

Classify and name figures

Vocabulary

point (p. 324)
line (p. 324)
plane (p. 324)
segment (p. 324)
ray (p. 324)
angle (p. 325)
right angle (p. 325)
acute angle (p. 325)
obtuse angle (p. 325
complementary angles (p. 325)
supplementary angles (p. 325)
vertical angles (p. 325)
congruent (p. 325)

Additional Examples

Example 1	
R M L	
A. Name 4 points in the figure.	
B. Name a line in the figure.	
	Any points on a line can be used.
C. Name a plane in the figure.	
	Any points in the plane that
	form a triangle can be used.
D. Name four segments in the figure.	
	Write the 2 points in any order, for
	example or .
E. Name four rays in the figure.	
	Write the first.

Identify parallel and perpendicular lines and the angles formed by a transversal

Vocabulary

parallel lines (p. 330) _____ perpendicular lines (p. 330) _____ transversal (p. 330) _____

Additional Examples

Example 2

Find unknown angles in triangles

Vocabulary

Triangle Sum Theorem (p. 336)

acute triangle (p. 336) ____

right triangle (p. 336)

obtuse triangle (p. 336)

equilateral triangle (p. 337)

isosceles triangle (p. 337) ____

scalene triangle (p. 337)

Additional Examples

The second angle in a triangle is six times as large as the first. The third angle is half as large as the second. Find the angle measures and draw a possible picture.

LESSON Classifying Polygons 7-4

Lesson Objectives

Classify and find angles in polygons

Vocabulary

polygon (p. 341)

regular polygon (p. 342) ____

trapezoid (p. 342)

parallelogram (p. 342)
rectangle (p. 342)
rhombus (p. 342)
square (p. 342)

Additional Examples

Example 1	
A. Find the sum of the angle measures in a hexagon.	
Divide the figure into	
• $180^\circ =$ triangles	
B. Find the sum of the angle measures in an octagon.	
Divide the figure into	
• $180^\circ =$ triangles	

Give all the names that apply to each figure.

Identify polygons in the coordinate plane

Vocabulary

Additional Examples

Example 1

Determine if the slope of each line is positive, negative, 0, or undefined. Then find the slope of each line.

 $\mathbf{A}.\overleftarrow{X}\overrightarrow{Y}$

Example 3

Graph the quadrilateral with the given vertices. Give all of the names that apply to the quadrilateral.

Use properties of congruent figures to solve problems

Vocabulary

correspondence (p. 354)

Additional Examples

Write a congruence statement for the pair of polygons.

In the figure, quadrilateral *VWXY* \cong quadrilateral *JKLM*.

Try This

Transform plane figures using translations, rotations, and reflections

Vocabulary

transformation (p. 358)
translation (p. 358)
rotation (p. 358)
center of rotation (p. 358)
reflection (p. 358)
image (p. 358)

Additional Examples

Example 1

Identify as a translation, rotation, reflection, or none of these.

Draw the image of a triangle with vertices A(1, 1), B(2, -2), and C(5, 0) after a 180° counterclockwise rotation around (0, 0).

Example 3

Rectangle *HIJK* has vertices H(0, 2), I(4, 2), J(4, 4), and K(0, 4). Find the coordinates of the image of the indicated point after each transformation.

Identify symmetry in figures

Vocabulary

line symmetry (p.	364)
-------------------	------

line of symmetry (p. 364)

rotational symmetry (p. 365)

Additional Examples

Example 1

Complete each figure. The dashed line is the line of symmetry.

Example 2

Complete each figure. The point is the center of rotation.

A. 2-fold

The figure coincides with itself every

Create tessellations

Vocabulary

tessellation (p. 368)

regular tessellation (p. 368)

Additional Examples

Example 1

Create a tessellation with quadrilateral EFGH.

Ε н

There must be a copy of each angle of quadrilateral *EFGH* at every vertex.

Example 2

Use rotations to create a variation of the tessellation in Additional Example 1.

Step 1: Find the midpoint of a side.

- Step 2: Make a new edge for half of the side.
- Step 3: Rotate the new edge around the midpoint to form the edge of the other half of the side.
- **Step 4:** Repeat with the other sides.

Step 5: Use the figure to make a tessellation.