
1

Lesson 9: 

Introduction To 
Arrays

(Updated for Java 1.5
Modifications by Mr. Dave Clausen)



2

Lesson 9:  Introduction
To Arrays

Objectives:

Write programs that handle collections 
of similar items.
Declare array variables and instantiate 
array objects.
Manipulate arrays with loops, including 
the enhanced for loop.
Write methods to manipulate arrays.
Create parallel arrays and two-
dimensional arrays.



3

Lesson 9:  Introduction 
To Arrays

Vocabulary:
array
element
index
initializer list
logical size
multi-dimensional 
array
one-dimensional 
array
structure chart

parallel arrays
physical size 
ragged array
range bound error
subscript
two-dimensional 
array
Enhanced for loop
Procedural 
decomposition



4

9.1  Conceptual Overview

An array consists of an ordered collection of 
similar items. 
An array has a single name, and the items in an 
array are referred to in terms of their position 
within the array. 
An array makes it is as easy to manipulate a 
million test scores as it is to manipulate three 
test scores.
Once an array is declared, its size is fixed and 
cannot be changed.



5

9.1  Conceptual Overview

Without arrays, a program with 20 test 
scores would look like this:

private String name;
private int test1,  test2,  test3,  test4,  test5,   

test6,  test7,  test8,  test9,  test10,  
test11, test12, test13, test14, test15,   
test16, test17, test18, test19, test20;   



6

9.1  Conceptual Overview

And the computation of the average 
score looks like this:

// Compute and return a student’s average
public int getAverage(){

int average;
average = (test1 + test2  + test3  + test4  + test5 +

test6  + test7  + test8  + test9  + test10 +
test11 + test12 + test13 + test14 + test15 +
test16 + test17 + test18 + test19 + test20) / 20;

return average;
}



7

9.1  Conceptual Overview
The items in an array are called elements.

For any particular array, all the elements must 
be of the same type. 

The type can be any primitive or reference type. 
For instance, we can have an array of test scores 
(integers), an array of names (Strings), or even an 
array of student objects.
In figure 9-1 each array contains five elements, or has 
a length of five.
Remember that Java starts counting with 0 rather than 
1



8

9.1  Conceptual Overview
The first element in the array test is referred to as test[0], the 
second as test[1], and so on. 
An item's position within an array is called its index or 
subscript.
Array indexes appear within square brackets [ ]



9

9.2  Simple Array 
Manipulations

First we declare and instantiate an 
array of 500 integer values. 
By default, all of the values are initialized 
to 0:

Next, we declare some other variables:

int[] abc = new int[500];

int i = 3;
int temp;
double avFirstFive;



10

9.2  Simple Array 
Manipulations

The basic syntax for referring to an array 
element has the form:

Where <index> must be between 0 and 
the array's length less 1. 
The subscript operator ([ ]) has the same 
precedence as the method selector (.).

<array name>[<index>]



11

9.2  Simple Array 
Manipulations

For example we assign values to the first 
five elements:

When assigning a value to the 500th 
element, we must remember that its 
index is 499, not 500:

abc[0] = 78;                    //1st element 78
abc[1] = 66;                    //2nd element 66
abc[2] = (abc[0] + abc[1]) / 2; //3rd element average of first two
abc[i] = 82;                    //4th element 82 because i is 3
abc[i + 1] = 94;                //5th element 94 because i + 1 is 4

abc[499] = 76;              //500th element 76



12

9.2  Simple Array 
Manipulations

The JVM checks the values of subscripts before 
using them and throws an 
ArrayIndexOutOfBoundsException if they are 
out of bounds (less than 0 or greater than the 
array length less 1). 
The detection of a range bound error is 
similar to the JVM's behavior when a program 
attempts to divide by 0.
To compute the average of the first five 
elements, we could write:

avFirstFive = (abc[0] + abc[1] + abc[2] + abc[3] + abc[4])/5;



13

9.2  Simple Array 
Manipulations

It often happens that we need to 
interchange elements in an array. 
(the basic idea behind a simple sort) 

// Initializations
. . .
abc[3] = 82;
abc[4] = 95;
i = 3;
. . .

// Interchange adjacent elements
temp = abc[i];                     // temp       now equals 82
abc[i] = abc[i + 1];               // abc[i]     now equals 95
abc[i + 1] = temp; // abc[i + 1]  now equals 82 



14

9.2  Simple Array 
Manipulations

We frequently need to know an array's 
length. 
The array itself makes this information 
available by means of a public instance 
variable called length:

System.out.println ("The size of abc is: " + abc.length); 
//Just abc.length, no ( ) are used with the length variable
//In C++, length was a function and required ( )



15

9.3  Looping Through Arrays

Sum the Elements
The following code sums the numbers in the 
array abc. 
Each time through the loop adds a different 
element to the sum. On the first iteration we 
add abc[0] and on the last abc[499].

int sum;
sum = 0;
for (int i = 0; i < 500; i++)
sum += abc[i]; 



16

9.3  Looping Through Arrays

Count the Occurrences
We can determine how many times a number x 
occurs in the array by comparing x to each 
element and incrementing count every time 
there is a match:

int x;
int count;
x = ...;                        //Assign some value to x
count = 0;
for (int i = 0; i < 500; i++){

if (abc[i] == x) 
count++;                  //Found another element equal to x

}



17

9.3  Looping Through Arrays

Determine Presence or Absence
To determine if a particular number is 
present in the array, programmers can 
end the loop as soon as the first match is 
found, using indefinite (while) loops. 
The Boolean variable found indicates the 
outcome of the search.



18

9.3  Looping Through Arrays

Determine absence or presence
Source code w/o break statement as opposed to Page 309

int x, counter=0;
boolean notFound = true;
x = ...;  //number to search for

while ((counter < list.length) && notFound )
{

if (list[counter] == x)
notFound = false;

counter++;
}
if (notFound)
System.out.println (“Not Found”);

else
System.out.println (“Found”);



19

9.3  Looping Through Arrays

Determine first location
Source code w/o break statement as opposed to Page 310

int x, counter=0,location=0;
boolean notFound = true;
x = ...;  //number to search for

while ((counter < list.length) && notFound ){
if (list[counter] == x)
{

location = counter;
notFound = false;

}
counter++;
}

if (notFound)
System.out.println (“Not Found”);

else
System.out.println (“Found at index # ” + location);   



20

9.3  Looping Through Arrays
Working With Arrays of Any Size

It is possible and also desirable to write code 
that works with arrays of any size. 
Simply replace the literal 500 with a reference to 
the array's instance variable length in each of 
the loops. 
For example, this code would sum the integers 
in an array of any size:

int sum;
sum = 0;
for (int i = 0; i < abc.length; i++)
sum += abc[i]; 



21

9.4  Declaring Arrays

Arrays are objects and must be 
instantiated before being used. 
Several array variables can be declared in 
a single statement like this:

Or like this:

int[] abc, xyz;
abc = new int[500];
xyz = new int[10]; 

int[] abc = new int[500]; 
int[] xyz = new int[10];



22

9.4  Declaring Arrays

Array variables are null before they are 
assigned array objects. 
Failure to assign an array object can 
result in a null pointer exception.

int[] abc;
abc[1] = 10; // runtime error: null pointer exception



23

9.4  Declaring Arrays

Because arrays are objects, all rules 
that apply to objects apply to arrays.

Two array variables may refer to same 
array.
Arrays may be garbage collected.
Array variables may be set to null.
Arrays are passed by reference to 
methods.



24

9.4  Declaring Arrays

Because arrays are objects, two variables 
can refer to the same array as indicated 
in Figure 9-2 and the next segment of 
code:

int[] abc, xyz;
abc = new int[5]; // Instantiate an array of 5 integers

xyz = abc; // xyz and abc refer (point) to the same 
// array, they are not duplicate arrays

xyz[3] = 100; // Changing xyz changes abc as well.

System.out.println (abc[3]); // 100 is displayed 



25

9.4  Declaring Arrays
Both variables point to the same array object



26

9.4  Declaring Arrays
If you wish to make a copy of the array:

int [] abc, xyz;
abc = new int [10];
xyz = new int [10];
//fill the first array with numbers
for (int counter = 0; counter < 10; counter ++)

abc[counter] = counter * counter;

//copy the original array
for (int counter = 0; counter < 10; counter ++)

xyz[counter] = abc[counter];



27

9.4  Declaring Arrays

Arrays can be declared, instantiated, and 
initialized in one step. 
The list of numbers between the braces is 
called an initializer list.

Here then are examples of arrays of 
doubles, Booleans, strings, and students:

int[] abc = {1,2,3,4,5} // abc now references an array of five integers.



28

9.4  Declaring Arrays

double[]   ddd = new double[10];
//error in book Page 313 array of char
boolean[]  bbb = new boolean[10];
String[]   ggg = new String[10];
Student[]  sss = new Student[10];
String     str;

ddd[5] = 3.14;

bbb[5] = true;
ggg[5] = "The cat sat on the mat.";
sss[5] = new Student();

sss[5].setName ("Bill");
str = sss[5].getName() + ggg[5].substring(7);
// str now equals "Bill sat on the mat." 



29

9.4  Declaring Arrays

There is another way to declare array 
variables. but its use can be confusing. 
Here it is:

Once an array is instantiated, its size 
cannot be changed. Make sure that the 
array is large enough when you 
instantiate it.

int aaa[];                // aaa is an array variable.



30

9.5  Working with Arrays 
That Are Not Full

One might create an array of 20 ints but 
receive only 5 ints from interactive input. 

This array has a physical size of 20 cells 
but a logical size of 5 cells currently 
used by the application. 

From the application's perspective, the 
remaining 15 cells contain garbage.



31

9.5  Working with Arrays 
That Are Not Full

It is possible to track the array's logical 
size with a separate integer variable. 
The following code segment shows the 
initial state of an array and its logical 
size:

Note that abc.length (the physical size) is 
50, whereas size (the logical size) is 0

int[] abc = new int[50];
int logical_size = 10;



32

9.5  Working with Arrays 
That Are Not Full

To work with arrays that are not full, the 
programmer must track the logical array size.

Declare an integer counter that will always 
indicate the number of elements.
Every time an element is added or removed, 
adjust the counter accordingly.
The counter indicates the logical size of the 
array and the next open position in the array.



33

9.5  Working with Arrays 
That Are Not Full

Processing Elements in an Array That Is 
Not Full

When the array is not full, one must 
replace the array's length with its logical 
size in the loop. 
Here is the code for computing the sum of 
the integers currently available in the 
array abc:



34

9.5  Working with Arrays 
That Are Not Full

int[] abc = new int[50];
int logical_size = 10;

... code that puts values into some initial 
portion of the array and sets 

the value of size ...

int sum = 0;
// logical_size contains the number items in the array
for (int i = 0; i < logical_size; i++) 
sum += abc[i];



35

9.5  Working with Arrays 
That Are Not Full

Adding Elements to an Array
The simplest way to add a data element 
to an array is to place it after the last 
available item. 
One must first check to see if there is a 
cell available and then remember to 
increment the array's logical size. 
The following code shows how to add an 
integer to the end of array abc:



36

9.5  Working with Arrays 
That Are Not Full

When logical_size equals abc.length, the array 
is full. 
The if statement prevents a range error from 
occurring. 
Remember that Java arrays are of fixed size when 
they are instantiated, so eventually they become 
full.

if (logical_size < abc.length)
{

abc[logical_size] = anInt;
logical_size ++;

}



37

9.5  Working with Arrays 
That Are Not Full

Removing Elements from an Array
Removing a data element from the end of 
an array requires no change to the array 
itself. 
Simply decrement the logical size, thus 
preventing the application from accessing 
the garbage elements beyond that point. 



38

9.5 Using an Array 
with a Text File

Here is an example of an array that is 
saved to a text file:

ArrayToFile.java
ArrayToFile.txt

Remember, don’t use a break to escape from a loop!

ArrayToFileNoBreak.java
ArrayToFileNoBreak.txt



39

9.5 Using an Array 
with a Text File (cont.)

Here is an example of an array that is 
read from a text file:

FileToArray.java
FileToArray.txt
numbers.txt



40

9.6  Parallel Arrays

Suppose we want to keep a list of 
people's names and ages. 
This can be achieved by using two arrays 
in which corresponding elements are 
related. 

Thus, Bill's age is 20 and Mary's is 24. 

String[] name = {"Bill", "Sue", "Shawn", "Mary", "Ann"};
int[]    age  = {20    , 21   , 19     , 24    , 20};



41

9.6  Parallel Arrays

Here is a segment of code that finds the 
age of a particular person.
In this example, the parallel arrays are 
both full and the loops use the instance 
variable length. 
When the arrays are not full, the code 
will need an extra variable to track their 
logical sizes.



42

9.6  Parallel Arrays
String searchName;
int correspondingAge = -1;
int i;

searchName = ...;                   // Set this to the desired name
for (i = 0; i < name.length; i++){  // name.length is the array’s size

if (searchName.equals (name[i]){
correspondingAge = age[i];
break;  //Don’t use break to end a loop! (See next slide)

}
}

if (correspondingAge == -1)
System.out.println(searchName + " not found.");

else
System.out.println("The age is " + correspondingAge); 



43

9.6  Parallel Arrays

String searchName;
int correspondingAge = 0, counter =0;
boolean notFound = true;
searchName = ...;    // Set this to the desired name
while ((counter < name.length)&&(notFound))
{

if (searchName.equals (name[counter]) //don’t use ==
{

correspondingAge = age[counter];
notFound = false;

}
counter ++;

}

if (notFound)
System.out.println(searchName + " not found.");

else
System.out.println("The age is " + correspondingAge); 

Code w/o break statement: Page 317



44

9.9 Arrays and Methods

When any object is used as a parameter to a 
method, what actually gets passed is a reference 
to the object and not the object itself. 
The actual and formal parameters refer to the 
same object, and changes the method makes to 
the object's state are still in effect after the 
method terminates. 
In the figure, the method changes the student's 
name to Bill, and after the method finishes 
executing the name is still Bill.



45

9.9 Arrays and Methods



46

9.9 Arrays and Methods

Arrays are objects, so the same rules apply. 
When an array is passed as a parameter to a 
method, the method manipulates the array itself 
and not a copy. 
Changes made to the array in the method are 
still in effect after the method has completed its 
execution. 
A method can also instantiate a new object or a 
new array and return it using the return
statement. 



47

9.9 Arrays and Methods

Sum the Elements
The following method computes the sum 
of the numbers in an integer array. 
When the method is written, there is no 
need to know the array's size. 
The method works equally well with 
integer arrays of all sizes, as long as 
those arrays are full



48

9.9 Arrays and Methods

Using the method is straightforward:

int Sum (int[] a)
{

int i, result = 0;
for (i = 0; i < a.length; i++)

result += a[i];
return result;

}

int[] array1 = {10, 24, 16, 78, -55, 89, 65};
int[] array2 = {4334, 22928, 33291};
...
if (Sum(array1) > Sum(array2)) ...



49

9.9 Arrays and Methods
Search for a Value

The code to search an array for a value is used so frequently in
programs that it is worth placing in a method. 
Here is a method to search an array of integers. 
The method returns the location of the first array element equal
to the search value or -1 if the value is absent:

int search (int[] a, int searchValue){
int location, i;
location = -1;
for (i = 0; i < a.length; i++){

if (a[i] == searchValue){
location = i;
break; //DO NOT USE BREAK!(see next slide)

}
}
return location;

}



50

9.9 Arrays and Methods
A Linear Search for a Value Without using a Break Statement

(Use this style)  (LinearSearch.ppt)
int Linear_Search (int[] list, int searchValue)
{

int location, counter=0;
boolean notFound = true;
location = -1;
while ((counter < list.length) && notFound))
{

if (list[counter] == searchValue)
{

location = counter;
notFound = false;

}
counter++;
}
return location;

}



51

9.9 Arrays and Methods

Method to search for a value in an 
array:



52

9.9 Arrays and Methods
Sum the Rows

Here is a method that instantiates a new array and 
returns it. The method computes the sum of each 
row in a two-dimensional array and returns a one-
dimensional array of row sums. The method works 
even if the rows are not all the same size.

int[] Sum_Rows (int[][] list){
int i, j;
int[] rowSum = new int[list.length];  
for (i = 0; i < list.length; i++){    

for (j = 0; j < list[i].length; j++){ 
rowSum[i] += list[i][j];

}
}
return rowSum;

}



53

9.9 Arrays and Methods

Here is code that uses the method. 
We do not have to instantiate the array 
oneD because that task is done in the 
method sumRows.

int[][] twoD = {{1,2,3,4}, {5,6}, {7,8,9}};
int[] oneD;

oneD = sumRows (twoD); // oneD now references the array created and returned
// by the method sumRows. It equals {10, 11, 24}



54

9.9 Arrays and Methods
Method to 
make a 
copy of an 
array and 
return it:



55

9.7  Two-Dimensional Arrays
A table of numbers, for instance, can be implemented 
as a two-dimensional array. Figure 9-3 shows a two-
dimensional array with four rows and five columns.

Suppose we call the array table; then to indicate an 
element in table, we specify its row and column 
position, remembering that indexes start at 0:
x = table[2][3];  // Set x to 23, the value in (row 2, column 3)



56

9.7  Two-Dimensional Arrays

Sum the Elements
Here is code that sums all the numbers in 
table. 
The outer loop iterates four times and 
moves down the rows. 
Each time through the outer loop, the 
inner loop iterates five times and moves 
across a different row.



57

9.7  Two-Dimensional Arrays

int i, j;
int sum = 0;
for (i = 0; i < 4; i++)
{    // There are four rows: i = 0,1,2,3

for (j = 0; j < 5; j++)
{ // There are five columns: j = 0,1,2,3,4

sum += table[i][j];
}

}

The sum of all of the elements in the table (two-
dimensional array).



58

9.7  Two-Dimensional Arrays
This segment of code can be rewritten 
without using the numbers 4 and 5. 

The value table.length equals the number of 
rows, 
Table[i].length is the number of columns in 
row i.

int i, j;
int sum = 0;
for (i = 0; i < table.length; i++){    

for (j = 0; j < table[i].length; j++){ 
sum += table[i][j];

}
}



59

9.7  Two-Dimensional Arrays

Sum the Rows
We now compute the sum of each row 
separately and place the results in a one-
dimensional array called rowSum. 
This array has four elements, one for 
each row of the table. 
The elements in rowSum are initialized to 
0 automatically by virtue of the 
declaration.



60

9.7  Two-Dimensional Arrays

int i, j;
int[] rowSum = new int[4];  
for (i = 0; i < table.length; i++)
{    

for (j = 0; j < table[i].length; j++)
{ 

rowSum[i] += table[i][j];
}

}

Sum the Rows



61

9.7  Two-Dimensional Arrays

Declare and Instantiate
Declaring and instantiating two-
dimensional arrays are accomplished by 
extending the processes used for one-
dimensional arrays:

int[][] table;           // The variable table can reference a
// two-dimensional array of integers

table = new int[4][5];   // Instantiate table as an array of size 4,
// each of whose elements will reference an array
// of 5 integers.



62

9.7  Two-Dimensional Arrays
The variable table references an array of four 
elements. 
Each of these elements in turn references an array 
of five integers.



63

9.7  Two-Dimensional Arrays

Initializer lists can be used with two-dimensional 
arrays. This requires a list of lists. 
The number of inner lists determines the 
number of rows, and the size of each inner list 
determines the size of the corresponding row. 
The rows do not have to be the same size, but 
they are in this example:

int[][] table = {{ 0, 1, 2, 3, 4},     // row 0
{10,11,12,13,14},     // row 1
{20,21,22,23,24},     // row 2
{30,31,32,33,34}};    // row 3



64

9.7  Two-Dimensional Arrays

Variable Length Rows
Ragged arrays are rows of a two-
dimensional arrays that are not all the 
same length. 

int[][] table; 
table    = new int[4][];  // table has 4 rows
table[0] = new int[6];    // row 0 has 6   elements
table[1] = new int[10];   // row 1 has 10  elements
table[2] = new int[100];  // row 2 has 100 elements
table[3] = new int[1];    // row 3 has 1   element



65

9.8 The Enhanced for Loop
Provided in Java 5.0 to simplify loops in 
which each element in an array is 
accessed

From the first index to the last
Frees programmer from having to 
manage and use loop counters

Syntax:



66

9.8 The Enhanced for Loop
Example 9.3: Testing the enhanced for loop

TestForLoop.java TestForLoop.txt



67

9.8 The Enhanced for Loop

Cannot be used to:
Move through an array in reverse, from 
the last position to the first position
Assign elements to positions in an array
Track the index position of the current 
element in an array
Access any element other than the 
current element on each pass



68

9.10  Arrays of Objects

Arrays can hold objects of any type, or 
more accurately, references to objects. 
For example, one can declare, instantiate 
and fill an array of students as follows:

// Declare and reserve 10 cells for student objects
Student[] studentArray = new Student[10];

// Fill array with students
for (int i = 0; i < studentArray.length; i++)
studentArray[i] = new Student("Student " + i, 70+i, 80+i, 90+i);



69

9.10  Arrays of Objects

When an array of objects is instantiated, each 
cell is null by default until reset to a new object. 
The next code segment prints the average of all 
students in the studentArray. Pay special 
attention to the technique used to send a 
message to objects in an array:

// Print the average of all students in the array.

int sum = 0;
for (int i = 0; i < studentArray.length; i++)

sum += studentArray[i].getAverage();    // Send message to object in array
System.out.println("The class average is " + sum / accountArray.length);



70

Case Study Design Techniques 
UML diagrams: Industry standard for 
designing and representing a set of 
interacting classes
Structure charts: May be used to depict 
relationships between classes and the order 
of methods called in a program
Procedural decomposition: Technique of 
dividing a problem into sub-problems and 
correlating each with a method



71

Case Study Design Techniques 
(cont.)

Figure 9-6: UML diagram of the classes in the student test 
scores program



72

Case Study Design Techniques 
(cont.)

Figure 9-7: Structure chart for the methods of class 
TestScoresView



73

Case Study
TestModel.java
TestModel.txt

Student.java
Student.txt

TestScoresModel.java
TestScoresModel.txt

TestScoresView.java
TestScoresView.txt



74

Design, Testing, and 
Debugging Hints

To create an array:
1. Declare an array variable.
2. Instantiate an array object and assign it to the 
array variable.
3. Initialize the cells in the array with data, as 
appropriate.

When creating a new array object, try to 
determine an accurate estimate of the 
number of cells required.



75

Design, Testing, and 
Debugging Hints (cont.)

Remember that array variables are null until 
they are assigned array objects.
To avoid index out-of-bounds errors, 
remember that the index of an array cell 
ranges from 0 (the first position) to the 
length of the array minus 1.
To access the last cell in an array, use the 
expression <array>.length – 1.



76

Design, Testing, and 
Debugging Hints (cont.)

Avoid having multiple array variables refer to 
the same array.
To copy the contents of one array to another, 
do not use A = B; instead, write a copy 
method and use A = arrayCopy(B);.
When an array is not full:

Track the current number of elements
Avoid index out-of-bounds errors



77

Summary

Arrays are collections of similar items or 
elements ordered by position.
Arrays are useful when a program needs to 
manipulate many similar items, such as a 
group of students or a number of test scores.
Arrays are objects.

Must be instantiated
Can be referred to by more than one variable



78

Summary (cont.)

An array can be passed to a method as 
a parameter and returned as a value.
Parallel arrays are useful for organizing 
information with corresponding 
elements.
Two-dimensional arrays store values in 
a row-and-column arrangement.



79

Summary (cont.)

An enhanced for loop is a simplified 
version of a loop for visiting each 
element of an array from the first 
position to the last position.


	Lesson 9: ��Introduction To Arrays�(Updated for Java 1.5�Modifications by Mr. Dave Clausen)
	Lesson 9:  Introduction�To Arrays
	Lesson 9:  Introduction �To Arrays
	9.1  Conceptual Overview
	9.1  Conceptual Overview
	9.1  Conceptual Overview
	9.1  Conceptual Overview
	9.1  Conceptual Overview
	9.2  Simple Array Manipulations
	9.2  Simple Array Manipulations
	9.2  Simple Array Manipulations
	9.2  Simple Array Manipulations
	9.2  Simple Array Manipulations
	9.2  Simple Array Manipulations
	9.3  Looping Through Arrays
	9.3  Looping Through Arrays
	9.3  Looping Through Arrays
	9.3  Looping Through Arrays
	9.3  Looping Through Arrays
	9.3  Looping Through Arrays
	9.4  Declaring Arrays
	9.4  Declaring Arrays
	9.4  Declaring Arrays
	9.4  Declaring Arrays
	9.4  Declaring Arrays
	9.4  Declaring Arrays
	9.4  Declaring Arrays
	9.4  Declaring Arrays
	9.4  Declaring Arrays
	9.5  Working with Arrays That Are Not Full
	9.5  Working with Arrays That Are Not Full
	9.5  Working with Arrays That Are Not Full
	9.5  Working with Arrays That Are Not Full
	9.5  Working with Arrays That Are Not Full
	9.5  Working with Arrays That Are Not Full
	9.5  Working with Arrays That Are Not Full
	9.5  Working with Arrays That Are Not Full
	9.5 Using an Array �with a Text File
	9.5 Using an Array �with a Text File (cont.)
	9.6  Parallel Arrays
	9.6  Parallel Arrays
	9.6  Parallel Arrays
	9.6  Parallel Arrays
	9.9 Arrays and Methods
	9.9 Arrays and Methods
	9.9 Arrays and Methods
	9.9 Arrays and Methods
	9.9 Arrays and Methods
	9.9 Arrays and Methods
	9.9 Arrays and Methods
	9.9 Arrays and Methods
	9.9 Arrays and Methods
	9.9 Arrays and Methods
	9.9 Arrays and Methods
	9.7  Two-Dimensional Arrays
	9.7  Two-Dimensional Arrays
	9.7  Two-Dimensional Arrays
	9.7  Two-Dimensional Arrays
	9.7  Two-Dimensional Arrays
	9.7  Two-Dimensional Arrays
	9.7  Two-Dimensional Arrays
	9.7  Two-Dimensional Arrays
	9.7  Two-Dimensional Arrays
	9.7  Two-Dimensional Arrays
	9.8 The Enhanced for Loop
	9.8 The Enhanced for Loop
	9.8 The Enhanced for Loop
	9.10  Arrays of Objects
	9.10  Arrays of Objects
	Case Study Design Techniques 
	Case Study Design Techniques (cont.)
	Case Study Design Techniques (cont.)
	Case Study
	Design, Testing, and Debugging Hints
	Design, Testing, and Debugging Hints (cont.)
	Design, Testing, and Debugging Hints (cont.)
	Summary
	Summary (cont.)
	Summary (cont.)

