Vocabulary

dilation, p. 747 center of dilation, p. 747 scale factor, p. 747

Dilations

BEFORE

Now

WHY?

You translated, reflected. You'll dilate figures in a and rotated figures.

coordinate plane.

So you can create an illusion of a moving object, as in Ex. 11.

A **dilation** is a transformation in which a figure stretches or shrinks with respect to a fixed point, called the **center of dilation**. In this book, the origin of a coordinate plane is the center of dilation. In a dilation, a figure and its image are similar.

The **scale factor** of a dilation is the ratio of a side length of the image to the corresponding side length of the original figure. In the diagram, $\overline{A'B'}$ is the image of \overline{AB} after a dilation.

Because $\frac{A'B'}{AB}$ = 2, the scale factor is 2.

You can describe a dilation with respect to the origin using the notation

$$(x, y) \rightarrow (kx, ky)$$

where k is the scale factor.

Example 1

Dilating a Quadrilateral

Draw quadrilateral ABCD with vertices A(-1, 2), B(3, 1), C(2, -1), and D(-1, -1). Then find the coordinates of the vertices of the image after a dilation having a scale factor of 3, and draw the image.

Solution

First draw quadrilateral *ABCD*. Then, to dilate ABCD, multiply the x- and y-coordinates of each vertex by 3.

Original Image (x, y) \rightarrow (3x, 3y) A(-1, 2) $\rightarrow A'(-3, 6)$ B(3, 1) $\rightarrow B'(9,3)$ $C(2, -1) \rightarrow C'(6, -3)$

 $D(-1, -1) \rightarrow D'(-3, -3)$

Finally, draw quadrilateral A'B'C'D', as shown.

Study Strategy

Notice in Example 1 that when k > 1, the new figure is an enlargement of the original figure. As you will see in Example 2, when k < 1, the new figure is a reduction of the original figure.

Example 2

Using a Scale Factor Less than 1

Draw $\triangle PQR$ with vertices P(4, 4), Q(8, 0), and R(6, -2). Then find the coordinates of the image after a dilation having a scale factor of 0.5, and draw the image.

Solution

Draw $\triangle PQR$. Then, to dilate $\triangle PQR$, multiply the *x*- and the *y*-coordinates of each vertex by 0.5.

Original		Image
(x, y)	\rightarrow	(0.5x, 0.5y)
P(4, 4)	\rightarrow	P'(2, 2)
Q(8, 0)	\rightarrow	Q'(4, 0)
R(6, -2)	\rightarrow	R'(3, -1)

Finally, draw $\triangle P'Q'R'$, as shown.

Checkpoint

Example 3

Draw $\triangle ABC$ with vertices A(4, 0), B(4, 4), and C(-4, 0). Then find the coordinates of the vertices of the image after a dilation having the given scale factor, and draw the image.

Finding a Scale Factor

1.
$$k = 4$$

2.
$$k = \frac{1}{4}$$

What is the scale factor of

Solution

the dilation?

The width of the original design is 5 - 2 = 3 units. The width of the image is 12.5 - 5 = 7.5 units. So, the scale factor is $\frac{7.5 \text{ units}}{3 \text{ units}}$, or 2.5.

Computer Graphics An artist

uses a computer program to

enlarge a design, as shown.

In the Real World

Computer Graphics

Computer graphics designers may create pictures called bit graphics. A 4 bit graphic can have $2^4 = 16$ colors, and an 8 bit graphic can have $2^8 = 256$ colors. How many colors can a 16 bit graphic have?

Checkpoint

3. Given \overline{AB} with endpoints A(0.5, 1) and B(1.5, 1), let $\overline{A'B'}$ with endpoints A'(3, 6) and B'(9, 6) be the image of \overline{AB} after a dilation. Find the scale factor.

For each transformation that you studied in this chapter, you should include an example in your notebook along with a summary of the characteristics of the transformation.

SUMMARY

Transformations in a Coordinate Plane

Translations

In a translation, each point of a figure is moved the same distance in the same direction.

$$(x, y) \rightarrow (x + a, y + b)$$

Reflections

In a reflection, a figure is flipped over a line.

Reflection in *x*-axis:
$$(x, y) \rightarrow (x, -y)$$

Reflection in *y*-axis (shown): $(x, y) \rightarrow (-x, y)$

Rotations

In the rotations below, a figure is turned about the origin through a given angle and direction.

90° clockwise rotation (shown):
$$(x, y) \rightarrow (y, -x)$$

90° counterclockwise rotation: $(x, y) \rightarrow (-y, x)$
180° rotation: $(x, y) \rightarrow (-x, -y)$

Dilations

In the dilation below, a figure stretches or shrinks with respect to the origin.

$$(x, y) \rightarrow (kx, ky)$$
, where k is the scale factor

13.7 Exercises

More Practice, p. 815

Guided Practice

Vocabulary Check

- **1.** Copy and complete: In a translation, a figure and its image are congruent. In a dilation, a figure and its image are ?.
- **2.** Let P(2, 3) be a point on a figure. The figure is dilated by a scale factor of 4. What are the coordinates of P'?

Skill Check

- **3.** Draw $\triangle ABC$ with vertices A(-2, 0), B(1, 1), and C(2, -1). Then find the coordinates of the vertices of the image after a dilation having a scale factor of 3, and draw the image.
- **4.** Given \overline{AB} with endpoints A(-2, 3) and B(-2, -4), let $\overline{A'B'}$ with endpoints A'(-5, 7.5) and B'(-5, -10) be the image of \overline{AB} after a dilation. What is the scale factor of the dilation?

Practice and Problem Solving

Homework Help

Example	Exercises
1	5-6, 11-12
2	7-8, 12
3	9-10

- More Examples
- eTutorial Plus

The vertices of a polygon are given. Draw the polygon. Then find the coordinates of the vertices of the image after a dilation having the given scale factor, and draw the image.

- **5.** A(-1, 2), B(3, 1), C(1, -4); k = 2
- **6.** X(-1, 2), Y(2, 1), Z(-1, -3); k = 3
- **7.** P(-6, 2), Q(2, 2), R(2, 0), S(-6, 0); k = 0.5
- **8.** E(-8, 4), F(4, 4), G(0, -4), H(-4, -4); $k = \frac{1}{4}$

Find the scale factor of the dilation.

- **11. Illusions** You can use dilations to create the illusion of an object moving toward you.
 - **a.** Draw rectangle *ABCD* with vertices A(-2, -1,), B(-1, -1), C(-1, -1.5), and D(-2, -1.5).
 - **b.** On the same coordinate plane, draw the images of rectangle *ABCD* using the following scale factors: 2, 4, 8.
- **12.** *Writing* Is an image *smaller than, larger than,* or *congruent to* the original figure when the scale factor is 3? 0.5? 1? Explain.
- **13.** Draw $\triangle ABC$ with vertices A(-2, 4), B(4, 0), and C(2, -4).
 - **a.** You dilate $\triangle ABC$ using a scale factor of 0.25. You then dilate its image using a scale factor of 2. Find the coordinates of the final image, and draw the image.
 - **b.** Use the scale factors given in part (a) to find the scale factor you could use to dilate $\triangle ABC$ to the final image in one step.
 - **c. Critical Thinking** Do you get the same final image if you switch the order of the dilations in part (a)? Explain your reasoning.

In Exercises 15 and 16, $\triangle DEF$ has vertices D(-2, -4), E(6, 2), and F(0, 4). Draw $\triangle DEF$. Then find the coordinates of the vertices of the final image after the specified transformations, and draw the final image.

- **15.** Dilate $\triangle DEF$ using a scale factor of 2, then translate its image using $(x, y) \rightarrow (x - 2, y + 3).$
- **16.** Dilate $\triangle DEF$ using a scale factor of 0.5, then rotate its image 180°.
- **17. Challenge** A triangle is dilated using a scale factor of 2, then its image is reflected in the γ -axis. The figure shown is the final image. Find the coordinates of the vertices of the original triangle, and draw the original triangle.

- **18. Extended Problem Solving** Draw $\triangle ABC$ with vertices A(0, -3), B(3, 1), and C(3, -3).
 - **a. Calculate** Find the perimeter and the area of $\triangle ABC$.
 - **b.** Find the coordinates of the vertices of the image of $\triangle ABC$ after a dilation having a scale factor of 3, and draw the image. Then find the perimeter and the area of the image.
 - **c.** Compare How is the scale factor related to the ratios

 $\frac{\text{Perimeter of image of }\triangle ABC}{\text{Perimeter of }\triangle ABC} \text{ and } \frac{\text{Area of image of }\triangle ABC}{\text{Area of }\triangle ABC}?$

Mixed Review

Find the number of permutations or combinations. (Lessons 11.6, 11.7)

19.
$$_4P_2$$

20.
$$_8P_5$$

21.
$$_{0}C_{0}$$

22.
$${}_{25}C_3$$

Write the expression as a polynomial in standard form. (Lesson 12.1)

23.
$$4t + 1 - 6t + t^4 - 4$$

24.
$$2(b-6b^2)-9b$$

25. Draw $\triangle DEF$ with vertices D(4, 3), E(6, 2), and F(5, 1). Then find the coordinates of the vertices of the image after a 90° counterclockwise rotation about the origin, and draw the image. (Lesson 13.6)

Standardized Test Practice

26. Multiple Choice Let P(2, 4) be a point on a figure, and let P' be the corresponding point on the image. The figure is dilated by a scale factor of 4. What are the coordinates of P'?

A.
$$(-2, 0)$$
 B. $\left(\frac{1}{2}, 1\right)$

27. Multiple Choice In the diagram, quadrilateral A'B'C'D' is the image of quadrilateral ABCD after a dilation. What is the scale factor?

F.
$$\frac{1}{4}$$

G.
$$\frac{1}{2}$$

