

Lethal Gases and Emergency Services on the Battlefield

Badria Alhatali, M.D Department of Environmental and Occupational Health Ministry of Health - Oman Middle East and North Africa Association of Clinical Toxicology Treasurer

CONFLICT OF INTEREST

None to declare

Outline

Overview of the Emergency Services on the Battlefield

Discuss personal protection measures and decontamination procedures

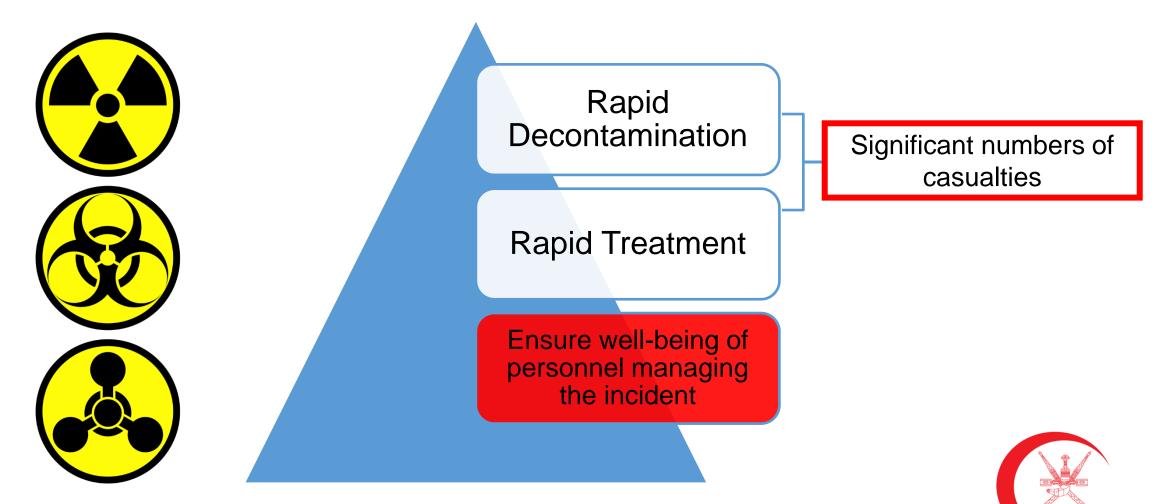
List some lethal gases, clinical manifestation and management

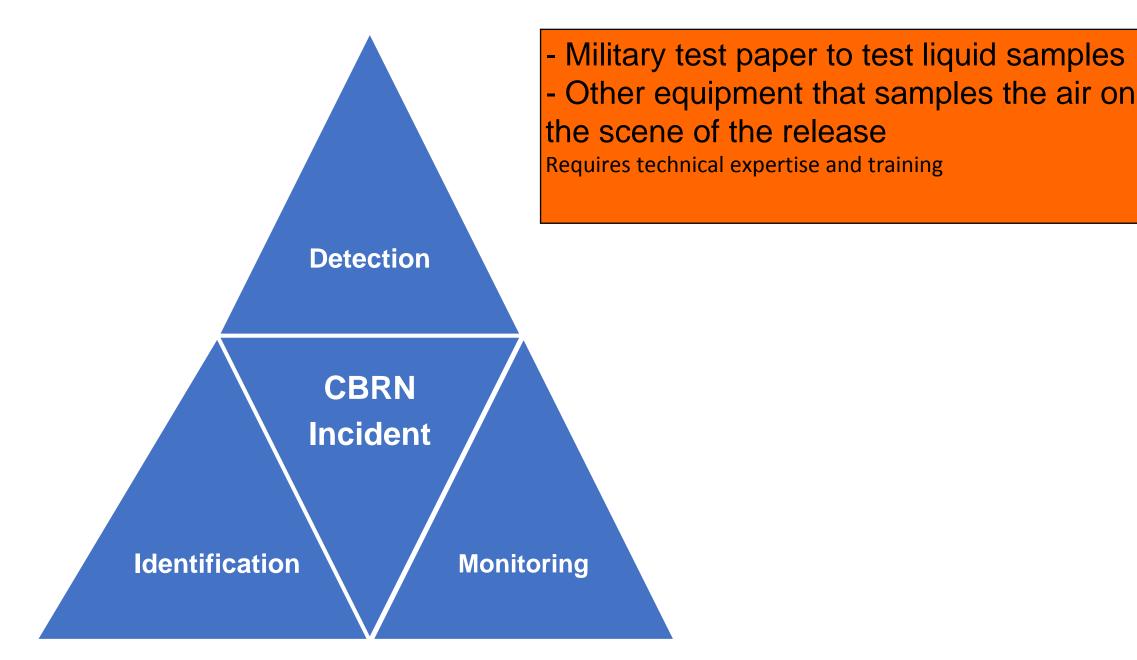
Chemical Weapons History and Epidemiology

- •Large-scale chemical warfare began in **World War I** (1.3 million casualties and 90,000 deaths)
- •The Germans first used sulfur mustard in 1917
- •Germany began producing nerve agents just before World War II.
- •Sarin was synthesized in 1938

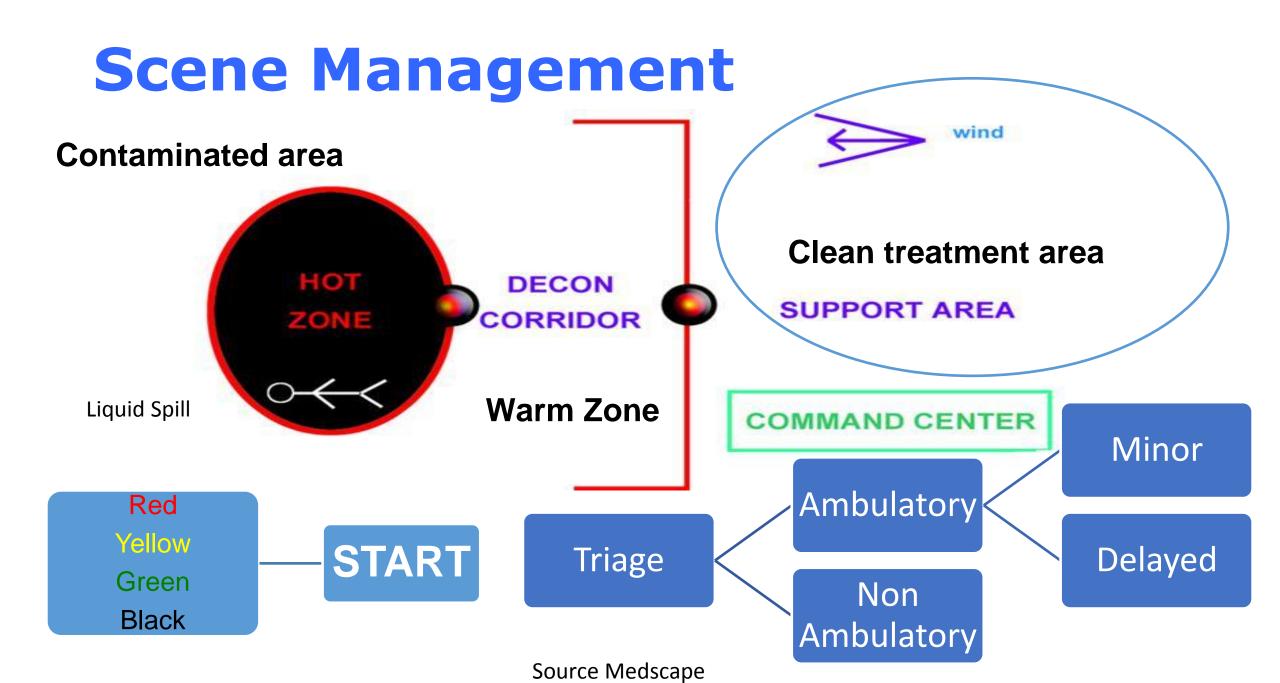
Why Chemical Terrorism?

- Agents are available and relatively easy to manufacture
- Large amount not needed in closed space
- Chemical incidents may be difficult to recognize
- Easy to cover a large area
- Associated significant psychological impact
- Can overwhelm existing resources


Chemical Agents


- Nerve agents
- Blister agents
- Incapacitating agents
- Riot control agents
- Pulmonary agents
- Cyanides (Chemical asphyxiants)

Chemical, Biological, Radiological or Nuclear Challenge



Ramesh, Aruna C., and S. Kumar. "Triage, Monitoring, and Treatment of Mass Casualty Events Involving Chemical, Biological, Radiological, or Nuclear Agents." *Journal of Pharmacy and Bioallied Sciences* 2.3 (2010): 239–247. *PMC*. Web. 19 May 2017.

Scene Management

Control movement of contaminated victims
Provide safe working environment for responders
Contain the release of the substance

Control Access

A summary of physical characteristics of nerve agent exposure in a triage procedure

Category	Status of Casualties
Immediate – RED	Causality walking, talking and being capable of self aid Miosis and rhinorrhea Mild to moderate respiratory distress
Delayed - YELLOW	Recovering with antidotes
Minor - GREEN	Causality walking, talking and being capable of self aid Miosis and rhinorrhea
Expectant - BLACK	Not talking (unconscious) Circulation failed (no heart rate)

Ramesh, Aruna C., and S. Kumar. "Triage, Monitoring, and Treatment of Mass Casualty Events Involving Chemical, Biological, Radiological, or Nuclear Agents." *Journal of Pharmacy* and *Bioallied Sciences* 2.3 (2010): 239–247. *PMC*. Web. 19 May 2017.

Decontamination Consideration

The principle of decontamination are:

Decontaminate as soon as possible

Decontaminate by priority

Decontaminate only what is necessary

Decontaminate as far forward as possible

Decontamination is more important in liquid agents exposure than gases agents

Dermal Contamination with Liquid Versus Vapor Exposure

- Skin contamination with liquid agent can have delayed onset of signs and symptoms (up to 18 hours depending on factors like the amount of liquid agent).
- Exposure to vapor will cause more signs and symptoms more rapidly.
 - Eye complaints may be common
 - Respiratory complaints are common

Personal Protective Equipment Levels (PPE)

Level A

Self Contained Breathing Apparatus

Encapsulating vapor tight suit

Gases, vapors, aerosols, oxygen-deficient atmospheres

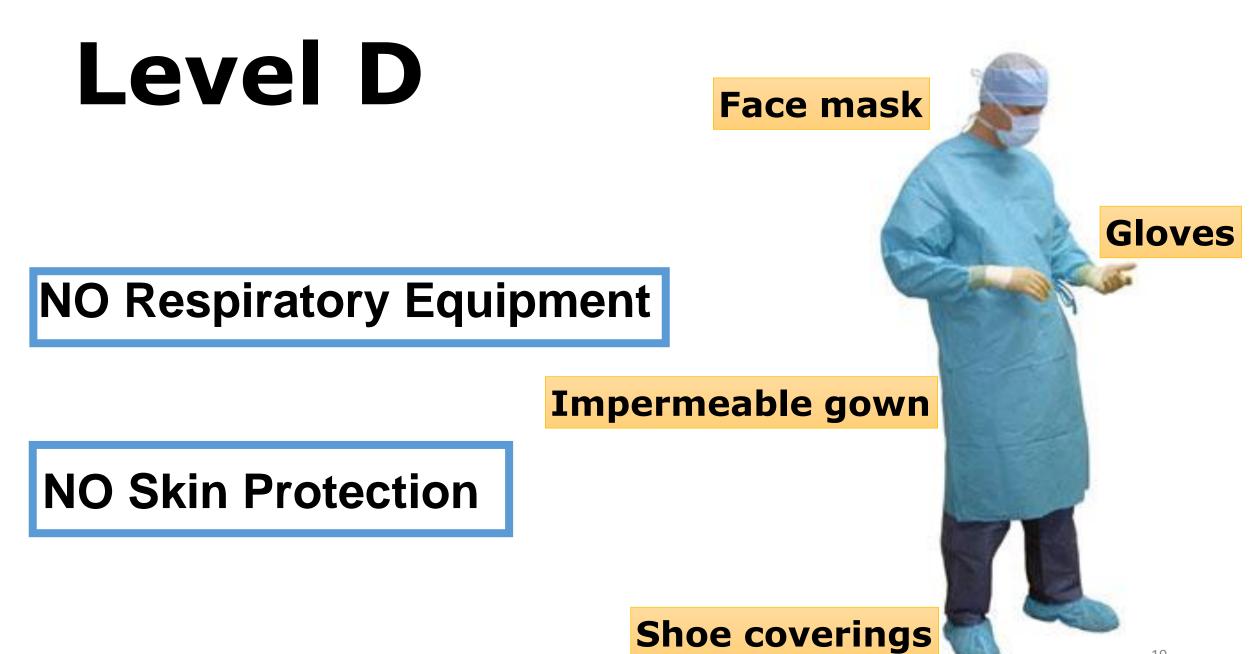
Level B

Self Contained Breathing Apparatus

Lesser skin protection

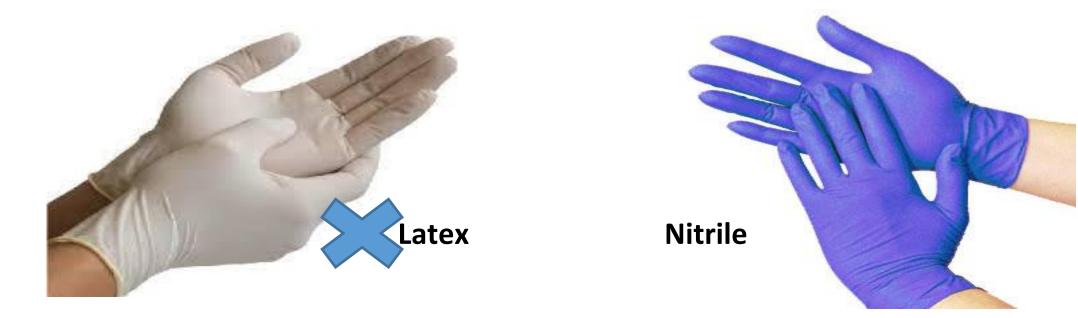
Chemical resistant suits

Liquids & Solids


Level B Ensemble

Level C

Air Purifying Respirator


Hooded, splash-protective chemical resistant suit

Liquids & Solids

Personal Protection

• Butyl rubber or nitrile gloves. Latex not protective

Nerve Agents

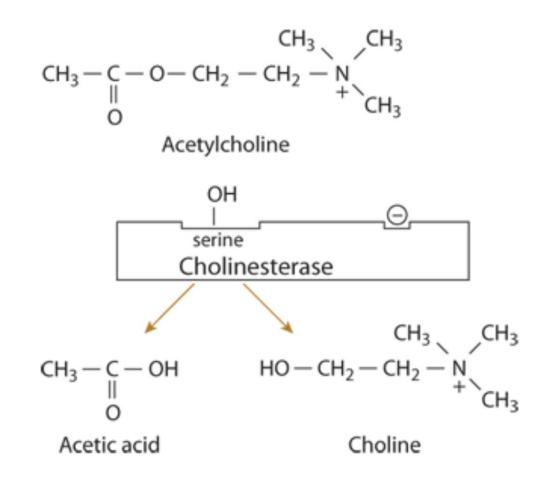
GA

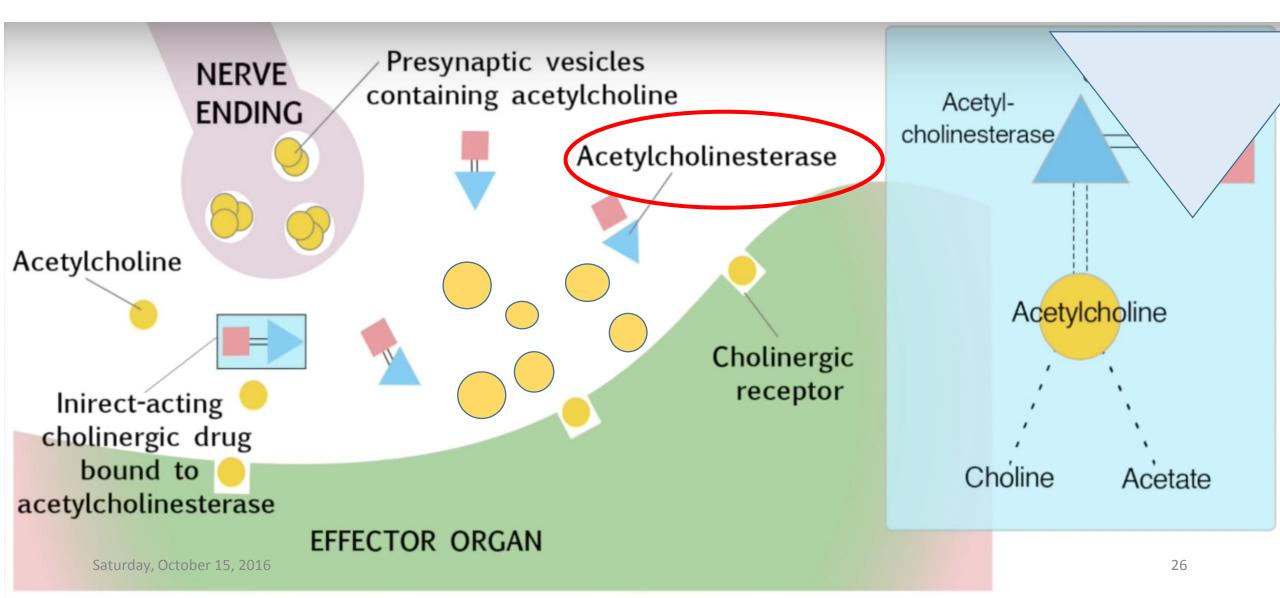
GB

Nerve Agents

- Extremely potent organic phosphorus compound cholinesterase inhibitors
- Pure nerve agents are clear and odorless
- 1930's- Nazi's synthesize "G" agent during WWII
- 1940"s Soviet Union begins production after capturing German munitions
- 1950"s USA begin production

Nerve Agents


- Two classes
 - G agents
 - Tabun (GA)
 - Sarin (GB)
 - Soman (GD)
 - V agents
 - VX
- Cholinesterase inhibitors similar to organophosphate



Nerve Agents Mechanism of Action

Suchard JR. Chemical Weapons. In: Hoffman RS, Howland M, Lewin NA, Nelson LS, Goldfrank LR. eds. Goldfrank's Toxicologic Emergencies, 10e. New York, NY: McGraw-Hill; 2015

Cholinergic Toxidrome

Nerve Agents Mechanism of Action

• Organophosphates bind **irreversibly** to cholinesterase, unless pralidoxime is given prior to dealkylation "aging."

• "Aging" is the average time for irreversible binding between organophosphates & cholinesterase

Nerve Agents Aging Half-Times

Name of the Nerve Agent	Synonym	Aging Half-Time
Sarin	GB	Around 5 hours
Soman	GD	Around 2 minutes
Tabun	GA	>14 hours
VX	None	Around 48 hours

Nerve Agents Clinical Effects

- The resultant cholinergic toxidrome
 - Peripheral Muscarinic
 - Peripheral Nicotinic
 - Central effects (loss of consciousness, seizures, respiratory depression)
- Aerosol or vapor exposure initially affects the eyes, nose, and respiratory tract. Miosis is common - 1995 Tokyo subway sarin incident
- Long-term effects: psychologic sequelae

Nerve Agents Peripheral Nervous System- Muscarinic

*** DUMBBBEL**

- Diarrhea
- Urination
- Miosis, Muscle fasiculation
- Bradycardia
- Bronchorrhea
- Bronchospasm
- Emesis
- Lacrimation

SLUDGE

- Salivation
- Lacrimation
- Urination
- •Diarrhea
- GI complaint
- Emesis

Nerve Agents Peripheral Nervous System- Nicotinic

- -M-Mydriasis
- -T Tachycardia
- -W Weakness
- -(t) H Hypertension
- -F-Fasiculations

Sun	Mon	Tues	Wed	Thur	Fri	Sat	
NOT	FS FS						

Nerve Agents Decontamination

- Two functions:
 - 1. Prevent further absorption
 - 2. Prevent spread to other persons
- Alkaline solutions
 - Diluted sodium hypochlorite solution (takes 15-20 minutes to inactivate chemical agent)
- Soap and Water

Nerve Agents Treatment

- Atropine combat excess muscarinic Acetylcholine
 - Goal: dry respiratory secretions
 - Dose: adults: 2 mg; children: 0.05-0.1mg/kg.
 - Repeat doses are given every 2-5 minutes until resolution of muscarinic signs

Nerve Agents Treatment

- Diazepam combat excess nicotinic Acetylcholine
- Oximes (Pralidoxime) combat "aging" process
 - Should be given in conjunction with atropine (can't reverse muscarinic effects when given alone)
 - Mark I Kits:
 - Pralidoxime autoinjector
 - 600mg IM
 - Atropine Autoinjector
 - 2mg IM

Nerve Agents Pre-treatment

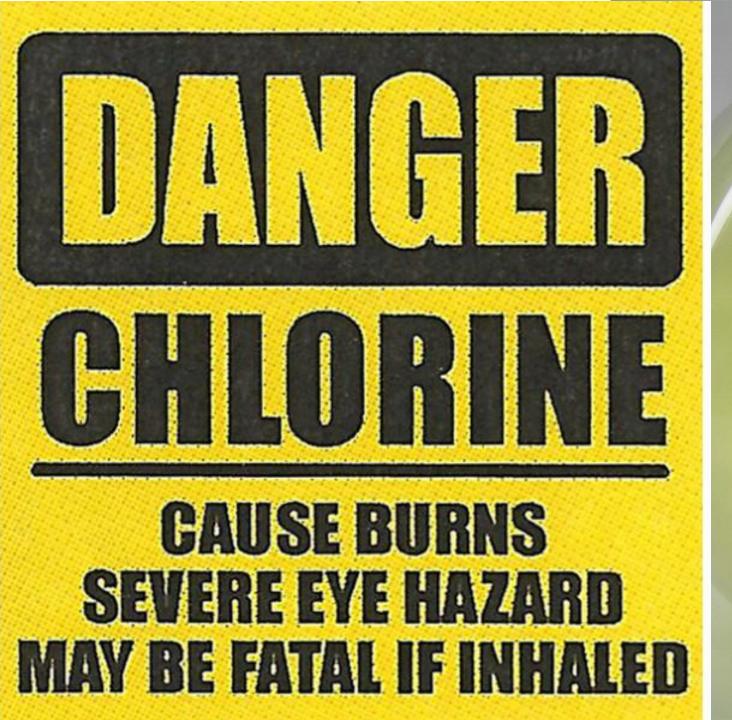
• Pyridostigmine

- Carbamate acetylcholinesterase inhibitor (reversible)
- Occupy cholinesterase > blocking access of nerve agent to the active site
 - Protect a small % of AchE from irreversible OP

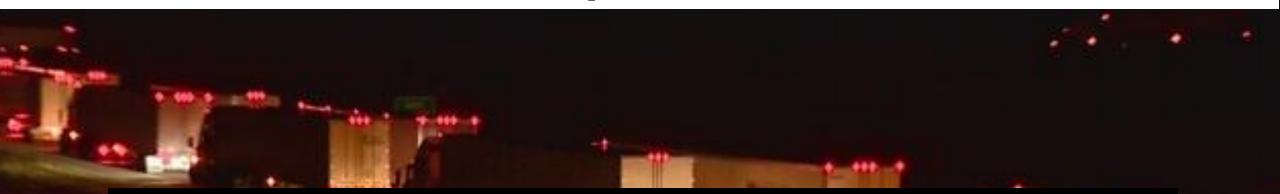
Pulmonary Irritants

Pulmonary Irritants

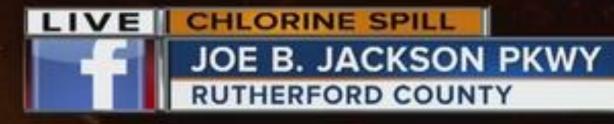
- Chlorine (Cl)
- Phosgene (CG)
- Diphosgene
- Nitrogen oxides (NOx)
- Various organohalides


 Induce delayed ARDS from increased alveolar-capillary membrane permeability

Pulmonary Irritants


Agent	Color	Physical state	Odor	<u>Water Solubility</u>	Timing of effects
Chlorine	Yellow-green	Gas , with pressure and cooling can be liquid	Strong bleach	Intermediate	Immediate irritation, pulmonary edema 2-24hrs later
Phosgene	Colorless or white to pale-yellow cloud	Gas , with pressure and cooling can be liquid	Freshly mown hay, green corn	Poor	Delayed up to 48hrs (usually 2-6 hrs)
Diphosgene	Colorless	Gas	Freshly mown hay, green corn	Poor	Delayed up to 48hrs (usually 2-6 hrs)

Effects depend on water solubility



Traffic or rail accidents, spills, or other disasters

Short-term + high-level exposures

http://www.newschannel5.com/news/local-news/shelter-in-place-in-effect-after-spill-on-i²24

nytimes.com

Cloud Rising From Train Wreck, Then Death and a Ghost Town

By ARIEL HART and MATTHEW L. WALD JAN. 8, 2005

GRANITEVILLE, South Carolina

- Nine people died
- 72 were hospitalized in nine hospitals
- 525 were examined as outpatients
- Fifty-one people (8%) had a severe medical outcome

Wenck MA, Van Sickle D, Drociuk D, et al. Rapid Assessment of Exposure to Chlorine Released from a Train Derailment and Resulting Health Impact. *Public Health Reports*. 2007;122(6):784-792.

60 tons of chlorine

Environ Res. 2002 Feb;88(2):89-93.

Acute accidental exposure to chlorine gas in the Southeast of Turkey: a study of 106 cases.

<u>Güloğlu C¹, Kara IH, Erten PG</u>.

22 April 1915, North of Ypres, Belgium

Regime chlorine gas attack kills 100 in Syria's Idlib

UK, France call for emergency meeting of UN Security Council

home > todays headlines, middle east

💾 04.04.2017 🛛 🚨 Ali H. M.Abo Rezeg

0

Workplace and public (swimming pools)

Log-term, low-level exposure

https://www.researchgate.net

Cough bronchospasm pulmonary edema

HOC

iNOS

epithelial mitochondrial injury and

superoxide

·NO

10,-

Moderately irritating to upper respiratory tract

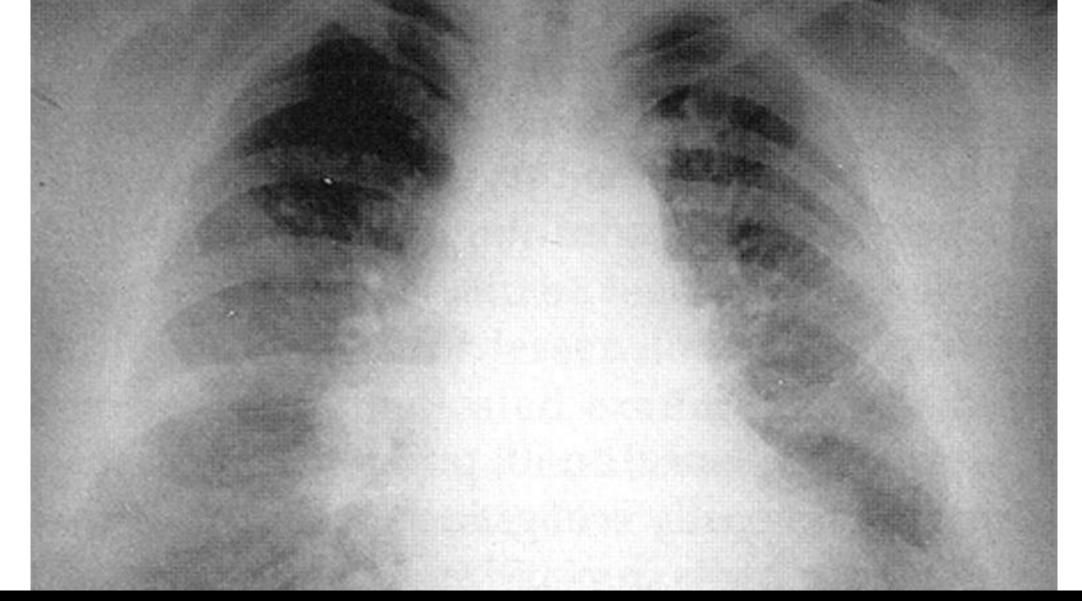
smooth muscle constriction and reactivity

Reactive oxygen species (ROS)

Combines with water and forms HCI

airway

epithelial


Low-level (3-5%, 1-15 ppm) acute exposure

Manifestations are as follows:

- Eye tearing, nose and throat irritation
- Sneezing
- Excess salivation
- General excitement or restlessness

High-level (20%, >30 ppm) acute exposure

- •Dyspnea: Upper airway swelling and obstruction may occur
- Violent cough
- •Nausea and vomiting (with the smell of chlorine in emesis)
- •Lightheadedness/ Headache
- Chest pain or retrosternal burning
- Muscle weakness
- Abdominal discomfort
- •Dermatitis (with liquid exposure): Corneal burns and ulcerations
- •Esophageal perforation

Acute lung injury and delayed pulmonary edema 50

Pulmonary Irritants Management

- Decontamination: not required unless concentrated liquid level B-C
- Eye decontamination
- No Antidote
- Management:
 - Oxygen and supportive care
 - Nebulized sodium bicarbonate
 - Bronchodilators
 - Steroids
 - Antibiotics

Pulmonary Irritants Phosgene (CG)

- Phosgene produces injury by hydrolysis in the lungs to hydrochloric acid
- Non-cardiogenic pulmonary edema
- Hypoxemia
- Respiratory failure
- Hypovolemic shock
- No antidote

Cyanides (Chemical Asphyxiants)

Chemical asphyxiants

- Asphyxiants
 - A. Simple: affect the respiratory system alone
 - Carbon Dioxide
 - **B. Systemic:**
 - Carbon monoxide, Cyanide, Hydrogen Sulfide, Azides
 - Symptoms

MENA

- Fast breathing, tachycardia
- acidemia, hypoxia

Cyanides (Chemical Asphyxiants)

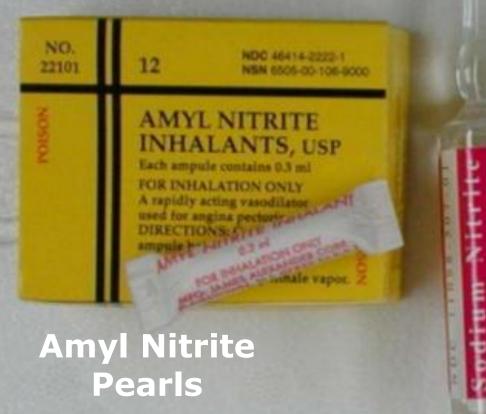
- Relatively ineffective because of rapid dispersion
- Extremely potent
- Routes of exposure: inhalation, ingestion, dermal, and parental
- Colorless gases
 - Hydrogen Cyanide (HCN)
 - Cyanogen chloride (CNCI)
- Inorganic cyanide salts: Na, K, and Ca CN

Cyanides (Chemical Asphyxiants) Mechanism of Action

- Inhibit succinct acid dehydrogenase, carbonic anhydrase, and superoxide dismutase
- Inhibit cytochrome oxidase at cytochrome a3
 - Inability to utilize oxygen by the cell
 - No ATP formation
 - Hydrogen ion accumulation > acidemia (lactic acidosis)
- Inhibit glutamate decarboxylase > decrease brain GABA > **seizures**
- Activate NMDA receptors directly
- Activate voltage sensitive calcium channels: reactive oxygen species and nitrous oxide

Cyanides (Chemical Asphyxiants) Clinical Manifestations

- •Time of onset seconds
- Initial non-specific symptoms
 - •CNS (progressive hypoxia): headache, anxiety, agitation, confusion, coma
 - •CVS: tachycardia followed by bradycardia and hypotension, shock
 - •Lungs: pulmonary edema, apnea
- Salts can produce corrosive injuries
- •Delayed neurologic sequelae of survivors (Parkinsonism)


Cyanides (Chemical Asphyxiants) Decontamination

- Remove the patient from the area
- Remove the clothes
- Wash with soap and water
- Ensure adequate ventilation with 100% oxygen

CYANIDE ANTIDOTE KIT

Sodium Nitrite (300 mg= 10 cc) Sodium Thiosulfate (12.5 gm = 50 cc)

NDC 11098

50 mL Single Dest

Pharmaceutic h

Inthe

SERIES IN IN COLUMN

Andread proseguest Martinella

DANE North

MARCH LT.

Dr. Box" 154

Cyanides (Chemical Asphyxiants) Treatment

•Cyanide Kit

•Amy nitrite and sodium nitrite

- Produce methemoglobinemia: CN has more affinity to methemoglobin than cytochrome-oxidase
- Main adverse effect: vasodilation & hypotension

Sodium thiosulfate

Convert cyanide to thiocyanate: less toxic and excreted in the urine

Cyanides (Chemical Asphyxiants) Treatment

- •Hydroxocobalamin:
 - Bind cyanide to produce cyanocobalamin: excreted in the urine and bile

Summary

Preparation is the key element in such incidents

Personal Protective Equipment are mandatory for your safety.. Know which one to choose

Detection and identification of the agent optimize the medical care

Not all of us can do great things but we can do small things with great love

MOTHER TERESA