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Chapter 3. Signed Measures and Differentiation

1.

Proof. �

2. If ν is a signed measure, E is ν−null iff |ν|(E) = 0. Also, if ν and µ are signed measures, ν ⊥ µ iff
|ν| ⊥ µ iff ν+ ⊥ µ and ν− ⊥ µ.

Proof. .

Claim 1. E is ν-null iff |ν|(E) = 0

Proof. .
( =⇒ )
Suppose that E is a ν − null. Since ν+ ⊥ ν−, there is a partition {P,N} of X where N is ν+ − null and
P is ν− − null. Observe the below.

|ν|(E) = |ν|(X ∩ E) = ν+(P ∩ E) + ν−(N ∩ E)

If |ν|(E) > 0, without loss of generality, we can let ν+(P ∩ E) > 0. Then note that

ν(P ∩ E) = ν+(P ∩ E)− ν−(P ∩ E) = ν+(P ∩ E) > 0

But P ∩ E ⊂ E. so it is a contradiction.
(⇐=)
Suppose that |ν|(E) = 0, then since |ν| is a positive measure, |ν|(A) = 0 ∀A ⊂ E. Observe the below.

|ν|(A) = ν+(A) + ν−(A) = 0 ∀A ⊂ E

It means ν+(A) = ν−(A) = 0 ∀A ⊂ E. It also means that

ν(A) = ν+(A)− ν−(A) = 0 ∀A ⊂ E

Thus, E is a ν − null �

.

Claim 2. If ν and µ are signed measures, ν ⊥ µ iff |ν| ⊥ µ iff ν+ ⊥ µ and ν− ⊥ µ.

Proof. .
ν ⊥ µ iff ∃ a partition {P,N} of X such that P is µ−null and N is ν −null iff ∃ a partition {P,N} of X
such that P is µ− null and N is |ν| − null iff |ν| ⊥ µ iff ∃ a partition {P,N} of X such that P is µ− null
and N is |ν| − null iff ∃ a partition {P,N} of X such that P is both µ − null and N is ν+ − null and
ν− − null iff ν+ ⊥ µ and ν− ⊥ µ. �
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3. Let ν be a signed measure on (X,M).
a.L1(ν) =  L1(|ν|)
b. If f ∈ L1(ν),

∣∣∫ fdν∣∣ ≤ ∫ |f |d|ν|
c. If E ∈M, |ν|(E) = sup

{∣∣∫
E
fdν

∣∣ : |f | ≤ 1
}

Proof. .
a
Obviously, if f ∈ L1(|ν|), then

∫
|f |d|ν| <∞, and observe the below∫

|f |dν =

∫
|f |dν+ −

∫
|f |dν− ≤

∫
|f |dν+ +

∫
|f |dν− =

∫
|f |d|ν| <∞

Thus, f ∈ L1(ν).
Conversely, suppose that f ∈ L1(ν), then

∫
|f | dν =

∫
|f |dν+ −

∫
|f |dν− <∞.

Note that ν+ ⊥ ν−, so there exists a partition {P,N} of X such that P is ν − null and N is µ− null.
If f 6∈ L1(|ν|), then one of

∫
fdν+ and

∫
fdν− should be infinite.

Without loss of generality, let
∫
fdν+ =

∫
P
fdν+ =∞.

Then ∫
|f |dν ≥

∫
P

|f |dν =

∫
P

|f |dν+ −
∫
P

|f |dν− =

∫
P

|f |dν+ =∞

It is a contradiction.
b
Since f ∈ L1(ν), observe the below.∣∣∣∣∫ fdν

∣∣∣∣ =

∣∣∣∣∫ f+dν −
∫
f−dν

∣∣∣∣
=

∣∣∣∣(∫ f+dν+ −
∫
f−dν−

)
−
(∫

f−dν+ −
∫
f−dν−

)∣∣∣∣
≤
∫
f+dν+ +

∫
f−dν− +

∫
f−dν+ +

∫
f−dν−

=

∫
|f |dν+

∫
|f |dν−

=

∫
|f |d|ν|

c
For any function |f | ≤ 1, by b, observe the below first.∣∣∣∣∫

E

fdν

∣∣∣∣ =

∣∣∣∣∫ χEfdν

∣∣∣∣
≤
∫
|χEf |d|ν| (∵ χEf ∈ L1(ν))

≤
∫
|χEχX |d|ν| (∵ |f | ≤ 1)

=

∫
χEd|ν| =

∫
E

d|ν| = |ν|(E)
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Thus, |ν(E)| is an upper bound of the set A =
{∣∣∫

E
fdν

∣∣ : |f | ≤ 1
}

.
Let ε > 0 be given. Then,

|ν|(E)− ε =

∫
E

(
1− ε

|ν|(E)

)
d|ν| ≤

∫
E

1d|ν|

Since 1 ∈ A, |ν|(E) is the least upper bound of the set A. �

4. If ν is a signed measure and λ, µ are positive measures such that ν = λ− µ, then λ ≥ ν+ and µ ≥ ν−.

Proof. .
Note that ν+ ⊥ ν−, so there is partition {P,N} such that P is a ν− − null and N is a ν+ − null.
Now, observe the below.

ν+(E) = ν(P ∩ E) = λ(P ∩ E)− µ(P ∩ E) ≤ λ(P ∩ E) ≤ λ(E) ∀E ∈M
ν−(E) = −ν(N ∩ E) = −(λ(N ∩ E)− µ(N ∩ E)) ≤ µ(N ∩ E) ≤ µ(E) ∀E ∈M

Then we are done. �

5. If ν1, ν2 are signed measures that both omit the value +∞ or −∞, then |ν1 + ν2| ≤ |ν1|+ |ν2|.
Proof. .
Let the Jordan decomposition of ν1 + ν2 = µ+ + µ−. And also, observe the below.

ν1 + ν2 = ν+1 − ν−1 + ν+2 − ν−2 = (ν+1 + ν+2 )− (ν−1 + ν−2 )

Note that ν+1 + ν+2 and ν−1 + ν−2 are positive measures. Therefore, by Exercise 4, ν+1 + ν+2 ≥ µ+ and
ν−1 + ν−2 ≥ µ−.
Therefore,

|ν1 + ν2| = µ+ + µ− ≤ (ν+1 + ν+2 ) + (ν−1 + ν−2 ) = |ν1|+ |ν2|
�

6.

Proof. �

7.

Proof. �

8. ν � µ iff |ν| � µ iff ν+ � µ and ν− � µ

Proof. .

Claim 3. ν � µ =⇒ |ν| � µ
( =⇒ )
Let E ∈M be a set with µ(E) = 0 and {P,N} be a Hahn decomposition of X with respect to ν.
Then observe the below

ν+(E) = ν(E ∩ P ) = 0 (∵ 0 ≤ µ(E ∩ P ) ≤ µ(E) = 0, ν � µ)

ν−(E) = −ν(E ∩N) = 0 (∵ 0 ≤ µ(E ∩N) ≤ µ(E) = 0, ν � µ)

Therefore, |ν|(E) = ν+(E) + ν−(E) = 0, so |ν| � µ
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Claim 4. |ν| � µ =⇒ ν+ � µ and ν− � µ
( =⇒ )
Let E ∈ M be a set with µ(E) = 0. Since |ν| � µ, |ν|(E) = ν+(E) + ν−(E) = 0. Since ν+ and ν− are
positive measure, ν+(E) = ν−(E) = 0. Therefore, ν+ � µ and ν− � µ

�

Claim 5. ν+ � µ and ν− � µ =⇒ ν � µ
( =⇒ )
Let E ∈M be a set with µ(E) = 0, then ν+(E) = ν−(E) = 0.
Thus, ν(E) = ν+(E)− ν−(E) = 0. Therefore, ν � µ.

�

9.

Proof. �

10.

Proof. �

11.

Proof. �

12. For j = 1, 2 let νj, µj be σ−finite measure on (Xj,Mj) such that νj � µj.
Then ν1 × ν2 � µ1 × µ2 and

d(ν1 × ν2)
d(µ1 × µ2)

(x1, x2) =
dν1
dµ2

(x1)
dν2
dµ2

(x2)

Proof. .

Let En,i =
{
x : dνi

dµi
< − 1

n

}
(i = 1, 2), and observe the below

νi(En,i) =

∫
En,i

dνi =

∫
En,i

dνi
dµi

dµi < −
1

n

∫
En,i

dµi = − 1

n
µi(En,i)

Since νi is positive measure, µi(En,i) = 0 = ν(En,i) ∀n ∈ N.
Also note the below.

E =

{
x :

dνi
dµi

< 0

}
=
⋃
n∈N

En,i

By continuous from below

µ(E) = lim
n→∞

µ(En,i) = 0
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Therefore, dνi
dµi
≥ 0 µi − a.e. for i = 1, 2 which means dνi

dµi
∈ L+(µi). Thus by Tonelli’s Theorem,

ν1 × ν2(E) =

∫
E

d(ν1 × ν2) =

∫
χ(E)d(ν1 × ν2)

=

∫ ∫
χ(E)dν1dν2 =

∫ (∫
χ(E)

dν1
dµ1

dµ1

)
dν2
dµ2

dµ2

=

∫ ∫
χ(E)

dν1
dµ2

dν2
dµ2

dµ1dµ2

=

∫
E

dν1
dµ2

dν2
dµ2

d(µ1 × µ2)

Therefore, ν1 × ν2 � µ1 × µ2 and dν1
dµ2

dν2
dµ2

= d(ν1×ν2)
d(µ1×µ2) (by definition of Radon Nikodym derivative) �

13.

Proof. �

14. If ν is an arbitrary signed measure and µ is a σ−finite measure on (X,M) such that ν � µ, there
exists an extended µ−integrable function f : X → [−∞,∞] such that dν = fdµ.
Hint
a. It suffice to assume that µ is finite and ν is positive.
b. With these assumptions, there exists E ∈ M that is σ−finite for ν such that µ(E) ≥ µ(F ) for all sets
F that are σ−finite for ν.
c. The Radon-Nikodym theorem applies on E. If F ∩ E = ∅, then either ν(F ) = µ(F ) = 0 or µ(F ) > 0
and |ν(F )| =∞
Proof. .
Suppose that µ is finite and ν is positive.
Let S = {S ∈M : S is σ − finite for ν}. And let α = sup {µ(S) : S ∈ S}. Then there is a sequence of
sets {Sn}n∈N ⊂ S such that limn→∞ µ(Sn) = α <∞.(∵ µ is finite)
Let S =

⋃
n∈N Sn =

⋃
n∈N

⋃n
k=1 Sk, then by continuous from below, since S is also σ−finite,

α ≥ µ(S) = lim
n→∞

µ(
n⋃
k=1

Sk) = α

Therefore, µ(S) = α. Then by Lebesgue-Radon-Nikodym Theorem, dν
dµ

exists on S.

Let’s define a function F as below.

F (x) = f(x) (if x ∈ S)

F (x) =∞ (if x 6∈ S)

Let E ∈M be given.
If µ(E \ S) = 0, then ν()

ν(E) = ν(E ∩ S) + ν(E \ S) = ν(E ∩ S) =

∫
E∩S

fdµ =

∫
E∩S

Fdµ+

∫
E\S

Fdµ =

∫
E

Fdµ

If µ(E \ S) > 0, then

µ(S ∪ (E \ S)) = µ(S) + µ(E \ S) > α

Thus S∪(E \S) 6∈ S. It means E \S 6∈ S, otherwise S∪(E \S) is a σ−finite so it is in S. So µ(E \S) =∞.
Thus,

ν(E) =∞ = ν(E \ S) =

∫
E\S
∞dµ =

∫
E\S

Fdµ =

∫
E

Fdµ
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Either ways allow us to say that

F =
dν

dµ
on X

Now, let’s assume that µ is σ−finite and ν is positive. Then there is a sequence of disjoint sets {En}n∈N
such that

X =
⋃
n∈N

En and µ(En) <∞ ∀n ∈ N

Thus, there exits Fn = dν
dµ

on En for ∀n ∈ N. Then we can define a function as below.

F = Fn on En∀n ∈ N
Note that F is defined on X.
Lastly, let µ be σ−finite and ν be signed measure. Due to the arguments above, there exist two functions
F+ = dν+

dµ
and F− = dν−

dµ
, then F = F+ − F− = dν

dµ
(on X) is the function that we have found. �

15.

Proof. �

16. Suppose that µ, ν are σ−finite measure on (X,M) with ν � µ, and let λ = µ + ν. If f = dν
dλ

, then

0 ≤ f < 1 µ− a.e. and dν
dµ

= f
1−f .

Proof. .
Suppose that µ and ν are σ−finite measure on (X,M), then by EX12, dν

dµ
≥ 0 µ − a.e.. Also note that

λ = µ+ ν is a σ−finite, so dν
dλ

= f ≥ 0 λ− a.e.. Since µ� λ, f ≥ 0 µ− a.e..
We need to prove that µ(E) = 0 where E = {x : f(x) ≥ 1}.
Observe the below.

0 ≤ µ(E) = λ(E)− ν(E) =

∫
E

dλ−
∫
E

dν =

∫
E

dλ−
∫
E

fdλ =

∫
(1− f)dλ ≤

∫
E

0dλ = 0

Thus, µ(E) = 0, so 0 ≤ f < 1 µ− a.e.
Now, for ∀E ∈M observe the below.∫

E

f

1− f
dµ =

∫
E

f

1− f
dλ−

∫
E

f

1− f
dν

=

∫
E

1

1− f
dν −

∫
E

f

1− f
dν

=

∫
E

1− f
1− f

dν

= ν(E)

Therefore, f
1−f = dν

dµ
. �

17.

Proof. �

18.

Proof. �
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19.

Proof. �

20.

Proof. �

21.

Proof. �

22.

Proof. �

23.

Proof. �

24.

Proof. �

25.

Proof. �

26.

Proof. �

27.

Proof. �

28. If F ∈ NBV , let G(x) = |µF |((−∞, x]) by showing that G = TF via the following steps.
a. From the definition of TF , TF ≤ G.
b. |µF (E)| ≤ µTF (E) when E is an interval, and hence when E is a Borel set.
c.|µF | ≤ µTF , and hence G ≤ TF .(use Exercise 21.)
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Proof. .
Suppose that F ∈ NBV .
For any partition δ : −∞ = x0 < x1 < · · · < xn = x, the relation below holds.

G(x) = |µF |((−∞, x]) =
n∑
i=1

|µF |((xi−1, xi]) ≥
n∑
i=1

|µF ((xi−1, xi])| =
n∑
i=1

|f(xi)− f(xi−1)| = tδ

Thus, |µF |((−∞, x]) ≥ TF . Recall that µF (E) = µP (E) − µN(E) ∀E. Thus, if {Ap, An} is a Hahn
decomposition for µF , observe the below.

µ+
F (E) = µF (E ∩ Ap) = µP (E ∩ Ap)− µN(E ∩ Ap) ≤ µP (E)

µ−F (E) = −µF (E ∩ An) = −µP (E ∩ An) + µN(E ∩ An) ≤ µN(E)

Therefore,

|µF |(E) = µ+
F (E) + µ−F (E) ≤ µP (E) + µN(E) = µTF (E)

It means that

TF (x) = P (x) +N(x) = µP ((−∞, x]) + µN((−∞, x]) ≥ |µF |((−∞, x]) = G(x)

Thus, TF (x) = G(x). �

29. If F ∈ NBV is real-valued, then µ+
F = µP and µ−F = µN where P and N are the positive and negative

variations of F.(Use Exercise 28.)

Proof. .
We know that P = 1

2
(T + F ) and N = 1

2
(T − F ) which means µP = 1

2
(µT + µF ) and µN = 1

2
(µT − µF ).

Now, by Exercise 28, observe the below.

µP (E) =
1

2
(µT (E) + µF (E)) =

1

2
(|µF |(E) + µF (E)) =

1

2
(2µ+

F (E)) = µ+
F (E) ∀E

µN(E) =
1

2
(µT (E)− µF (E)) =

1

2
(|µF |(E)− µF (E)) =

1

2
(2µ−T (E)) = µ−T (E) ∀E

�

30. Construct an increasing function on R whose set of discontinuities is Q.

Proof. .
Let Q = {qn}∞n=1 such that qn < qn+1 ∀n ∈ N and let f be a function defined as below.

f =
∞∑
n=1

1

2n
χ[qn,∞) fn =let 1

2n
χ[qn,∞)

Then f is increasing function.

For each irrational point x, since fn is continuous at x and |fn| ≤ 1
2n
∀n ∈ N, by Weierstrass M test, f

is continuous at x.
Let n ∈ N and δ > 0 be given. Let x = qn + δ

2
, then x ∈ (qn − δ, qn + δ), but |f(qn)− f(qn + δ

2
)| ≥ 1

2n+1 .
Thus, f is discontinuous at every rational number. �

31.

Proof. �
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32.

Proof. �

33. If F is increasing on R, then F (b)− F (a) ≥
∫ b
a
F ′(t)dt.

Proof. .
Define F (x) = F (b) ∀x ≥ b, and let fn(x) = n

(
F (x+ 1

n
)− F (x)

)
. Since F is increasing, F is measureable

and fn ≥ 0, so fn is positively measurable function. Also, recalling that F is observe the below.

lim
n→∞

F (x+ 1
n
)− F (x)
1
n

= F ′(x)

Then by Fatou’s Lemma,∫ b

a

F ′(t)dt =

∫ b

a

lim
n→∞

F (t+ 1
n
)− F (t)
1
n

dt ≤ lim inf
n→∞

∫ b

a

F (t+ 1
n
)− F (t)
1
n

dt = lim inf
n→∞

n

∫ b

a

F (t+
1

n
)− F (t)dt

Observe the below

n

∫ b

a

F (t+
1

n
)− F (t)dt = n

{∫ b+ 1
n

a+ 1
n

F (t)dt−
∫ b

a

F (t)dt

}
= n

{∫ b+ 1
n

b

F (t)dt−
∫ a+ 1

n

a

F (t)dt

}
Since F is increasing,

lim inf
n→∞

n

{∫ b+ 1
n

b

F (t)dt−
∫ a+ 1

n

a

F (t)dt

}
≤ lim inf

n→∞

∫ b+ 1
n

b
F (b)dt−

∫ a+ 1
n

a
F (a)dt

1
n

= lim inf
n→∞

F (b) 1
n
− F (a) 1

n
1
n

= F (b)− F (a)

Therefore, ∫ b

a

F ′(t)dt ≤ F (b)− F (a)

�

34.

Proof. �

35.

Proof. �

36. Let G be a continuous increasing function on [a.b] and let G(a)=c, G(b)=d.
a. If E ⊂ [c, d] is a Borel set, then m(E) = µG(G−1(E)). (First consider the case where E is an interval.)

b. If f is a Borel measurable and integrable function on [c,d], then
∫ d
c
f(y)dy =

∫ b
a
f(G(x))dG(x). In

particular,
∫ d
c
f(y)dy =

∫ b
a
f(G(x))G′(x)dx if G is absolutely continuous.

c. The validity of (b) may fail if G is merely right continuous rather than continuous.

Proof. .
a.
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Let A = {E ⊂ [c, d]|m(E) = µG(G−1(E))}, and let I be an interval such that inf I = a < ∞ and
sup I = b < ∞. Note that G−1(I) is an interval since G is continuous. And since G is increasing,
inf G−1(I) = G−1(a) and supG−1(I) = G−1(b). Thus, observe the below.

µG(G−1(I)) = G(G−1(b))−G(G−1(a)) = b− a = m(I)

Thus, for any interval I, I ∈ A.
Also, note the below.

E ∈ A =⇒ µG(G−1(Ec)) = µG((G−1(E))c) = µG([a, b])− µG(G−1(E)) = m([a, b])−m(E) = m(Ec)

=⇒ Ec ∈ A
If {En}n∈N ⊂ A is a sequence of disjoint sets,

µG

(
G−1(

⋃
n∈N

En)

)
= µG

(⋃
n∈N

G−1(En)

)
=
∑
n∈N

µG
(
G−1(En)

)
=
∑
n∈N

m(En) = m

(⋃
n∈N

En

)
=⇒

⋃
n∈N

En ∈ A

Thus, A is an σ−algebra containing all interval which means B[c,d] ⊂ A. So we are done.
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b.
Observe the below.∫ d

c

χE(y)dy = m(E) = µG(G−1(E)) =

∫ b

a

χG−1(E)(x)dµG(x) =

∫ b

a

χE(G(x))dG(x).

where χE is a characteristic function and E is in B[c,d].
Then, if φ =

∑n
k=1 akχEk

is a positive B[c,d]−measurable simple function,∫ d

c

φ(y)dy =

∫ d

c

n∑
k=1

akχEk
(y)dy =

n∑
k=1

ak

∫ d

c

χEk
(y)dy =

n∑
k=1

ak

∫ b

a

χEk
(G(x))dG(x) =

∫ b

a

φ(G(x))dG(x).

So it is true for any positive B[c,d]−measurable simple function.
Also, due to monotone convergence theorem, it is true for positive B[c,d]−measurable function, f , as we

can observe below.∫ d

c

f(y)dy = lim
n→∞

∫ d

c

φn(y)dy = lim
n→∞

∫ b

a

φn(G(x))dG(x) =

∫ b

a

f(G(x))dG(x)

Where {φn}n∈N is an increasing sequence of simple functions converging to f .
As for the Borel measurable integrable function f , we need to firstly observe the below.∫ b

a

|f(G(x))|dG(x) =

∫ d

c

|f(y)|dy <∞

From here, by definition of integration of integrable function, we get the below.∫ d

c

f(y)dy =

∫ d

c

f+(y)dy −
∫ d

c

f−(y)dy =

∫ b

a

f+(G(x))dG(x)−
∫ b

a

f−(G(x))dG(x) =

∫ b

a

f(G(x))dG(x)

What if G is absolutely continuous?

Note that µG([a, x]) =
∫ x
a
G′(x)dx and G′(x) ∈ L+ since G is increasing. By the homework question 14

from chapter 2, ∫ d

c

f(y)dy =

∫ b

a

f(G(x))dG(x) =

∫ b

a

f(G(x))G′(x)dx

c.
Think of the situation when f(x) = y and G(x) = χ[0,∞) . Then f is continuous so Borel measurable on

[0, 1] and G is increasing right continuous function, but since G(−1) = 0 and G(1) = 1∫ 1

0

ydy =
1

2
6= 1 = 1− 0 = G(1)−G(0−) = µG([0, 1]) =

∫ 1

−1
G(x)dG(x) =

∫ 1

−1
f(G(x))dG(x)

�

37.

Proof. �

38.

Proof. �
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39. If {Fj} is a sequence of nonnegative increasing function on [a,b] such that F (x) =
∑∞

n=1 Fj(x) < ∞
for all x ∈ [a, b], then F ′(x) =

∑∞
j=1 F

′
j(x) for a.e. x ∈ [a, b].(It suffices to assume Fj ∈ NBV . Consider

the measures µFj
)

Proof. .
We can always assume that Fj ∈ NBV by redefine the function as below.

F̂j(x) = Fj(x
+)

then F̂j
′
= F ′ja.e. and let Fj = F̂j(x)− F̂j(a) and

Fj(x) = 0 ∀x < a

Fj(x) = Fj(b) ∀x > b

Then Fj ∈ NBV and Fj
′
= F̂j

′
= F ′j .

Assume that Fj ∈ NBV , then there is a Lebesgue decomposition of µFj
and µF with respect to Lebesgue

measure, m, as below.

µFj
= λj + ρj

where λj ⊥ m, and ρj � m. Let’s define two measures as below.

ρ =
∞∑
j=1

ρj λ =
∞∑
j=1

λj

Let’s prove that λ ⊥ m.

First suppose that {Aj, Bj} is a partition for λj where Aj is λj−null and Bj is m−null. Then
⋃∞
j=1Bj

is m−null since

m

(
∞⋃
j=1

Bj

)
≤

∞∑
j=1

m(Bj) = 0

Automatically,
⋂∞
j=1Aj is λ−null set and

{⋂∞
j=1Aj,

⋃∞
j=1Bj

}
is a partition. So λ ⊥ m.

Let’s prove that ρ� m.

Observe the below.

ρ((−∞, x]) =
∞∑
j=1

ρj((−∞, x]) =
∞∑
j=1

∫ x

−∞

dρj
dm

dm = lim
n→∞

n∑
j=1

∫ x

−∞

dρj
dm

dm = lim
n→∞

∫ x

−∞

n∑
j=1

dρj
dm

dm

Since Fj are increasing functions, so since F ′j ≥ 0, by monotone convergence theorem,

ρ((−∞, x]) = lim
n→∞

∫ x

−∞

n∑
j=1

dρj
dm

dm =

∫ x

−∞
lim
n→∞

n∑
j=1

dρj
dm

dm =

∫ x

−∞

∞∑
j=1

dρj
dm

dm

Thus, ρ� m.
Now observe the below.

µF ((x, y]) =
∞∑
j=1

µFj
((x, y]) =

∞∑
j=1

λ((x, y]) +
∞∑
j=1

ρj((x, y]) = λ((x, y]) + ρ((x, y])
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Since µF and m are σ−finite, the Lebesgue decomposition is unique.
Recall that F ′j(x) =

dρj
dm

m− a.e, then

F ′(x) =
dρ

dm
=
∞∑
j=1

dρj
dm

=
∞∑
j=1

F ′(x) m− a.e.

�

40. Let F denote the Cantor function on [0,1](see
∮

1.5), and set F(x)=0 for x < 0 and F(x)=1 for
x > 1. Let {[an, bn]} be an enumeration of the closed subintervals of [0,1] with rational endpoints,and let
Fn(x) = F ((x − an)/(bn − an)). Then G =

∑∞
n=1

Fn

2n
is continuous and strictly increasing on [0,1], and

G′ = 0 a.e.(Use Ex 39.)

Proof. .
Observe that Fn(x) ≤ 1 ∀x ∈ [0, 1], so by Weierstrass M-test, the series,

∑∞
n=1 2−nFn converges uniformly

on [0, 1]. Since each Fn is continuous, G is also continuous.

Let a, b ∈ [0, 1] such that a < b. Then there exists k such that a < ak < bk < b. Observe the below.

G(b)−G(a) =
∞∑
j=1

2−n {Fn(b)− Fn(a)} ≥ 1

2k
{Fk(b)− Fk(a)} =

1

2k
> 0

Thus, G is strictly increasing on [0, 1].
By Exercise 39, since Fn is a sequence of nonnegative increasing functions,

G′(x) =
∞∑
j=1

2−nF ′n(x) = 0 m− a.e.

since F ′n = 0 m− a.e. �

41. Let A ⊂ [0, 1] be a Borel set such that 0 < m(A ∩ I) < m(I) for every subinterval I of [0,1](Exercise
33, Chapter 1)
a. Let F (x) = m([0, x]∩A). Then F is absolutely continuous and strictly increasing on [0,1], but F’=0 on
a set of positive measure.
b. Let G(x) = m([0, x]∩A)−m([0, x]\A). Then G is absolutely continuous on [0,1], but G is not monotone
on any subinterval of [0,1].

Proof. .
a.
Note the below.

F (x) = m([0, x] ∩ A) =

∫ x

0

χAdm

Then clearly, F is absolutely continuous.

And for any a, b ∈ [0, 1] with a < b, observe the below.

F (b)− F (a) = m(A ∩ [a, b]) > 0

by given condition. So F is strictly increasing.
However, observe the below.

F ′(x) = χA(x) m− a.e.
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Thus, F ′(x) = 0 on [0, 1]∩Ac. And following relation from the given condition shows it is a set of positive
measure.

m([0, 1] ∩ Ac) = m([0, 1])−m([0, 1] ∩ A) > 0

b.
Note the below.

G(x) =

∫
[0,x]

χAdm−
∫
[0,1]

χAcdm =

∫
[0,1]

χA − χAcdm

Thus, G is absolutely continuous on [0, 1] and G′ = χA − χAc m− a.e.
And observe the below.

G′(x) = χA(x)− χAc(x) = 1− 0 = 1 on a.e.[0, 1] ∩ A
G′(x) = χA(x)− χAc(x) = 0− 1 = −1 on a.e.[0, 1] ∩ Ac

Now, for any subinterval I ∈ [0, 1], observe the below.

m(I ∩ A ∩ [0, 1]) = m(I ∩ A) > 0

m(I ∩ Ac ∩ [0, 1]) = m([0, 1] ∩ I)−m([0, 1] ∩ A ∩ [0, 1]) = m(I)−m(A ∩ I) > 0

Therefore, G is not monotone on any subinterval I ⊂ [0, 1] �

42.

Proof. �

43.

Proof. �

44.

Proof. �

45.

Proof. �

46.

Proof. �

47.

Proof. �

48.
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Proof. �

49.

Proof. �

50.

Proof. �

51.

Proof. �

52.

Proof. �

53.

Proof. �

54.

Proof. �

55.

Proof. �

56.

Proof. �

57.

Proof. �

58.

Proof. �

59.

Proof. �
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60.

Proof. �

61.

Proof. �

62.

Proof. �

63.

Proof. �

64.

Proof. �


