 DLL)
Features Static only, All Features

Feature weights Uniform, Entropy-based
Missing features penalty ∈ [0.1, 0.8]

DBSCAN Parameters min sample = 2
ε ∈ [0.05, 0.3]

Table 2. Parameters in DBSCAN clustering.

Results on blacklisted modules We use
the 367 blacklisted modules as ground
truth to select optimal values of the
penalty and ε parameter in DBSCAN (we
set min sample = 2 since we observed
clusters with 2 malware samples). Our
goal is to optimize a metric called F1
score that is a weighted average of pre-
cision and recall, but we also consider other metrics (precision, recall, false positives,
false negatives). In our ground truth dataset, 147 modules are labeled as noise (they do
not belong to any cluster). To account for these, we measure coverage, defined as the
percentage of blacklisted modules (excluding the ones in the noise set) that belong to a
cluster of size at least min sample.

11



●

●

●

●

●

80

85

90

95

100

0.1 0.2 0.3 0.4 0.5
Penalty

P
er

ce
nt

ag
e

Metric
● Coverage

Precision
Recall

●

●

●

●

●50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5
Penalty

P
er

ce
nt

ag
e

Metric
● Coverage

Precision
Recall

Fig. 5. Penalty dependence for Static-Unif with ε = 0.1 (left) and All-Ent with ε = 0.2 (right).

We experiment with different parameters in DBSCAN, as detailed in Table 2. We
vary ε in DBSCAN between 0.05 and 0.3 and the penalty of missing features in the
[0.1,0.8] range at intervals of 0.01. We consider and compare four models: (1) Static-
Unif: static features with uniform weights; (2) Static-Ent: static features with entropy
weights; (3) All-Unif: all features with uniform weights; (4) All-Ent: all features with
entropy weights. Most of the features with highest entropy are static features but some
context (time since creation, path-related features) and behavior features (set of con-
tacted IP addresses and created processes) are also highly ranked. We used bins of 7
days for PE timestamp and Days since creation, and bins of 64KB for File Size and PE
Size.

Model Penalty ε Clusters Single clusters FP FN Precision Recall Coverage F1

Static-Unif 0.3 0.13 50 150 55 42 84.67 87.86 99.16 86.24
Static-Ent 0.3 0.15 59 173 34 67 90.52 82.9 92.75 86.55

All-Unif 0.2 0.17 37 215 28 89 92.2 78.8 81.05 84.98
All-Ent 0.1 0.16 49 172 33 50 90.8 86.7 93.03 88.7

Table 3. Optimal performance metrics for 4 models.

Penalty choice. We first fix the value of ε and show various tradeoffs in our metrics de-
pending on penalty (the distance between a missing feature and any other feature value).
Figure 5 (left) shows the dependence on penalty for three different metrics (precision,
recall and coverage) for the Static-Unif model when ε is set at 0.1. As we increase
the penalty, the distance between dissimilar modules increases and the coverage de-
creases as more modules are classified as noise. Also, smaller clusters are created and
the overall number of clusters increases, resulting in higher precision and lower recall.
In Figure 5 the increase in precision is faster than the decrease in recall until penalty
reaches 0.3, which gives the optimal F1 score for the Static-Unif model.

As we include more features in our models (in the All-Unif and All-Ent models), the
penalty contribution should be lower as it intuitively should be inversely proportional to
the space dimension (particularly as a large number of behavior features are missing).
Figure 5 (right) shows how penalty choice affects our metrics in the All-Ent model for ε
fixed at 0.2. Similar trends as in Static-Unif are observed, but a penalty of 0.1 achieves
optimal F1 score. In both cases, results are consistent for different values of ε.

Choice of ε. For optimal penalty values as described above, the graph in Figure 6 shows
the F1 score as a function of the neighborhood size in DBSCAN (ε) for the four models

12



considered. The optimal ε value is slightly larger in models with all features (0.16 for
All-Unif and 0.17 for All-Ent) compared to models using static features only (0.13 for
Static-Unif and 0.15 for Static-Ent). When more features are used, naturally the value
of the neighborhood size in a cluster needs to be enlarged to account for larger distances
between modules and more noise in the feature vectors.

Model comparison. Table 3 gives all metrics of interest for the four models with choice
of ε and penalty parameters achieving optimal F1 score. Several observations based on
Table 3 and Figure 6 are described below:
- Feature weights make a difference. Choosing feature weights proportional to the fea-
ture’s entropy in the blacklisted set improves our metrics compared to choosing weights
uniformly. For static models, precision is increased from 84.97% for uniform weights
to 90.52% for entropy-based weights. For models considering all features, the recall
is improved from 78.8% for uniform weights to 86.7% for entropy weights. The over-
all F1 score for All-Ent is maximum at 88.7% (with precision of 90.8% and recall of
86.7%) compared to Static-Unif at 86.24% and All-Unif at 84.98%.
- Benefit of behavioral and contextual features. Augmenting the feature list with be-
havioral and contextual features has the effect of increasing the F1 score from 86.55%
(in Static-Ent) to 88.7% (in All-Ent). While precision is relatively the same in Static-
Ent and All-Ent, the recall increases from 82.9% in Static-Ent to 86.7% in All-Ent.
An additional benefit of using behavioral and contextual features (which we can not
though quantify in our dataset) is the increased resilience to malware evasion of the
static feature list.
- Coverage and noise calibration. The coverage for the optimal All-Ent model is rela-
tively high at 93.03%, but interestingly the maximum coverage of 99.16% was achieved
by the Static-Unif model (most likely due to the smaller dimension of the feature
space). The model All-Unif performs worse in terms of noise (as 215 single clusters are
generated) and coverage (at 81.05%). This shows the need for feature weight adjustment
particularly in settings of larger dimensions when missing features are common.

● ●
● ● ●

● ● ● ● ● ● ●
● ●

●

●

●
●

●
●

●

25

50

75

0.10 0.15 0.20 0.25 0.30
 ε

F
1 

S
co

re

Model
● All−entropy

All−uniform
Static−entropy
Static−uniform

Fig. 6. F1 score as a function of ε for four models.

Results on unknown modules. We
empirically created the blacklisted
clusters with All-Ent for optimal pa-
rameters ε = 0.16 and penalty= 0.1.
We now compare the list of 388K
unknown modules to all blacklisted
modules. As an optimization, we
first compute the distance between
blacklisted and unknown modules
using only static features and filter
out the ones with distance larger than
ε, leaving 1741 executables and 2391
DLLs. Then, we compute the distance between the remaining unknown and blacklisted
modules using all features. If an unknown module is within the distance threshold ε to
one blacklisted module, we consider it similar but continue to find the closest black-
listed module. The detected modules are prioritized based on their minimum distance
to a blacklisted module. In the end, 327 executables and 637 DLLs were detected.

13



For verification, we uploaded the hashes of these modules to VirusTotal in August
2015 and 25 out of 327 unknown executables and 463 out of 637 unknown DLLs were
flagged by at least one anti-virus engine. The reason for such low match on executable
files is that most of them were not available in VirusTotal and company policies did not
allow us to submit binary files to VirusTotal. When combining VirusTotal with the re-
sults from internal AV scan, we identified 239 out of 327 unknown executable and 549
out of 637 DLLs as suspicious, corresponding to a precision of 73% and 86%, respec-
tively. Among the set of 79K executable and 309K DLLs, there were 88 executable and
88 DLL legitimate modules detected by our algorithm, corresponding to a false positive
rate of 0.11% and 0.0284%, respectively.

::
To

::::::
further

:::::::
confirm

:::
our

::::::::
findings,

:::
we

:::::::
selected

:
a
:::::::
number

::
of

:::
89

:::::::
modules

::::
with

::::::
highest

::::
score

:::
(69

::::::::::
executables

:::
and

:::
20

::::::
DLLs)

:::
and

::::::::
validated

::::
them

::::
with

:::
the

::::
help

::
of

:
a
:::
tier

::
3

::::::
security

::::::
analyst.

::::
The

::::::
analyst

:::::::::
confirmed

:::
65

:::
out

::
of

:::
69

::::::::::
executables

::::
and

::
all

:::
20

:::::
DLL

:::::::
modules

::
as

::::::::
malicious,

::::::::
resulting

::
in

:
a
::::::::
precision

::
of

:::::
94.2%

:::
on

:::::::::
executables

::::
and

:::::
100%

::
on

:::::
DLLs.

:::::::
Another

::::::::
interesting

:::::::
finding

::
is

::::
that

:::
our

:::::::::
techniques

::::::::
detected

::::
new

::::::::
malicious

::::::::
modules

::::::::
confirmed

::
by

:::
the

:::::::
security

:::::::
analyst,

:::
but

::::
not

::::::
flagged

:::
by

::::::::::
VirusTotal.

::
In

::::
total

:::
60

::::::::::
executables

::::
and

:
9

:::::
DLLs

::::
from

:::
the

:::
set

::
of

::
89

::::::::::
investigated

:::::::
modules

:::::
were

::::::::
confirmed

::::::::
malicious

:::
by

:::
the

::::::
security

::::::
analyst,

:::
but

::::
not

:::::::
detected

:::
by

::::::::::
VirusTotal.

:::::
These

::::
new

::::::::
findings

::::::::::
demonstrate

::::
the

:::::
ability

::
of

:::
our

:::::::::
techniques

:::
to

::::::::::
complement

:::::::
existing

:::::::::
anti-virus

::::::::
detection

:::::::::::
technologies,

::::
and

:::
add

::::::
another

:::::::::
protection

::::
layer

:::
on

::::::::
endpoints.

4.2 Results of Outlier Detection
We evaluated the effectiveness of our approach in detecting software impersonation on
two separate datasets (DS-Outlier-Black and DS-Outlier-Unknown). Before de-
scribing the results, we discuss how the parameters of the algorithm are selected.

Parameter selection. In the coarse cluster selection stage, we select popular file names
by comparing the number of module installations to Oγ . We set Oγ to 10K, repre-
senting 25% of our set of monitored machines. This setting captures popular software
(e.g., system processes, common browsers, Java). To ensure that the coarse clusters
include enough benign samples for learning legitimate behavior, we use Oα and Oβ
as the lower-bounds for the number and ratio of whitelisted modules. We set Oα =
5, Oβ = 0.2 in DS-Outlier-Black for larger coverage and Oα = 10, Oβ = 0.1
in DS-Outlier-Unknown. As illustrated in Figure 4, the pairwise distances between
whitelisted modules are usually small (below 0.05 for ≥ 95% pairs), while distances
from whitelisted to unknown and blacklisted modules are much larger. Hence, we only
include stable clusters whose Avgwdist is smaller than the threshold Oθ set at 0.05.

Results on DS-Outlier-Black. We examined the 15 clusters in DS-Outlier-Black

(including at least one blacklisted module) and inspected the 19 blacklisted and 2K un-
known modules in these clusters. We found most filenames targeted by malware being
Windows system files, such as svchost.exe, lsass.exe, dwm.exe, services.exe
and explorer.exe. Malware impersonates these files to avoid causing suspicion as
these processes are always present in Windows Task Manager. Additionally, file names
belonging to popular software, including wmplayer.exe (Windows Media Player),
reader sl .exe (Adobe Acrobat SpeedLauncher) and GoogleUpdate.exe (Google
Installer), are also targets for impersonation.

14



Dataset #FileName #Blacklisted #Malicious #Suspicious #Unknown #Modules Precision%

DS-Outlier-Black 5 12 1 7 0 20 100
DS-Outlier-Unknown 10 0 5 12 7 24 70.8

Table 4. Summary of modules detected as outliers.

After coarse cluster selection, we obtained 5 clusters that met our selection criteria.
These include 12 blacklisted and 12 unknown modules. We first evaluate the coverage
of our algorithm in detecting blacklisted modules. To this end, our outlier detection al-
gorithm captures all 12 blacklisted modules in these 5 clusters, as their distance from
whitelisted modules is above 4, much larger than the threshold Oλ set at 1 (see Sec-
tion 3.3). Among the 12 unknown modules, 8 modules in 4 clusters are alarmed and
are all confirmed to be either malicious (flagged by VirusTotal) or suspicious (expe-
riences unusual behavior, but is not yet confirmed as malicious by domain experts).
In particular, a malicious module impersonating services.exe is detected one week
ahead of VirusTotal, but other instances of this file are also suspicious (one of them is
the ZeroAccess rootkit [26]). The summary of our results is in Table 4.
Results on DS-Outlier-Unknown. We use the data from DS-Outlier-Unknown to
evaluate our approach on a larger set of clusters including at least one unknown mod-
ule, but not necessarily any blacklisted modules. DS-Outlier-Unknown includes 314
clusters with 5K unknown modules, and we show that our approach can still achieve
high precision in this larger dataset.

Dataset Count Oλ

1 4 7 10

DS-Outlier-Black
Confirmed 20 18 8 4
Unknown 0 0 0 0

DS-Outlier-Unknown
Confirmed 17 13 5 4
Unknown 7 4 3 2

Table 5. Detection results based on
different Oλ.

After applying our filtering steps, 14 clus-
ters (with 30 unknown and no blacklisted
modules) were handed to the outlier detec-
tion algorithm. New system processes (e.g.,
mpcmdrun.exe) and new applications (e.g.,
installflashplayer.exe) were identified in
this dataset. Among the 30 unknown modules, 24
were flagged as outliers based on their distance to
the closest whitelisted module.

::::::
Among

:::::
them,

:::
17

::::
were

:::::::::
confirmed

:::::::::
malicious,

:::
but

::::
only

::
5

::::
were

::::::::
detected

::
by

::::::::::
VirusTotal.

:::::
Thus,

::::
our

:::::
outlier

:::::::
detection

:::::::::
technique

::::::::
identified

::
12

::::::::
modules

:::
not

:::::::
detected

:::
by

:::::::::
VirusTotal

::
as

:::::::::
malicious.We

did not find enough information to validate the remaining 7 modules and we labeled
them as unknown. By considering the malicious and suspicious instances as true posi-
tives, the overall precision is 70.8%. In total, 44 modules were detected (combining the
results on DS-Outlier-Black) with an overall precision of 84.09%.

:::
We

:::::::::
summarize

:::
our

:::::::
findings

::
in

:::::
Table

::
4,

:::::::
provide

::::
more

::::::
details

:::
on

:::
the

:::::::
detected

::::::::
modules

::
in

:::::
Table

::
6,

:::
and

::::::
present

:
a
::::
case

:::::
study

::
in

::::::::
Appendix

:::
B.

We
:::
also assess the impact of the threshold Oλ on the result. We increase Oλ incre-

mentally from 1 to 10 and measure the number of confirmed (malicious and suspicious)
and unknown modules for both datasets. The results shown in Table 5 suggest that set-
ting Oλ to 1 achieves both high accuracy and good coverage.

5 Limitations
An adversary with knowledge of the set of features employed by our algorithms might
attempt to evade our detection. Most static features (e.g., description, size) can be mod-
ified easily. Even if the attacker is successful in evading a subset of static features, our

15



Dataset FileName #Blacklisted #Malicious #Suspicious #Unknown Anomalous features

DS-Outlier-Black services.exe 2 1 2 0 Unsigned, path, DLLs
svchost.exe 4 0 0 0 Unsigned, path,

DLLs, size, description,
company name, Auto Logon,

hidden attribute
googleupdate.exe 1 0 1 0 Invalid signature, DLLs,

newly created,
ssdeep similar

dwm.exe 4 0 1 0 Unsigned, path, DLLs
wmplayer.exe 1 0 3 0 Unsigned, description, DLLs,

ssdeep similar to malware
DS-Outlier-Unknown udaterui.exe 0 0 0 1 Invalid signature

googleupdatesetup.exe 0 0 3 0 Unsigned,
path, version info,

similar to malicious by ssdeep
installflashplayer.exe 0 5 5 0 5 Confirmed by VirusTotal,

similar to malicious by ssdeep
intelcphecisvc.exe 0 0 1 0 Unsigned,

size, entropy,
ssdeep similar to malware

mpcmdrun.exe 0 0 1 0 Unsigned, size,
network connections,

ssdeep similar to malware
pwmewsvc.exe 0 0 0 1 Unsigned, no version info,

size, compile time
tphkload.exe 0 0 2 0 Invalid signature,

size, compile time,
creates remote thread

flashplayerupdateservice.exe 0 0 0 3 Invalid signature
vpnagent.exe 0 0 0 1 Invalid signature
vstskmgr.exe 0 0 0 1 Invalid signature

Table 6. Summary of the modules alarmed by outlier detection algorithm.

dynamic feature weighting method still provides resilience against this attack. Since
feature weights are adaptively adjusted in our case, other features (behavior and con-
textual) get higher weights, and static features become less significant.

To evade the behavior and contextual features, malware authors need to adjust multi-
ple functionalities like processes creation, file access and communications which could
incur high cost in the malware development process. For example, we consider ab-
normal remote IPs as one behavior feature and evading this requires changes to the
attacker’s or target’s network infrastructure. At the same time, most contextual features
(e.g., file path, number of executables in the same folder, auto-start functionality) are
dependent on the organization’s configuration, typically not known by attackers.

Another concern is that behavior-based techniques could be vulnerable to mimicry
attacks [5], in which malware simulates system call sequences of legitimate software to
avoid detection. We argue that mimicry attacks are less likely to succeed in our setting
as we collect a more diverse set of behavioral and contextual features.

Advanced attackers could suppress events generated by the monitors or even inject
fake events for evasion. Approaches that protect the agent integrity, like PillarBox [4],
could be deployed to defeat against these attacks.

16



6 Related Work

Malware clustering. To automatically detect malware variants and reduce the security
analysts’ workload, malware clustering techniques (e.g., [1, 37, 2, 31, 29, 18, 17, 27])
were proposed by the security community. These techniques perform static and dy-
namic analysis by running known malware samples in controlled environments. They
extract fine-grained features related to file system access, registry modification, OS ac-
tivities, and network connections. Our work differs from these approaches in the fol-
lowing aspects. First, our features are extracted from data collected by agents installed
on a large set of user machines in an enterprise network. Second, we only have access
to coarse-grained aggregated behavioral events as stringent performance constraints are
imposed on the agents. Moreover, our ground truth is limited with the large majority
of modules (more than 90%) having unknown status. Lastly, we introduce a new set
of contextual features (e.g., location of files on user machines, file metadata, auto-start
functionality) that leverage the large, homogeneous user base in enterprise settings.
Host-based anomaly detection. Many previous works proposed algorithms for detec-
tion of unusual program behavior based on runtime information collected from hosts.
So far, system calls [32, 11, 16, 22, 21], return addresses from call stack [10], system
state changes [1], memory dumps [3], and access activities on files and registries [20]
have been used to detect suspicious behavior. We used a more comprehensive set of
features, extracted from a much larger realistic deployment.

Recently, researchers proposed malware detection systems based on data collected
from a large number of endpoints (e.g., Polonimum [6], AESOP [35],

:::::::::
MASTINO

::::
[30]).

These approaches rely on file-to-machine and file-to-file affinities, and cannot detect
isolated infections. In contrast, our approach is exempted from such restrictions. Gu et.
al. [13] developed a detection system against camouflaged attacks (malicious code in-
jected in legitimate applications at runtime). Our system covers camouflage attacks as
part of software impersonation, but addresses a larger set of attacks. A recent trend in
this area is to combine network and host-based behavioral features for anomaly detec-
tion [40, 33].
Enterprise security analytics.

:::::::
Previous

:::::::
research

:::::::
showed

:::
that

:::::::
security

::::
logs

:::::::
collected

::
in

:
a
::::
large

:::::::::
enterprise,

::::
such

::
as

::::
web

:::::
proxy,

::::::::
Windows

:::::::::::::
authentication,

:::::
VPN,

:::
and

::::::
DHCP,

:::
can

::
be

::::::::
leveraged

::
to

:::::
detect

::::
host

:::::::
outliers

::::
[39],

::::::
predict

::::
host

::::::::
infection

::::
[38],

::::
and

:::::
detect

::::::::
malicious

:::::::::::::
communications

::
in

::::::::::
multi-stage

:::::::::
campaigns

:::::::
initiated

::
by

::::::::
advanced

::::::::
persistent

::::::
threats

::::
[28].

:::
We

:::::
focus

::::
here

::
on

::::::::
analyzing

::
a
:::::::
different

::::::
source

::
of

::::
data

:::::::::
(collected

::
by

::::::::::
monitoring

:::::
agents

:::::::
deployed

:::
on

::::::::
Windows

::::::::
machines)

::::
with

:::
the

::::
goal

::
of

:::::::::
identifying

:::::::::
suspicious

:::::::
modules

:::::::
installed

::
on

::::
user

:::::::::
machines.

:::
We

::::::
believe

::::
that

:::::::::
combining

:::::::
endpoint

::::
and

::::::::::::
network-based

:::::::::
monitoring

:::
data

::
is
:::::
most

::::::::
promising

:::
for

:::::::::
identifying

:::::::::::
increasingly

::::::::::
sophisticated

::::::
threats

::
in
:::
the

::::::
future.

7 Conclusions
In this paper, we present the first study analyzing endpoint data collected from Win-
dows monitoring agents deployed across 36K machines in a large organization with the
goal of identifying malicious modules. We had to address some unforeseen challenges
encountered in a large-scale realistic deployment as ours. Using a large set of static,
behavioral and contextual features, we propose algorithms to identify modules similar

17



to known blacklisted modules, as well as modules impersonating popular whitelisted
software applications. Our validation based on internal AV scanning, VirusTotal and
manual investigation by security experts confirms a large number of detected modules
as malicious, and results in high precision and low number of false positives. In future
work, we plan to extend our techniques to obtain higher coverage and identify other
types of suspicious activities in this environment.

Acknowledgement

:::
We

:::
are

:::::::
grateful

::
to

:::
the

:::::::::
enterprise

::::
who

::::::::
permitted

:::
us

::::::
access

::
to

:::::
their

:::::::
endpoint

::::
data

:::
for

:::
our

:::::::
analysis.

:::
We

::::::
would

:::
like

::
to

:::::
thank

:::::
Justin

::::::::
Lamarre,

:::::
Robin

:::::::
Norris,

::::
Todd

::::::::
Leetham,

:::
and

:::::::::
Christopher

::::::::::
Harrington

::
for

::::
their

::::
help

::::
with

::::::
system

::::::
design

:::
and

:::::::::
evaluation

::
of

:::
our

:::::::
findings,

::
as

::::
well

::
as

:::::
Kevin

:::::::
Bowers

:::
and

::::::
Martin

:::::
Rosa

::
for

:::::::::
comments

::::
and

:::::::::
suggestions

:::
on

:::
our

:::::
paper.

:::
We

:::::
thank

:::
our

:::::::
shepherd

:::::::
Alfonso

::::::
Valdes

:::
and

::::::::::
anonymous

::::::::
reviewers

:::
for

::::
their

::::::::
feedback

::
on

:::::
drafts

::
of

:::
this

:::::
paper.

References

[1] Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated
classification and analysis of internet malware. In: Proceedings of Recent Advances in In-
trusion Detection. pp. 178–197. RAID (2007)

[2] Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-
based malware clustering. In: Proceedings of Network and Distributed System Security
Symposium. NDSS, vol. 9, pp. 8–11 (2009)

[3] Bianchi, A., Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Blacksheep: Detecting compro-
mised hosts in homogeneous crowds. In: Proceedings of of ACM Conference on Computer
and Communications Security. pp. 341–352. CCS, ACM (2012)

[4] Bowers, K.D., Hart, C., Juels, A., Triandopoulos, N.: PillarBox: Combating next-generation
malware with fast forward-secure logging. In: Proceedings of Research in Attacks, Intru-
sions and Defenses. pp. 46–67. RAID (2014)

[5] Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: A quanti-
tative study of accuracy in system call-based malware detection. In: Proceedings of Inter-
national Symposium on Software Testing and Analysis. pp. 122–132. ACM (2012)

[6] Chau, D.H., Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C.: Polonium: Tera-scale
graph mining and inference for malware detection. In: Proceedings of SIAM International
Conference on Data Mining. SDM, SIAM (2011)

[7] Damballa: First zeus, now spyeye. look at the source code now! https://www.damballa.
com/first-zeus-now-spyeye-look-the-source-code-now/ (2011)

[8] Dash, M., Choi, K., Scheuermann, P., Liu, H.: Feature selection for clustering - a filter
solution. In: Proceedings of International Conference on Data Mining. pp. 115–122. ICDM,
IEEE (2002)

[9] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clus-
ters in large spatial databases with noise. In: Proceedings of 2nd ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining. pp. 226–231. KDD, ACM (1996)

[10] Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection using call
stack information. In: Proceedings of IEEE Symposium on Security and Privacy. pp. 62–75.
S&P, IEEE (2003)

18



[11] Gao, D., Reiter, M.K., Song, D.: Gray-box extraction of execution graphs for anomaly de-
tection. In: Proceedings of ACM Conference on Computer and Communications Security.
pp. 318–329. CCS, ACM (2004)

[12] Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting malware in-
fection through IDS-driven dialog correlation. In: Proceedings of USENIX Security Sym-
posium. pp. 12:1–12:16. SECURITY, USENIX Association (2007)

[13] Gu, Z., Pei, K., Wang, Q., Si, L., Zhang, X., Xu, D.: LEAPS: Detecting camouflaged at-
tacks with statistical learning guided by program analysis. In: Proceedings of International
Conference on Dependable Systems and Networks. pp. 57–68. DSN, IEEE/IFIP (2015)

[14] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer (2009)

[15] He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Proceedings of Ad-
vances in Neural Information Processing Systems. pp. 507–514. NIPS (2005)

[16] Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system
calls. Journal of Computer Security 6(3), 151–180 (Aug 1998)

[17] Hu, X., Shin, K.G.: DUET: integration of dynamic and static analyses for malware clus-
tering with cluster ensembles. In: Proceedings of 29th Annual Computer Security Applica-
tions Conference. pp. 79–88. ACSAC (2013)

[18] Hu, X., Shin, K.G., Bhatkar, S., Griffin, K.: MutantX-S: Scalable malware clustering based
on static features. In: Proceedings of USENIX Annual Technical Conference. pp. 187–198.
ATC, USENIX Association (2013)

[19] Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effective and
efficient malware detection at the end host. In: Proceedings of USENIX Security Sympo-
sium. pp. 351–366. SECURITY, USENIX Association (2009)

[20] Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: AccessMiner: Using
system-centric models for malware protection. In: Proceedings of ACM Conference on
Computer and Communications Security. pp. 399–412. CCS, ACM (2010)

[21] Lee, W., Stolfo, S.J.: Data mining approaches for intrusion detection. In: Proceedings of
USENIX Security Symposium. SECURITY, USENIX Association (1998)

[22] Lee, W., Stolfo, S.J., Chan, P.K.: Learning patterns from unix process execution traces
for intrusion detection. In: Proceedings of AAAI Workshop on AI Approaches to Fraud
Detection and Risk Management. pp. 50–56. AAAI (1997)

[23] MANDIANT: APT1: Exposing one of China’s cyber espionage units. Report available
from www.mandiant.com (2013)

[24] Mandiant Consulting: M-TRENDS 2016. https://www2.fireeye.com/rs/

848-DID-242/images/Mtrends2016.pdf (2016)
[25] McAfee Labs: Diary of a “RAT” (Remote Access Tool). https://kc.mcafee.com/

resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/23000/

PD23258/en_US/Diary_of_a_RAT_datasheet.pdf (2011)
[26] McAfee Labs: ZeroAccess Rootkit. https://kc.mcafee.com/resources/sites/

MCAFEE/content/live/PRODUCT_DOCUMENTATION/23000/PD23412/en_US/

McAfee%20Labs%20Threat%20Advisory-ZeroAccess.pdf (2013)
[27] Neugschwandtner, M., Comparetti, P.M., Jacob, G., Kruegel, C.: Forecast: skimming off

the malware cream. In: Proceedings of 27th Annual Computer Security Applications Con-
ference. pp. 11–20. ACSAC (2011)

[28] Oprea, A., Li, Z., Yen, T., Chin, S.H., Alrwais, S.A.: Detection of early-stage enterprise
infection by mining large-scale log data. In: Proceedings of 45th Annual International Con-
ference on Dependable Systems and Networks. pp. 45–56. DSN, IEEE/IFIP (2015)

[29] Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of HTTP-based malware and sig-
nature generation using malicious network traces. In: Proceedings of Symposium on Net-

19



worked Systems Design and Implementation. pp. 391–404. NSDI, USENIX Association
(2010)

[30] Rahbarinia, B., Balduzzi, M., Perdisci, R.: Real-time detection of malware downloads via
large-scale URL → file → machine graph mining. In: Proceedings of ACM Asia Confer-
ence on Computer and Communications Security. pp. 1117–1130. AsiaCCS, ACM (2016)

[31] Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using
machine learning. Journal of Computer Security 19(4), 639–668 (2011)

[32] Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method for de-
tecting anomalous program behaviors. In: Proceedings of IEEE Symposium on Security
and Privacy. pp. 144–155. S&P, IEEE (2001)

[33] Shin, S., Xu, Z., Gu, G.: EFFORT: A new host-network cooperated framework for efficient
and effective bot malware detection. Computer Networks (Elsevier) 57(13), 2628–2642
(Sep 2013)

[34] Symantec: The Rebirth Of Endpoint Security. http://www.darkreading.com/

endpoint/the-rebirth-of-endpoint-security/d/d-id/1322775

[35] Tamersoy, A., Roundy, K., Chau, D.H.: Guilt by association: large scale malware detection
by mining file-relation graphs. In: Proceedings of ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining. pp. 1524–1533. KDD, ACM (2014)

[36] Verizon: 2015 data breach investigations report. http://www.verizonenterprise.

com/DBIR/2015/ (2015)
[37] Wicherski, G.: peHash: A novel approach to fast malware clustering. In: 2nd Workshop on

Large-Scale Exploits and Emergent Threats. LEET, USENIX Association (2009)
[38] Yen, T.F., Heorhiadi, V., Oprea, A., Reiter, M.K., Juels, A.: An epidemiological study of

malware encounters in a large enterprise. In: Proceedings of ACM Conference on Computer
and Communications Security. pp. 1117–1130. CCS, ACM (2014)

[39] Yen, T.F., Oprea, A., Onarlioglu, K., Leetham, T., Robertson, W., Juels, A., Kirda, E.: Bee-
hive: Large-scale log analysis for detecting suspicious activity in enterprise networks. In:
Proceedings of 29th Annual Computer Security Applications Conference. pp. 199–208.
ACSAC (2013)

[40] Zeng, Y., Hu, X., Shin, K.G.: Detection of Botnets Using Combined Host- and Network-
Level Information. In: Proceedings of International Conference on Dependable Systems
and Networks. pp. 291–300. DSN, IEEE/IFIP (2010)

A Feature set
Our feature set includes features with different types, such as string, set, binary, and
numerical attributes. Table 7 displays the full set of features used for our analysis, as
well as their category and type.

B Case Studies
In this section, we present several detailed case studies of our findings. First, we detail
two clusters of similar modules we identified, one with executable modules and another
with DLLs, and we highlight the features that our new findings share with blacklisted
modules. Second, we give more details on some of the detected outliers and emphasize
the difference from the legitimate whitelisted modules they impersonate.

B.1 Similarity
We found 12 unknown modules all with different file names, but similar to a blacklisted
module house of cards s03e01∼.exe. These modules impersonate popular movie

20



Category Sub-category Feature Description Type

Static Descriptive Description File description String
Company name Name of company String
Imported DLLs Name of all imported DLLs Set
Section names Name of all section names Set

Numerical File size Size of module Integer
PE size Size from PE header Integer
PE timestamp Time when PE file was created Date
Entropy Module code entropy Real
DLL count Number of imported DLLs Integer

Attributes Icon present Is icon present? Binary
Version information present Is version information present? Binary
PE type Type of PE (32 or 64 bit) Binary
PE machine Type of targeted CPU (Intel 386, AMD64 etc.) Categorical
Packed Is module

::::::
obfuscated

::
by

:
a
::::
packer? Binary

.NET Is it built with .NET? Binary
Signature Signature name String
Signature valid Is

::::
signing

::::::
certificate

:::
issued

::
by
:
a
::::
trusted

::::::
authority? Binary

Behavior File-system access Written/Renamed executables Avg. number of executables written/renamed Real
Process access Created processes Avg. number of created processes Real

Opened processes Avg. number of opened processes Real
Network connections Set of domains Set of domain

::::
names connected to Set

Set of IPs Set of IP
:::::

addresses connected to Set

Context Module path Path level Avg. number of levels in path Real
Path System Is located in System folder? Real
Path Windows Is located in Windows folder? Real
Path ProgramFiles Is located in ProgramFiles folder? Real
Path ProgramData Is located in ProgramData folder? Real
Path AppDataLocal Is located in AppDataLocal folder? Real
Path AppDataRoaming Is located in AppDataRoaming folder? Real
Path User Is located in user-specific folder? Real
Number executables Avg. number of executables in same folder Real
Number executables same company Avg. number of executables with same company in same folder Real
Number non-executables Avg. number of non-executables in same folder Real
Number sub-folders Avg. number of sub-folders in same folder Real
Machine count Number of installations Integer

Destination path Dest SamePath Is destination path same as the module path? Real
Dest DifferentPath Is destination path different than the module path? Real
Dest System Is destination in System(syswow64/system32) folder? Real
Dest Windows Is destination in Windows folder? Real
Dest ProgramFiles Is destination in ProgramFiles folder? Real
Dest ProgramData Is destination in ProgramData folder? Real
Dest AppDataLocal Is destination in AppDataLocal folder? Real
Dest AppDataRoaming Is destination in AppDataRoaming folder? Real
Dest User Is destination in user-specific folder? Real
Dest Temp Is destination in Temp folder? Real

Metadata Administrator
:::
Does owner

:::
have administrator

::::::
privileges? Real

Hidden attribute Does
:

file have hidden attribute
:
set? Real

Days since creation Avg. days since
:::
first observed on hosts Real

Auto-start Auto Services Does the module have auto-start for services? Real
Auto ServiceDLL Does the module have auto-start for service DLL? Real
Auto Logon Does the module have auto-start for logon? Real
Auto ScheduledTasks Does the module have auto-start for scheduled tasks? Real

Table 7. Final list of features. To note, all contextual features and numerical behavior features are
computed by averaging the corresponding values across all hosts including the module.

21



or application names such as Fifty Shades of Grey∼.exe and VCE Exam

Simulator∼.exe to deceive users. They all imported a single DLL (KERNEL32.dll)
and used the same very common section names (.text, .rdata, .data, .rsrc,

.reloc). One of them is even signed with a rogue certificate. Interestingly, these mod-
ules could not be grouped together only based on their static features, as these are
common among other modules. However, when we consider the behavioral and con-
textual features, they are similar in some unusual ways. For instance, these modules
write executables to a temp directory under AppData and create processes from that
location. Moreover, they used the same autostart method (AutoLogon) to be persistent
in the system and they reside in the same path under the ProgramData folder.

Another DLL cluster including 15 unknown and 1 blacklisted modules is intriguing
as they have randomized 14-character file names (e.g. oXFV2lbFU7dgHY.x64.dll).
The modules are almost identical in their features except for slightly different entropy
values and creation dates. VirusTotal reported 10 of them, but different modules were
detected by different number of AVs. One of them was not detected initially, but when
we queried VirusTotal later the module was detected by 29 AVs. After eight months, the
remaining 5 modules have not yet been detected by any AVs in VirusTotal but confirmed
manually by the security analysts.

B.2 Outlier Detection
Our system identified 2 blacklisted and 3 unknown modules of services.exe as
outliers. We found out that one of them was infected by ZeroAccess [26], a Trojan
horse that steals personal information, replaces search results, downloads, and exe-
cutes additional files. This module was confirmed by VirusTotal one week later after
our detection. For the remaining two, we performed manual analysis. One of the mod-
ules has a description in Korean without a company name and signature. It has addi-
tional section names .itext, .bss, .edata, .tls compared to the legitimate pro-
cess. The module imports some common DLLs such as kernel32 .dll, user32.dll,
oleaut32.dll, but also imports shell32.dll and wsock32.dll, which is unusual
for benign variants of services.exe modules. In addition, the module size is ∼ 1MB
whereas other whitelisted modules have sizes between 110KB to 417KB. Unfortu-
nately, no behavior features were captured in this module but it has several suspicious
contextual features. The module is installed in only a single machine with hidden at-
tributes and it is located in C:\Windows\winservice instead of C:\Windows\System32.
The second detected services.exe module is missing the signature field and im-
ports different set of DLLs. Even though the module is 32 bit, the DLLs it imports
are usually included in 64-bit versions of benign services.exe. It also has some sus-
picious contextual features since it is installed only in a single machine relatively re-
cently and its file system path is ∼\Download\ffadecffa baffc instead of the usual
C:\Windows\System32. Both of these modules were confirmed as malicious by secu-
rity experts in the organization.

22


