

9.1 Cellular Respiration: An Overview

Chemical Energy and Food

esson Overview

Food provides living things with the **chemical building blocks** they need to grow and reproduce.

Food molecules contain **chemical energy** that is released when its chemical **bonds are broken**.

Chemical Energy and Food

Lesson Overview

- Cells use all sorts of molecules for food, including fats, proteins, and carbohydrates: energy stored in each molecule varies because their energy-storing bonds differ
- Cells break down food molecules gradually, and use the energy stored in the chemical bonds to produce compounds such as ATP that power the activities of the cell

Overview of Cellular Respiration

esson Overview

If oxygen is available, organisms can obtain energy from food by a process called **cellular respiration.**

Summary of cellular respiration: $6 O_2 + C_6 H_{12}O_6 \rightarrow 6 CO_2 + 6 H_2O + Energy$ Oxygen + Glucose \rightarrow Carbon dioxide + Water + Energy

Chemical energy in food molecules (like glucose) has to be released gradually, otherwise most of the energy would be lost as **heat and light.**

Stages of Cellular Respiration

Three main stages:

Glycolysis

Lesson Overview

• Small amount of energy

- Krebs cycle
 - Small amount of energy

- Electron transport chain
 - Majority of energy

Cellular Respiration: An Overview

Oxygen and Energy

Glycolysis is "anaerobic": does not require oxygen.

 Some single-celled organisms only use glycolysis as energy source...lower efficiency (less energy per glucose)

Cellular Respiration: An Overview

Oxygen and Energy

Pathways that require oxygen are "aerobic"

- Krebs cycle
- Electron transport chain

Stages of Cellular Respiration

Three main stages:

Glycolysis

Lesson Overview

- Small amount of energy
- No oxygen (anaerobic)
- In cytoplasm
- Krebs cycle
 - Small amount of energy
 - Oxygen required (aerobic)
 - In mitochondria

Electron transport chain

- Majority of energy
- Oxygen required (aerobic)
- In mitochondria

Comparing Photosynthesis and Cellular Respiration

- Photosynthesis and cellular respiration are **opposite processes**.
- Photosynthesis "deposits" energy, and cellular respiration "withdraws" energy.
- Inputs of one are the products of the other.

Comparing Photosynthesis and Cellular Respiration

Photosynthesis occurs only in plants, algae, and some bacteria.

Cellular respiration is performed by most living things: plants, animals, fungi, protists, and most bacteria.

9.2 The Process of Cellular Respiration (6-3 Equivalent)

Cellular Respiration: An Overview

Glycolysis Overview

Glycolysis is the first stage of cellular respiration.

During glycolysis, **glucose is broken down into** 2 molecules of the 3-carbon molecule **pyruvic acid** (used in Krebs cycle).

ATP and NADH are produced as part of the process.

Cellular Respiration: An Overview

ATP Production

The cell **uses 2 ATP** to start glycolysis

Glycolysis then produces 4 ATP: net gain of 2 ATP for each glucose

Cellular Respiration: An Overview

NADH Production

During glycolysis:

- Electron carrier NAD+ accepts a pair of highenergy electrons and becomes NADH
- NADH carries high-energy electrons to electron transport chain to make more ATP
- 2 NADH molecules produced for every glucose

The Advantages of Glycolysis

Lesson Overview

Glycolysis produces ATP very quickly

• Cell can adapt to increased energy needs

Glycolysis does not require oxygen

 Cell can still obtain energy when oxygen is unavailable

The Krebs Cycle Overview

The **Krebs cycle** (also known as citric acid cycle) is the second stage of cellular respiration.

Pyruvic acid (from glycolysis) is broken down into carbon dioxide in a series of energyextracting reactions.

Structure of a Mitochondrion

Lesson Overview

How is the structure of a chloroplast similar? What are the 'equivalent' structures called?

Cellular Respiration: An Overview

Citric Acid Production

Pyruvic acid from glycolysis enters the **matrix**, the innermost compartment of the mitochondrion.

Cellular Respiration: An Overview

Citric Acid Production

Pyruvic acid in the matrix:

- NAD⁺ accepts 2 highenergy electrons to form NADH
- One molecule of CO₂ is produced
- Remaining 2 carbon atoms react to form acetyl-CoA

Cellular Respiration: An Overview

Citric Acid Production

Acetyl-CoA combines with a 4-carbon molecule to produce citric acid (6-carbon molecule)

Cellular Respiration: An Overview

Energy Extraction

Citric acid is broken down to a 4-carbon compound, releasing two molecules of CO₂.

4-carbon compound reused in cycle.

What similar process happens in the Calvin cycle (during photosynthesis)?

Cellular Respiration: An Overview

Energy Extraction

Energy released by the breaking and rearranging of carbon bonds is captured as ATP, NADH, and FADH₂ (see following slides)

Cellular Respiration: An Overview

Energy Extraction

- For each turn of the cycle, one ADP molecule is converted into ATP
- ATP can directly power the cell's activities

Cellular Respiration: An Overview

Energy Extraction

- The electron carriers NAD⁺ and FAD each accept pairs of highenergy electrons to form NADH and FADH₂
- NADH and FADH₂
 used in the electron transport chain (to generate ATP)

Cellular Respiration: An Overview

Energy Extraction

Book-keeping note:

Recall that each molecule of glucose results in 2 molecules of pyruvic acid. Each molecule of glucose results in two complete "turns" of the Krebs cycle.

For each glucose molecule, 6 **CO**₂ molecules, **2 ATP** molecules, **8 NADH** molecules, and **2 FADH**₂ molecules are produced.

Electron Transport

Lesson Overview

NADH and FADH₂ pass their high-energy electrons to electron carrier proteins in the electron transport chain.

Electron Transport

Lesson Overview

Energy generated by the electron transport chain is used to move H+ ions against a concentration gradient across the inner mitochondrial membrane and into the intermembrane space.

Electron Transport

Lesson Overview

At the end of the electron transport chain, the electrons combine with H⁺ ions and oxygen to form water.

ATP Production

Lesson Overview

H+ ions pass back across the mitochondrial membrane through the ATP synthase, causing the ATP synthase molecule to spin. With each rotation, the ATP synthase attaches a phosphate to ADP to produce ATP.

Compare and contrast the cellular respiration electron transport chain (ETC) with the photosynthesis ETCs.

Cellular Respiration: An Overview

Energy Totals

Aerobic cellular respiration produces **36 ATP molecules** from a single glucose molecule.

This is only 36% efficient: 64% of total energy stored in glucose is released as **heat.**

Cellular Respiration: An Overview

Energy Totals

Other molecules can be used for energy:

- Complex carbohydrates broken down into simple sugars that undergo glycolysis, etc.
- Lipids and proteins broken down into molecules that enter cellular respiration at certain points

Practice =)

esson Overview

Find supporting documents on my website.

- Worksheet questions #13-27
- Construct an inputs and outputs chart/diagram for each of the 3 stages in cellular respiration
- Compare and contrast photosynthesis and cellular respiration, using the guiding questions.

9.3 Fermentation (6-4 Equivalent)

Fermentation

esson Overview

Fermentation is a process by which energy can be released from food molecules in the **absence of oxygen**.

Fermentation occurs in the cytoplasm of cells.

Fermentation

esson Overview

Under anaerobic conditions, fermentation follows glycolysis.

During fermentation, cells **convert NADH produced by glycolysis back into the electron carrier NAD+**, which allows glycolysis to continue producing ATP.

Alcoholic Fermentation

esson Overview

Yeast and a few other microorganisms use **alcoholic fermentation** that **produces ethyl alcohol and carbon dioxide**.

This process is used to produce alcoholic beverages and causes bread dough to rise.

Alcoholic Fermentation

Chemical equation:

Lesson Overview

Pyruvic acid + NADH \rightarrow Alcohol + CO₂ + NAD⁺

Lactic Acid Fermentation

Most organisms, including humans, carry out fermentation using a chemical reaction that converts **pyruvic acid to lactic acid**.

Chemical equation:

esson Overview

Pyruvic acid + NADH \rightarrow Lactic acid + NAD⁺

Energy and Exercise

esson Overview

- Bow does the body produce ATP during different stages of exercise?
- For short, quick bursts of energy, the body uses ATP already in muscles as well as ATP made by lactic acid fermentation.
- For exercise longer than about 90 seconds, cellular respiration is the only way to continue generating a supply of ATP.

Quick Energy

esson Overview

Cells normally contain small amounts of ATP produced during cellular respiration, enough for **a few seconds** of intense activity.

Lactic acid fermentation can supply enough ATP to last about 90 seconds.

However, extra oxygen is required to get rid of the lactic acid produced.

Following **intense exercise**, a person will huff and puff for several minutes in order to pay back the built-up "**oxygen debt**" and clear the lactic acid from the body.

Long-Term Energy

esson Overview

For intense exercise lasting longer than 90 seconds, cellular respiration is required to continue production of ATP.

Cellular respiration releases energy more slowly than fermentation does.

The **body stores energy** in the form of the carbohydrate **glycogen**.

These glycogen stores are enough to last for **15 to 20 minutes of activity**.

After that, the body begins to break down other stored molecules, including fats, for energy.

Lesson Overview

Hibernating animals, such as a brown bear, rely on stored fat for energy when they sleep through the winter.