Lesson 11: Solving Mechanical System Dynamics Using Laplace Transforms

ET 438a Automatic Control Systems Technology

Learning Objectives

After this presentation you will be able to:
> Draw a free body diagram of a translational mechanical system,
> Write a differential equation that describes the position of a mechanical system as it varies in time.
> Use Laplace transforms to convert differential equations into algebraic equations.
> Take the Inverse Laplace transform and find the time response of a mechanical system.
> Examine the impact of increased and decreased damping on a mechanical system.

Using Laplace Transforms to Solve Mechanical Systems

Example 11-1: Write the differential equation for the system shown with respect to position and solve it using Laplace transform methods. Assume $\mathrm{f}(\mathrm{t})=50 \cdot \mathrm{u}_{\mathrm{s}}(\mathrm{t}) \mathrm{N}, \mathrm{M}=1 \mathrm{Kg}, \mathrm{K}=2.5 \mathrm{~N} / \mathrm{m}$ and $\mathrm{B}=0.5 \mathrm{~N}-\mathrm{s} / \mathrm{m}$. The mass slides on a frictionless surface. $x(0)=0$.

Draw a free body diagram and label the forces

$$
\begin{aligned}
& f(t)-f_{I}(t)-f_{B}(t)-f_{K}(t)=0 \\
& f(t)=f_{I}(t)+f_{B}(t)+f_{K}(t)
\end{aligned}
$$

Laplace Solution to Mechanical Systems (1)

$$
\begin{aligned}
& f(t)=50 \cdot u_{s}(t) \quad f_{I}(t)=M \cdot \frac{d^{2} x(t)}{d t^{2}}=1 \cdot \frac{d^{2} x(t)}{d t^{2}} \quad f_{B}(t)=B \cdot \frac{d x(t)}{d t}=0.5 \cdot \frac{d x(t)}{d t} \\
& f_{K}(t)=K \cdot x(t)=2.5 \cdot x(t) \\
& 50 \\
& 50 U_{5}(t)=1 \frac{d^{2} x(t)}{d t^{2}}+0.5 \frac{d x(t)}{d t}+2.5 \times(t) \\
& \frac{50}{s}=s^{2} x(t) \\
& \frac{50}{s}=\left(s^{2}+0.5 s+2.5\right) \times(s) \\
& 50=5\left(s^{2}+0.5 s+2.5\right) \times(s)
\end{aligned}
$$

Laplace Solution to Mechanical Systems (2)

$$
\frac{50}{s\left(s^{2}+0.5 s+2.5\right)}=x(s)
$$

Solve using inverse Laplace transform and partial fractions expansion
Use Quadratic formula to find factors in denominator
$S=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
s=\frac{-0.5 \pm \sqrt{0.5^{2}-4(1)(2.5)}}{2(1)}
$$

$a=1 \quad b=0.5 \quad c=2.5$
$s=\frac{-0.5}{2} \pm \frac{\sqrt{9.75}}{2}$

$$
\begin{aligned}
& S=0.25 \pm y^{1.561} \\
& S_{1}=0.25+y 1.561=1.581 / 81^{0} \\
& S_{2}=0.25-y 1.561=1.581 /-81^{0}
\end{aligned}
$$

Laplace Solution to Mechanical Systems (3)

Factored form

Partial Fractions Expansion- Find A

$$
x(s)=\frac{50}{S\left(s+1.581 \angle 80^{\circ}\right) S(S+1.581 /-810}=\frac{A}{S}+\frac{B}{5+1.581 / 810^{\circ}}+\frac{C}{s+1.58) /(-10}
$$

Laplace Solution to Mechanical Systems (4)

$$
\begin{aligned}
& \frac{50 s}{s(5+1.581 / 810)(5+1.581 /-80)}\left|=\frac{A 8}{8}+\frac{B S}{S+1.581 / 810}+\frac{C S}{S+1.581 / 180}\right|_{S=0} \\
& \frac{50}{(0+1.581181)\left(0+1.581 /-81^{\circ}\right.}=A+\frac{B 0}{0+1.581 / 81}+\frac{C(0}{0+1.581 / .80} \\
& \frac{50}{2.5}=A \\
& 20=A
\end{aligned}
$$

Laplace Solution to Mechanical Systems (5)
Find B

$$
\begin{aligned}
& \frac{50}{\left(-1.581 / 80^{3}\right)(-1.581480+1.581(-810)}=\frac{A(-1.581(81+1.581 / 80)}{S}+B+\frac{C\left(-1.581410+1.581 \angle 81^{0}\right)}{5+1.581\left(-81^{0}\right.} \\
& \frac{50}{(-1.581(810)(3.123 \angle-90)}=B \quad \frac{50}{-4.937 \angle-90}=B \\
& 10.13 \angle-171^{\circ}=B
\end{aligned}
$$

Laplace Solution to Mechanical Systems (6)
Find C

$$
\left.\begin{aligned}
& \left.\frac{50\left(s+1.581\left(-81^{\circ}\right)\right.}{s\left(s+1.581 / 81^{\circ}\right)\left(s+1.58 T\left(-81^{\circ}\right)\right.}\right|_{s=-1.581 /-81^{\circ}}
\end{aligned}=\frac{A\left(s+1.581\left(-80^{\circ}\right)\right.}{s}+\frac{B(s+1.581 /-81)}{s+1.581 / 81^{\circ}}+\frac{C(s+1.50)\left(-80^{\circ}\right)}{s+1.581 /-80^{\circ}} \right\rvert\,
$$

Laplace Solution to Mechanical Systems (7)

Reverse angle

$$
\begin{aligned}
& (10.12 \angle-189)\left(1 \angle 360^{\circ}=C\right. \\
& 10.13 \angle 171^{\circ}=C
\end{aligned}
$$

Expanded Laplace relationship

$$
\begin{aligned}
& x(s)=\frac{20}{s}+\frac{10.13 \angle 171^{\circ}}{s+1.581 \angle 810^{\circ}}+\frac{10.12 \angle 171^{\circ}}{s+1.581-80^{\circ}} \\
& \dot{\mathcal{J}}^{-1}[x(s)]=\dot{J}^{-1}\left[\frac{20}{5}\right]+\dot{\mathcal{L}}^{-1}\left[\frac{10.13 /-171^{\circ}}{5+1.581 / 80^{\circ}}+\frac{10.12 / 171^{\circ}}{5+1.581 /-81^{\circ}}\right] \\
& \text { Remember } \quad \begin{array}{l}
1.581 / 81^{\circ}=0.25+y 1.561 \\
1.58) /-81^{\circ}=0.25
\end{array} \\
& 1.581 /-81^{\circ}=0.25-y 1.561
\end{aligned}
$$

Laplace Solution to Mechanical Systems (8)

$$
\mathcal{L}^{-1}[x(s)]=\mathcal{J}^{-1}\left[\frac{20}{5}\right]+\mathcal{L}^{-1}\left[\frac{10.13 /-171^{\circ}}{5+(0.25+y 1.561)^{\circ}}+\frac{10.121171^{\circ}}{5+(0.25 y 1.561)}\right]
$$

$$
\begin{aligned}
& \text { From Laplace } \\
& \text { table } \\
& \mathcal{J}^{-1}
\end{aligned}\left[\frac{k \theta}{s+(a t y b)}+\frac{k \in-\theta}{s+(a-j b)}\right]=2 k e^{-a t} \cos (b t+\theta)
$$

$$
\begin{array}{cl}
\text { Where } \quad k=10.12 \quad \theta=171^{\circ} \\
& b=1.561 \quad a=0.25 \\
\bar{f}^{-1}[x(5)]= & 2(10.12) e^{-0.25 t} \cos \left(1.561 t+171^{\circ}\right)+20 \\
x(t)= & 20+20.24 e^{-0.25 t} \cos \left(1.561 t+171^{\circ}\right) \quad \text { Ans }
\end{array}
$$

Time Plot of System Position

Damping of system is $B=0.5$

Effects of Increased Damping

Large damping value reduces oscillations and overshoot but slows response

End Lesson 11: Solving Mechanical System Dyinanics Using Laplace Transfionms

ET 438a Automatic Control Systems Technology

