Hardware Security: Present challenges and Future directions

Dr Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk

Dept of Computer Science and Technology

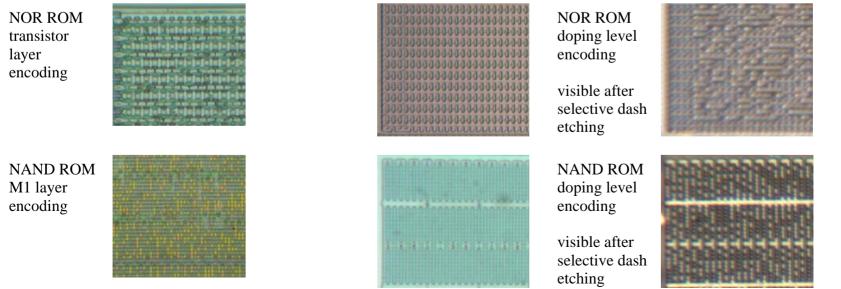
Outline

- Introduction
- History of powerful physical attacks
- Knowledge and predictability of attacks
- Challenges to hardware engineers
- Attacking modern devices
- Future directions
- Conclusion

Introduction

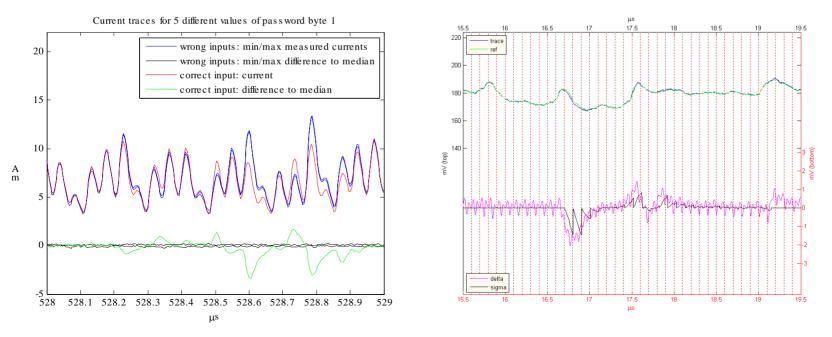
- Senior Research Associate at the University of Cambridge
 - Hardware Security research (attack technologies) since 1995
 - Test microcontrollers, smartcards, FPGAs and SoCs for security
 - Knowledge: chemistry, electronics, physics (MSc), computers (PhD)
 - PhD in Hardware Security from the University of Cambridge (2005)
- Strong track record of new and "impossible" attack methods
 - 1996: clock glitching attacks on security in MC68HC05 and MC68HC11 MCUs
 - 1999: power glitching attacks on security in PIC16F62x/8x and AT90SCxx MCUs
 - 2002: discovery of optical fault injection attacks shook the industry
 - 2005: prove of data remanence in EEPROM and Flash memory
 - 2006: use for combined attacks of fault injection with power analysis
 - 2009: use of optical emission analysis to complement power analysis
 - 2010: bumping attacks that can extract AES key and data from Flash memory
 - 2012: hardware acceleration to power analysis for finding backdoors
 - 2016: demonstration of "impossible" NAND mirroring attack on iPhone 5c
 - 2016: direct SEM imaging of EEPROM and Flash memory contents
 - 2017: data extraction from encrypted data bus using microprobing attack
 - 2018: live decapsulation carried on a battery powered chip

Introduction

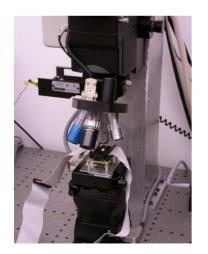

- Hardware security is becoming an important trend
 - if the hardware has a vulnerability then defences at software level are unlikely to help
 - in real world systems there is a trend towards systems-on-chip (SoC) and reconfigurable hardware
- Secure systems are being attacked
 - theft of service attacks on service providers: satellite TV, IoT, electronic meters, access cards, software protection dongles
 - access to information: information recovery and extraction, gaining trade secrets (IP piracy), ID theft, Firmware extraction
 - cloning and overbuilding: copying for making profit without investment in development, low-cost mass production by subcontractors
 - denial of service: dishonest competition, electronic warfare
- Attack technologies are being constantly improved
 so should the defence technologies

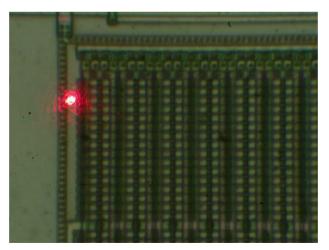
Introduction

- There is growing demand for secure chips
 - car industry, service providers, chip manufacturers, IoT
 - banking industry and military applications
- Technical progress pushed secure semiconductor chips towards ubiquity
 - consumer electronics (authentication, copy protection)
 - aftermarket control (spare parts, accessories, consumables)
 - access control (RF tags, cards, tokens and protection dongles)
 - service control (mobile phones, satellite TV, license dongles)
 - intellectual property (IP) protection (software, algorithms, design)
- Challenges
 - How to design a secure system? (hardware security engineering)
 - How to evaluate the protection? (estimate the cost of breaking)
 - How to find the best solution? (minimum time and money)

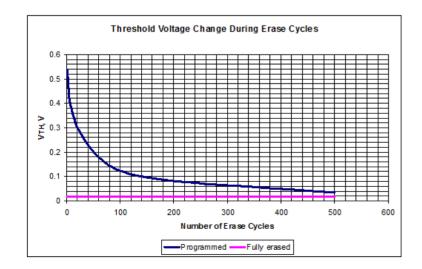

6

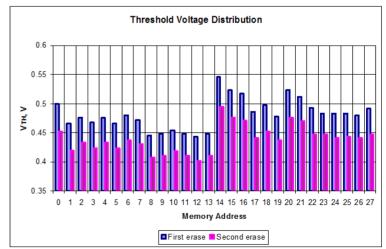
- Direct data extraction from embedded memory: Mask ROM
 - before 1990s: encoded in transistor mask, poly, M1 or M2 layer, vias
 - since 1990s: information is encoded with doping level
 - impossible to see under optical microscope or SEM
 - Failure Analysis helps with defects etching
 - O. Kömmerling, M. Kuhn: Design Principles for Tamper-Resistant Smartcard Processors. USENIX 1999
 - countermeasures at silicon level or obfuscation/encryption
 - Was this outcome predictable?
 - chip manufacturers are well aware about fabrication process and Failure Analysis methods

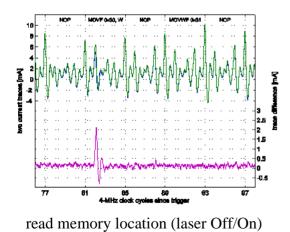


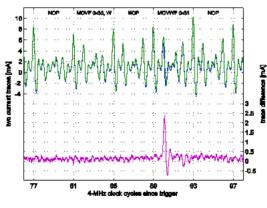

7

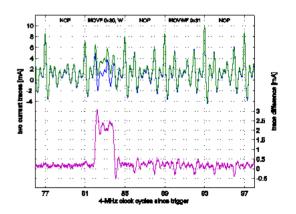
- Power analysis reveals deep secrets
 - leakage from switching CMOS transistors is correlated with processed data
 - P. Kocher: Differential Power Analysis. Crypto 1999
 - can break passwords and crypto keys
 - countermeasures are very sophisticated
 - Was this outcome predictable?
 - · chip manufacturers use standard tools to calculate power dissipation


- Optical fault injection
 - CMOS transistors and memory cells can be controlled with a laser beam
 - S. Skorobogatov, R. Anderson: Optical Fault Induction Attacks. CHES 2002
 - confirmed down to 28nm devices
 - countermeasures at silicon level
 - Was this outcome predictable?
 - chip manufacturers new that radiation causes circuits to malfunction



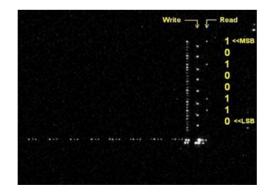



- Data remanence in Flash/EEPROM
 - residual information present after memory Erase operation
 - S. Skorobogatov: Data Remanence in Flash Memory Devices. CHES 2005
 - could lead to recovery of sensitive data
 - once learned can be easily defeated
 - Was this outcome predictable?
 - was known for magnetic media

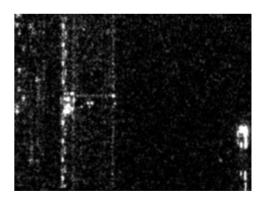


- Combined attacks
 - Power analysis + Fault injection
 - S. Skorobogatov: Optically Enhanced Position-Locked Power Analysis. CHES 2006
 - more powerful and localised
 - countermeasures are hard to implement
 - Was this outcome predictable?
 - attacks were not considered because simpler attacks did exist

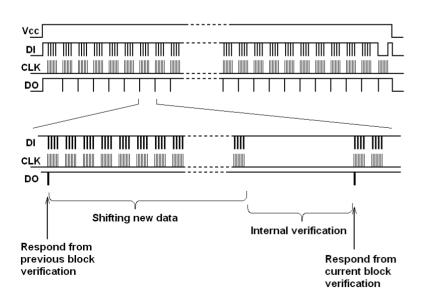
write memory location (laser Off/On)

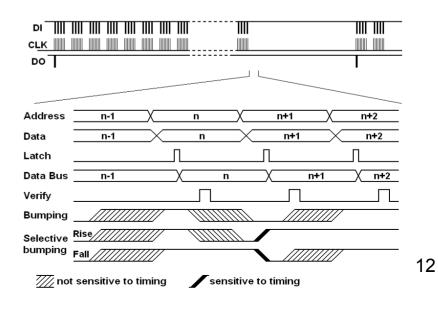


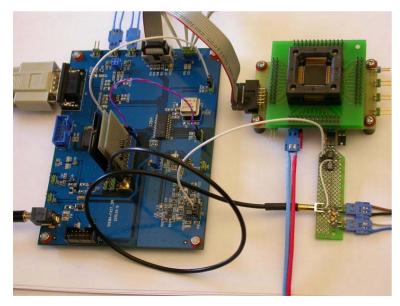
read memory location (laser Off/On) contents of memory changed by laser

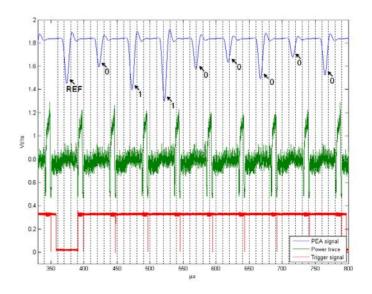

- Optical emission analysis
 - switching CMOS transistors emit photons
 - can be detected with CCD cameras (2D) and photomultiplier tubes (time resolved)
 - S. Skorobogatov: Using Optical Emission Analysis for Estimating Contribution to Power Analysis. FDTC'09
 - countermeasures are hard to implement
 - Was this outcome predictable?
 - · was known for many years that semiconductor devices emit photons

PMT response over large area

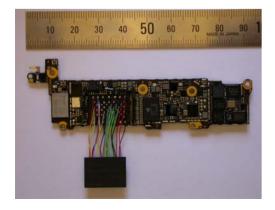


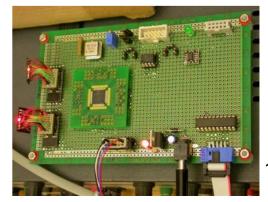

CCD image acquired on SRAM


CCD image acquired on AES, 130nm

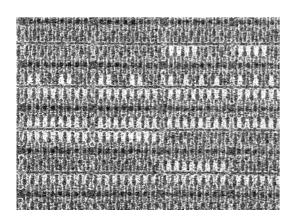

- Bumping attacks
 - memory 'Bumping attacks' is a new class of fault injection attacks aimed at the on-chip internal integrity check procedure
 - Sergei Skorobogatov: Flash Memory 'Bumping' Attacks. CHES 2010
 - simple 'bumping' is aimed at blocks of data down to bus width
 - 'selective bumping' is aimed at individual bits within the data bus
 - countermeasures can be implemented at silicon design level
 - Was this outcome predictable?
 - can be simulated with chip design tools

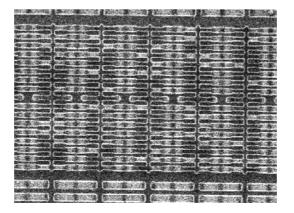
- Finding backdoor in secure FPGA
 - Pipeline Emission Analysis (PEA) technique improves side-channel analysis
 - S. Skorobogatov, C. Woods: Breakthrough silicon scanning discovers backdoor in military chip. CHES'12
 - dedicated hardware rather than off-the-shelf equipment
 - lower noise, higher precision, low latency, fast processing
 - countermeasures are the same as for DPA
 - Was this outcome predictable?
 - · could be as there were fast hardware approaches to tasks of breaking ciphers

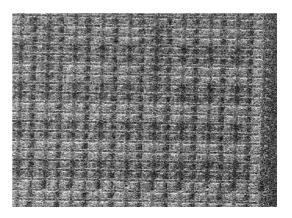



- NAND mirroring attack on iPhone 5c
 - resetting passcode attempt counter by rewriting Flash storage
 - Sergei Skorobogatov: The bumpy road towards iPhone 5c NAND mirroring. arXiv 2016
 - FBI Director claimed that making a copy of the phone's chip to get around the passcode "doesn't work" and aimed at "software-based"
 - hardware approach was not straightforward
 - the iPhone 5c sample was taken apart
 - NAND Flash chip was desoldered and placed on a socket
 - proprietary NAND protocol was learned using logic analyser
 - special tool was built to clone the NAND Flash chips
 - the cloned NAND chip allowed the passcode to be entered again 6 times without any delay

- Was this outcome predictable?


could be tested without problem by government labs



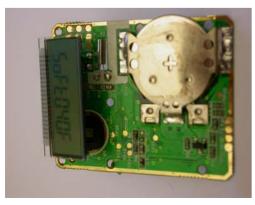

- Flash/EEPROM imaging under SEM
 - more efficient and faster than Scanning Probe Microscopy (SPM)
 - F. Courbon, S. Skorobogatov, C. Woods: Direct charge measurement in Floating Gate transistors of Flash ٠ EEPROM using Scanning Electron Microscopy. ISTFA 2016
 - destructive to memory cells
 - physical limits for detectable charge
 - countermeasures are hard to implement
 - Was this outcome predictable?
 - was not considered until latest SEMs with PVC

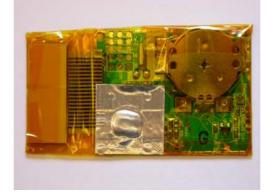
0.35µm Flash in Atmel microcontroller

0.21µm EEPROM in Atmel smartcard

0.35µm Flash in TI microcontroller 15

- Bypassing data bus encryption with microprobing
 - injecting data into encrypted data bus between CPU and memory
 - Sergei Skorobogatov: How microprobing can attack encrypted memory. Euromicro DSD, AHSA 2017
 - injecting code into data bus until CPU executes required command
 - execute Trojan code to gain access to the memory
 - countermeasures can be implemented at hardware level
 - Was this outcome predictable?
 - was used before in systems with encrypted external memory

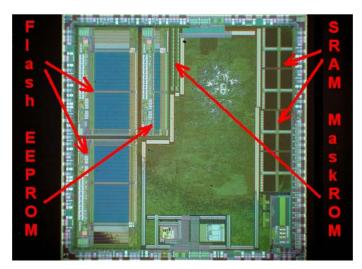

- Gaining access to the chip surface on battery backed chips
 - using chemical decapsulation on live circuits
 - Sergei Skorobogatov: Is Hardware Security prepared for unexpected discoveries? IPFA 2018

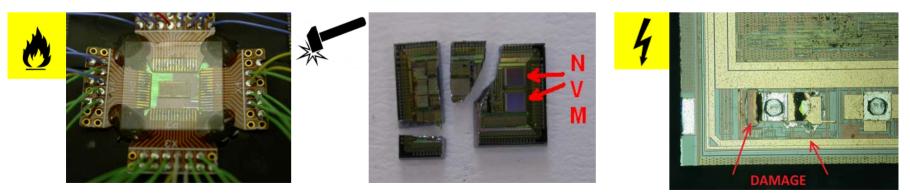

- Vasco Digipass 270 authentication token

- battery-backed SRAM storage for keys
- the device stops working on losing power or if Reset is applied
- sample preparation
 - insulated and protected the PCB with tape
 - created stencil using aluminium tape
 - applied hot 100% Nitric Acid via stencil
 - washed and cleaned with Acetone
- countermeasures could involve surface sensors

- Was this outcome predictable?

was expectable for low-cost mass produced devices




Challenges

- Embedded memory in ICs
 - Mask ROM: bootloader, firmware, algorithms
 - EEPROM: variables, keys, passwords
 - Flash: bootloader, firmware, algorithms, keys, passwords
- Memory extraction is the crucial step in attacks
 - access to firmware for reverse engineering
 - extraction of crucial algorithms
 - access to sensitive data, keys and passwords
 - rely on Failure Analysis methods for advanced attacks

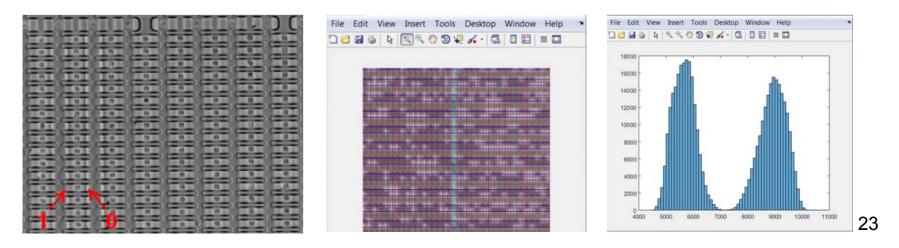
Challenges

- Data extraction from mechanically damaged devices
 - restore challenging packages (QFN, BGA)
 - recovering information from shattered dies
- Data extraction from electrically damaged devices
 - recovering information from chips with burned I/O
 - recovering information if logic is burned
- More efficient methods have to be developed
 - SPM methods are very slow and damaging
 - SEM methods have limitations and damaging

Challenges

- Hardware security in EEPROM and Flash memory
 - EEPROM and Flash memory store information in the form of electrical charge on a floating gate of memory cell transistor
 - floating gates leave no physical imprint on the silicon
 - Virage Logic: Reverse engineering Techniques in CMOS Based NVM, 2009
 - conventional deprocessing methods destroy charge and data
 - Actel: Design Security in Nonvolatile Flash and Antifuse FPGAs, 2003
 - highly resistant against non-invasive and invasive attacks
- Previous attack methods are inefficient and expensive
 - SPM methods
 - Scanning Capacitance Microscopy (SCM)
 - Scanning Kelvin Probe Microscopy (SKPM)
 - require special sample preparation and multiple samples
 - require expensive equipment and also time consuming
 - likely to damage samples during preparation, handling or scanning
- SEM attack methods are more efficient and affordable
 - SEM methods: Passive Voltage Contrast (PVC) with TLD/SE2
 - simpler sampler preparation and widely available microscopes

Is Flash/EEPROM secure enough?


- Is there really a problem with silicon hardware?
 - How fast and reliable could Flash and EEPROM be extracted?
 - Can their contents be extracted at a very low cost in the future?
 - could lead to affordable reverse engineering of firmware
- Secure devices are everywhere
 - banking cards, car keys, access cards, smart batteries, printer cartridges, smart meters, smartphones
- Secrets are usually combined
 - reverse engineering is needed to extract algorithm
 - data extraction gives encrypted values
 - key extraction combined with algorithm give plaintext data
- Data secrecy rely on data extraction challenges
 - common wisdom of Flash/EEPROM being the most secure
 - high cost and low success rate of existing methods (e⁻ are too small, leave no impact and hard to detect)

How secure is Embedded memory?

- Mask ROM
 - invasive extraction based on Failure Analysis methods
- EEPROM
 - large memory cells, small memory size
 - both SPM and SEM methods work well
 - new methods being developed for smaller fabrication processes
- Flash
 - small memory cells, especially for NAND types
 - large memory size, especially for NAND types
 - only SEM methods are practical
 - new methods being developed for smaller fabrication processes
- SRAM
 - sophisticated Failure Analysis methods using lasers
 - ongoing research into innovative invasive methods

Flash/EEPROM: Speed, Size, Process

- It is all about the cost and state-of-the-art is commercially developed
 - publicised achievements: 250nm, 48kB 1T Flash, 5hrs, 7 errors
 - Sergei Skorobogatov: Deep dip teardown of tubeless insulin pump. arXiv 2017
 - consulting: 130nm, 400kB 1T Flash + 64kB 2T EEPROM, 7hrs, 5 errors
 - in development: 65nm, 200kB 1T Flash
- Modern Flash: 14nm/16nm NAND and 28nm/40nm NOR (embedded)
- SEM PVC have limits, but methods under development will aim at 16nm
- Automation can bring extraction speed to 1MB/hour or 1GB/day (MSEM)
- Size is limited by sample preparation no limit with proper tools: >1GB

Have we learned everything?

- Successful attacks do take place
 - access cards, banking cards
 - IP piracy is well established with cloning and overbuilding
 - denial of service ran by dishonest competitors
- Does defence technology go ahead of attack technology?
- There is growing demand for secure chips
 - How are they tested?
- Industry depends on limited manufacturers and designs
 - Where most chips are designed?
 - Who fabricates the silicon?
- Hardware assurance: Do you get exactly what you wanted?
 - Are there enough of trustworthy manufacturers?
 - How to perform silicon testing for trojans and backdoors?

Attack categories

Side-channel attacks

 techniques that allow the attacker to monitor the analog characteristics of power supply and interface connections and any electromagnetic radiation

Software attacks

 use the normal communication interface and exploit security vulnerabilities found in the protocols, cryptographic algorithms, or their implementation

Fault generation

 use abnormal environmental conditions to generate malfunctions in the system that provide additional access

Microprobing

 can be used to access the chip surface directly, so we can observe, manipulate, and interfere with the device

Reverse engineering

 used to understand the inner structure of the device and learn or emulate its functionality; requires the use of the same technology available to semiconductor manufacturers and gives similar capabilities to the attacker

Attack methods

- Non-invasive attacks (low-cost)
 - observe or manipulate the device without physical harm to it
 - require only moderately sophisticated equipment and knowledge to implement

Invasive attacks (expensive)

- almost unlimited capabilities to extract information from chips and understand their functionality
- normally require expensive equipment, knowledgeable attackers and time

• Semi-invasive attacks (affordable)

- semiconductor chip is depackaged but the internal structure of it remains intact
- fill the gap between non-invasive and invasive types, being both inexpensive and easily repeatable

Non-invasive attacks challenges

- Non-penetrative to the attacked device and low-cost
- Types of non-invasive attacks
 - side-channel attacks: timing, power and emission analysis
 - fault injection: glitching, bumping
 - data remanence
 - brute forcing
- Challenges for side-channel attacks
 - higher operating frequency and noise: faster equipment needed
 - power supply is reduced from 5V to 1V: lower signal, more noise
 - 8-bit data vs 32-bit data: harder to distinguish single-bit change
 - more complex circuits: higher noise from other parts, hence, more signal averaging and digital signal processing are required
 - effective countermeasures for many cryptographic algorithms

Non-invasive attacks challenges

- Challenges for fault injection attacks
 - internal clock sources, clock conditioning and PLL circuits
 - internal charge pumps and voltage regulators
 - lower power supply requires more precise control over the glitch
 - checksums (CRC, SHA-1) and encryption
 - asynchronous design
 - effective countermeasures are in place: clock and supply monitors
- Other considerations
 - attack methods are normally independent from the silicon process
 - devices with flash memory are more sensitive to attacks
 - devices with higher operating frequency are harder to attack
 - devices with wider data bus are harder to attack

Semi-invasive attacks challenges

- Less damaging to target device and affordable cost
- Types of semi-invasive attacks
 - imaging: optical and laser techniques
 - fault injection: UV attack, photon injection, local heating, masking
 - side-channel attacks: optical emission analysis, induced leakage
- Challenges for fault injection attacks
 - internal clock sources, clock conditioning and PLL circuits
 - internal charge pumps and voltage regulators
 - checksums (CRC, SHA-1) and encryption
 - asynchronous design

Semi-invasive attacks challenges

- Challenges for side-channel attacks
 - higher operating frequency and noise: faster equipment needed
 - power supply is reduced from 5V to 1V: lower signal, more noise
 - 8-bit data vs 32-bit data: harder to distinguish single-bit change
 - more complex circuits: higher noise from other parts, hence, more signal averaging and digital signal processing are required
 - effective countermeasures for many cryptographic algorithms
- Other considerations
 - attack methods are highly sensitive to the silicon process
 - backside approach is required for $0.35\mu m$ or smaller process chips
 - BGA and pin-less packages are harder to deal with
 - limited resolution of low-cost imaging solutions
 - devices with flash memory are more sensitive to attacks
 - devices with higher operating frequency are harder to attack
 - devices with wider data bus are harder to attack

Invasive attacks challenges

- Damaging to target device and very expensive
- Types of invasive attacks
 - imaging: optical, laser techniques and SEM
 - fault injection: microprobing, chip modification
 - side-channel attacks: microprobing
 - reverse engineering
- Challenges
 - attack methods are highly sensitive to the silicon process
 - backside approach is required for 130nm or smaller process chips
 - very high cost imaging solutions for 180nm or smaller process chips
 - BGA and pin-less packages are harder to deal with
 - devices with higher operating frequency are harder to attack
 - devices with wider data bus are harder to attack
 - countermeasures are in place: active mesh sensors, CRC, crypto

Future work

- Improving semi-invasive attacks
 - some chips down to 65nm were tested
 - preparation for testing 40nm and 28nm chips is under way
- Seeking collaboration with industry
 - evaluation of products against new attacks
 - developing new attack methods and techniques
 - desire to establish hardware security research centre
- New challenges
 - synchronisation techniques for side-channel attacks
 - improving side-channel attacks with new techniques
 - advanced data extraction methods from Flash and SRAM
- Developing new countermeasures
 - if it takes a few seconds to extract crypto-key or password then existing countermeasures may fail to protect from adversaries

Future work

- Is it possible to predict new attacks?
 - need for hardware security educated engineers
 - desire for open minded design reviewers
- Unexpected attacks: bad or good
 - it helps in understanding the nature
 - what is bad for chip manufacturers might be good for technological progress
 - new materials could be created
 - new processes could be developed
 - new solutions to existing problems could be found

Conclusion

- There is no such thing as absolute protection
 - given enough time and resources any protection can be broken
- Attack technologies are constantly evolving
 - do not underestimate capabilities of the attackers
 - technical progress reduces cost of already known attacks
 - most attacks are based on well known facts and phenomena
- Defence should be ahead of attack technologies
 - Hardware Security engineers must be familiar with existing attack technologies to develop adequate protection
 - many chips unavoidably have backdoors as a part of fabrication and testing process, but they must be made as secure as possible to prevent attacks
- Many vulnerabilities were found in various secure chips and more are to be found posing more challenges to hardware security engineers

Thank You!