lesson Angle Theorems for Triangles

ESSENTIAL QUESTION

What can you conclude about the measures of the angles of a triangle?

EXPLORE ACTIVITY 1

Sum of the Angle Measures in a Triangle

There is a special relationship between the measures of the interior angles of a triangle.

A Draw a triangle and cut it out. Label the angles A, B, and C.
B Tear off each "corner" of the triangle. Each corner includes the vertex of one angle of the triangle.

C Arrange the vertices of the triangle around a point so that none of your corners overlap and there are no gaps between them.

D What do you notice about how the angles fit together around a point?

E What is the measure of a straight angle? \qquad
F Describe the relationship among the measures of the angles of $\triangle A B C$.

The Triangle Sum Theorem states that for $\triangle A B C, \mathrm{~m} \angle A+\mathrm{m} \angle B+\mathrm{m} \angle C=$ \qquad .

Reflect

1. Justify Reasoning Can a triangle have two right angles? Explain.
2. Analyze Relationships Describe the relationship between the two acute angles in a right triangle. Explain your reasoning.

EXPLORE ACTIVITY 2

Justifying the Triangle Sum Theorem

You can use your knowledge of parallel lines intersected by a transversal to informally justify the Triangle Sum Theorem.

Follow the steps to informally prove the Triangle Sum Theorem. You should draw each step on your own paper. The figures below are provided for you to check your work.

A Draw a triangle and label the angles as $\angle 1, \angle 2$, and $\angle 3$ as shown.
B Draw line a through the base of the triangle.
C The Parallel Postulate states that through a point not on a line ℓ, there is exactly one line parallel to line ℓ. Draw line b parallel to line a, through the vertex opposite the base of the triangle.

D Extend each of the non-base sides of the triangle to form transversal s and transversal t. Transversals s and t intersect parallel lines a and b.

E Label the angles formed by line b and the transversals as $\angle 4$ and $\angle 5$.

F Because $\angle 4$ and \qquad are alternate interior angles, they are \qquad .

Label $\angle 4$ with the number of the angle to which it is congruent.
G Because $\angle 5$ and \qquad are alternate interior angles,
they are \qquad .

Label $\angle 5$ with the number of the angle to which it is congruent.
H The three angles that lie along line b at the vertex of the triangle are $\angle 1, \angle 4$, and $\angle 5$. Notice that these three angles lie along a line.

So, $m \angle 1+m \angle 4+m \angle 5=$ \qquad .

Because angles 2 and 4 are congruent and angles 3 and 5 are congruent, you can substitute $\mathrm{m} \angle 2$ for $\mathrm{m} \angle 4$ and $\mathrm{m} \angle 3$ for $\mathrm{m} \angle 5$ in the equation above.

So, $m \angle 1+m \angle 2+m \angle 3=$ \qquad .

This shows that the sum of the angle measures in a triangle is always \qquad .

Reflect

3. Analyze Relationships How can you use the fact that $\mathrm{m} \angle 4+\mathrm{m} \angle 1+$ $\mathrm{m} \angle 5=180^{\circ}$ to show that $\mathrm{m} \angle 2+\mathrm{m} \angle 1+\mathrm{m} \angle 3=180^{\circ}$?
\qquad
\qquad
\qquad

Finding Missing Angle Measures in Triangles

EXAMPLE 1

TEKS 8.8.D

Find the missing angle measure.

STEP 1 Write the Triangle Sum Theorem for this triangle.

$$
\mathrm{m} \angle D+\mathrm{m} \angle E+\mathrm{m} \angle F=180^{\circ}
$$

STEP 2 Substitute the given angle measures.

$100^{\circ}+\mathrm{m} \angle E+55^{\circ}=180^{\circ}$
STEP 3 Solve the equation for $\mathrm{m} \angle E$.

$$
\begin{aligned}
100^{\circ}+\mathrm{m} \angle E+55^{\circ} & =180^{\circ} \\
155^{\circ}+\mathrm{m} \angle E & =180^{\circ} \\
\frac{-155^{\circ}}{} \quad & \frac{-155^{\circ}}{25^{\circ}} \quad \begin{array}{l}
\text { Subtract } 155^{\circ} \text { from both sides. } \\
\text { Simplify. }
\end{array}
\end{aligned}
$$

If you know the measures of two angles in a triangle, you can use the Triangle Sum Theorem to find the measure of the third angle.

So, $\mathrm{m} \angle E=25^{\circ}$.

YOUR TURN

Find the missing angle measure.
4.

5. S

$\mathrm{m} \angle K=$ \qquad $\mathrm{m} \angle R=$ \qquad

EXPLORE ACTIVITY 3

Exterior Angles and Remote Interior Angles

An interior angle of a triangle is formed by two sides of the triangle. An exterior angle is formed by one side of the triangle and the extension of an adjacent side. Each exterior angle has two remote interior angles. A remote interior angle is an interior angle that is not adjacent to the exterior angle.

- $\angle 1, \angle 2$, and $\angle 3$ are interior angles.
- $\angle 4$ is an exterior angle.
- $\angle 1$ and $\angle 2$ are remote interior angles to $\angle 4$.

There is a special relationship between the measure of an exterior angle and the measures of its remote interior angles.

A Extend the base of the triangle and label the exterior angle as $\angle 4$.

B The Triangle Sum Theorem states:
$\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=$ \qquad .

C $\angle 3$ and $\angle 4$ form a \qquad ,
so $m \angle 3+m \angle 4=$ \qquad .

D Use the equations in \mathbf{B} and \mathbf{C} to complete the following equation:
$m \angle 1+m \angle 2+$ \qquad $=$ \qquad $+m \angle 4$

E Use properties of equality to simplify the equation in \mathbf{D} :

The Exterior Angle Theorem states that the measure of an \qquad angle is equal to the sum of the measure of its \qquad angles.

Reflect

6. Sketch a triangle and draw all of its exterior angles. How many exterior angles does a triangle have at each vertex?
\qquad

7. How many total exterior angles does a triangle have?
\qquad

Using the Exterior Angle Theorem

You can use the Exterior Angle Theorem to find the measures of the interior angles of a triangle.

EXAMPLE 2

CATEKS 8.8.D

Math On the Spot
(C) my.hrw.com

Find $m \angle A$ and $m \angle B$.

STEP 1 Write the Exterior Angle Theorem as it applies to this triangle.

$$
\mathrm{m} \angle A+\mathrm{m} \angle B=\mathrm{m} \angle A C D
$$

STEP 2 Substitute the given angle measures.

$$
(4 y-4)^{\circ}+3 y^{\circ}=52^{\circ}
$$

STEP 3 Solve the equation for y.

$$
\begin{aligned}
(4 y-4)^{\circ}+3 y^{\circ} & =52^{\circ} & & \\
4 y^{\circ}-4^{\circ}+3 y^{\circ} & =52^{\circ} & & \text { Remove parentheses. } \\
7 y^{\circ}-4^{\circ} & =52^{\circ} & & \text { Simplify. } \\
\frac{+4^{\circ}}{7 y^{\circ}} & =\frac{+4^{\circ}}{56^{\circ}} & & \text { Add } 4^{\circ} \text { to both sides. } \\
\frac{7 y^{\circ}}{7} & =\frac{56^{\circ}}{7} & & \text { Dimplify. } \\
y & =8 & & \text { Simplify. both sides by } 7 .
\end{aligned}
$$

STEP 4 Use the value of y to find $\mathrm{m} \angle A$ and $\mathrm{m} \angle B$.

$$
\begin{array}{rlrl}
\mathrm{m} \angle A & =4 y-4 & \mathrm{~m} \angle B & =3 y \\
& =4(8)-4 & & =3(8) \\
& =32-4 & & =24 \\
& =28 & &
\end{array}
$$

- So, $\mathrm{m} \angle A=28^{\circ}$ and $\mathrm{m} \angle B=24^{\circ}$.

YOUR TURN

8. Find $\mathrm{m} \angle M$ and $\mathrm{m} \angle N$.
$\mathrm{m} \angle M=$ \qquad
$\mathrm{m} \angle N=$ \qquad

Guided Practice

Find each missing angle measure. (Explore Activity 1 and Example 1)

$\mathrm{m} \angle M=$ \qquad
2.

$\mathrm{m} \angle Q=$ \qquad

Use the Triangle Sum Theorem to find the measure of each angle

in degrees. (Explore Activity 2 and Example 1)
3.

4.

$\mathrm{m} \angle T=$ \qquad , $\mathrm{m} \angle U=$ \qquad ,
$\mathrm{m} \angle V=$ \qquad
$\mathrm{m} \angle X=$ \qquad
$\mathrm{m} \angle Z=$, $\mathrm{m} \angle Y=$ \qquad ,
\qquad
Use the Exterior Angle Theorem to find the measure of each angle in degrees. (Explore Activity 3 and Example 2)
5.

6. J \boldsymbol{K}
$\mathrm{m} \angle C=$ \qquad , $\mathrm{m} \angle D=$ \qquad ,

$$
\begin{aligned}
& \mathrm{m} \angle L= \\
& \mathrm{m} \angle L K M=
\end{aligned}
$$, $\mathrm{m} \angle M=$ \qquad ,

$\mathrm{m} \angle D E C=$ \qquad

ESSENTIAL QUESTION CHECK-IN

7. Describe the relationships among the measures of the angles of a triangle.

7.2 Independent Practice

Find the measure of each angle.
8.

$\mathrm{m} \angle E=$ \qquad
$\mathrm{m} \angle F=$ \qquad
10.

$\mathrm{m} \angle G=$ \qquad
$\mathrm{m} \angle H=$ \qquad
$\mathrm{m} \angle J=$ \qquad
© Houghton Mifflin Harcourt Publishing Company
12.

$\mathrm{m} \angle A C B=$ \qquad
$\mathrm{m} \angle B C D=$ \qquad
$\mathrm{m} \angle D C E=$ \qquad
9.
$\mathrm{m} \angle T=$ \qquad
$\mathrm{m} \angle V=$ \qquad
11.

$\mathrm{m} \angle Q=$ \qquad
$\mathrm{m} \angle P=$ \qquad
$\mathrm{m} \angle Q R P=$ \qquad
13.

$\mathrm{m} \angle K=$ \qquad
$\mathrm{m} \angle L=$ \qquad
$\mathrm{m} \angle K M L=$ \qquad
$\mathrm{m} \angle L M N=$ \qquad
14. Multistep The second angle in a triangle is five times as large as the first.

The third angle is two-thirds as large as the first. Find the angle measures.
15. Analyze Relationships Can a triangle have two obtuse angles? Explain.
\qquad
\qquad
\qquad
\qquad Mo. Ma_{6} focus on hicher ORDER THINKING

Work Area
17. a. Draw Conclusions Find the sum of the measures of the angles in quadrilateral $A B C D$. (Hint: Draw diagonal $\overline{A C}$. How can you use the figures you have formed to find the sum?)

Sum $=$ \qquad
b. Make a Conjecture Write a "Quadrilateral Sum Theorem." Explain why you think it is true.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
18. Communicate Mathematical Ideas Describe two ways that an exterior angle of a triangle is related to one or more of the interior angles.

