

Lesson 15: Rearranging Formulas

Exploratory Challenge – Rearranging Familiar Formulas

2. A. Joey rearranged the area formula to solve for l. His beginning work is shown below. Finish his work to isolate l.

$$A = lw$$

$$\frac{A}{w} = \frac{lw}{w}$$

$$l = \frac{A}{w}$$

B. Verify that the area formula, solved for l, will give the same results for l as having solved for l in the original area formula. Use both w is 10 inches and w is 15 inches with an area of 25 in².

3. In the first column solve each equation for x. Then follow the same steps to solve the "formula" for x in the second column. Remember a variable symbol, like a, b, c, and d, represents a number.

Equation
A.
$$2x-6=10$$

 $+6+6$
 $2x = 16$
 $x = 8$
B. $-3x-3=-12$
 $x = 3$
 $x = 3$
 $x = -3$
 $x = -3$

EUREKA MATH

2

Lesson 15: Unit 4: Rearranging Formulas Systems of Equations and Inequalities

4. Solve the equation ax - b = c for a. The variable symbols x, b, and c, represent numbers.

5. Complete the chart below.

Formula	Use the Given Values and Solve	Solve the Formula for One Variable	Use the Given Values and the Equation from the Previous Column then Solve
The perimeter formula for a rectangle is p = 2(l + w), where p represents the perimeter, l represents the length, and w represents the width.	Calculate l when $p = 70$ and $w = 15$.	Solve $p = 2(l + w)$ for l .	Calculate l when $p = 70$ and $w = 15$.
The area formula for a triangle is $A = \frac{1}{2}bh$, where A represents the area, b represents the length of the base, and h represents the height.	Calculate b when $A = 100$ and $h = 20$.	Solve $A = \frac{1}{2}bh$ for b .	Calculate b when $A = 100$ and $h = 20$.

6. Rearrange each formula to solve for the specified variable. Assume no variable is equal to 0.

Linear equations written in standard form, Ax + By = C, are not as useful as linear equations written in slopeintercept form, y = mx + b. Solve for y in each standard equation. Then give the slope and y-intercept.

	Ax+By=C y= MX+P Standard Form → Slope-Intercept Form (show your work in this space)	Slope-Intercept Form	Slope	y-intercept
7.	$\frac{-2x+y=5}{+2x}$	y=2×+5	21	5
8.	3x + 4y = 12 $-3x - 3x$ $4y = -3x + 12$ $4y = -3x + 12$ $4y = -3x + 12$	$y = \frac{-3}{4}x + 3$	- <u>3</u> 4 0r <u>7</u>	3
9.	x - 5y = 10 -5 -5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	y=X-2	-15	-2
10.	$-\frac{4y}{-4} = -\frac{8x}{-4} + \frac{2}{-4}$	y=2x-1/2	21	-[1
11.	$-x + \frac{1}{2}y = 7$ $+x$ $2 \cdot \frac{1}{2}y = \frac{2}{2} \times + \frac{2}{7}$	y=2×+14	21	14

12. Looking for Patterns Explain a way you can get the slope from standard form without rewriting the equation. How about the *y*-intercept?

EUREKA Lesson 15: Rearring Formulas Systems of Equations and Inequalities Unit 4: C MATH This work is licensed under a

This work is derived from Eureka Math [™] and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG I-M1-TE-1.3.0-07.2015

S.154

Homework Problem Set

For Problems 1–8, solve for x. Assume no variables equal 0

1. $ax + 3b = 2f$	2. $rx + h = -k$	3. $3px = 2q(r-5)$	$4. \frac{x+b}{4} = C$
5. $\frac{x}{5} - 7 = 2q$	6. $\frac{2x}{7} - \frac{x}{7} = ab$	7. $\frac{3x}{m} - \frac{x}{m} = p$	8. $\frac{3ax+2b}{c} = 4d$

Rearranging Formulas Systems of Equations and Inequalities

S.155

engage

Rewrite each linear equation in slope-intercept form.

9.
$$x = 5y - 1$$
 10. $-4x + y = 17$

11.
$$3x + 6y = 7$$
 12. $4y = 8x - 14$

15. The science teacher wrote three equations on a board that relate velocity, v, distance traveled, d, and the time to travel the distance, t, on the board.

$$v = \frac{d}{t}$$
 $t = \frac{d}{v}$ $d = vt$

Would you need to memorize all three equations? Explain your reasoning.

engage^{ny}

S.156

Solve for *x* in each equation. You may want to start with the equations on the right and then solve the equations on the left, using the same patterns.

Equation Containing More Than One Variable	Related Equation	
16. Solve $ax + b = d - cx$ for x .	17. Solve $3x + 4 = 6 - 5x$ for x .	
18. Solve for <i>x</i> .	19. Solve for <i>x</i> .	
$\frac{ax}{b} + \frac{cx}{d} = e$	$\frac{2x}{5} + \frac{x}{7} = 3$	

Rearranging Formulas Systems of Equations and Inequalities

Hart Interactive – Algebra 1

Spiral Review – Writing Equations and Finding Solutions

20. May and June were running at the track. May started first and ran at a steady pace of 1 mile every

11 minutes. June started 5 minutes later than May and ran at a steady pace of 1 mile every 9 minutes.

B. Challenge - Write linear equations that represent each girl's mileage in terms of time in minutes.

- C. Who was the first person to run 3 mi.?
- D. Estimate when did June pass May?

