

Rational Numbers

Chapter Menu

Lesson 5-1 Writing Fractions as Decimals
Lesson 5-2 Rational Numbers
Lesson 5-3 Multiplying Rational Numbers
Lesson 5-4 Dividing Rational Numbers
Lesson 5-5 Adding and Subtracting Like Fractions
Lesson 5-6 Least Common Multiple
Lesson 5-7 Adding and Subtracting Unlike Fractions
Lesson 5-8 Solving Equations with Rational Numbers
Lesson 5-9 Measures of Central Tendency

Lesson Menu

Five-Minute Check (over Chapter 4)
Main Ideas and Vocabulary
Example 1: Write a Fraction as a Terminating Decimal
Example 2: Write a Mixed Number as a Decimal
Example 3: Write Fractions as Repeating Decimals
Example 4: Real-World Example
Example 5: Compare Fractions and Decimals
Example 6: Real-World Example

Main Ideas

- Write fractions as terminating or repeating decimals.
- Compare fractions and decimals.

New Vocabulary

- terminating decimal
- mixed number
- repeating decimal
- bar notation

EXAMPIE
 Write a Fraction as a Terminating Decimal

(1) Write $\frac{1}{16}$ as a decimal.

Method 1 Use paper and pencil.

Division ends when the remainder is 0 .

Answer: 0.0625 is a terminating decimal.

EXAMPLE Write a Fraction as a Terminating Decimal

(1) Write $\frac{1}{16}$ as a decimal.

Method 2 Use a calculator.

$$
1 \div 16 \quad \text { ENTER } 0.0625
$$

Answer: 0.0625 is a terminating decimal.

0 ClECK Your Progress

(1) Write $\frac{5}{8}$ as a decimal.
A. 0.58
(B.) 0.625
C. 0.725
D. 5.8

EXAMPL: Write a Mixed Number as a Decimal

(2) Write $1 \frac{1}{4}$ as a decimal.

$$
\begin{aligned}
1 \frac{1}{4} & =1+\frac{1}{4} & & \begin{array}{l}
\text { Write as the sum of an } \\
\text { integer and a fraction. }
\end{array} \\
& =1+0.25 & & \frac{1}{4}=0.25 \\
& =1.25 & & \text { Add. }
\end{aligned}
$$

Answer: 1.25
(2) Write $2 \frac{3}{5}$ as a decimal. A. 0.6
B. 2.35
(C.) 2.6

0\%
D. 2.7

EXAMPLE Write Fractions as Repeating Decimals

(3) A. Write $-\frac{4}{33}$ as a decimal. Use a bar to show a repeating decimal.

$$
- \frac { 4 } { 3 3 } \rightarrow 3 3 \longdiv { - 4 . 0 0 0 0 \ldots }
$$

The digits 12 repeat.

Answer: $-\frac{4}{33}=-0 . \overline{12}$

EXAMPLE
 Write Fractions as Repeating Decimals

(3) B. Write $\frac{2}{11}$ as a decimal. Use a bar to show a repeating decimal.

$$
\frac { 2 } { 1 1 } \rightarrow 1 1 \longdiv { 0 . 1 8 1 8 \ldots }
$$

The digits 18 repeat.

Answer: $\frac{2}{11}=0 . \overline{18}$

C) CriECK Your Progress

(3) A. Write $-\frac{2}{3}$ as a decimal. Use a bar to show a repeating decimal.
(A.) $-0 . \overline{6}$
B. -0.6
C. -0.23
D. $-0.0 \overline{6}$
(2) Minine Chapter

C) ClECK Your Progress

(3) B. Write $\frac{4}{15}$ as a decimal. Use a bar to show a repeating decimal.
A. 4.15
B. $2 . \overline{6}$
C. $0 . \overline{3}$
(D. $0.2 \overline{6}$

Real-World EXAMPLE

(4) SOCCER Camille's soccer team won 32 out of 44 games to make it to the championships. To the nearest thousandth, find the team's rate of winning.
Divide the number of games they won, 32 , by the number of games they played, 44.

$$
\frac{32}{44}=\frac{8}{11} \approx 0.727272 \ldots \text { or } 0 . \overline{72}
$$

Look to the digit to the right of the thousandths place. Round down since $2<5$.

Answer: Camille's soccer team won 0.727 of the time.

CHECK Your Progress

(4) The results of a poll showed that 16 out of 24 students in Ms. Brown's class would prefer going to the planetarium rather than the arboretum. To the nearest thousandth, what part of the class preferred going to the planetarium?

A. 0.007

(B.) $\mathbf{0 . 6 6 7}$
C. 0.700

D. 16.24

EXAMPLE Compare Fractions and Decimals

(5) Replace \bullet with $<,>$, or $=$ to make $0.7 \bullet \frac{13}{20}$ a true sentence.

$$
\begin{aligned}
& 0.7 \cdot \frac{13}{20} \\
& 0.7 \cdot 0.65 \\
& 0.7>0.65
\end{aligned}
$$

Write the sentence.
Write $\frac{13}{20}$ as a decimal.
In the tenths place, $7>6$.

Answer: On a number line, 0.7 is to the right of 0.65 ,

$$
\text { so } 0.7>\frac{13}{20} \text {. }
$$

C) CliCK Your Progress

(5) Replace \cdot with $<,>$, or $=$ to make $\frac{3}{8} \cdot 0.4$ a true sentence.
(A.) $<$
B. $>$
C. =
D. none of the above

(6) GRADES Jeremy got a score of $\frac{16}{20}$ on his first quiz and $\frac{20}{25}$ on his second quiz. Which grade was the higher score?

Write the fractions as decimals and then compare the decimals.

$$
\text { Quiz \#1: } \frac{16}{20}=0.80 \quad \text { Quiz \#2: } \frac{20}{25}=0.80
$$

Answer: The scores were the same, 0.80 .
(6) BAKING One recipe for cookies requires $\frac{5}{8}$ of a cup of butter, and a second recipe for cookies requires 3 $\frac{3}{5}$ of a cup of butter. Which recipe uses less butter.
A. the first recipe
B. the second recipe
C. both use the same amount

D. cannot be determined

Lesson Menu

Five-Minute Check (over Lesson 5-1)
Main Ideas and Vocabulary
Example 1: Write Mixed Numbers and Integers as Fractions
Example 2: Write Terminating Decimals as Fractions
Example 3: Write Repeating Decimals as Fractions
Concept Summary: Rational Numbers
Example 4: Classify Numbers

Main Ideas

- Write rational numbers as fractions.
- Identify and classify rational numbers.

New Vocabulary

- rational number

EXAMPLE

Write Mixed Numbers and Integers as

 Fractions(1) A. Write $-4 \frac{3}{8}$ as a fraction.

$$
-4 \frac{3}{8}=-\frac{35}{8}
$$

Write $-4 \frac{3}{8}$ as an improper fraction.
Answer: $-\frac{35}{8}$

COncepts in MQtion

Animation:
Whole Numbers

EXAMPDE

Write Mixed Numbers and Integers as Fractions
(1) B. Write 10 as a fraction.

Answer: $\frac{10}{1}$
(1) A. Write $2 \frac{3}{5}$ as a fraction.

> A. $\frac{13}{10}$
> B. $\frac{10}{5}$
> C. $\frac{13}{5}$
> D. $\frac{13}{3}$

88/CheckPoint

(1) B. Write -6 as a fraction.

$$
\begin{aligned}
& \text { A. }-\frac{6}{1} \\
& \text { B. }-\frac{6}{6} \\
& \text { C. }-\frac{1}{6} \\
& \text { D. } \frac{6}{1}
\end{aligned}
$$

$$
\begin{array}{cccc}
0 \% & 0 \% & 0 \% & 0 \% \\
\nabla & \wp & \wp & \wp \\
\nabla & \diamond & \circ & \diamond
\end{array}
$$

EXAMPLE Write Terminating Decimals as Fractions

(2) A. Write 0.26 as a fraction or mixed number in simplest form.
$0.26=\frac{26}{100} \quad 0.26$ is 26 hundredths.
Answer: $\frac{13}{50}$ Simplify. The GCF of 26
and 100 is 2 .

EXAMPLE Write Terminating Decimals as Fractions

(2) B. Write 2.875 as a fraction or mixed number in simplest form.
$2.875=2 \frac{875}{1000}$

2.875 is 2 and 875 thousandths.

Answer: $=2 \frac{7}{8}$
Simplify. The GCF of 875 and 1000 is 125 .

C) CHECK Your Progress

(2) A. Write 0.84 as a fraction or mixed number in simplest form.

> A. $\frac{21}{250}$
> B. $\frac{41}{50}$
> C. $\frac{21}{25}$
D. $\frac{84}{100}$
(2) Minthe Chapter

Hams nirra
(2) B. Write 3.625 as a fraction or mixed number in simplest form.
A. $3 \frac{1}{16}$
B. $3 \frac{3}{5}$
C. $3 \frac{625}{1000}$
(D.) $3 \frac{5}{8}$

Cons firt

EXAWPLE Write Repeating Decimals as Fractions

(3) Write $0 . \overline{39}$ as a fraction in simplest form.

$$
\begin{aligned}
N & =0.3939 \ldots & \text { Let } N \text { represent the number. } \\
100 N & =100(0.3939 \ldots) & \begin{array}{l}
\text { Multiply each side by } 100 \\
\text { because two digits repeat. }
\end{array} \\
100 N & =39.39 &
\end{aligned}
$$

Subtract N from 100N to eliminate the repeating part, 0.3939. . .

EXAMPTE Write Repeating Decimals as Fractions

(3) $100 \mathrm{~N}=39.3939 \ldots$

$$
-(N=0.393939 \ldots)
$$

$$
99 N=39
$$

$$
100 N-N=100 N-1 N \text { or } 99 N
$$

$$
\frac{99 N}{99}=\frac{39}{99}
$$

Divide each side by 99.
$N=\frac{39}{99}$ or $\frac{13}{33} \quad$ Simplify.
Answer: $0 . \overline{39}=\frac{13}{33}$
Check $13 \div 33 \quad$ ENTER 0.3939393939
Qun
(3) Write $0 . \overline{4}$ as a fraction in simplest form.

$$
\begin{aligned}
& \text { A. } \frac{4}{9} \\
& \text { B. } \frac{44}{99} \\
& \text { C. } \frac{11}{25} \\
& \text { D. } \frac{2}{5}
\end{aligned}
$$

CONCEPT SUMMARY

Rational Numbers

Words A rational number is any number that can be expressed as the quotient $\frac{a}{b}$ of two integers, a and b, where $b \neq 0$.

EXAMPLE Classify Numbers

(4) A. Identify all sets to which the number 15 belongs.

Answer: 15 is a whole number, an integer, and a rational number.

EXAMPLE Classify Numbers

(4) B. Identify all sets to which the number $7 \frac{1}{8}$ belongs.

Answer: $7 \frac{1}{8}$ is a rational number.

EXAMPLE Classify Numbers

(4) C. Identify all sets to which the number $0.30303030 \ldots$ belongs

Answer: $0.30303030 \ldots$ is a nonterminating, repeating decimal. So, it is a rational number.

ClIECK Your Progress
(4) A. Identify all sets to which -7 belongs.
A. whole number, integer, rational
B. whole number, integer
C. integer, rational
D. integer

Clleck your Progress

(4) B. Identify all sets to which $3 \frac{4}{5}$ belongs.
A. whole number, rational
B. integer, rational
C. not rational
D. rational

CHECK Your Progress:
(4) C. Identify all sets to which $0.24242424 \ldots$ belongs.
A. whole number, rational
B. integer, rational
C. not rational
D. rational

Lesson Menu

Five-Minute Check (over Lesson 5-2)

Main Ideas and Vocabulary
Key Concept: Multiplying Fractions
Example 1: Multiply Fractions
Example 2: Multiply Negative Fractions
Example 3: Multiply Mixed Numbers
Example 4: Real-World Example
Example 5: Multiply Algebraic Fractions
Example 6: Real-World Example

Main Ideas

- Multiply positive and negative fractions.
- Use dimensional analysis to solve problems.

New Vocabulary

- dimensional analysis

Words To multiply fractions, multiply the numerators and multiply the denominators.

Symbols $\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}$, where $b, d \neq 0$
Example $\frac{1}{3} \cdot \frac{2}{5}=\frac{1 \cdot 2}{3 \cdot 5}$ or $\frac{2}{15}$

EXAWPLE Multiply Fractions

(1) Find $\frac{2}{5} \bullet \frac{5}{8}$. Write the product in simplest form.

$$
\frac{2}{5} \bullet \frac{5}{8}=\frac{2 \bullet 5}{5 \bullet 8} \longleftarrow \text { Multiply the numerators. }
$$

Answer: $\frac{10}{40}$ or $\frac{1}{4}$
Simplify. The GCF of 10 and 40 is 10 .
C. CHECK Your Progress:
(1) Find $\frac{3}{8} \bullet \frac{2}{9}$. Write the product in simplest form.

$$
\begin{aligned}
& \text { A. } \frac{5}{72} \\
& \text { B. } \frac{6}{72} \\
& \text { C. } \frac{1}{12} \\
& \text { D. } \frac{6}{63}
\end{aligned}
$$

EXAMPLI Multiply Negative Fractions

(2) Find $-\frac{1}{4} \bullet \frac{2}{7}$. Write the product in simplest form.

$$
-\frac{1}{4} \cdot \frac{2}{7}=-\frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{7}
$$

$$
=-\frac{1 \bullet 1}{2 \bullet 7}
$$

Multiply the numerators and multiply the denominators.
Answer: $=-\frac{1}{14} \quad$ Simplify.

- CriECK Your Progress
(2) Find $\frac{6}{14} \bullet-\frac{21}{40}$. Write the product in simplest form.

$$
\text { A. } \frac{9}{40}
$$

(B.) $-\frac{9}{40}$
C. $-\frac{63}{280}$
D. $-\frac{126}{560}$

$88 /$ CheckPoint
Quis

EXAWIPLE Multiply Mixed Numbers

(3) Find $1 \frac{1}{2} \cdot 3 \frac{2}{3}$. Write the product in simplest form.

$$
\begin{array}{rlrl}
1 \frac{1}{2} \bullet 3 \frac{2}{3} & =\frac{3}{2} \bullet \frac{11}{3} & & \text { Rename } 1 \frac{1}{2} \text { as } \frac{3}{2} \text { and rename } \\
& =\frac{\not \partial}{2} \bullet \frac{11}{\not 2} & & \begin{array}{ll}
3 \frac{2}{3} \text { as } \frac{11}{3} . \\
& \text { Divide by the GCF, } 3 . \\
& =\frac{1 \bullet 11}{2 \bullet 1}
\end{array} \\
\text { Answer: } & =\frac{11}{2} \text { or } 5 \frac{1}{2} & \text { Sultiply. }
\end{array}
$$

ShㅐㅐCK Your Progress:

(3) Find $2 \frac{2}{7} \bullet 3 \frac{1}{4}$. Write the product in simplest form.

$$
\begin{aligned}
& \text { A. } \frac{27}{7} \\
& \text { B. } 6 \frac{1}{14} \\
& \text { C. } \frac{208}{28} \\
& \text { D. } 7 \frac{3}{7}
\end{aligned}
$$

(4) DONATIONS Rasheed collected cash donations for underprivileged children every October. This
October he collected $\$ 784$. Last year he collected $\frac{5}{8}$ as much. How much did Rasheed collect last October?

To find how much Rasheed collected last October multiply 784 by $\frac{5}{8}$.
(4) $784 \cdot \frac{5}{8}=\frac{784}{1} \cdot \frac{5}{8}$

$$
=\frac{784}{1} \cdot \frac{5}{\not 8}
$$

Rename 784 as $\frac{784}{1}$.

Divide by the GCF, 8.

$$
\begin{aligned}
& =\frac{98 \cdot 5}{1 \cdot 1} \\
& =\frac{490}{1} \text { or } 490
\end{aligned}
$$

Multiply.
Simplify.
Answer: Rasheed collected \$490 last October.
(4) SHOPPING Melissa is buying a sweater originally priced for $\$ 81$. The sweater is discounted by $\frac{2}{3}$. Find the amount of the discount.
A. $\$ 64.00$
(B. $\$ 54.00$
C. $\$ 50.67$
D. $\$ 27.00$

Qums

EXAMPLE Multiply Algebraic Functions

(5) Find $\frac{3 p^{2}}{q} \bullet \frac{q^{2}}{r}$. Write the product in simplest form.

$$
\frac{3 p^{2}}{q} \cdot \frac{q^{2}}{r}=\frac{3 p \bullet p}{\not q} \cdot \frac{q^{q} \cdot q}{r}
$$

1

Answer: $=\frac{3 p^{2} q}{r}$

The GCF of q^{2} and q is q.

CHECK Your Progress:

(5) Find $\frac{5 m n^{3}}{p^{2}} \bullet \frac{m p}{n^{2}}$. Write the product in simplest form.
A. $\frac{5 m n}{p}$
B. $\frac{5 m^{2}}{p n}$
C. $\frac{5 m^{2} n}{p}$
D. $\frac{5 m^{2} n^{3} p}{p^{2} n^{2}}$

(6) RUNNING TRACK The track at Cole's school is $\frac{1}{4}$ mile around. If Cole runs one lap in two minutes, now far (in miles) does he run in 30 minutes?

Write as a fracton : $\frac{\frac{1}{4} \text { mile }}{2 \text { minutes }}$

Distance = rate \bullet time
$=\frac{\frac{1}{4} \text { mile }}{{ }_{1}^{2} \text { min }} \times 30$ min
$=\frac{1}{4} \bullet \frac{15}{1}$ miles
$=\frac{15}{4}$ or $3 \frac{3}{4}$ miles

Divide by the common factors and units.

Multiply.

Simplify.

Answer: Cole runs $3 \frac{3}{4}$ miles in 30 minutes.

CHECK Your Progress

(6) WALKING Bob walks $\frac{2}{3}$ mile in 12 minutes. How far does he walk in 30 minutes?
A. $3 \frac{3}{4}$ miles
B. 2 miles
C. $1 \frac{2}{3}$ miles
D. $1 \frac{1}{3}$ miles

Lesson Menu

Five-Minute Check (over Lesson 5-3)
Main Ideas and Vocabulary
Key Concept: Inverse Property of Multiplication
Example 1: Find Multiplicative Inverses
Key Concept: Dividing Fractions
Example 2: Divide by a Fraction or Whole Number
Example 3: Divide by a Mixed Number
Example 4: Divide by an Algebraic Function
Example 5: Real-World Example

Main Ideas

- Divide positive and negative fractions using multiplicative inverses.
- Use dimensional analysis to solve problems.

New Vocabulary

- multiplicative inverses
- reciprocals

Dividing Rational Numbers

KEY CONCEPT

Words The product of a number and its multiplicative inverse is 1 .
Symbols For every number $\frac{a}{b}$, where $a, b \neq 0$, there is exactly one number $\frac{b}{a}$ such that $\frac{a}{b} \cdot \frac{b}{a}=1$.

EXAMPLE
 Find Multiplicative Inverse

(1) A. Find the multiplicative inverse of $\frac{6}{7}$.

$$
\frac{6}{7}\left(\frac{7}{6}\right)=1
$$

The product is 1 .

Answer: The multiplicative inverse or reciprocal of

$$
\frac{6}{7} \text { is } \frac{7}{6} .
$$

EXAMPLE Find Multiplicative Inverse

(1) B. Find the multiplicative inverse of $3 \frac{2}{5}$.

$$
3 \frac{2}{5}=\frac{17}{5}
$$

Write as an improper fraction.

$$
\frac{17}{5} \cdot \frac{5}{17}=1
$$

The product is 1 .

Answer: The reciprocal of $3 \frac{2}{5}$ is $\frac{5}{17}$.

CHECK Your Progress

(1) A. Find the multiplicative inverse of $\frac{4}{9}$.
A. $\frac{4}{9}$
B. $\frac{4}{4}$
C. $\frac{9}{9}$
(D. $\frac{9}{4}$

88/CheckPoint

\int carcck Your Progress

(1) B. Find the multiplicative inverse of $2 \frac{4}{7}$.

$$
\begin{aligned}
& \text { A. } \frac{7}{18} \\
& \text { B. } \frac{7}{7} \\
& \text { C. } \frac{18}{7} \\
& \text { D. } 2 \frac{7}{4}
\end{aligned}
$$

KEY CONCEPT

Dividing Fractions

Words To divide by a fraction, multiply by its multiplicative inverse.
Symbols $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c^{\prime}}$ where $b, c, d \neq 0$
Example $\frac{1}{4} \div \frac{5}{7}=\frac{1}{4} \cdot \frac{7}{5}$ or $\frac{7}{20}$

EXAMPLE
 Divide by a Fraction or Whole Number

(2) A. Find each quotient. Write in simplest form.

$$
\begin{aligned}
& \frac{4}{5} \div \frac{3}{10} \\
& \frac{4}{5} \div \frac{3}{10}=\frac{4}{5} \cdot \frac{10}{3}
\end{aligned}
$$

Multiply by the reciprocal of
$\frac{3}{10}, \frac{10}{3}$.

$$
=\frac{4}{5} \cdot \frac{1^{2}}{3}
$$

Divide by the GCF, 5 .

Answer: $\frac{8}{3}$ or $2 \frac{2}{3}$

Simplify.

EXAMPLE Divide by a Fraction or Whole Number

(2) B. Find each quotient. Write in simplest form.

$$
\begin{aligned}
& \frac{5}{6} \div 3 \\
& \frac{5}{6} \div 3=\frac{5}{6} \div \frac{3}{1} \\
& \frac{5}{6} \div \frac{3}{1}=\frac{5}{6} \bullet \frac{1}{3}
\end{aligned}
$$

Write 3 as $\frac{3}{1}$.
Multiply by the reciprocal of $\frac{3}{1}, \frac{1}{3}$.

$$
=\frac{5}{18}
$$

Multiply.
Answer: $\frac{5}{18}$

CHECK Your Progress:
(2) Find $\frac{3}{8} \div \frac{5}{6}$. Write the quotient in simplest form.

EXAMPDE Divide by a Mixed Number

(3) Find $4 \frac{2}{3} \div\left(-3 \frac{1}{9}\right)$. Write the quotient in simplest form.

$$
4 \frac{2}{3} \div\left(-3 \frac{1}{9}\right)=\frac{14}{3} \div \frac{-28}{9}
$$

$$
=\frac{14}{3} \cdot\left(-\frac{9}{28}\right)
$$

$$
=\frac{\stackrel{1}{4}_{\not 4}^{\not 2}}{\beta_{1}} \cdot-\frac{\stackrel{3}{9}_{28}^{28}}{2}
$$

Divide by common factors.

Answer: $\quad=-\frac{3}{2}$ or $-1 \frac{1}{2}$ Simplify.

dentrck Your Progress:

(3) Find $3 \frac{3}{4} \div 2 \frac{5}{8}$. Write the quotient in simplest form.

> A. $\frac{21}{25}$
> (B. $1 \frac{3}{7}$
C. $2 \frac{7}{10}$
D. $9 \frac{27}{32}$
(2) Math Chapter

EXAMPIE Divide by an Algebraic Fraction

(4) Find $\frac{5 x}{8 y} \div \frac{10}{16 y}$. Write the quotient in simplest form.

$$
\frac{5 x}{8 y} \div \frac{10}{16 y}=\frac{5 x}{8 y} \cdot \frac{16 y}{10}
$$

Multiply by the multiplicative inverse of $\frac{10}{16 y}, \frac{16 y}{10}$.

Divide by common factors.

Answer: $=\frac{2 x}{2}$ or x
Simplify.

CHECK Your Progress

(4) Find $\frac{6 m}{10 p} \div \frac{9 m}{4}$. Write the quotient in simplest form.

$$
\text { A. } \frac{15 p}{4}
$$

(B.) $\frac{4}{15 p}$
C. $\frac{27 m^{2}}{20 p}$
D. $\frac{24 m}{90 m p}$

Real-World EXAMPLE

(5) TRAVEL How many gallons of gas are needed to travel $78 \frac{3}{4}$ miles if a car gets $25 \frac{1}{2}$ miles per gallon?

To find how many gallons, divide $78 \frac{3}{4}$ by $25 \frac{1}{2}$.
(5) $78 \frac{3}{4} \div 25 \frac{1}{2}=\frac{315}{4} \div \frac{51}{2}$

$$
=\frac{315}{4} \cdot \frac{2}{51}
$$

$$
=\frac{375}{4}{ }_{2}^{105} \cdot \frac{12}{51}
$$

$$
=\frac{105}{34} \text { or } 3 \frac{3}{34}
$$

Write as improper fractions.

Multiply by the reciprocal of
$\frac{51}{2}, \frac{2}{51}$.
Divide by common factors.

Simplify.
(5) Answer: $3 \frac{3}{34}$ gallons of gas are needed.

Check Use dimensional analysis to examine the units.

$$
\begin{array}{rlrl}
\text { miles }: \frac{\text { miles }}{\text { gallons }} & =\text { mites } \times \frac{\text { gallons }}{\text { miles }} & \begin{array}{l}
\text { Divide by } \\
\text { common units. }
\end{array} \\
& =\text { gallons } & & \text { Simplify. }
\end{array}
$$

The result is expressed as gallons.

C) CHECK Your Progress

(5) SEWING Emily has $32 \frac{2}{3}$ yards of fabric. She wants to make pillows which each require $3 \frac{5}{6}$ yards of fabric to complete. How many pillows can Emily make?
A. $3 \frac{5}{23}$ or 3 pillows
B. $5 \frac{2}{7}$ or 5 pillows
C. $8 \frac{12}{23}$ or 8 pillows
D. $125 \frac{2}{9}$ or 125 pillows

Qunis

Lesson Menu

Five-Minute Check (over Lesson 5-4)

Main Ideas

Key Concept: Adding Like Fractions
Example 1: Add Fractions
Example 2: Add Mixed Numbers
Key Concept: Subtracting Like Fractions
Example 3: Subtract Fractions
Example 4: Subtract Mixed Numbers
Example 5: Add Algebraic Fractions

Main Ideas

- Add like fractions.
- Subtract like fractions.

Adding and Subtracting Like Fractions

KEY CONCEPT

Adding Like Fractions

Words To add fractions with like denominators, add the numerators and write the sum over the denominator.
Symbols $\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}$, where $c \neq 0 \quad$ Example $\frac{1}{5}+\frac{2}{5}=\frac{1+2}{5}$ or $\frac{3}{5}$

EXAMPL: Add Fractions

(1) Find $\frac{3}{4}+\frac{3}{4}$. Write the sum in simplest form.

Estimate $1+1=2$
$\frac{3}{4}+\frac{3}{4}=\frac{3+3}{4}$
The denominators are the same. Add the numerators.

Answer: $=\frac{6}{4}$ or $\frac{3}{2}$ or $1 \frac{1}{2}$
Simplify and rename as a mixed number.

Compared to the estimate, the answer is reasonable.

STHECK Your Progress,

(1) Find $\frac{2}{9}+\frac{8}{9}$. Write the sum in simplest form.

$$
\text { A. } \frac{5}{9}
$$

(B. $1 \frac{1}{9}$
C. $1 \frac{2}{9}$
D. $1 \frac{7}{9}$

88/CheckPoint

EXAMPLE Add Mixed Numbers

(2) Find $3 \frac{4}{9}+8 \frac{2}{9}$. Write the sum in simplest form.

Estimate $3 \frac{1}{2}+8=11 \frac{1}{2}$

$$
\begin{array}{rlrl}
3 \frac{4}{9}+8 \frac{2}{9} & =(3+8)+\left(\frac{4}{9}+\frac{2}{9}\right) & \begin{array}{l}
\text { Add the whole numbers } \\
\text { and fractions separately. }
\end{array} \\
& =11+\frac{4+2}{9} & & \text { Add the numerators. }
\end{array}
$$

Answer: $=11 \frac{6}{9}$ or $11 \frac{2}{3} \quad$ Simplify.

Adding and Subtracting Like Fractions

CHECK Your Progress:

(2) Find $5 \frac{3}{14}+2 \frac{5}{14}$. Write the sum in simplest form.

$$
\text { A. } 3 \frac{1}{14}
$$

B. $7 \frac{8}{14}$
C. $7 \frac{4}{7}$
D. $8 \frac{1}{14}$

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

88/CheckPoint

Adding and Subtracting Like Fractions

KEY CONCEPT

Subtracting Like Fractions

Words To subtract fractions with like denominators, subtract the numerators and write the difference over the denominator.
Symbols $\frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}$, where $c \neq 0 \quad$ Example $\frac{5}{7}-\frac{1}{7}=\frac{5-1}{7}$ or $\frac{4}{7}$

EXAMPLE Subtract Fractions

(3) Find $\frac{11}{12}-\frac{5}{12}$. Write the difference in simplest form.

Estimate $1-\frac{1}{2}=\frac{1}{2}$

$$
\frac{11}{12}-\frac{5}{12}=\frac{11-5}{12}
$$

The denominators are the same. Subtract the numerators.

Answer:

$$
=\frac{6}{12} \text { or } \frac{1}{2} \text { Simplify. }
$$

- criEck Your Progress
(3) Find $\frac{17}{20}-\frac{11}{20}$. Write the difference in simplest form.

$$
\text { A. } 1 \frac{2}{5}
$$

B. $\frac{7}{10}$
C. $\frac{6}{20}$
D. $\frac{3}{10}$

$$
\square A \square B \square C \square 0
$$

EXAMPLE Subtract Mixed Numbers

(4) Evaluate $r-q$ if $r=7 \frac{3}{5}$ and $q=9 \frac{1}{5}$. Estimate $8-9=-1$

$$
\begin{array}{rlrl}
r-q & =7 \frac{3}{5}-9 \frac{1}{5} & & \text { Replace } r \text { with } 7 \frac{3}{5} \text { and } q \text { with } 9 \frac{1}{5} . \\
& =\frac{38}{5}-\frac{46}{5} & & \text { Write the mixed numbers as } \\
\text { improper fractions. } \\
& =\frac{-8}{5} & & \text { Subtract the numerators. }
\end{array}
$$

Answer: $=-1 \frac{3}{5} \quad$ Simplify.

Adding and Subtracting Like Fractions

Sh

(4) Evaluate $m-n$ if $m=4 \frac{7}{9}$ and $n=8 \frac{2}{9}$.
A. 13
B. $\frac{1}{9}$
(C.) $-3 \frac{4}{9}$
D. $-4 \frac{5}{9}$

88/CheckPoint

EXAMPIE Add Algebraic Fractions

(5) Find $\frac{5}{2 b}+\frac{3}{2 b}$. Write the sum in simplest form.

$$
\frac{5}{2 b}+\frac{3}{2 b}=\frac{5+3}{2 b} \quad \begin{aligned}
& \text { The denominators are the } \\
& \text { same. Add the numerators. }
\end{aligned}
$$

$$
=\frac{8}{2 b} \quad \text { Add the numerators. }
$$

Answer:

$$
=\frac{4}{b} \quad \text { Simplify. }
$$

Adding and Subtracting Like Fractions

C) CHECK Your Progress:

(5) Find $\frac{3 x}{16}+\frac{5 x}{16}$. Write the sum in simplest form.

$$
\text { A. } \frac{x^{2}}{2}
$$

(B.) $\frac{x}{2}$
C. $\frac{x}{4}$
D. $-\frac{x}{8}$

88/CheckPoint
Quis

Lesson Menu

Five-Minute Check (over Lesson 5-5)
Main Ideas and Vocabulary
Example 1: Find the LCM
Example 2: The LCM of Monomials
Example 3: Find the LCD
Example 4: Compare Fractions
Example 5: Order Rational Numbers

Main Ideas

- Find the least common multiple of two or more numbers.
- Find the least common denominator of two or more fractions.

New Vocabulary

- multiple
- common multiples
- least common multiple (LCM)
- least common denominator (LCD)

COncepts in MQtion

EXAMPLE Find the LCM

(1) Find the LCM of 168 and 180.

Number

168
180

$2^{3} \cdot 3 \cdot 7$
Prime Factorization

$$
\begin{aligned}
& 2 \cdot 2 \cdot 2 \cdot 3 \bullet 7 \\
& 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5
\end{aligned}
$$

$$
2^{2} \cdot 3^{2} \cdot 5
$$

The prime factors of both numbers are $2,3,5$, and 7 . Multiply the greatest power of 2, 3,5, and 7 appearing in either factorization.

$$
\begin{aligned}
\text { LCM } & =2^{3} \bullet 3^{2} \bullet 5 \bullet 7 \\
& =2520
\end{aligned}
$$

Answer: The LCM of 168 and 180 is 2520 .

Sh

(1) Find the LCM of 144 and 96 .
A. 24
B. 144
C. 288
D. 13,824

$88 /$ CheckPoint

EXAMPLE The LCM of Monomials

(2) Find the LCM of $12 x^{2} y^{2}$ and $6 y^{3}$.

$$
12 x^{2} y^{2}=2^{2} \cdot 3 \cdot x^{2} \cdot y^{2}
$$

$$
6 y^{3}=2 \cdot 3 \cdot y^{3}
$$

Find the prime factorization of each monomial.

Highlight the greatest power of each prime factor.

$$
\text { LCM }=2^{2} \cdot 3 \cdot x^{2} \cdot y^{3}
$$

Multiply the greatest power of each prime factor.

$$
=12 x^{2} y^{3}
$$

Answer: The LCM of $12 x^{2} y^{2}$ and $6 y^{3}$ is $12 x^{2} y^{3}$.

ClIECK Your Progress

(2) Find the LCM of $18 a b^{3}$ and $24 a^{2} b$.

A. $6 a b$

B. $9 a^{2} b^{3}$
(C. $72 a^{2} b^{3}$
D. $432 a^{3} b^{4}$

EXAMPLE Find the LCD

(3) Find the LCD of $\frac{7}{8}$ and $\frac{13}{20}$.

$$
8=2^{3}
$$

Write the prime factorization of 8 and 20 .

$$
20=2^{2} \cdot 5
$$

Highlight the greatest power of each prime factor.

LCM $=2^{3} \bullet 5$ or $40 \quad$ Multiply.
Answer: The LCD of $\frac{7}{8}$ and $\frac{13}{20}$ is 40 .

Sh

(3) Find the LCD of $\frac{5}{9}$ and $\frac{11}{12}$.

Answer: 36

EXAMPIE Compare Fractions

(4) Replace \bullet with $<$, $>$, or $=$ to make $\frac{7}{15} \bullet \frac{3}{7}$ a true statement.

The LCD of the fractions is $3 \bullet 5 \bullet 7$ or 105 . Rewrite the fractions using the LCD and then compare the numerators.

EXAMPIE Compare Fractions

(4) $\frac{7}{15}=\frac{7 \bullet 7}{3 \cdot 5 \bullet 7}=\frac{49}{105}$ Multiply the fraction by $\frac{7}{7}$ to make the denominator 105.
$\frac{3}{7}=\frac{3 \cdot 3 \cdot 5}{7 \cdot 3 \cdot 5}=\frac{45}{105} \quad$ Multiply the fraction by $\frac{3 \cdot 5}{3 \cdot 5}$ to make the denominator 105.

Answer: Since $\frac{49}{105}>\frac{45}{105}$, then $\frac{7}{15}>\frac{3}{7}$.

C) ClECK Your Progress

(4) Replace \cdot with $<,>$, or $=$ to make $\frac{5}{21} \bullet \frac{9}{14}$ a true statement.
(A.) $<$
B. >
C. =
D. none of the above

Real-World EXAMPLE Order Rational Numbers

(5) FOOTBALL Dane's football team usually practices for $2 \frac{1}{2}$ hours. The table below shows how many hours trom normal they practiced each day this week. Order the practices from shortest to longest.

Mon	Tues	Wed	Thur's
$-\frac{3}{8}$	$1 \frac{3}{4}$	$-\frac{5}{6}$	$1 \frac{2}{3}$

Real-World EXAMPLE Order Rational Numbers

(5) Step 1 Order the negative fractions first. The LCD of 6 and 8 is 24 .

$$
-\frac{5}{6}=-\frac{20}{24}
$$

$$
-\frac{3}{8}=-\frac{9}{24}
$$

Compare the negative fractions. Since $-\frac{20}{24}<-\frac{9}{24}$,
then $-\frac{5}{6}<-\frac{3}{8}$.

Real-World EXAMPLE Order Rational Numbers

(5) Step 2 Order the positive fractions. The LCD of 3 and 4 is 12 .

$$
1 \frac{2}{3}=1 \frac{8}{12} \quad 1 \frac{3}{4}=1 \frac{9}{12}
$$

Compare the positive fractions. Since $1 \frac{8}{12}<1 \frac{9}{12}$,
then $1 \frac{2}{3}<1 \frac{3}{4}$.
Answer: Since $-\frac{5}{6}<-\frac{3}{8}<1 \frac{2}{3}<1 \frac{3}{4}$, the order of the practices from shortest to longest is

Wednesday, Monday, Thursday, and Tuesday.
(5) WEATHER The table shows the rainfall of four months compared to the overall yearly average of $3 \frac{1}{5}$ inches of rainfall for Columbus, Ohio. Order the months from least

Month	Average Rainfall (inches)
Jan	$-\frac{7}{8}$
Apr	$-1 \frac{3}{16}$
Jul	$-1 \frac{7}{32}$
Oct	$-\frac{11}{16}$

A. Jul, Apr, Jan, Oct
B. Jan, Oct, Jul, Apr
C. Oct, Jan, Apr, Jul
D. Jan, Oct, Apr, Jul

Lesson Menu

Five-Minute Check (over Lesson 5-6)
Main Ideas
Key Concept: Adding Unlike Fractions
Example 1: Add Unlike Fractions
Example 2: Add Fractions and Mixed Numbers
Key Concept: Subtracting Unlike Fractions
Example 3: Subtract Fractions and Mixed Numbers
Example 4: Real-World Example

Main Ideas

- Add unlike fractions.
- Subtract unlike fractions.

Adding and Subtracting Unlike Fractions

KEY CONCEPT

Adding Unlike Fractions

Words To add fractions with unlike denominators, rename the fractions with a common denominator. Then add and simplify as with like fractions.
Example $\frac{1}{3}+\frac{2}{5}=\frac{1}{3} \cdot \frac{5}{5}+\frac{2}{5} \cdot \frac{3}{3}$

$$
=\frac{5}{15}+\frac{6}{15} \text { or } \frac{11}{15}
$$

EXAMPLE Add Unlike Fractions

(1) Find $\frac{3}{4}+\frac{1}{7}$.

$$
\frac{3}{4}+\frac{1}{7}=\frac{3}{4} \cdot \frac{7}{7}+\frac{1}{7} \bullet \frac{4}{4} \quad \begin{aligned}
& \text { Use } 4 \bullet 7 \text { or } 28 \text { as the } \\
& \text { common denominator. }
\end{aligned}
$$

$$
=\frac{21}{28}+\frac{4}{28}
$$

Answer: $=\frac{25}{28}$

Adding and Subtracting Unlike Fractions

sheमECK Your Progress

(1) Find $\frac{2}{3}+\frac{1}{8}$.

$$
\begin{aligned}
& \text { A. } \frac{7}{11} \\
& \text { B. } \frac{1}{8} \\
& \text { C. } \frac{13}{24} \\
& \text { D. } \frac{19}{24}
\end{aligned}
$$

$88 /$ CheckPoint

Adding and Subtracting Unlike Fractions

EXAMPDE Add Fractions and Mixed Numbers

(2) A. Find $\frac{5}{6}+\left(-\frac{3}{10}\right)$. Write in simplest form.

Estimate: $1+0=1$

$$
\begin{aligned}
\frac{5}{6}+\left(-\frac{3}{10}\right) & =\frac{5}{6} \bullet \frac{5}{5}+\left(-\frac{3}{10}\right) \bullet \frac{3}{3} & & \begin{array}{l}
\text { The LCD is } 2 \bullet 3 \bullet 5 \\
\text { or } 30 .
\end{array} \\
& =\frac{25}{30}+\left(-\frac{9}{30}\right) & & \begin{array}{l}
\text { Rename each fraction } \\
\text { with the LCD. }
\end{array} \\
\text { Answer: } & =\frac{16}{30} \text { or } \frac{8}{15} & & \begin{array}{l}
\text { Compare to the } \\
\text { estimate. Is the answer } \\
\text { reasonable? }
\end{array}
\end{aligned}
$$

EXAMPLE Add Fractions and Mixed Numbers

(2) B. Find $2 \frac{1}{8}+\left(-3 \frac{2}{3}\right)$. Write in simplest form.

Estimate: $2+(-4)=-2$

$$
\begin{aligned}
2 \frac{1}{8}+\left(-3 \frac{2}{3}\right) & =\frac{17}{8}+\left(-\frac{11}{3}\right) \\
& =\frac{17}{8} \cdot \frac{3}{3}+\left(-\frac{11}{3}\right) \frac{8}{8} \\
& =\frac{51}{24}+\left(\frac{-88}{24}\right)
\end{aligned}
$$

Write the mixed numbers as improper fractions.

Rename fractions using the LCD, 24.

Simplify.

EXAMPLE Add Fractions and Mixed Numbers

(2) Answer : $=\frac{-37}{24}$ or $-1 \frac{13}{24}$

Compared to the estimate, the answer is reasonable.

CHECK Your Progress

(2) A. Find $\frac{5}{12}+\frac{5}{9}$. Write in simplest form.

$$
\begin{aligned}
& \text { A. } 1 \frac{1}{24} \\
& \text { B. } \frac{35}{36} \\
& \text { C. } \frac{10}{21} \\
& \text { D. }-\frac{5}{36}
\end{aligned}
$$

88/CheckPoint

Adding and Subtracting Unlike Fractions

(2) B. Find $4 \frac{2}{5}+\left(-6 \frac{2}{3}\right)$. Write in simplest form.

$$
\begin{aligned}
& \text { A. } 11 \frac{1}{15} \\
& \text { B. }-2 \frac{2}{15} \\
& \text { C. }-2 \frac{4}{15} \\
& \text { D. }-2 \frac{14}{15}
\end{aligned}
$$

$5-1$ Adding and Subtracting Unlike Fractions

KEY CONCEPT

Subtracting Unlike Fractions

To subtract fractions with unlike denominators, rename the fractions with a common denominator. Then subtract and simplify as with like fractions.

$E X A M P L$ Subtract Fractions and Mixed Numbers

(3) A. Find $\frac{9}{16}-\frac{5}{8}$. Write in simplest form.

$$
\begin{aligned}
\frac{9}{16}-\frac{5}{8} & =\frac{9}{16}-\frac{5}{8} \bullet \frac{2}{2} & & \text { The LCD is } 16 . \\
& =\frac{9}{16}-\frac{10}{16} & & \text { Rename using the LCD. }
\end{aligned}
$$

Answer: $=-\frac{1}{16} \quad$ Subtract.

EXAMPLE Subtract Fractions and Mixed Numbers

(3) B. Find $4 \frac{2}{3}-3 \frac{6}{7}$. Write in simplest form.

$$
\begin{array}{rlrl}
4 \frac{2}{3}-3 \frac{6}{7} & =\frac{14}{3}-\frac{27}{7} & & \begin{array}{l}
\text { Write as i } \\
\text { fractions. } \\
\end{array} \\
=\frac{14}{3} \bullet \frac{7}{7}-\frac{27}{7} \bullet \frac{3}{3} & & \text { Rename } \\
& =\frac{98}{21}-\frac{81}{21} & & \text { Simplify. } \\
\text { Answer: } & & \frac{17}{21} &
\end{array}
$$

(3) A. Find $\frac{11}{12}-\frac{2}{9}$. Write in simplest form.
A. $\frac{2}{3}$
(B.) $\frac{25}{36}$
C. $1 \frac{5}{36}$
D. 3

Adding and Subtracting Unlike Fractions

- CMEN Your Progress

(3) B. Find $3 \frac{5}{6}-2 \frac{1}{8}$. Write in simplest form.

$$
\begin{aligned}
& \text { A. } 1 \frac{17}{24} \\
& \text { B. } 1 \frac{13}{16} \\
& \text { C. } 2 \frac{11}{24} \\
& \text { D. } 5 \frac{23}{24}
\end{aligned}
$$

Adding and Subtracting Unlike Fractions

Real-World EXAMPLE

(4) JOGGING Juyong jogged three days this week for a total of $11 \frac{17}{20}$ miles. If she jogged $3 \frac{1}{2}$ miles and $4 \frac{1}{4}$ miles another, how many miles did she jog on the third day?
Explore You know the total distance Juyong jogged and the distances on two days.
Plan Add the known distances and subtract

$$
\begin{aligned}
& \text { that sum from } 11 \frac{17}{20} \text {. Estimate your answer. } \\
& 11 \frac{1}{2}-\left(3 \frac{1}{2}+4\right)=4
\end{aligned}
$$

Adding and Subtracting Unlike Fractions

Rea-World EXAMPLE

(4) Solve

$$
3 \frac{1}{2}+4 \frac{1}{4}=3 \frac{2}{4}+4 \frac{1}{4}=7 \frac{3}{4}
$$

Simplify.
Rename the fractions with LCD, 4.

$$
\begin{aligned}
& 11 \frac{17}{20}-7 \frac{3}{4}=11 \frac{17}{20}-7 \frac{15}{20} \quad \text { Rename } 7 \frac{3}{4} \text { with the } \\
& \text { LCD, } 20 .
\end{aligned}
$$

$$
=4 \frac{2}{20} \text { or } 4 \frac{1}{10} \text { Simplify. }
$$

Adding and Subtracting Unlike Fractions

Rea-World EXAMPLE

(4) Answer: Juyong jogged $4 \frac{1}{10}$ miles on the third day.

Examine
Since $4 \frac{1}{10}$ is close to 4 , the answer is reasonable.
(4) GARDENING Howard's tomato plants grew a total of $7 \frac{11}{24}$ inches during the first three weeks after sprouting. If they grew $2 \frac{1}{4}$ inches during the first week and $1 \frac{7}{8}$ inches during the second week, how much did they grow during the third week after sprouting?
(A.) $3 \frac{1}{3}$
B. $3 \frac{19}{24}$
C. $4 \frac{1}{8}$
D. $11 \frac{7}{12}$

(8) Math Chapter

RESOURCES $\square \sqrt[\square]{\square} \sqrt{\square}$

Lesson Menu

Five-Minute Check (over Lesson 5-7)
Main Idea
Example 1: Solve by Using Addition and Subtraction
Example 2: Solve by Using Division
Example 3: Solve by Using Multiplication
Example 4: Real-World Example

Main Idea

- Solve equations containing rational numbers.

EXAMPLE Solve by Using Addition and Subtraction

(1) A. Solve $m+8.6=11.2$.

$$
m+8.6=11.2 \quad \text { Write the equation. }
$$

$m+8.6-8.6=11.2-8.6$

$$
m=2.6
$$

Subtract 8.6 from each side.

Simplify.
Answer: 2.6

EXAMPLE Solve by Using Addition and Subtraction

(1) B. Solve $y-\frac{3}{8}=\frac{3}{4}$. Check your solution.

$$
\begin{aligned}
y-\frac{3}{8} & =\frac{3}{4} & & \text { Write the equation. } \\
y-\frac{3}{8}+\frac{3}{8} & =\frac{3}{4}+\frac{3}{8} & & \text { Add } \frac{3}{8} \text { to each side. } \\
y & =\frac{6}{8}+\frac{3}{8} & & \begin{array}{l}
\text { Rename the fractions } \\
\text { using the LCD and ac } \\
\text { Answer: }
\end{array} y
\end{aligned} \begin{aligned}
8 & \text { or } 1 \frac{1}{8} & & \text { Simplify. }
\end{aligned}
$$

8/CHECK Your Progress:

(1) A. Solve $4.2=x-9.5$
A. -5.3
B. 1.37
C. 5.3
(D. 13.7

$88 /$ CheckPoint

Sh대ECK Your Progress:
(1) B. Solve $\frac{2}{3}=x-\frac{1}{2}$.
A. $\frac{1}{6}$
B. $\frac{3}{5}$
C. $1 \frac{1}{6}$
D. $1 \frac{2}{5}$

EXAMPLE Solve by Using Division

(2) Solve 9a=3.6. Check your solution.

$$
\begin{array}{ll}
9 a=3.6 & \text { Write the equation. } \\
\frac{9 a}{9}=\frac{3.6}{9} & \text { Divide each side by } 9 .
\end{array}
$$

Answer: $\quad a=0.4 \quad$ Simplify. Check the solution.
(2) Solve $-6 m=-4.8$. Check your solution.
A. -0.8
(B.) 0.8

C. 1.2
D. 28.8

EXAMPLE Solve by Using Multiplication

(3) Solve $\frac{-3}{5} t=-6$. Check your solution.

$$
\begin{aligned}
\frac{-3}{5} t & =-6 & & \text { Write the equation. } \\
\frac{-5}{3}\left(\frac{-3}{5} t\right) & =\frac{-5}{3}(-6) & & \text { Multiply each side by } \frac{-5}{3} .
\end{aligned}
$$

Answer: $t=\frac{30}{3}$ or 10 Simplify. Check the solution.

Clleck your Progress

(3) Solve $\frac{-5}{8} a=-10$. Check your solution.

$$
\text { A. }-16
$$

B. $-9 \frac{3}{8}$
C. $6 \frac{1}{4}$
D. 16

Real-World EXAMPLE

(4) CEREAL Torrey eats $\frac{5}{6}$ cup of cereal each morning and another $\frac{2}{3}$ cup as a snack after school. If one box of cereal contains 10 cups of cereal, how many days will the box last?

The amount of cereal that Torrey eats each day is $\frac{5}{6}+\frac{2}{3}=\frac{5}{6}+\frac{4}{6}=\frac{9}{6}$ or $1 \frac{1}{2}$ cups.
(4) Words $1 \frac{1}{2}$ cups times the number equals 10 cups
Variable of days of cereal

Variable
Equation

Let $d=$ the number of days
$1 \frac{1}{2} \cdot d=10$
Write the equation.
$\frac{3}{2} \cdot d=10$

$$
\frac{2}{3} \cdot d=10 \cdot \frac{2}{3} \quad \text { Multiply each side by } \frac{2}{3}
$$

$$
d=\frac{20}{3} \approx 6.67 \quad \text { Simplify. }
$$

Answer: The box of cereal will last approximately
$6 \frac{2}{3}$ days.

CHECK Your Progress

(4) Each morning Michael buys a cappuccino for $\$ 4.50$ and each afternoon he buys a regular coffee for $\$ 1.25$. If he put aside $\$ 30$ to buy coffee drinks, how many days will the money last?
A. 3 days
B. 5 days
C. 6 days
D. 9 days

88/CheckPoint
(2)Hinite Chapter pouges in

Lesson Menu

Five-Minute Check (over Lesson 5-8)
Main Ideas and Vocabulary
Key Concept: Measures of Central Tendency
Example 1: Real-World Example
Concept Summary: Using Mean, Median, and Mode
Example 2: Choose an Appropriate Measure
Example 3: Real-World Example
Example 4: Standardized Test Example

Main Ideas

- Use the mean, median, and mode as measures of central tendency.
- Choose an appropriate measure of central tendency and recognize measures of statistics.

New Vocabulary

- measures of central tendency
- mean
- median
- mode

KEY CONCEPT

Measures of Central Tendency

mean the sum of the data divided by the number of items in the data set
median the middle number of the ordered data, or the mean of the middle two numbers
mode the number or numbers that occur most often

Real-World EXAMPLE

(1) A. MOVIES The revenue of the 10 highest grossing movies as of 2004 are given in the table. Find the mean, median, and mode of the revenues.

Top 10 Movie Revenues (millions of \$)	
436	249
373	187
371	176
279	173
261	163

$$
\begin{aligned}
\text { mean } & =\frac{\text { sum of revenues }}{\text { number of movies }} \\
& =\frac{436+373+371+\ldots+163}{10} \\
& =\frac{2668}{10} \text { or } 266.8
\end{aligned}
$$

Answer: The mean revenue is $\$ 266.8$ million.

Rea-World EXAMPLE

(1) To find the median, order the numbers from least to greatest.
163, 173, 176, 187, 249, 261, 279, 371, 373, 436
There is an even number of items. Find the mean of the two middle numbers.

Answer: The median revenue is $\$ 255$ million. There is no mode because each number in the set occurs once.

Real-World EXAMPLE

(1) B. OLYMPICS The line plot shows the number of gold medals earned by each country that participated in the 2002 Winter Olympic games in Salt Lake City, Utah. Find the mean, median, and mode for the gold medals won.

$$
\text { mean }=\frac{6(0)+3(1)+5(2)+3(3)+3(4)+2(6)+1(10)+1(11)+1(12)}{24}=3.16
$$

Answer: The mean is 3.16 .

Real-World EXAMPLE
(1) There are 24 numbers. The median number is the average of the $12^{\text {th }}$ and $13^{\text {th }}$ numbers.

Answer: The median is 2.

The number 0 occurs most frequently in the set of data.

Answer: The mode is 0 .
(1) A. TEST SCORES The test scores for a class of nine students are 85, 93, 78, 99, 62, 83, 90, 75, 85. Find the mean, median, and mode of the test scores.
A. mean, 73.9; median, 85; mode, no mode
(B.) mean, 83.3; median, 85; mode, 85
C. mean, 750; median, 62; mode, 85

D. mean, 83.3; median, 62; mode, 85

CHECK Your Progress

(1) B. FAMILIES A survey of school-age children shows the family sized displayed in the line plot. Find the mean, median, and mode.
A. mean, 5.1; median, 5;
 mode, 3, 4, 5, 6, 8
B. mean, 102; median, 5; mode, 5
C. mean, 6.05; median, 6; mode, 6
D. mean, 4.3; median, 5.5;
 mode, 4.5

CONCEPT SUMMARY

mean - the data set has no extreme values (values that are much greater or much less than the rest of the data)
median - the data set has extreme values

- there are no big gaps in the middle of the data
mode - the data set has many repeated numbers

Real-World EXAMPLE

Choose an Appropriate

 Measure(2) SURVEYS Eleanor took a poll in her class to see how many times her classmates had visited the local amusement park during summer vacation. What measure of central tendency best represents the data?
The data is: $5,0,2,3,2,4,1,2,1,3,8,2,2,0$.
Since there is an extreme value of 8 , the median would best represent the data.
$0,0,1,1,2,2, \underbrace{2}_{\sim}, 2,3,3,4,5,8$
Answer: The median is 2 . This is also the mode.

CHECK Your Progress
(2) BOWLING Jenny's bowling scores are 146, 138, 140, 142, 139, 138, and 145 . Which measure of central tendency best represents the data?
(A.) mean
B. median
C. mode
D. cannot be determined

Real-World EXAMPLE

(3) QUIZ SCORES The quiz scores for students in a math class are $8,7,6,10,8,8,9,8,7,9,8,0$, and 10. Which measure of central tendency best represents the data? Then find the measure of central tendency.

The data value 0 appears to be an extreme value. So, the median and mode would best represent the data.
$0,6,7,7,8,8,8,8,8,9,9,10,10$
Answer: The median and mode are 8.

Real-World EXAMPLE

(3) Check You can check whether the median best represents the data by finding the mean with and without the extreme value.
mean with extreme value $\frac{\text { sum of values }}{\text { number of values }}=\frac{98}{13}$
≈ 7.5
mean without extreme value
$\frac{\text { sum of values }}{\text { number of values }}=\frac{98}{12}$
≈ 8.2

The mean without the extreme value is closer to the median. The extreme value decreases the mean by about 0.7. Therefore, the median best represents the data.

CHECK Your Progress

(3) BIRTH WEIGHT The birth weights of ten newborn babies are given in pounds: 7.3, 8.4, 9.1, 7.9, 8.8, 6.5 , 7.9, 4.1, 8.0, 7.5. Tell which measure of central tendency best represents the data. Then find the measure of central tendency.
A. mean, 7.53
(B. median, 7.9

0\%
C. mode, 7.9
D. cannot be determined

Standardized Test EXAMPLE

(4) SALARIES The monthly salaries for the employees at Bob's Book Store are: \$1290, \$1400, \$1400, $\$ 1600, \$ 2650$. Which measure of central tendency should Bob's Book Store's manager use to show new employees that the salaries are high?

A mode
C mean

B median
D cannot be determined

Read the Test Item
To find which measure of central tendency to use, find the mean, median, and mode of the data and select the greatest measure.

Standardized Test EXAMPLE

(4) Solve the Test Item

Mean: $\frac{\$ 1290+\$ 1400+\ldots+\$ 2650}{5}=\frac{\$ 8340}{5}=\$ 1668$
Mode: \$1400

Median: \$1290, \$1400, \$1400, \$1600, \$2650

Answer: The mean is the highest measure, so the answer is C.
(4) EXERCISE The number of hours spent exercising each week by women are: $1,6,4,2,1$, and 8 . Which measure of central tendency should a person use to show that women do not spend enough time exercising?
(A.) mode
B. median
C. mean
D. cannot be determined

Rational Numbers

Chapter Resources Menu

$8 / 8$ CheckPoint Five-Minute Checks
\square Image Bank
时路 Math Tools
COncepts
in MQtion
$\mathrm{An}_{\mathrm{I}_{\mathrm{m}} \mathrm{ation}}$ Whole Numbers

Interactive	
$\mathbf{L a b}$	
$\times \div \div$	Least Common Multiple

Rational Numbers

Sive-Minute CHECK
Lesson 5-1 (over Chapter 4)
Lesson 5-2 (over Lesson 5-1)
Lesson 5-3 (over Lesson 5-2)
Lesson 5-4 (over Lesson 5-3)
Lesson 5-5 (over Lesson 5-4)
Lesson 5-6 (over Lesson 5-5)
Lesson 5-7 (over Lesson 5-6)
Lesson 5-8 (over Lesson 5-7)
Lesson 5-9 (over Lesson 5-8)

Rational Numbers

Image Bank

To use the images that are on the following three slides in your own presentation:

1. Exit this presentation.
2. Open a chapter presentation using a full installation of Microsoft ${ }^{\circledR}$ PowerPoint ${ }^{\circledR}$ in editing mode and scroll to the Image Bank slides.
3. Select an image, copy it, and paste it into your presentation.

Rational Numbers

Image Bank

Rational Numbers
Image Bank

$\mid \leftarrow \leftarrow \Rightarrow$
(1) Find the GCF of the numbers 12 and 30 .
A. 3
(B.) 6
C. 10
D. 60

に $\Leftarrow \rightarrow$
(2) Find the GCF of the monomials $9 a^{3}$ and $15 a b$.
A. $45 a^{4} b$
B. $3 a^{2} b$

C. $5 a^{2}$
D. $3 a$
(3) Find the product of $3^{5} \bullet 3^{4}$ using positive exponents.
(A.) 3^{9}
B. 9^{9}
0%
C. 3^{20}
D. 9^{20}

(4) Find the product of $\left(5 a^{2}\right)\left(-7 a^{3}\right)$ using positive exponents.
A. $-35 a^{6}$
(B.) $-35 a^{5}$
C. $-2 a^{6}$
D. $-2 a^{6}$

$88 /$ CheckPoint
$1 F \leftarrow \rightarrow$

(5) Find the quotient of $\frac{x^{2}}{x^{6}}$ using positive exponents.

A. x^{4}

B. x^{-4}
C. $\frac{1}{x^{4}}$
D. $\frac{1}{x^{-4}}$

Rational Numbers

0 Five-Minute CHECK (over Chapter 4)

Standardized Test Practice

(6) The population of the world is estimated to be $6,148,000,000$ people. What is $6,148,000,000$ expressed in scientific notation?
A. 6148×10^{6}
0%
B. 6148×10^{9}
C. 6.148×10^{6}
D. 6.148×10^{9}
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$

(1) Write the fraction $-\frac{9}{20}$ as a decimal. Use ... to show a repeating decimal.
A. -4.5
B. -2.22...
C. -0.45
D. -0.18

(2) Write the mixed number $2 \frac{1}{8}$ as a decimal. Use ... to show a repeating decimal.
A. 2.215
(B.) 2.125
C. 0.25
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 0.125...
(3) Write the fraction $\frac{7}{9}$ as a decimal. Use ... to show a repeating decimal.
(A.) $0.77 \ldots$

0\%
B. 0.8
C. 1.2857...
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. 1.3
(4) Use $<,>$, or $=$ to make $0.7-\frac{2}{3}$ a true sentence. A. <
B. $>$

0\%

C. =

FHt
(5) Use $<,>$, or $=$ to make $2 \frac{5}{6} \quad 2.88 \ldots$ a true sentence.

B. $>$

0\%
C. =

F Ht

Standardized Test Practice
(6) Which number is less than $5 \frac{1}{4}$?
A. $5 \frac{1}{3}$
B. $5 \frac{1}{2}$

0\%
C. $5.22 \ldots$
D. 5.44...
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
$88 /$ CheckPoint
(1) Write the number $-2 \frac{3}{4}$ as an improper fraction.

$$
\begin{aligned}
& \text { (A. }-\frac{11}{4} \\
& \text { B. }-\frac{6}{4} \\
& \text { C. }-\frac{5}{4} \\
& \text { D. }-\frac{3}{4}
\end{aligned}
$$

Fヶ
(2) Write the number 29 as an improper fraction.

$$
\begin{aligned}
& \text { A. } \frac{1}{29} \\
& \text { B. } \frac{29}{10} \\
& \text { C. } \frac{100}{29} \\
& \text { D. } \frac{29}{1}
\end{aligned}
$$

(3) Write the decimal 0.6 as a fraction in simplest form.

$$
\begin{aligned}
& \text { A. } \frac{1}{6} \\
& \text { B. } \frac{2}{5} \\
& \text { C. } \frac{3}{5} \\
& \text { D. } \frac{2}{3}
\end{aligned}
$$

(4) Write the decimal 3.25 as a fraction or mixed number in simplest form.

$$
\begin{aligned}
& \text { A. } \frac{13}{40} \\
& \text { B. } \frac{4}{13} \\
& \text { C. } 3 \frac{1}{13} \\
& \text { D. } 3 \frac{1}{4}
\end{aligned}
$$

(5) Write the decimal $0 . \overline{3}$ as a fraction in simplest form.

$$
\begin{aligned}
& \text { A. } \frac{33}{10} \\
& \text { B. } \frac{1}{3} \\
& \text { C. } \frac{10}{3} \\
& \text { D. } \frac{3}{10}
\end{aligned}
$$

Rational Numbers
 Fivo-Minute check \rightarrow (over Lesson 5-2)

Standardized Test Practice

(6) Which is not a rational number?

$$
\text { A. } \frac{2}{7}
$$

0%
B. 0.43
C. 2.3333...
D. π
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
88/CheckPoint
(1) Find the product and write in simplest form. $\frac{5}{9} \bullet \frac{2}{3}$

$$
\text { (A.) } \frac{10}{27}
$$

B. $\frac{7}{12}$
C. $\frac{5}{6}$
D. $\frac{10}{3}$

8/CheckPoint

(2) Find the product and write in simplest form. $\frac{3}{8} \bullet \frac{16}{21}$

$$
\begin{aligned}
& \text { A. } \frac{48}{168} \\
& \text { B. } \frac{168}{48} \\
& \text { C. } \frac{2}{7} \\
& \text { D. } \frac{7}{2}
\end{aligned}
$$

Rational Numbers

F) Fivo-Minute CHECK (over Lesson 5-3)

(3) Find the product and write in simplest form. $\frac{9}{10} \bullet(-5)$

$$
\begin{aligned}
& \text { A. } \frac{45}{50} \\
& \text { B. } \frac{2}{5} \\
& \text { C. }-\frac{9}{50} \\
& \text { (D. }-4 \frac{1}{2}
\end{aligned}
$$

$$
0 \%
$$

(4) Find the product and write in simplest form. $\frac{2 x}{3} \cdot \frac{4}{x}$ A. $\frac{x^{2}}{-6}$
B. $\frac{8}{3} x$
C. $2 \frac{2}{3}$
D. $\frac{3}{8}$

$\stackrel{\vdash}{ }$
F) Fivo-Minute CHECK (over Lesson 5-3)
(5) Find the product and write in simplest form. $\frac{5 b}{a} \cdot \frac{6 a^{4}}{c}$

$$
\begin{aligned}
& \text { A. } \frac{5 b c}{6 a^{5}} \\
& \text { B. } \frac{3 b c}{a^{5}} \\
& \text { C. } \frac{11 a^{3} b}{c} \\
& \text { (D. } \frac{30 b a^{3}}{c}
\end{aligned}
$$

C) FNo-Minute CHECK (over Lesson 5-3)

Standardized Test Practice

(6) The product of $\frac{7}{8}$ and 2 is a number
A. less than 1.
B. between 1 and 2 .
C. between 2 and 3.
D. greater than 3.

Rational Numbers

Five-Minute CHECK (over Lesson 5-4)

(1) Find the multiplicative inverse of $\frac{5}{11}$.
(A.) $\frac{11}{5}$
B. $\frac{5}{11}$
C. $-\frac{11}{5}$
D. $-\frac{5}{11}$

$$
\begin{array}{cccc}
0 \% & 0 \% & 0 \% & 0 \% \\
\hline \sigma & 0 & 0 & 0 \\
& \circ & \circ & \circ \\
& & 88 / C h e c k P o i n t
\end{array}
$$

FF

Rational Numbers

0 Five-Minute CHECK (over Lesson 5-4)

(2) Find the quotient and write in simplest form. $\frac{1}{3} \div \frac{9}{10}$

$$
\begin{aligned}
& \text { A. } \frac{27}{10} \\
& \text { B. } \frac{11}{12} \\
& \text { C. } \frac{3}{10} \\
& \text { (D. } \frac{10}{27}
\end{aligned}
$$

(3) Find the quotient and write in simplest form. (-6) $\div \frac{3}{8}$
A. 16
B. $\frac{4}{9}$

0\%
C. $-\frac{9}{4}$
D. -16
(4) Find the quotient and write in simplest form. $\frac{y}{28} \div \frac{2 y}{7}$

$$
\begin{aligned}
& \text { A. } \frac{y^{2}}{68} \\
& \text { B. } \frac{7 y}{30} \\
& \text { C. } \frac{1}{8} \\
& \text { D. } \frac{1}{2}
\end{aligned}
$$

Iヶヶ

Rational Numbers

CRVO-Minute CHECK (over Lesson 5-4)

(5) How many $\frac{1}{2}$-pound bags of potting soil can be filled from a 12-pound container of potting soil?
A. 48

B. 24

C. 12
D. 6

Rational Numbers

C) Fivo-Minute CHECK (over Lesson 5-4)

Standardized Test Practice

(6) What property of mathematics is shown in the problem $\frac{5}{6} \bullet \frac{6}{5}=1$?
A. Distributive Property 0\%
B. Multiplication Property of Equality
C. Inverse Property of Multiplication
D. Associative Property
(1) Find the difference and write in simplest form. $\frac{4}{5}-\frac{1}{5}$
A. $-\frac{1}{5}$
(B. $\frac{3}{5}$
C. $\frac{9}{5}$
D. $\frac{19}{5}$

Rational Numbers

F) Fivo-Minute CHECK (over Lesson 5-5)

(2) Find the sum and write in simplest form. $2 \frac{3}{8}+1 \frac{3}{8}$
A. $1 \frac{1}{8}$
B. $1 \frac{1}{4}$
C. $3 \frac{3}{8}$
(D. $3 \frac{3}{4}$
(3) Find the difference and write in simplest form.
$4 \frac{5}{6}-2 \frac{1}{6}$
A. 6
0%
B. 3
C. $2 \frac{2}{3}$
D. $1 \frac{1}{2}$

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

(4) Find the sum and write in simplest form. $\frac{a}{12}+\frac{2 a}{12}$
A. $\frac{a}{12}$
(B.) $\frac{a}{4}$
C. $\frac{7 a}{6}$
D. $\frac{23 a}{12}$

$\stackrel{\vdash}{ }$
(5) Find the difference and write in simplest form.
$\frac{6}{y}-\frac{1}{y}, y \neq 0$
(A. $\frac{5}{y}$
B. $\frac{6-y}{y}$
C. $\frac{6 y-1}{y}$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
D. $6 y-y$
$1+\leftarrow \rightarrow$

Fenvo-Minute CHECK (over Lesson 5-5)

Standardized Test Practice

(6) What is the value of $2 \frac{1}{3}+5 \frac{2}{3}-3 \frac{1}{3}$?
A. $11 \frac{1}{3}$
B. $10 \frac{2}{3}$
C. $4 \frac{2}{3}$
D. $4 \frac{1}{3}$

0\%
(1) Find the least common multiple (LCM) of 8 and 20.
A. 160
(B.) 40
C. 8
D. 4

$88 /$ CheckPoint
He \rightarrow
(2) Find the least common multiple (LCM) of 6,12 , and 15.
A. 3
B. 6

0\%

C. 30
D. 60
A. 3d

0\%
(B. $\mathbf{3 6 d}$
C. $3 d^{2}$
D. $36 d^{2}$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
88/CheckPoint
$1+\leftarrow \rightarrow$

Rational Numbers

 C) FNo-Minute CHECK (over Lesson 5-6)

 C) FNo-Minute CHECK (over Lesson 5-6)}
(4) Find the least common multiple (LCM) of $6 a^{2}$ and $8 a b$.
(A.) $\mathbf{2 4} a^{2} b$
B. $48 a^{3} b$
C. $12 a b$
D. $2 a$

$88 /$ CheckPoint
$1+\leftrightarrow \rightarrow$
(5) Use $<,>$, or $=$ to make $\frac{12}{19}-\frac{36}{57}$ a true statement.
A. <

0\%
B. $>$
C. $=$

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C}
$$

88/CheckPoint

(f) FVo-Minuto CHECK (over Lesson 5-6)

Standardized Test Practice

(6) Which of the following size buttons is the smallest?
A. $\frac{1}{2}$ inch
B. $\frac{1}{4}$ inch
0%
C. $\frac{3}{8}$ inch
D. $\frac{5}{16}$ inch
(1) Find the sum and write in simplest form. $\frac{7}{15}+\frac{1}{3}$
A. $\frac{2}{15}$
B. $\frac{8}{15}$
C. $\frac{3}{5}$
(D. $\frac{4}{5}$

8/CheckPoint
に $\Leftarrow \rightarrow$
(2) Find the difference and write in simplest form. $\frac{3}{4}-\frac{11}{12}$

$$
\begin{aligned}
& \text { A. }-\frac{1}{6} \\
& \text { B. }-\frac{2}{3} \\
& \text { C. }-\frac{5}{6} \\
& \text { D. }-\frac{5}{2}
\end{aligned}
$$

Rational Numbers

Five-Minute CHECK (over Lesson 5-7)

(3) Find the sum and write in simplest form. $6 \frac{1}{4}+3 \frac{5}{6}$
A. $2 \frac{1}{12}$
B. $2 \frac{5}{12}$
C. $5 \frac{1}{12}$
(D.) $10 \frac{1}{12}$

$$
\square \mathrm{A} \square \mathrm{~B} \square \mathrm{C} \square \mathrm{D}
$$

(4) Find the difference and write in simplest form.

$$
\begin{aligned}
& 1 \frac{9}{10}-\frac{2}{5} \\
& \text { A. } 2 \frac{3}{10} \\
& \text { B. } 1 \frac{3}{5} \\
& \text { C. } 1 \frac{1}{2} \\
& \text { D. } \frac{1}{2}
\end{aligned}
$$

(5) A candy shop had $9 \frac{3}{4}$ pounds of fancy chocolates, but sold $2 \frac{1}{2}$ pounds to a customer. How many pounds of the chocolates were left?
(A. $7 \frac{1}{4}$
B. $7 \frac{1}{2}$
C. $12 \frac{1}{4}$
D. $24 \frac{3}{8}$

0\%

Standardized Test Practice
(6) Choose the best estimate for $2 \frac{4}{9}+5 \frac{7}{12}$.
A. 7

0\%
(B.) 8
C. 9
D. 10
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
$889 /$ CheckPoint

Rational Numbers

0 Fivo-Minute CHECK (over Lesson 5-8)

(1) Solve $n+6.3=11.2$.
A. 1.77
(B.) 4.9
C. 5.1
D. 17.5

ト世
(2) Solve $9.4=w-9.4$.
A. -1
B. 0
0%

C. 1
(D.) 18.8

Rational Numbers

0 Fivo-Minute CHECK (over Lesson 5-8)

(3) Solve $k-\frac{3}{4}=-\frac{2}{3}$.

$$
\text { A. } \frac{8}{9}
$$

(B.) $\frac{1}{12}$

0\%
C. $-\frac{1}{12}$
D. $-\frac{17}{12}$
(4) Solve $-0.5 a=20$.

$$
\begin{aligned}
& \text { A. }-\frac{1}{10} \\
& \text { B. }-\frac{2}{5} \\
& \text { C. }-10
\end{aligned}
$$

$$
\text { (D.) }-40
$$

$\stackrel{\mid}{\mathrm{H}} \mathrm{H}$

Rational Numbers

P) Fivo-Minuite CHECK (over Lesson 5-8)

(5) Solve $\frac{5}{6}=\frac{1}{9} c$.
A. $10 \frac{4}{5}$
(B. $7 \frac{1}{2}$
C. $\frac{13}{18}$
D. $\frac{5}{54}$

Rational Numbers

0 Fivo-Minute CHECK (over Lesson 5-8)

Standardized Test Practice

(6) What is the length of the rectangular mat shown in the figure?

$$
\text { Area }=2 \mathrm{yd}^{2}
$$

A. $1 \frac{1}{4} \mathrm{yd}$
B. $\frac{5}{16} \mathrm{yd}$
C. $3 \frac{1}{5} \mathrm{yd}$
D. $1 \frac{3}{8} \mathrm{yd}$

