PENDING FINAL EDITORIAL REVIEW

Lesson 22: Congruence Criteria for Triangles—SAS

Student Outcomes

- Students learn why any two triangles that satisfy the SAS congruence criterion must be congruent.

Lesson Notes

In Lesson 22, we begin to investigate criteria, or the indicators, of triangle congruence. Students are introduced to the concept in 8th grade, but have justified the criteria of triangle congruence (i.e., ASA, SAS, and SSS) in a more hands-on manner, manipulating physical forms of triangles through rigid motions to justify whether a pair of triangles is congruent or not. In this course, students formally prove the triangle congruency criteria.

Classwork

Opening Exercise (7 minutes)

> Answer the following question. Then discuss your answer with a partner.
> Is it possible to know that there is a rigid motion that takes one triangle to another without actually showing the particular motion?

Yes, it is possible. Our indicators-ASA, SAS, etc— tell us that a rigid motion will map one triangle completely onto another, without actually having to display the rigid motion.

Remember, prior to the Common Core standards, we used a pattern such as ASA to forecast that all three sides and all three angles between two triangles are congruent. We are no longer using this idea. Even if we know this information, the real question is whether there is exists rigid motions mapping one triangle to the other. Thus, these patterns are indicators of whether rigid motions exist to take one triangle to the other.

You might anticipate your students saying, "Well, if ALL the corresponding parts are equal in measure, don't we OBVIOULSY have congruent triangles?" The answer is, "NO! We have agreed to use the word 'congruent' to mean 'there exists a composition of basic rigid motion of the plane that maps one figure to the other." We will see that SAS, ASA, and SSS implies the existence of the rigid motion needed, but precision demands that we explain how and why."

Discussion (20 minutes)

It is true that we will not need to show the rigid motion to be able to know that there is one. We are going to show that there are criteria that refer to a few parts of the two triangles and a correspondence between them that guarantee congruency (i.e. existence of rigid motion). We start with the Side-Angle-Side criteria.

Side-Angle-Side triangle congruence criteria (SAS): Given two triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ so that $A B=A^{\prime} B^{\prime}$ (Side), $\angle A=\angle A^{\prime}$ (Angle), $A C=A^{\prime} C^{\prime}$ (Side). Then the triangles are congruent.

The steps below show the most general case for determining a congruence between two triangles that satisfy the SAS criteria. Note that not all steps are needed for every pair of triangles. For example, sometimes the triangles will already share a vertex. Sometimes a reflection will be needed, sometimes not. What is important is that we can always use the steps below-some or all of them-to determine a congruence between the two triangles that satisfy the SAS criteria.

PENDING FINAL EDITORIAL REVIEW

Proof: Provided the two distinct triangles below, assume $A B=A^{\prime} B^{\prime}$ (Side), $\angle A=\angle A^{\prime}$ (Angle), $A C=A^{\prime} C^{\prime}$ (Side).

By our definition of congruence, we will have to find a composition of rigid motions will map $\triangle A^{\prime} B^{\prime} C^{\prime}$ to $\triangle A B C$. So we must find a congruence F so that $F\left(\triangle A^{\prime} B^{\prime} C^{\prime}\right)=\triangle A B C$. First, use a translation T to map a common vertex.

Which two points determine the appropriate vector?
A^{\prime}, A.
Can any other pair of points be used? Why or why not?
No. We use A^{\prime} and A because only these angles are congruent by assumption.
State the vector in the picture below that can be used to translate $\Delta \boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime}$:
$\overrightarrow{A^{\prime} A}$
Using a dotted line, draw an intermediate position of $\triangle A^{\prime} B^{\prime} C^{\prime}$ as it moves along the vector:

After the translation (below), $T_{\overline{A^{\prime} A}}\left(\triangle A^{\prime} B^{\prime} C^{\prime}\right)$ shares one vertex with $\triangle A B C, A$. In fact, we can say $T_{\overline{A^{\prime} A}}\left(\triangle A^{\prime} B^{\prime} C^{\prime}\right)=\triangle A B^{\prime \prime} C^{\prime \prime}$.

PENDING FINAL EDITORIAL REVIEW

Next, use a clockwise rotation $R_{\angle C A C \prime \prime}$ to bring the sides $A C^{\prime \prime}$ to $A C$ (or counterclockwise rotation to bring $A B^{\prime \prime}$ to $A B$).

A rotation of appropriate measure will map $\overrightarrow{A C "}$ to $\overrightarrow{A C}$, but how can we be sure that vertex $C^{\prime \prime}$ maps to C ? Recall that part of our assumption is that the lengths of sides in question are equal, ensuring that the rotation maps $C^{\prime \prime}$ to C ($\boldsymbol{A C}=\boldsymbol{A} \boldsymbol{C}^{\prime \prime}$, the translation performed is a rigid motion, and thereby did not alter the length when $\boldsymbol{A C ^ { \prime }}$ became $\boldsymbol{A} \boldsymbol{C}^{\prime \prime}$).

After the rotation, $R_{\angle C A C \prime \prime}\left(\triangle A B^{\prime \prime} C^{\prime \prime}\right)$, a total of two vertices are shared with $\triangle A B C, A$ and C. Therefore,
$R_{\angle C A C \prime \prime}\left(\triangle A B^{\prime \prime} C^{\prime \prime}\right)=\triangle A B^{\prime \prime \prime} C$.

Finally, if $B^{\prime \prime \prime}$ and B are on opposite sides of the line that joins $A C$, a reflection $\Lambda_{A C}$ brings $B^{\prime \prime \prime}$ to the same side as B.

Since a reflection is a rigid motion and it preserves angle measures, we know that $\angle B^{\prime \prime \prime} A C=\angle B A C$ and so $\overline{A B^{\prime \prime \prime}}$ maps to $\overrightarrow{A B}$. However, just because $\overrightarrow{A B^{\prime \prime \prime}}$ coincides with $\overrightarrow{A B}$, can we be certain that $B^{\prime \prime \prime}$ actually maps to B ? We can, because not only are we certain that the rays coincide, but by our assumption, $A B=A B^{\prime \prime \prime}$ (our assumption began as $A B=A^{\prime} B^{\prime}$, but the translation and rotation have preserved this length now as $\left.A B^{\prime \prime \prime}\right)$. Together, these two pieces of information ensure that the reflection over $A C$ brings $B^{\prime \prime \prime}$ to B.

Another way to visually confirm this would be to draw the marks of the perpendicular bisector construction for $A C$.
Write the transformations used to correctly notate the congruence (the composition of transformations) that takes $\Delta A^{\prime} \boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime} \cong \triangle \boldsymbol{A B C}$:

\boldsymbol{F}	$\underline{\text { Translation }}$
\boldsymbol{G}	$\underline{\text { Rotation }}$
\boldsymbol{H}	$\underline{\text { Reflection }}$
$\boldsymbol{H}\left(\boldsymbol{G}\left(\boldsymbol{F}\left(\triangle \boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime}\right)=\triangle \boldsymbol{A B C}\right.\right.$	

PENDING FINAL EDITORIAL REVIEW

We have now shown a sequence of rigid motions that takes $\triangle A^{\prime} B^{\prime} C^{\prime}$ to $\triangle A B C$ with the use of just three criteria from each triangle: two sides and an included angle. Given any two distinct triangles, we could perform a similar proof. There is another situation, when the triangles are not distinct, where a modified proof will be needed to show that the triangles map onto each other. Examine these below.

Example 1 (5 minutes)

Students try an example based on Class Notes.

What if we had the SAS criteria for two triangles that were not distinct? Consider the following two cases. How would the transformations needed to demonstrate congruence change?

| Case | Diagram | Transformations
 Needed |
| :--- | :--- | :--- | :--- |
| Shared Side | | Reflection |
| Shared Vertex | | Rotation,
 Reflection |

Exercises 1-3 (7 minutes)

1. Given: Triangles with a pair of corresponding sides of equal length and a pair of included angles of equal measure. Sketch and label 3 phases of the sequence of rigid motions that prove the two triangles to be congruent.

Translation	Rotation	Reflection

PENDING FINAL EDITORIAL REVIEW

Directions: Justify whether the triangles meet the SAS congruence criteria; explicitly state which pairs of sides or angles are congruent and why. If the triangles do meet the SAS congruence
criteria, describe the rigid motion(s) that would map one triangle onto the other.
2. Given: $\angle L M N=\angle L N O, M N=O M$

Do $\triangle L M N$ and $\triangle L O M$ meet the SAS criteria?

$\angle L M N=\angle L N O$	Given
$M N=O M$	Given
$L N=L N$	Common Side

The triangles map onto one another with a reflection over LN.

3. Given: $\angle H G I=\angle I H G, H G=J I$

Do $\triangle H G I$ and $\triangle J I G$ meet the SAS criteria?

$\angle H G I=\angle J I G$	Given
$H G=J I$	Given
$G I=G I$	Common Side

The triangles map onto one another with a 180° rotation about the midpoint of the diagonal.

Exit Ticket (7 minutes)

PENDING FINAL EDITORIAL REVIEW

Name \qquad Date \qquad

Lesson 22: Congruence Criteria for Triangles—SAS

Exit Ticket

If two triangles satisfy the SAS criteria, describe the rigid motion(s) that would map one onto the other in the following cases:

1. The two triangles shared a single common vertex?
2. The two triangles were distinct from each other?
3. The two triangles shared a common side?

PENDING FINAL EDITORIAL REVIEW

Exit Ticket Sample Solutions

1. The two triangles shared a single common vertex?

Rotation, reflection
2. The two triangles were distinct from each other?

Translation, rotation, reflection
3. The two triangles shared a common side?

Reflection

Problem Set Sample Solutions

Directions: Justify whether the triangles meet the SAS congruence criteria; explicitly state which pairs of sides or angles are congruent and why. If the triangles do meet the SAS congruence criteria, describe the rigid motion(s) that would map one triangle onto the other.

1. Given: $A B \| C D, A B=C D$

Do $\triangle A B D$ and $\triangle C D B$ meet the SAS criteria?
$A B=C D$
Given
$B D=B D$
Shared Side
$\angle A B C=\angle C D B \quad$ Alternate Interior Angles

The triangles map onto one another with a 180° rotation about the midpoint of the diagonal.
2. Given: $\angle R=25^{\circ}, R T=7^{\prime \prime}, S U=5 ", S T=5^{\prime \prime}$ Do $\triangle R S U$ and $\triangle R S T$ meet the SAS criteria? Not enough information given.

3. Given: $K M$ and $J N$ bisect each other.

Do $\triangle J K L$ and $\triangle N M L$ meet the SAS criteria?
$\angle K L J=\angle M L N$
Vert. $\angle s$
$K M=L M$
Bisected Line
$J L=J N$
Bisected Line
The triangles map onto one another with a 180° rotation about L.

4. Given: $\angle 1=\angle 2, B C=D C$

Do $\triangle A B C$ and $\triangle A D C$ meet the SAS criteria?

$\angle 1=\angle 2$	Given
$B C=D C$	Given
$A C=A C$	
Common Side	

The triangles map onto one another with a reflection over AC.

PENDING FINAL EDITORIAL REVIEW

5. Given: $A E$ bisects angle $\angle B C D, B C=D C$

Do $\triangle C A B$ and $\triangle C A D$ meet the SAS criteria?
$\angle B C A=\angle D C A$
Bisected Angle
$B C=D C$
Given
$A C=A C$
Common Side
$\triangle C A D \cong \triangle C A B$
SAS
The triangles map onto one another with a reflection over AC.
6. Given: $S U$ and $R T$ bisect each other

Do $\triangle S V R$ and $\triangle U V T$ meet the SAS criteria?
$S V=U V \quad$ Bisected Line
$R V=V T \quad$ Bisected Line
$\angle S V R=\angle U V T$
Vert. $\angle s$

The triangles map onto one another with a 180° rotation about V.
7. Given: $J M=K L, J M \perp M L, K L \perp M L$

Do $\triangle J M L$ and $\triangle K L M$ meet the SAS criteria?
$J M=K L \quad$ Given
$J M \perp M L, K M \perp M L$
Given
$\angle J M L=90^{\circ}, \angle K L M=90^{\circ} \quad$ Def. of \perp

$\angle J M L=\angle K L M$
$M L=M L$
Common Side

The triangles map onto one another with a reflection over the perpendicular bisector of ML.
8. Given: $\overline{B F} \perp \overline{A C}, \overline{C E} \perp \overline{A B}$

Do $\triangle B E D$ and $\triangle C F D$ meet the SAS criteria?
Not enough information given.

9. Given: $\angle V X Y=\angle V Y X$

Do $\triangle V X W$ and $\triangle V Y Z$ meet the SAS criteria?
Not enough information given.

10. Given: $\triangle R S T$ is isosceles, $S Y=T Z$

Do $\triangle R S Y$ and $\triangle R T Z$ meet the SAS criteria?
\triangle RST is isosceles
Given
$R S=R T \quad$ Isosceles Δ
$\angle R S Y=\angle R T Z \quad$ Isosceles \triangle
$S Y=T Z$
Given

The triangles map onto one another with a reflection over the bisector of $\angle S R T$.

