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Chapter 3. Signed Measures and Differentiation

1.
Proof. O

2. If v is a signed measure, E is v—null iff |v|(E) = 0. Also, if v and p are signed measures, v 1 p iff
lv| L iff vt L and v~ L p.

Proof. .

Claim 1. Fis v-null iff |[v|(E) =0

Proof. .

(=)

Suppose that E is a v — null. Since v L v~ there is a partition {P, N} of X where N is v™ — null and
P is v~ — null. Observe the below.

W|[(E)=w(XNE)=v"(PNE)+v (NNE)
If [v|(E) > 0, without loss of generality, we can let v (P N E) > 0. Then note that
v(PNE)=vH(PNE)—v (PNE)=v"(PNE)>0

But PN E C E. so it is a contradiction.
(<)
Suppose that |v|(E) = 0, then since |v| is a positive measure, |v|(A) =0 VA C E. Observe the below.

W|(A) =vT(A)+v (A)=0 VACE
It means v (A) =v~(A) =0VA C E. It also means that
v(A)=vt(A)—v (A) =0 VYACE
Thus, E is a v — null 0

Claim 2. If v and pu are signed measures, v L p iff |v| L p iff vt L p and v= L p.

Proof. .

v L piff 3 a partition {P, N} of X such that P is u—null and N is v — null iff 3 a partition {P, N} of X

such that P is p —null and N is |v| — null iff |v| L piff 3 a partition {P, N} of X such that P is u — null

and N is |v| — null iff 3 a partition {P, N} of X such that P is both g — null and N is v+ — null and

v- —null iff v© L pand v~ L p. O
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3. Let v be a signed measure on (X, M).
a.L'(v) = L'(|v])

b. If f € L'(v), | [ fdv| < [|f|d]v]

c. If E€ M, |v|(E) =sup {| [, fdv|:|f] <1}

Proof. .
a
Obviously, if f € L'(|v]), then [ |f|d]v| < oo, and observe the below

[1stdw= [ 11w = 110 < [ 15+ [isia = [ ifiap] < oo

Thus, f € L'(v).

Conversely, suppose that f € L'(v), then [|f|dv = [|f|dv" — [ |f]dv~ < .

Note that vt L v, so there exists a partition {P, N} of X such that P is v — null and N is u — null.
If f ¢ L'(Jv]), then one of [ fdvt and [ fdv~ should be infinite.

Without loss of generality, let [ fdvT = [, fdvt = oco.

Then
Jistaw= [ s = [ 1= [ ifla = [ (flat = o

It is a contradiction.
b
Since f € L'(v), observe the below.

’/fdu :'/f+dy—/f‘dy
-|(frae - frrar)- ([ [rar)
g/f+dy++/f—dy—+/f—du++/f—dy—
= [ 11" [ 171
~ [ 1711

c
For any function |f| < 1, by b, observe the below first.

[E fv| = ‘ [ xesar

§/|XEf|d‘V‘ (o xefeL'(v)

< / exxldv] (o 1f] < 1)

_ / | = /E dly| = v|(E)



Thus, |[v(E)| is an upper bound of the set A = {| [, fdv|:|f| < 1}.

Let € > 0 be given. Then,
€
VE—EZ/(l— >du §/1du
pIE) = [ (1= ) bl < [ 1aw

Since 1 € A, |v|(FE) is the least upper bound of the set A. O

4. If v is a signed measure and \, i are positive measures such that v =X — u, then A\ > vt and p > v~.

Proof. .
Note that vt L v~ so there is partition {P, N} such that P is a v~ — null and N is a v — null.
Now, observe the below.

vHE)=v(PNE)=XPNE)—u(PNE)<ANPNE)<\E) VEEM
v (E)=—v(NNE)=—-ANNE)—uNNE)<u(NNE)<ukFE) VEeM

Then we are done. U

5. If v1, vy are signed measures that both omit the value +00 or —oo, then vy + vo| < |vi| + |1a).

Proof. .
Let the Jordan decomposition of 11 + v = u™ + p~. And also, observe the below.

ntv=vl—vi vy —vy = ) - (v )

Note that v;” + v and v] + v, are positive measures. Therefore, by Exercise 4, v + vy > ut and

v FVy 2
Therefore,
i+l =pt T < )+ (v F ) = nl + el
O
6.
Proof. O
7.
Proof. 0

Bov<uiff | <piff vt K pandv- < p
Proof. .

Claim 3. v < = || < p

(=)

Let E € M be a set with u(E) =0 and {P, N} be a Hahn decomposition of X with respect to v.
Then observe the below

VI(E)=v(ENP)=0 (-0<u(ENP)<uE)=0v< )
v (E)=—v(ENN)=0 (-0<u(ENN)<uE)=0,v< )
Therefore, |v|(E) = vT(E)+v (E) =0, so |v| < p



Claim 4. V| <y = vF<pandv™ < pu
(=)

Let E € M be a set with p(E) = 0. Since |v| < p, |v|(E) = vH(E)+v (E) =0. Since vt and v~ are

positive measure, v (E) = v~ (E) = 0. Therefore, v < p and v~ < p

[
Claim 5. v < pandrv < p = v<p
(=)
Let E € M be a set with u(E) =0, then v (E) = v~ (E) = 0.
Thus, v(E) = v (E) — v~ (E) = 0. Therefore, v < p.

0
9.
Proof. 0
10.
Proof. 0
11.
Proof. 0

12. For j = 1,2 let v;, p; be o—finite measure on (X;, M;) such that v; < p;.

Then vy X vy <K 41 X ftg and

dVl

(z1,29) = (21) 5 (72)

d(Vl X VQ) avy
dpiz

d(pn X piz)
Proof. .
Let E,; = {x : j—I’Z < —l} (1 =1,2), and observe the below

n

d V;

1 1
vi(En:) = dv; = dp; < —— dp; = ——pi(En )

1

Since v; is positive measure, p;(E, ;) =0 = v(E,;) Vn € N.
Also note the below.

dVi
E:{x: in <0}= U En.

neN

By continuous from below

W(E) = Tim j(E,y) =0

n—o0



Therefore, g: >0 p; — a.e. for i = 1,2 which means j—:i € L*(p;). Thus by Tonelli’s Theorem,

vy X 1o(E) = /Ed(u1 X vp) = /X(E)d(u1 X 1)

dV1 dl/2
= E)dvidyy, = E)—d —d
[ [xErman= [ ([ Fan) T
dvy dv
L,

dvy dv
/ —1—2d (p1 X paz)

dpug dpiz
Therefore, 1y X vo < 1 X o and jﬁ% = % (by definition of Radon Nikodym derivative) O
13.
Proof. O

14. If v is an arbitrary signed measure and p is a o—finite measure on (X, M) such that v < p, there
exists an extended pu—integrable function f : X — [—o00,00] such that dv = fdu.

Hint

a. It suffice to assume that p is finite and v is positive.

b. With these assumptions, there exists E € M that is o—finite for v such that u(E) > pu(F) for all sets
F' that are o—finite for v.

c. The Radon-Nikodym theorem applies on E. If FNE = 0, then either v(F) = u(F) =0 or u(F) > 0
and |[V(F)| = o0

Proof. .

Suppose that p is finite and v is positive.

Let S = {S € M :Siso— finite for v}. And let a = sup{p(S): S € §}. Then there is a sequence of
sets {Sn},eny € S such that limy, o p£(S,) = o < 0o.(." p is finite)

Let S = U, en Sn = Unen U1 Sk, then by continuous from below, since S is also o—finite,

a>p(S)= lim u U Sk) =

n—00
k=1

Therefore, 11(S) = a. Then by Lebesgue-Radon-Nikodym Theorem, 3” exists on S.
Let’s define a function F' as below.

F(z)= f(z) (ifzebs)
F(z)=00 (ifzgS9)
Let £ € M be given.
If u(E\S) =0, then v()
V(E) = o(ENS) + v(E\ S) = v(ENS) = Emsfdu:/Emstu+/]E\Squ:/]3qu

If u(E\S)> 0, then
p(SU(ENS)) = pu(S) + u(E\S) > a

Thus SU(E\S) ¢ S. It means E\ S ¢ S, otherwise SU(E'\ S) is a o—finite so it isin S. So u(E\S) =
Thus,

V(E)=00=v(E\S) = oodu:/ Fd,u:/qu
B\S E\S E
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Either ways allow us to say that

dv
=— onX
dp
Now, let’s assume that p is o—finite and v is positive. Then there is a sequence of disjoint sets {E,},, o
such that

X:UEn and u(E,) <oo ¥neN

neN

Thus, there exits F, d” on E, for Vn € N. Then we can define a function as below.
F'=F, on E,VneN

Note that F is defined on X.
Lastly, let u be o—finite and v be signed measure. Due to the arguments above, there exist two functions

Ft = % and F~ = dcll/_/:7 then FF' = F* — F~ = —Z (on X) is the function that we have found. O
15.
Proof. 0
16. Suppose that p, v are o—finite measure on (X, M) with v < p, and let \ = p+v. If f = d/\, then
0<f<1lpu—ae. andi—l’i:%.
Proof. .
Suppose that p and v are o—finite measure on (X, M), then by EX12, fl—: > 0 pu — a.e.. Also note that
A=p+visaoc—finite, so % = f >0 X —a.e.. Since u <\, f >0 pu—a.e..
We need to prove that M(E) =0 where £ = {z : f(z) > 1}.
Observe the below.
0<u(E)=\NE /d)\ /dl/—/d)\ /fd)\ / f)d/\g/()d/\:o
E
Thus, u(E) =0,300< f <1 pu—a.e.
Now, for VE € M observe the below.
forin= ) /
= dv
pl- :

-, . /

g l-

_ / 1-

el
= y(
f  _ dv

Therefore, 7 = Z_u' O
17.
Proof. 0
18.

Proof. O



19.
Proof.

20.
Proof.

21.
Proof.

22.
Proof.

23.
Proof.

24.
Proof.

25.
Proof.

26.
Proof.

27.
Proof.

28. If F € NBV, let G(x) = |up|((—o0,z]) by showing that G = Tr via the following steps.
a. From the definition of T, Tr < G.

b. |up(E)| < pir,p) when E is an interval, and hence when E is a Borel set.

c.lur| < pry, and hence G < Tr.(use Ezercise 21.)
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Proof. .
Suppose that ' € NBV.
For any partition § : —oo = 29 < 1 < - -+ < , = x, the relation below holds.

G(z) = |pr|((— Z!Mﬂ Ti-1, T >Z!MF Ti-1, T |—Z|f zi) = f(zica)| = ts

Thus, |pur|((—o0,z]) > Tr. Recall that pp(E) = ,up(E) — un(E) VE. Thus, if {A,, A,} is a Hahn
decomposition for pug, observe the below.

pp(E) = pr(ENAy) = pp(ENAy) — un(ENA,) < pp(E)
pp(E) = —pr(ENAp) = —pp(ENAp) + pn(ENA,) < pnv(E)
Therefore,
ur|(E) = pp(E) + pip(E) < pp(E) + pn(E) = piry (E)
It means that
Tr(z) = P(z) + N(z) = pp((—00,z]) + pn((—00, z]) = |pp|((—o00, z]) = G(z)
Thus, Tr(z) = G(z). O

29. If F € NBV is real-valued, then p} = up and pun = py where P and N are the positive and negative
variations of F.(Use Exercise 28.)

Proof. .
We know that P = (T’ + F) and N = 5 (T — F) which means pp = 5(ur + pr) and py = 5(ur — pp).
Now, by Exercise 28, observe the below.

pp(B) = 5(ur(E) + pe(E)) = 3 (url(E) + pr(B)) = 5(2uf(E)) = wi(E) VE
pn(E) = 3 (u2(B) — u(B)) = 5 lsel (B) — jur () = 5 (2piz(E)) = iz (B) VE

30. Construct an increasing function on R whose set of discontinuities is Q.

Proof. .
Let Q = {¢n},—, such that ¢, < ¢,+1 Vn € N and let f be a function defined as below.

1 a1
f = Z 2_nX[Qn:OO) fn :l ' 2nX[Qn o0)
n=1
Then f is increasing function.

For each irrational point z, since f,, is continuous at x and |f,| < 5= L vn € N, by Weierstrass M test, f
is continuous at x.

Let n € N and 6 > 0 be given. Let « = g, + 2, then © € (g, — 8, ¢, + ), but |f(¢n) — f(gn + )| > 52
Thus, f is discontinuous at every rational number U

31.
Proof. 0




32.
Proof. O

33. If F is increasing on R, then F(b) — F(a) > f; F'(t)dt.

Proof. .
Define F(z) = F(b) Yz > b, and let f,(z) = n (F(z+ 1) — F(z)). Since F is increasing, F' is measureable
and f,, > 0, so f, is positively measurable function. Also, recalling that F' is observe the below.

Flz+1)— F(x)

lim = F'(x)
n—oo

Then by Fatou’s Lemma,

b b Fit+213) - F(t PE(t+1) - F(t b
/F’(t)dt:/ lim (t+5) <>dt§liminf/ (t+5) (>dt:1iminfn/ F(t+%)—F(t)dt

n n

Observe the below

nlzw+%»—ﬂﬂﬁ:n{liiﬂﬁﬁ—lZWM%:m{lwiﬂﬂﬁ—lﬁiﬂﬂﬁ}

Since F' is increasing,

b wty P F(b)dt — [ F(a)dt F(b)L — F(a)t
liminfn {/ F(t)dt —/ F(t)dt} < liminf J; ®) - o (@) = lim inf (b)y T @)y
n—00 b a n—00 - n—00 -
= F(b) — F(a)
Therefore,
b
/Fwng@—F@
0
34.
Proof. OJ
35.
Proof. 0

36. Let G be a continuous increasing function on [a.b] and let G(a)=c, G(b)=d.
a. If E C [c,d] is a Borel set, then m(E) = ug(G=Y(E)). (First consider the case where E is an interval.)

b. If f is a Borel measurable and integrable function on [c,d], then fcdf(y)dy = fab f(G(z))dG(x). In
particular, fcdf(y)dy = fabf(G(:c))G’(x)dx if G is absolutely continuous.
c. The validity of (b) may fail if G is merely right continuous rather than continuous.

Proof. .
a.
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Let A = {E C[c,d)|m(E) = uc(G*(F))}, and let I be an interval such that inf/ = a < oo and
sup/ = b < oo. Note that G YI) is an interval since G is continuous. And since G is increasing,
inf G"Y(I) = G™*(a) and sup G~ (I ~1(b). Thus, observe the below.

ne(G7H(I)) = ( '(0)) = G(G™(a)) =b—a=m(])
Thus, for any interval I, I € A
Also, note the below.
EeA = ug(G7H(E%)) = uc((G7H(E))") = nc(la, b)) — na(G~H(E)) = m([a, b]) — m(E) = m(E*)
= E°c A

) =
)

If {E,},cny C A is asequence of disjoint sets,

G (Gl(U En)> = ke <U Gl(En)> =Y na (GH(E) =) m(E,)=m <U En>

neN neN neN neN neN

— UEneA

neN
Thus, A is an o—algebra containing all interval which means B, 4 C A. So we are done.
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b.
Observe the below.

/MMFWWMWWD/M uwu/%wmwm

where X is a characteristic function and E' is in By 4.
Then, if ¢ = >~} _, arXg, is a positive B, g4—measurable simple function,

/Cd y)dy —/c ZakXEk )dy = Zak /cd Xe, (y)dy = gak /ab X5, (G(2))dG(x) = /ab¢(G(:L’))dG(x).

k=1

So it is true for any positive By, 4—measurable simple function.
Also, due to monotone convergence theorem, it is true for positive Bj. 4—measurable function, f, as we
can observe below.

/f dy—hm/d)n dy—hm/d)n /f (x)

Where {¢,},,cy is an increasing sequence of simple functions converging to f.
As for the Borel measurable integrable function f, we need to firstly observe the below.

/If )|dG () /If )|dy < oo

From here, by definition of integration of integrable function, we get the below.

/jf(y)dyz/jf*(y)dy—/cdf(y)dy:/abﬁ(a(x))dc:(x)—/abf(G@))dG(x) :/abf(G(q;))dg(x)

What if G is absolutely continuous?

Note that pc([a,z]) = [ G'(x)dz and G'(z) € LT since G is increasing. By the homework question 14

from chapter 2,
/f@@—/ﬂmmww—/fwmmmm:

Think of the situation when f(z) =y and G(x) = x|, o) - Then f is Continuous SO Borel measurable on
[0,1] and G is increasing right continuous function, but since G(—1) = 0 and G(1

/olycly:57é1:1—o=G(1)—G(()‘)zuc:([(%l]):/1 / e "

-1

O
37.
Proof. OJ
38.

Proof. O
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39. If {F}} is a sequence of nonnegative increasing function on [a,b] such that F(x) =3 " F;(z) < o0
for all x € [a,b], then F'(x) = Y72, Fi(z) for a.e. x € [a,b].(It suffices to assume F; € NBV. Consider
the measures jir;)

Proof. .
We can always assume that F; € NBV by redefine the function as below.

then Fj/ = Fja.e. and let F; = Ej(z) — Fy(a) and

0 Vo <a
(z) = F;(b) Vo >b

Then F; € NBV and F} = F} = F.

Assume that F; € NBV, then there is a Lebesgue decomposition of iy, and pp with respect to Lebesgue
measure, m, as below.

[tr; = Aj +

where \; L m, and p; < m. Let’s define two measures as below.

o0

pP= Z Pj A= Z Aj
j=1 j=1
Let’s prove that A L m.

First suppose that {A;, B;} is a partition for A\; where A; is A\;—null and B is m—null. Then (J}Z, B;
is m—null since

(U ) S
j =1
Automatically, (12, A; is A—null set and { AU, Bj} is a partition. So A L m.
Let’s prove that p < m.
Observe the below.
R SENETES o METIURNS o) B TR Y U ok T

Since Fj are increasing functions, so since F; > 0, by monotone convergence theorem,

dp; TN~ dp;
pl(—ocua]) = tim [ Z aim= [ _Jin > Goan /Z am ™"
<

Thus, p < m.
Now observe the below.

Zup z,y] :Z (@,9]) + > pi((a,9]) = M(x,9]) + p((2,y)])

J=1
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Since pr and m are o—finite, the Lebesgue decomposition is unique.

Recall that F}(r) = % m — a.e, then

o

F’(m)—@: %:ZF’(@") m— a.e.

dm 4~ dm “
J=1 Jj=1

40. Let F denote the Cantor function on [0,1](see $1.5), and set F(z)=0 for x < 0 and F(z)=1 for
x > 1. Let {[an,bs]} be an enumeration of the closed subintervals of [0,1] with rational endpoints,and let
Fo(z) = F((x — a,)/(by — an)). Then G = Y7 £2 is continuous and strictly increasing on [0,1], and
G' =0 a.e.(Use Ex 39.)

Proof. .
Observe that F,(z) <1 Vz € [0,1], so by Weierstrass M-test, the series,> - 27"F, converges uniformly
on [0, 1]. Since each F,, is continuous, G is also continuous.

Let a,b € [0, 1] such that a < b. Then there exists k such that a < a; < by < b. Observe the below.

G(b) = Gla) = Y22 {Fu0) = Fula)} 2 2 {F) = Fila)} = o > 0

Thus, G is strictly increasing on [0, 1].
By Exercise 39, since F), is a sequence of nonnegative increasing functions,

G'(x) = Z 27"Fl(x) =0 m — a.e.
=1

since F} =0 m — a.e. O

41. Let A C [0,1] be a Borel set such that 0 < m(ANI) < m(I) for every subinterval I of [0,1](Ezercise
33, Chapter 1)

a. Let F(x) =m([0,z] N A). Then F is absolutely continuous and strictly increasing on [0,1], but F’=0 on
a set of positive measure.

b. Let G(z) = m([0, z]NA)—m([0, 2]\ A). Then G is absolutely continuous on [0,1], but G is not monotone
on any subinterval of [0,1].

Proof. .
a.
Note the below.

F(z) = m((0,2] N A) = / xadm
0
Then clearly, F' is absolutely continuous.

And for any a,b € [0, 1] with a < b, observe the below.
F()— F(a) =m(AN]a,b]) >0

by given condition. So F' is strictly increasing.
However, observe the below.

F'(z) = xa(z) m—a.e.
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Thus, F'(z) = 0 on [0,1] N A°. And following relation from the given condition shows it is a set of positive
measure.

m([0,1] N A%) = m([0,1]) — m([0,1] N A) > 0

b.
Note the below.

G(z) = / xXadm — [ xaedm = XA — Xacdm
[0,] [0,1] [0,1]
Thus, G is absolutely continuous on [0, 1] and G' = x4 — xac m — a.e.
And observe the below.
G'(z) = xa(x) — xac(z) =1-0=1 on a.e.[0,1] N A
G'(z) = xa(z) — xac(x) =0—-1=—1 on a.e.[0,1] N A°
Now, for any subinterval I € [0, 1], observe the below.
m(INANI0,1]) =m(INA) >0
m(INA°N[0,1]) =m([0,1]NI) —m([0,1]]NAN[0,1]) =m(() —m(ANIT) >0

Therefore, G is not monotone on any subinterval I C [0, 1] O
42.
Proof. ([l
43.
Proof. 0
44.
Proof. ([l
45.
Proof. O
46.
Proof. O
47.
Proof. OJ

48.
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Proof. O
49.
Proof. 0
50.
Proof. 0
51.
Proof. 0
52.
Proof. U
53.
Proof. O
54.
Proof. O
55.
Proof. O
56.
Proof. O
57.
Proof. 0
58.
Proof. 0
59.
Proof. O
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60.
Proof.

61.
Proof.

62.
Proof.

63.
Proof.

64.
Proof.




