Real Analysis

Byeong Ho Ban Mathematics and Statistics Texas Tech University

Chapter 3. Signed Measures and Differentiation

1.

Proof.

2. If ν is a signed measure, E is ν -null iff $|\nu|(E) = 0$. Also, if ν and μ are signed measures, $\nu \perp \mu$ iff $|\nu| \perp \mu$ iff $\nu^+ \perp \mu$ and $\nu^- \perp \mu$.

Proof. .

Claim 1. E is ν -null iff $|\nu|(E) = 0$

Proof. .

 (\implies)

Suppose that E is a $\nu - null$. Since $\nu^+ \perp \nu^-$, there is a partition $\{P, N\}$ of X where N is $\nu^+ - null$ and P is $\nu^- - null$. Observe the below.

$$|\nu|(E) = |\nu|(X \cap E) = \nu^{+}(P \cap E) + \nu^{-}(N \cap E)$$

If $|\nu|(E) > 0$, without loss of generality, we can let $\nu^+(P \cap E) > 0$. Then note that

 $\nu(P\cap E)=\nu^+(P\cap E)-\nu^-(P\cap E)=\nu^+(P\cap E)>0$

But $P \cap E \subset E$. so it is a contradiction. (\Leftarrow)

Suppose that $|\nu|(E) = 0$, then since $|\nu|$ is a positive measure, $|\nu|(A) = 0 \ \forall A \subset E$. Observe the below. $|\nu|(A) = \nu^+(A) + \nu^-(A) = 0 \quad \forall A \subset E$

It means $\nu^+(A) = \nu^-(A) = 0 \ \forall A \subset E$. It also means that

$$\nu(A) = \nu^+(A) - \nu^-(A) = 0 \quad \forall A \subset E$$

Thus, E is a $\nu - null$

Claim 2. If ν and μ are signed measures, $\nu \perp \mu$ iff $|\nu| \perp \mu$ iff $\nu^+ \perp \mu$ and $\nu^- \perp \mu$.

Proof. .

 $\nu \perp \mu$ iff \exists a partition $\{P, N\}$ of X such that P is $\mu - null$ and N is $\nu - null$ iff \exists a partition $\{P, N\}$ of X such that P is $\mu - null$ and N is $|\nu| - null$ iff $|\nu| \perp \mu$ iff \exists a partition $\{P, N\}$ of X such that P is $\mu - null$ and N is $|\nu| - null$ iff \exists a partition $\{P, N\}$ of X such that P is both $\mu - null$ and N is $\nu^+ - null$ and $\nu^- - null$ iff $\nu^+ \perp \mu$ and $\nu^- \perp \mu$.

3. Let ν be a signed measure on (X, \mathcal{M}) . **a**. $L^{1}(\nu) = L^{1}(|\nu|)$ **b**. If $f \in L^{1}(\nu)$, $\left|\int f d\nu\right| \leq \int |f| d|\nu|$ **c**. If $E \in \mathcal{M}$, $|\nu|(E) = \sup\left\{\left|\int_{E} f d\nu\right| : |f| \leq 1\right\}$

Proof. .

a

Obviously, if $f \in L^1(|\nu|)$, then $\int |f|d|\nu| < \infty$, and observe the below

$$\int |f| d\nu = \int |f| d\nu^{+} - \int |f| d\nu^{-} \leq \int |f| d\nu^{+} + \int |f| d\nu^{-} = \int |f| d|\nu| < \infty$$

Thus, $f \in L^1(\nu)$.

Conversely, suppose that $f \in L^1(\nu)$, then $\int |f| d\nu = \int |f| d\nu^+ - \int |f| d\nu^- < \infty$. Note that $\nu^+ \perp \nu^-$, so there exists a partition $\{P, N\}$ of X such that P is ν – null and N is μ – null. If $f \notin L^1(|\nu|)$, then one of $\int f d\nu^+$ and $\int f d\nu^-$ should be infinite. Without loss of generality, let $\int f d\nu^+ = \int_P f d\nu^+ = \infty$. Then

$$\int |f| d\nu \ge \int_{P} |f| d\nu = \int_{P} |f| d\nu^{+} - \int_{P} |f| d\nu^{-} = \int_{P} |f| d\nu^{+} = \infty$$

It is a contradiction.

 \mathbf{b}

Since $f \in L^1(\nu)$, observe the below.

$$\begin{split} \left| \int f d\nu \right| &= \left| \int f^+ d\nu - \int f^- d\nu \right| \\ &= \left| \left(\int f^+ d\nu^+ - \int f^- d\nu^- \right) - \left(\int f^- d\nu^+ - \int f^- d\nu^- \right) \right| \\ &\leq \int f^+ d\nu^+ + \int f^- d\nu^- + \int f^- d\nu^+ + \int f^- d\nu^- \\ &= \int |f| d\nu^+ \int |f| d\nu^- \\ &= \int |f| d|\nu| \end{split}$$

С

For any function $|f| \leq 1$, by **b**, observe the below first.

$$\begin{split} \left| \int_{E} f d\nu \right| &= \left| \int \chi_{E} f d\nu \right| \\ &\leq \int |\chi_{E} f| d|\nu| \quad (\because \chi_{E} f \in L^{1}(\nu)) \\ &\leq \int |\chi_{E} \chi_{X}| d|\nu| \quad (\because |f| \leq 1) \\ &= \int \chi_{E} d|\nu| = \int_{E} d|\nu| = |\nu|(E) \end{split}$$

Thus, $|\nu(E)|$ is an upper bound of the set $A = \{ \left| \int_E f d\nu \right| : |f| \le 1 \}.$ Let $\epsilon > 0$ be given. Then,

$$\nu|(E) - \epsilon = \int_E \left(1 - \frac{\epsilon}{|\nu|(E)}\right) d|\nu| \le \int_E 1 d|\nu|$$

Since $1 \in A$, $|\nu|(E)$ is the least upper bound of the set A.

4. If ν is a signed measure and λ, μ are positive measures such that $\nu = \lambda - \mu$, then $\lambda \ge \nu^+$ and $\mu \ge \nu^-$. Proof. .

Note that $\nu^+ \perp \nu^-$, so there is partition $\{P, N\}$ such that P is a $\nu^- - null$ and N is a $\nu^+ - null$. Now, observe the below.

$$\nu^{+}(E) = \nu(P \cap E) = \lambda(P \cap E) - \mu(P \cap E) \le \lambda(P \cap E) \le \lambda(E) \quad \forall E \in \mathcal{M}$$
$$\nu^{-}(E) = -\nu(N \cap E) = -(\lambda(N \cap E) - \mu(N \cap E)) \le \mu(N \cap E) \le \mu(E) \quad \forall E \in \mathcal{M}$$

Then we are done.

5. If ν_1, ν_2 are signed measures that both omit the value $+\infty$ or $-\infty$, then $|\nu_1 + \nu_2| \leq |\nu_1| + |\nu_2|$. Proof. .

Let the Jordan decomposition of $\nu_1 + \nu_2 = \mu^+ + \mu^-$. And also, observe the below.

$$\nu_1 + \nu_2 = \nu_1^+ - \nu_1^- + \nu_2^+ - \nu_2^- = (\nu_1^+ + \nu_2^+) - (\nu_1^- + \nu_2^-)$$

Note that $\nu_1^+ + \nu_2^+$ and $\nu_1^ \nu_1^- + \nu_2^- \ge \mu^-$. e 4, $\nu_1^+ + \nu_2^+ > \mu^+$ and

Therefore,

$$|\nu_1 + \nu_2| = \mu^+ + \mu^- \le (\nu_1^+ + \nu_2^+) + (\nu_1^- + \nu_2^-) = |\nu_1| + |\nu_2|$$

6.

Proof.

7.

Proof.

8. $\nu \ll \mu$ iff $|\nu| \ll \mu$ iff $\nu^+ \ll \mu$ and $\nu^- \ll \mu$ Proof. .

Claim 3. $\nu \ll \mu \implies |\nu| \ll \mu$ (\Longrightarrow) Let $E \in J$ ον. Then obs

$$\nu^{+}(E) = \nu(E \cap P) = 0 \quad (\because 0 \le \mu(E \cap P) \le \mu(E) = 0, \nu \ll \mu)$$
$$\nu^{-}(E) = -\nu(E \cap N) = 0 \quad (\because 0 \le \mu(E \cap N) \le \mu(E) = 0, \nu \ll \mu)$$
Therefore, $|\nu|(E) = \nu^{+}(E) + \nu^{-}(E) = 0$, so $|\nu| \ll \mu$

$$+ \nu_2^-$$
 are positive measures. Therefore, by Exercise

$$\mathcal{M} \text{ be a set with } \mu(E) = 0 \text{ and } \{P, N\} \text{ be a Hahn decomposition of } X \text{ with respect to erve the below}$$
$$\nu^+(E) = \nu(E \cap P) = 0 \quad (\because 0 \le \mu(E \cap P) \le \mu(E) = 0, \nu \ll \mu)$$
$$\mu^-(E) = -\nu(E \cap N) = 0 \quad (\because 0 \le \mu(E \cap N) \le \mu(E) = 0, \nu \ll \mu)$$

Claim 4. $|\nu| \ll \mu \implies \nu^+ \ll \mu \text{ and } \nu^- \ll \mu$ (\Longrightarrow) Let $E \in \mathcal{M}$ be a set with $\mu(E) = 0$. Since $|\nu| \ll \mu$, $|\nu|(E) = \nu^+(E) + \nu^-(E) = 0$. Since ν^+ and ν^- are positive measure, $\nu^+(E) = \nu^-(E) = 0$. Therefore, $\nu^+ \ll \mu$ and $\nu^- \ll \mu$

Claim 5. $\nu^+ \ll \mu$ and $\nu^- \ll \mu \implies \nu \ll \mu$ (\implies) Let $E \in \mathcal{M}$ be a set with $\mu(E) = 0$, then $\nu^+(E) = \nu^-(E) = 0$. Thus, $\nu(E) = \nu^+(E) - \nu^-(E) = 0$. Therefore, $\nu \ll \mu$.

9.	
Proof.	
10.	
Proof.	

11.

Proof.

12. For j = 1, 2 let ν_j , μ_j be σ -finite measure on (X_j, \mathcal{M}_j) such that $\nu_j \ll \mu_j$. Then $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ and

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{d\nu_1}{d\mu_2}(x_1)\frac{d\nu_2}{d\mu_2}(x_2)$$

Proof. .

Let $E_{n,i} = \left\{ x : \frac{d\nu_i}{d\mu_i} < -\frac{1}{n} \right\}$ (i = 1, 2), and observe the below

$$\nu_i(E_{n,i}) = \int_{E_{n,i}} d\nu_i = \int_{E_{n,i}} \frac{d\nu_i}{d\mu_i} d\mu_i < -\frac{1}{n} \int_{E_{n,i}} d\mu_i = -\frac{1}{n} \mu_i(E_{n,i})$$

Since ν_i is positive measure, $\mu_i(E_{n,i}) = 0 = \nu(E_{n,i}) \ \forall n \in \mathbb{N}$. Also note the below.

$$E = \left\{ x : \frac{d\nu_i}{d\mu_i} < 0 \right\} = \bigcup_{n \in \mathbb{N}} E_{n,i}$$

By continuous from below

$$\mu(E) = \lim_{n \to \infty} \mu(E_{n,i}) = 0$$

Therefore, $\frac{d\nu_i}{d\mu_i} \ge 0$ $\mu_i - a.e.$ for i = 1, 2 which means $\frac{d\nu_i}{d\mu_i} \in L^+(\mu_i)$. Thus by Tonelli's Theorem,

$$\nu_1 \times \nu_2(E) = \int_E d(\nu_1 \times \nu_2) = \int \chi(E) d(\nu_1 \times \nu_2)$$
$$= \int \int \chi(E) d\nu_1 d\nu_2 = \int \left(\int \chi(E) \frac{d\nu_1}{d\mu_1} d\mu_1 \right) \frac{d\nu_2}{d\mu_2} d\mu_2$$
$$= \int \int \chi(E) \frac{d\nu_1}{d\mu_2} \frac{d\nu_2}{d\mu_2} d\mu_1 d\mu_2$$
$$= \int_E \frac{d\nu_1}{d\mu_2} \frac{d\nu_2}{d\mu_2} d(\mu_1 \times \mu_2)$$

Therefore, $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ and $\frac{d\nu_1}{d\mu_2} \frac{d\nu_2}{d\mu_2} = \frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}$ (by definition of Radon Nikodym derivative)

13.

Proof.

14. If ν is an arbitrary signed measure and μ is a σ -finite measure on (X, \mathcal{M}) such that $\nu \ll \mu$, there exists an extended μ -integrable function $f : X \to [-\infty, \infty]$ such that $d\nu = fd\mu$. Hint

a. It suffice to assume that μ is finite and ν is positive.

b. With these assumptions, there exists $E \in \mathcal{M}$ that is σ -finite for ν such that $\mu(E) \ge \mu(F)$ for all sets F that are σ -finite for ν .

c. The Radon-Nikodym theorem applies on E. If $F \cap E = \emptyset$, then either $\nu(F) = \mu(F) = 0$ or $\mu(F) > 0$ and $|\nu(F)| = \infty$

Proof. .

Suppose that μ is finite and ν is positive.

Let $S = \{S \in \mathcal{M} : S \text{ is } \sigma - finite \text{ for } \nu\}$. And let $\alpha = \sup \{\mu(S) : S \in S\}$. Then there is a sequence of sets $\{S_n\}_{n \in \mathbb{N}} \subset S$ such that $\lim_{n \to \infty} \mu(S_n) = \alpha < \infty$.($\because \mu$ is finite)

Let $S = \bigcup_{n \in \mathbb{N}}^{n} S_n = \bigcup_{k \in \mathbb{N}} \bigcup_{k=1}^{n} S_k$, then by continuous from below, since S is also σ -finite,

$$\alpha \ge \mu(S) = \lim_{n \to \infty} \mu(\bigcup_{k=1}^n S_k) = \alpha$$

Therefore, $\mu(S) = \alpha$. Then by Lebesgue-Radon-Nikodym Theorem, $\frac{d\nu}{d\mu}$ exists on S. Let's define a function F as below.

$$F(x) = f(x) \quad (\text{if } x \in S)$$

$$F(x) = \infty \quad (\text{if } x \notin S)$$

Let $E \in \mathcal{M}$ be given. If $\mu(E \setminus S) = 0$, then $\nu()$

$$\nu(E) = \nu(E \cap S) + \nu(E \setminus S) = \nu(E \cap S) = \int_{E \cap S} f d\mu = \int_{E \cap S} F d\mu + \int_{E \setminus S} F d\mu = \int_{E} F d\mu$$

If $\mu(E \setminus S) > 0$, then

$$\mu(S \cup (E \setminus S)) = \mu(S) + \mu(E \setminus S) > \alpha$$

Thus $S \cup (E \setminus S) \notin S$. It means $E \setminus S \notin S$, otherwise $S \cup (E \setminus S)$ is a σ -finite so it is in S. So $\mu(E \setminus S) = \infty$. Thus,

$$\nu(E) = \infty = \nu(E \setminus S) = \int_{E \setminus S} \infty d\mu = \int_{E \setminus S} F d\mu = \int_E F d\mu$$

Either ways allow us to say that

$$F = \frac{d\nu}{d\mu} \quad \text{on } X$$

Now, let's assume that μ is σ -finite and ν is positive. Then there is a sequence of disjoint sets $\{E_n\}_{n\in\mathbb{N}}$ such that

$$X = \bigcup_{n \in \mathbb{N}} E_n \text{ and } \mu(E_n) < \infty \quad \forall n \in \mathbb{N}$$

Thus, there exits $F_n = \frac{d\nu}{d\mu}$ on E_n for $\forall n \in \mathbb{N}$. Then we can define a function as below.

$$F = F_n \text{ on } E_n \forall n \in \mathbb{N}$$

Note that F is defined on X.

Lastly, let μ be σ -finite and ν be signed measure. Due to the arguments above, there exist two functions $F^+ = \frac{d\nu^+}{d\mu}$ and $F^- = \frac{d\nu^-}{d\mu}$, then $F = F^+ - F^- = \frac{d\nu}{d\mu}$ (on X) is the function that we have found.

15.

Proof.

16. Suppose that μ , ν are σ -finite measure on (X, \mathcal{M}) with $\nu \ll \mu$, and let $\lambda = \mu + \nu$. If $f = \frac{d\nu}{d\lambda}$, then $0 \leq f < 1 \ \mu - a.e.$ and $\frac{d\nu}{d\mu} = \frac{f}{1-f}$.

Proof. .

Suppose that μ and ν are σ -finite measure on (X, \mathcal{M}) , then by EX12, $\frac{d\nu}{d\mu} \ge 0 \ \mu - a.e.$ Also note that $\lambda = \mu + \nu$ is a σ -finite, so $\frac{d\nu}{d\lambda} = f \ge 0 \ \lambda - a.e.$ Since $\mu \ll \lambda$, $f \ge 0 \ \mu - a.e.$ We need to prove that $\mu(E) = 0$ where $E = \{x : f(x) \ge 1\}$. Observe the below.

$$0 \le \mu(E) = \lambda(E) - \nu(E) = \int_E d\lambda - \int_E d\nu = \int_E d\lambda - \int_E f d\lambda = \int (1 - f) d\lambda \le \int_E 0 d\lambda = 0$$

Thus, $\mu(E) = 0$, so $0 \le f < 1 \ \mu - a.e.$ Now, for $\forall E \in \mathcal{M}$ observe the below.

$$\int_E \frac{f}{1-f} d\mu = \int_E \frac{f}{1-f} d\lambda - \int_E \frac{f}{1-f} d\nu$$
$$= \int_E \frac{1}{1-f} d\nu - \int_E \frac{f}{1-f} d\nu$$
$$= \int_E \frac{1-f}{1-f} d\nu$$
$$= \nu(E)$$

Therefore, $\frac{f}{1-f} = \frac{d\nu}{d\mu}$.

17.

Proof.

18.

Proof.

19.	
Proof.	
20.	
Proof.	
 21.	
Proof.	
 22.	
Proof.	
 23.	
Proof.	
24.	
Proof.	
 25.	
Proof.	
 26.	
Proof.	
27.	
Proof.	

28. If $F \in NBV$, let $G(x) = |\mu_F|((-\infty, x])$ by showing that $G = T_F$ via the following steps. **a.** From the definition of T_F , $T_F \leq G$. **b.** $|\mu_F(E)| \leq \mu_{T_F(E)}$ when E is an interval, and hence when E is a Borel set. **c.** $|\mu_F| \leq \mu_{T_F}$, and hence $G \leq T_F$. (use Exercise 21.)

Proof. .

Suppose that $F \in NBV$.

For any partition $\delta : -\infty = x_0 < x_1 < \cdots < x_n = x$, the relation below holds.

$$G(x) = |\mu_F|((-\infty, x]) = \sum_{i=1}^n |\mu_F|((x_{i-1}, x_i]) \ge \sum_{i=1}^n |\mu_F((x_{i-1}, x_i])| = \sum_{i=1}^n |f(x_i) - f(x_{i-1})| = t_\delta$$

Thus, $|\mu_F|((-\infty, x]) \ge T_F$. Recall that $\mu_F(E) = \mu_P(E) - \mu_N(E) \forall E$. Thus, if $\{A_p, A_n\}$ is a Hahn decomposition for μ_F , observe the below.

$$\mu_F^+(E) = \mu_F(E \cap A_p) = \mu_P(E \cap A_p) - \mu_N(E \cap A_p) \le \mu_P(E)$$

$$\mu_F^-(E) = -\mu_F(E \cap A_n) = -\mu_P(E \cap A_n) + \mu_N(E \cap A_n) \le \mu_N(E)$$

Therefore,

$$|\mu_F|(E) = \mu_F^+(E) + \mu_F^-(E) \le \mu_P(E) + \mu_N(E) = \mu_{T_F}(E)$$

It means that

$$T_F(x) = P(x) + N(x) = \mu_P((-\infty, x]) + \mu_N((-\infty, x]) \ge |\mu_F|((-\infty, x]) = G(x)$$

Thus, $T_F(x) = G(x)$.

29. If $F \in NBV$ is real-valued, then $\mu_F^+ = \mu_P$ and $\mu_F^- = \mu_N$ where P and N are the positive and negative variations of F. (Use Exercise 28.)

Proof. .

We know that $P = \frac{1}{2}(T+F)$ and $N = \frac{1}{2}(T-F)$ which means $\mu_P = \frac{1}{2}(\mu_T + \mu_F)$ and $\mu_N = \frac{1}{2}(\mu_T - \mu_F)$. Now, by Exercise 28, observe the below.

$$\mu_P(E) = \frac{1}{2}(\mu_T(E) + \mu_F(E)) = \frac{1}{2}(|\mu_F|(E) + \mu_F(E)) = \frac{1}{2}(2\mu_F^+(E)) = \mu_F^+(E) \quad \forall E$$

$$\mu_N(E) = \frac{1}{2}(\mu_T(E) - \mu_F(E)) = \frac{1}{2}(|\mu_F|(E) - \mu_F(E)) = \frac{1}{2}(2\mu_T^-(E)) = \mu_T^-(E) \quad \forall E$$

30. Construct an increasing function on \mathbb{R} whose set of discontinuities is \mathbb{Q} .

Proof. . Let $\mathbb{Q} = \{q_n\}_{n=1}^{\infty}$ such that $q_n < q_{n+1} \ \forall n \in \mathbb{N}$ and let f be a function defined as below.

$$f = \sum_{n=1}^{\infty} \frac{1}{2^n} \chi_{[q_n,\infty)} \quad f_n =^{let} \frac{1}{2^n} \chi_{[q_n,\infty)}$$

Then f is increasing function.

For each irrational point x, since f_n is continuous at x and $|f_n| \leq \frac{1}{2^n} \forall n \in \mathbb{N}$, by Weierstrass M test, f is continuous at x.

Let $n \in \mathbb{N}$ and $\delta > 0$ be given. Let $x = q_n + \frac{\delta}{2}$, then $x \in (q_n - \delta, q_n + \delta)$, but $|f(q_n) - f(q_n + \frac{\delta}{2})| \ge \frac{1}{2^{n+1}}$. Thus, f is discontinuous at every rational number.

31.

Proof.

Proof.

33. If F is increasing on \mathbb{R} , then $F(b) - F(a) \ge \int_a^b F'(t) dt$.

Proof. .

Define $F(x) = F(b) \ \forall x \ge b$, and let $f_n(x) = n\left(F(x + \frac{1}{n}) - F(x)\right)$. Since F is increasing, F is measureable and $f_n \ge 0$, so f_n is positively measurable function. Also, recalling that F is observe the below.

$$\lim_{n \to \infty} \frac{F(x + \frac{1}{n}) - F(x)}{\frac{1}{n}} = F'(x)$$

Then by Fatou's Lemma,

$$\int_{a}^{b} F'(t)dt = \int_{a}^{b} \lim_{n \to \infty} \frac{F(t + \frac{1}{n}) - F(t)}{\frac{1}{n}}dt \le \liminf_{n \to \infty} \int_{a}^{b} \frac{F(t + \frac{1}{n}) - F(t)}{\frac{1}{n}}dt = \liminf_{n \to \infty} n \int_{a}^{b} F(t + \frac{1}{n}) - F(t)dt$$

Observe the below

$$n\int_{a}^{b} F(t+\frac{1}{n}) - F(t)dt = n\left\{\int_{a+\frac{1}{n}}^{b+\frac{1}{n}} F(t)dt - \int_{a}^{b} F(t)dt\right\} = n\left\{\int_{b}^{b+\frac{1}{n}} F(t)dt - \int_{a}^{a+\frac{1}{n}} F(t)dt\right\}$$

Since F is increasing,

$$\liminf_{n \to \infty} n \left\{ \int_{b}^{b+\frac{1}{n}} F(t)dt - \int_{a}^{a+\frac{1}{n}} F(t)dt \right\} \le \liminf_{n \to \infty} \frac{\int_{b}^{b+\frac{1}{n}} F(b)dt - \int_{a}^{a+\frac{1}{n}} F(a)dt}{\frac{1}{n}} = \liminf_{n \to \infty} \frac{F(b)\frac{1}{n} - F(a)\frac{1}{n}}{\frac{1}{n}} = F(b) - F(a)$$

Therefore,

$$\int_{a}^{b} F'(t)dt \le F(b) - F(a)$$

34. Proof.	
35. Proof.	
Proof.	

36. Let G be a continuous increasing function on [a.b] and let G(a)=c, G(b)=d. **a**. If $E \subset [c,d]$ is a Borel set, then $m(E) = \mu_G(G^{-1}(E))$. (First consider the case where E is an interval.) **b.** If f is a Borel measurable and integrable function on [c,d], then $\int_c^d f(y)dy = \int_a^b f(G(x))dG(x)$. In

particular, $\int_{c}^{d} f(y)dy = \int_{a}^{b} f(G(x))G'(x)dx$ if G is absolutely continuous. c. The validity of (b) may fail if G is merely right continuous rather than continuous.

Proof. .

a.

Let $A = \{E \subset [c,d] | m(E) = \mu_G(G^{-1}(E))\}$, and let I be an interval such that $\inf I = a < \infty$ and $\sup I = b < \infty$. Note that $G^{-1}(I)$ is an interval since G is continuous. And since G is increasing, $\inf G^{-1}(I) = G^{-1}(a)$ and $\sup G^{-1}(I) = G^{-1}(b)$. Thus, observe the below.

$$\mu_G(G^{-1}(I)) = G(G^{-1}(b)) - G(G^{-1}(a)) = b - a = m(I)$$

Thus, for any interval $I, I \in A$. Also, note the below.

$$E \in A \implies \mu_G(G^{-1}(E^c)) = \mu_G((G^{-1}(E))^c) = \mu_G([a,b]) - \mu_G(G^{-1}(E)) = m([a,b]) - m(E) = m(E^c)$$
$$\implies E^c \in A$$

If $\{E_n\}_{n\in\mathbb{N}}\subset A$ is a sequence of disjoint sets,

$$\mu_G \left(G^{-1}(\bigcup_{n \in \mathbb{N}} E_n) \right) = \mu_G \left(\bigcup_{n \in \mathbb{N}} G^{-1}(E_n) \right) = \sum_{n \in \mathbb{N}} \mu_G \left(G^{-1}(E_n) \right) = \sum_{n \in \mathbb{N}} m(E_n) = m \left(\bigcup_{n \in \mathbb{N}} E_n \right)$$
$$\implies \bigcup_{n \in \mathbb{N}} E_n \in A$$

Thus, A is an σ -algebra containing all interval which means $\mathcal{B}_{[c,d]} \subset A$. So we are done.

b.

Observe the below.

$$\int_{c}^{d} \chi_{E}(y) dy = m(E) = \mu_{G}(G^{-1}(E)) = \int_{a}^{b} \chi_{G^{-1}(E)}(x) d\mu_{G}(x) = \int_{a}^{b} \chi_{E}(G(x)) dG(x)$$

where χ_E is a characteristic function and E is in $\mathcal{B}_{[c,d]}$. Then, if $\phi = \sum_{k=1}^{n} a_k \chi_{E_k}$ is a positive $\mathcal{B}_{[c,d]}$ -measurable simple function,

$$\int_{c}^{d} \phi(y) dy = \int_{c}^{d} \sum_{k=1}^{n} a_{k} \chi_{E_{k}}(y) dy = \sum_{k=1}^{n} a_{k} \int_{c}^{d} \chi_{E_{k}}(y) dy = \sum_{k=1}^{n} a_{k} \int_{a}^{b} \chi_{E_{k}}(G(x)) dG(x) = \int_{a}^{b} \phi(G(x)) dG(x) dG$$

So it is true for any positive $\mathcal{B}_{[c,d]}$ -measurable simple function.

Also, due to monotone convergence theorem, it is true for positive $\mathcal{B}_{[c,d]}$ -measurable function, f, as we can observe below.

$$\int_{c}^{d} f(y)dy = \lim_{n \to \infty} \int_{c}^{d} \phi_{n}(y)dy = \lim_{n \to \infty} \int_{a}^{b} \phi_{n}(G(x))dG(x) = \int_{a}^{b} f(G(x))dG(x)$$

Where $\{\phi_n\}_{n\in\mathbb{N}}$ is an increasing sequence of simple functions converging to f. As for the Borel measurable integrable function f, we need to firstly observe the below.

$$\int_{a}^{b} |f(G(x))| dG(x) = \int_{c}^{d} |f(y)| dy < \infty$$

From here, by definition of integration of integrable function, we get the below.

$$\int_{c}^{d} f(y)dy = \int_{c}^{d} f^{+}(y)dy - \int_{c}^{d} f^{-}(y)dy = \int_{a}^{b} f^{+}(G(x))dG(x) - \int_{a}^{b} f^{-}(G(x))dG(x) = \int_{a}^{b} f(G(x))dG(x) = \int_{a}^{b} f(G(x))dG(x$$

What if G is absolutely continuous?

Note that $\mu_G([a, x]) = \int_a^x G'(x) dx$ and $G'(x) \in L^+$ since G is increasing. By the homework question 14 from chapter 2,

$$\int_{c}^{d} f(y)dy = \int_{a}^{b} f(G(x))dG(x) = \int_{a}^{b} f(G(x))G'(x)dx$$

С.

Think of the situation when f(x) = y and $G(x) = \chi_{[0,\infty)}$. Then f is continuous so Borel measurable on [0,1] and G is increasing right continuous function, but since G(-1) = 0 and G(1) = 1

$$\int_0^1 y dy = \frac{1}{2} \neq 1 = 1 - 0 = G(1) - G(0^-) = \mu_G([0, 1]) = \int_{-1}^1 G(x) dG(x) = \int_{-1}^1 f(G(x)) dG(x)$$

37.

Proof.

38.

Proof.

39. If $\{F_j\}$ is a sequence of nonnegative increasing function on [a,b] such that $F(x) = \sum_{n=1}^{\infty} F_j(x) < \infty$ for all $x \in [a,b]$, then $F'(x) = \sum_{j=1}^{\infty} F'_j(x)$ for a.e. $x \in [a,b]$. (It suffices to assume $F_j \in NBV$. Consider the measures μ_{F_j})

Proof. .

We can always assume that $F_j \in NBV$ by redefine the function as below.

$$\hat{F}_j(x) = F_j(x^+)$$

then $\hat{F}_{j}' = F'_{j}a.e.$ and let $\overline{F_{j}} = \hat{F}_{j}(x) - \hat{F}_{j}(a)$ and

$$\overline{F_j}(x) = 0 \qquad \qquad \forall x < a$$

$$\overline{F_j}(x) = \overline{F_j}(b) \qquad \qquad \forall x > b$$

Then $\overline{F_j} \in NBV$ and $\overline{F_j}' = \hat{F_j}' = F_j'$.

Assume that $F_j \in NBV$, then there is a Lebesgue decomposition of μ_{F_j} and μ_F with respect to Lebesgue measure, m, as below.

$$\mu_{F_j} = \lambda_j +
ho_j$$

where $\lambda_j \perp m$, and $\rho_j \ll m$. Let's define two measures as below.

$$\rho = \sum_{j=1}^{\infty} \rho_j \qquad \qquad \lambda = \sum_{j=1}^{\infty} \lambda_j$$

Let's prove that $\lambda \perp m$.

First suppose that $\{A_j, B_j\}$ is a partition for λ_j where A_j is λ_j -null and B_j is m-null. Then $\bigcup_{j=1}^{\infty} B_j$ is m-null since

$$m\left(\bigcup_{j=1}^{\infty} B_j\right) \le \sum_{j=1}^{\infty} m(B_j) = 0$$

Automatically, $\bigcap_{j=1}^{\infty} A_j$ is λ -null set and $\left\{\bigcap_{j=1}^{\infty} A_j, \bigcup_{j=1}^{\infty} B_j\right\}$ is a partition. So $\lambda \perp m$.

Let's prove that $\rho \ll m$.

Observe the below.

$$\rho((-\infty,x]) = \sum_{j=1}^{\infty} \rho_j((-\infty,x]) = \sum_{j=1}^{\infty} \int_{-\infty}^x \frac{d\rho_j}{dm} dm = \lim_{n \to \infty} \sum_{j=1}^n \int_{-\infty}^x \frac{d\rho_j}{dm} dm = \lim_{n \to \infty} \int_{-\infty}^x \sum_{j=1}^n \frac{d\rho_j}{dm} dm$$

Since F_j are increasing functions, so since $F'_j \ge 0$, by monotone convergence theorem,

$$\rho((-\infty,x]) = \lim_{n \to \infty} \int_{-\infty}^{x} \sum_{j=1}^{n} \frac{d\rho_j}{dm} dm = \int_{-\infty}^{x} \lim_{n \to \infty} \sum_{j=1}^{n} \frac{d\rho_j}{dm} dm = \int_{-\infty}^{x} \sum_{j=1}^{\infty} \frac{d\rho_j}{dm} dm$$

Thus, $\rho \ll m$.

Now observe the below.

$$\mu_F((x,y]) = \sum_{j=1}^{\infty} \mu_{F_j}((x,y]) = \sum_{j=1}^{\infty} \lambda((x,y]) + \sum_{j=1}^{\infty} \rho_j((x,y]) = \lambda((x,y]) + \rho((x,y])$$

Since μ_F and m are σ -finite, the Lebesgue decomposition is unique. Recall that $F'_j(x) = \frac{d\rho_j}{dm} m - a.e$, then

$$F'(x) = \frac{d\rho}{dm} = \sum_{j=1}^{\infty} \frac{d\rho_j}{dm} = \sum_{j=1}^{\infty} F'(x) \qquad m-a.e.$$

40. Let *F* denote the Cantor function on [0,1] (see $\oint 1.5$), and set F(x)=0 for x < 0 and F(x)=1 for x > 1. Let $\{[a_n, b_n]\}$ be an enumeration of the closed subintervals of [0,1] with rational endpoints, and let $F_n(x) = F((x - a_n)/(b_n - a_n))$. Then $G = \sum_{n=1}^{\infty} \frac{F_n}{2^n}$ is continuous and strictly increasing on [0,1], and G' = 0 a.e. (Use Ex 39.)

Proof. .

Observe that $F_n(x) \leq 1 \ \forall x \in [0,1]$, so by Weierstrass M-test, the series, $\sum_{n=1}^{\infty} 2^{-n} F_n$ converges uniformly on [0,1]. Since each F_n is continuous, G is also continuous.

Let $a, b \in [0, 1]$ such that a < b. Then there exists k such that $a < a_k < b_k < b$. Observe the below.

$$G(b) - G(a) = \sum_{j=1}^{\infty} 2^{-n} \left\{ F_n(b) - F_n(a) \right\} \ge \frac{1}{2^k} \left\{ F_k(b) - F_k(a) \right\} = \frac{1}{2^k} > 0$$

Thus, G is strictly increasing on [0, 1].

By Exercise 39, since F_n is a sequence of nonnegative increasing functions,

$$G'(x) = \sum_{j=1}^{\infty} 2^{-n} F'_n(x) = 0 \qquad m - a.e.$$

since $F'_n = 0 \ m - a.e.$

41. Let $A \subset [0,1]$ be a Borel set such that $0 < m(A \cap I) < m(I)$ for every subinterval I of [0,1](Exercise 33, Chapter 1)

a. Let $F(x) = m([0, x] \cap A)$. Then F is absolutely continuous and strictly increasing on [0,1], but F'=0 on a set of positive measure.

b. Let $G(x) = m([0, x] \cap A) - m([0, x] \setminus A)$. Then G is absolutely continuous on [0,1], but G is not monotone on any subinterval of [0,1].

Proof. .

a.

Note the below.

$$F(x) = m([0, x] \cap A) = \int_0^x \chi_A dm$$

Then clearly, F is absolutely continuous.

And for any $a, b \in [0, 1]$ with a < b, observe the below.

$$F(b) - F(a) = m(A \cap [a, b]) > 0$$

by given condition. So F is strictly increasing. However, observe the below.

$$F'(x) = \chi_A(x) \quad m - a.e.$$

Thus, F'(x) = 0 on $[0,1] \cap A^c$. And following relation from the given condition shows it is a set of positive measure.

$$m([0,1] \cap A^c) = m([0,1]) - m([0,1] \cap A) > 0$$

$\mathbf{b}.$

Note the below.

$$G(x) = \int_{[0,x]} \chi_A dm - \int_{[0,1]} \chi_{A^c} dm = \int_{[0,1]} \chi_A - \chi_{A^c} dm$$

Thus, G is absolutely continuous on [0, 1] and $G' = \chi_A - \chi_{A^c} m - a.e.$ And observe the below.

$$G'(x) = \chi_A(x) - \chi_{A^c}(x) = 1 - 0 = 1 \quad \text{on } a.e.[0,1] \cap A$$

$$G'(x) = \chi_A(x) - \chi_{A^c}(x) = 0 - 1 = -1 \quad \text{on } a.e.[0,1] \cap A^c$$

Now, for any subinterval $I \in [0, 1]$, observe the below.

$$\begin{split} &m(I \cap A \cap [0,1]) = m(I \cap A) > 0 \\ &m(I \cap A^c \cap [0,1]) = m([0,1] \cap I) - m([0,1] \cap A \cap [0,1]) = m(I) - m(A \cap I) > 0 \end{split}$$

Therefore, G is not monotone on any subinterval $I \subset [0, 1]$

42.	
Proof.	
43.	
Proof.	
44.	
Proof.	
45.	
Proof.	
46.	
Proof.	
47.	
Proof.	
•	

Proof.		15
49. <i>Proof.</i>		
50. <i>Proof.</i>		
51. Proof.		
52. Proof.		
53. Proof.		
54. Proof.		
55. Proof.		
56. Proof.		
57. Proof.		
58. Proof.		
59. <i>Proof.</i>		

	16	
	60.	
	Proof.	
	61.	
	Proof.	
	62.	
	Proof.	
	63.	
	Proof.	
	64.	
	Proof.	
i		