Real Analysis

Byeong Ho Ban
Mathematics and Statistics
Texas Tech University

Chapter 3. Signed Measures and Differentiation

1.

Proof.
2. If ν is a signed measure, E is ν null iff $|\nu|(E)=0$. Also, if ν and μ are signed measures, $\nu \perp \mu$ iff $|\nu| \perp \mu$ iff $\nu^{+} \perp \mu$ and $\nu^{-} \perp \mu$.

Proof. .

Claim 1. E is ν-null iff $|\nu|(E)=0$
Proof. .
(\Longrightarrow)
Suppose that E is a $\nu-$ null. Since $\nu^{+} \perp \nu^{-}$, there is a partition $\{P, N\}$ of X where N is $\nu^{+}-n u l l$ and P is $\nu^{-}-$null. Observe the below.

$$
|\nu|(E)=|\nu|(X \cap E)=\nu^{+}(P \cap E)+\nu^{-}(N \cap E)
$$

If $|\nu|(E)>0$, without loss of generality, we can let $\nu^{+}(P \cap E)>0$. Then note that

$$
\nu(P \cap E)=\nu^{+}(P \cap E)-\nu^{-}(P \cap E)=\nu^{+}(P \cap E)>0
$$

But $P \cap E \subset E$. so it is a contradiction.
(\Longleftarrow)
Suppose that $|\nu|(E)=0$, then since $|\nu|$ is a positive measure, $|\nu|(A)=0 \forall A \subset E$. Observe the below.

$$
|\nu|(A)=\nu^{+}(A)+\nu^{-}(A)=0 \quad \forall A \subset E
$$

It means $\nu^{+}(A)=\nu^{-}(A)=0 \forall A \subset E$. It also means that

$$
\nu(A)=\nu^{+}(A)-\nu^{-}(A)=0 \quad \forall A \subset E
$$

Thus, E is a $\nu-$ null

Claim 2. If ν and μ are signed measures, $\nu \perp \mu$ iff $|\nu| \perp \mu$ iff $\nu^{+} \perp \mu$ and $\nu^{-} \perp \mu$.
Proof. .
$\nu \perp \mu$ iff \exists a partition $\{P, N\}$ of X such that P is $\mu-$ null and N is $\nu-$ null iff \exists a partition $\{P, N\}$ of X such that P is μ-null and N is $|\nu|-$ null iff $|\nu| \perp \mu$ iff \exists a partition $\{P, N\}$ of X such that P is $\mu-$ null and N is $|\nu|-$ null iff \exists a partition $\{P, N\}$ of X such that P is both $\mu-$ null and N is $\nu^{+}-n u l l$ and $\nu^{-}-$null iff $\nu^{+} \perp \mu$ and $\nu^{-} \perp \mu$.
3. Let ν be a signed measure on (X, \mathcal{M}).
a. $L^{1}(\nu)=E^{1}(|\nu|)$
b. If $f \in L^{1}(\nu),\left|\int f d \nu\right| \leq \int|f| d|\nu|$
c. If $E \in \mathcal{M},|\nu|(E)=\sup \left\{\left|\int_{E} f d \nu\right|:|f| \leq 1\right\}$

Proof. .

a
Obviously, if $f \in L^{1}(|\nu|)$, then $\int|f| d|\nu|<\infty$, and observe the below

$$
\int|f| d \nu=\int|f| d \nu^{+}-\int|f| d \nu^{-} \leq \int|f| d \nu^{+}+\int|f| d \nu^{-}=\int|f| d|\nu|<\infty
$$

Thus, $f \in L^{1}(\nu)$.
Conversely, suppose that $f \in L^{1}(\nu)$, then $\int|f| d \nu=\int|f| d \nu^{+}-\int|f| d \nu^{-}<\infty$.
Note that $\nu^{+} \perp \nu^{-}$, so there exists a partition $\{P, N\}$ of X such that P is $\nu-$ null and N is $\mu-$ null.
If $f \notin L^{1}(|\nu|)$, then one of $\int f d \nu^{+}$and $\int f d \nu^{-}$should be infinite.
Without loss of generality, let $\int f d \nu^{+}=\int_{P} f d \nu^{+}=\infty$.
Then

$$
\int|f| d \nu \geq \int_{P}|f| d \nu=\int_{P}|f| d \nu^{+}-\int_{P}|f| d \nu^{-}=\int_{P}|f| d \nu^{+}=\infty
$$

It is a contradiction.
b
Since $f \in L^{1}(\nu)$, observe the below.

$$
\begin{aligned}
\left|\int f d \nu\right| & =\left|\int f^{+} d \nu-\int f^{-} d \nu\right| \\
& =\left|\left(\int f^{+} d \nu^{+}-\int f^{-} d \nu^{-}\right)-\left(\int f^{-} d \nu^{+}-\int f^{-} d \nu^{-}\right)\right| \\
& \leq \int f^{+} d \nu^{+}+\int f^{-} d \nu^{-}+\int f^{-} d \nu^{+}+\int f^{-} d \nu^{-} \\
& =\int|f| d \nu^{+} \int|f| d \nu^{-} \\
& =\int|f| d|\nu|
\end{aligned}
$$

c
For any function $|f| \leq 1$, by \mathbf{b}, observe the below first.

$$
\begin{aligned}
\left|\int_{E} f d \nu\right| & =\left|\int \chi_{E} f d \nu\right| \\
& \leq \int\left|\chi_{E} f\right| d|\nu| \quad\left(\because \chi_{E} f \in L^{1}(\nu)\right) \\
& \leq \int\left|\chi_{E} \chi_{X}\right| d|\nu| \quad(\because|f| \leq 1) \\
& =\int \chi_{E} d|\nu|=\int_{E} d|\nu|=|\nu|(E)
\end{aligned}
$$

Thus, $|\nu(E)|$ is an upper bound of the set $A=\left\{\left|\int_{E} f d \nu\right|:|f| \leq 1\right\}$.
Let $\epsilon>0$ be given. Then,

$$
|\nu|(E)-\epsilon=\int_{E}\left(1-\frac{\epsilon}{|\nu|(E)}\right) d|\nu| \leq \int_{E} 1 d|\nu|
$$

Since $1 \in A,|\nu|(E)$ is the least upper bound of the set A.
4. If ν is a signed measure and λ, μ are positive measures such that $\nu=\lambda-\mu$, then $\lambda \geq \nu^{+}$and $\mu \geq \nu^{-}$. Proof. .
Note that $\nu^{+} \perp \nu^{-}$, so there is partition $\{P, N\}$ such that P is a $\nu^{-}-n u l l$ and N is a $\nu^{+}-n u l l$.
Now, observe the below.

$$
\begin{aligned}
& \nu^{+}(E)=\nu(P \cap E)=\lambda(P \cap E)-\mu(P \cap E) \leq \lambda(P \cap E) \leq \lambda(E) \quad \forall E \in \mathcal{M} \\
& \nu^{-}(E)=-\nu(N \cap E)=-(\lambda(N \cap E)-\mu(N \cap E)) \leq \mu(N \cap E) \leq \mu(E) \quad \forall E \in \mathcal{M}
\end{aligned}
$$

Then we are done.
5. If ν_{1}, ν_{2} are signed measures that both omit the value $+\infty$ or $-\infty$, then $\left|\nu_{1}+\nu_{2}\right| \leq\left|\nu_{1}\right|+\left|\nu_{2}\right|$.

Proof. .
Let the Jordan decomposition of $\nu_{1}+\nu_{2}=\mu^{+}+\mu^{-}$. And also, observe the below.

$$
\nu_{1}+\nu_{2}=\nu_{1}^{+}-\nu_{1}^{-}+\nu_{2}^{+}-\nu_{2}^{-}=\left(\nu_{1}^{+}+\nu_{2}^{+}\right)-\left(\nu_{1}^{-}+\nu_{2}^{-}\right)
$$

Note that $\nu_{1}^{+}+\nu_{2}^{+}$and $\nu_{1}^{-}+\nu_{2}^{-}$are positive measures. Therefore, by Exercise $4, \nu_{1}^{+}+\nu_{2}^{+} \geq \mu^{+}$and $\nu_{1}^{-}+\nu_{2}^{-} \geq \mu^{-}$.
Therefore,

$$
\left|\nu_{1}+\nu_{2}\right|=\mu^{+}+\mu^{-} \leq\left(\nu_{1}^{+}+\nu_{2}^{+}\right)+\left(\nu_{1}^{-}+\nu_{2}^{-}\right)=\left|\nu_{1}\right|+\left|\nu_{2}\right|
$$

6.

Proof.
7.

Proof.
8. $\nu \ll \mu$ iff $|\nu| \ll \mu$ iff $\nu^{+} \ll \mu$ and $\nu^{-} \ll \mu$

Proof. .

Claim 3. $\nu \ll \mu \Longrightarrow|\nu| \ll \mu$
(\Longrightarrow)
Let $E \in \mathcal{M}$ be a set with $\mu(E)=0$ and $\{P, N\}$ be a Hahn decomposition of X with respect to ν.
Then observe the below

$$
\begin{aligned}
& \nu^{+}(E)=\nu(E \cap P)=0 \quad(\because 0 \leq \mu(E \cap P) \leq \mu(E)=0, \nu \ll \mu) \\
& \nu^{-}(E)=-\nu(E \cap N)=0 \quad(\because 0 \leq \mu(E \cap N) \leq \mu(E)=0, \nu \ll \mu)
\end{aligned}
$$

Therefore, $|\nu|(E)=\nu^{+}(E)+\nu^{-}(E)=0$, so $|\nu| \ll \mu$

Claim 4. $|\nu| \ll \mu \Longrightarrow \nu^{+} \ll \mu$ and $\nu^{-} \ll \mu$ (\Longrightarrow)
Let $E \in \mathcal{M}$ be a set with $\mu(E)=0$. Since $|\nu| \ll \mu,|\nu|(E)=\nu^{+}(E)+\nu^{-}(E)=0$. Since ν^{+}and ν^{-}are positive measure, $\nu^{+}(E)=\nu^{-}(E)=0$. Therefore, $\nu^{+} \ll \mu$ and $\nu^{-} \ll \mu$

Claim 5. $\nu^{+} \ll \mu$ and $\nu^{-} \ll \mu \Longrightarrow \nu \ll \mu$
(\Longrightarrow)
Let $E \in \mathcal{M}$ be a set with $\mu(E)=0$, then $\nu^{+}(E)=\nu^{-}(E)=0$.
Thus, $\nu(E)=\nu^{+}(E)-\nu^{-}(E)=0$. Therefore, $\nu \ll \mu$.
9.

Proof.
10.

Proof.

11.

Proof.
12. For $j=1,2$ let ν_{j}, μ_{j} be σ-finite measure on $\left(X_{j}, \mathcal{M}_{j}\right)$ such that $\nu_{j} \ll \mu_{j}$.

Then $\nu_{1} \times \nu_{2} \ll \mu_{1} \times \mu_{2}$ and

$$
\frac{d\left(\nu_{1} \times \nu_{2}\right)}{d\left(\mu_{1} \times \mu_{2}\right)}\left(x_{1}, x_{2}\right)=\frac{d \nu_{1}}{d \mu_{2}}\left(x_{1}\right) \frac{d \nu_{2}}{d \mu_{2}}\left(x_{2}\right)
$$

Proof. .
Let $E_{n, i}=\left\{x: \frac{d \nu_{i}}{d \mu_{i}}<-\frac{1}{n}\right\}(i=1,2)$, and observe the below

$$
\nu_{i}\left(E_{n, i}\right)=\int_{E_{n, i}} d \nu_{i}=\int_{E_{n, i}} \frac{d \nu_{i}}{d \mu_{i}} d \mu_{i}<-\frac{1}{n} \int_{E_{n, i}} d \mu_{i}=-\frac{1}{n} \mu_{i}\left(E_{n, i}\right)
$$

Since ν_{i} is positive measure, $\mu_{i}\left(E_{n, i}\right)=0=\nu\left(E_{n, i}\right) \forall n \in \mathbb{N}$.
Also note the below.

$$
E=\left\{x: \frac{d \nu_{i}}{d \mu_{i}}<0\right\}=\bigcup_{n \in \mathbb{N}} E_{n, i}
$$

By continuous from below

$$
\mu(E)=\lim _{n \rightarrow \infty} \mu\left(E_{n, i}\right)=0
$$

Therefore, $\frac{d \nu_{i}}{d \mu_{i}} \geq 0 \mu_{i}-a . e$. for $i=1,2$ which means $\frac{d \nu_{i}}{d \mu_{i}} \in L^{+}\left(\mu_{i}\right)$. Thus by Tonelli's Theorem,

$$
\begin{aligned}
\nu_{1} \times \nu_{2}(E) & =\int_{E} d\left(\nu_{1} \times \nu_{2}\right)=\int \chi(E) d\left(\nu_{1} \times \nu_{2}\right) \\
& =\iint \chi(E) d \nu_{1} d \nu_{2}=\int\left(\int \chi(E) \frac{d \nu_{1}}{d \mu_{1}} d \mu_{1}\right) \frac{d \nu_{2}}{d \mu_{2}} d \mu_{2} \\
& =\iint \chi(E) \frac{d \nu_{1}}{d \mu_{2}} \frac{d \nu_{2}}{d \mu_{2}} d \mu_{1} d \mu_{2} \\
& =\int_{E} \frac{d \nu_{1}}{d \mu_{2}} \frac{d \nu_{2}}{d \mu_{2}} d\left(\mu_{1} \times \mu_{2}\right)
\end{aligned}
$$

Therefore, $\nu_{1} \times \nu_{2} \ll \mu_{1} \times \mu_{2}$ and $\frac{d \nu_{1}}{d \mu_{2}} \frac{d \nu_{2}}{d \mu_{2}}=\frac{d\left(\nu_{1} \times \nu_{2}\right)}{d\left(\mu_{1} \times \mu_{2}\right)}$ (by definition of Radon Nikodym derivative)

13.

Proof.
14. If ν is an arbitrary signed measure and μ is a σ-finite measure on (X, \mathcal{M}) such that $\nu \ll \mu$, there exists an extended μ-integrable function $f: X \rightarrow[-\infty, \infty]$ such that $d \nu=f d \mu$.
Hint
a. It suffice to assume that μ is finite and ν is positive.
b. With these assumptions, there exists $E \in \mathcal{M}$ that is $\sigma-$ finite for ν such that $\mu(E) \geq \mu(F)$ for all sets F that are σ-finite for ν.
c. The Radon-Nikodym theorem applies on E. If $F \cap E=\emptyset$, then either $\nu(F)=\mu(F)=0$ or $\mu(F)>0$ and $|\nu(F)|=\infty$
Proof. .
Suppose that μ is finite and ν is positive.
Let $\mathcal{S}=\{S \in \mathcal{M}: \mathrm{S}$ is $\sigma-$ finite for $\nu\}$. And let $\alpha=\sup \{\mu(S): S \in \mathcal{S}\}$. Then there is a sequence of sets $\left\{S_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{S}$ such that $\lim _{n \rightarrow \infty} \mu\left(S_{n}\right)=\alpha<\infty$. $(\because \mu$ is finite $)$
Let $S=\bigcup_{n \in \mathbb{N}} S_{n}=\bigcup_{n \in \mathbb{N}} \bigcup_{k=1}^{n} S_{k}$, then by continuous from below, since S is also σ-finite,

$$
\alpha \geq \mu(S)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{k=1}^{n} S_{k}\right)=\alpha
$$

Therefore, $\mu(S)=\alpha$. Then by Lebesgue-Radon-Nikodym Theorem, $\frac{d \nu}{d \mu}$ exists on S.
Let's define a function F as below.

$$
\begin{aligned}
& F(x)=f(x) \quad(\text { if } x \in S) \\
& F(x)=\infty \quad(\text { if } x \notin S)
\end{aligned}
$$

Let $E \in \mathcal{M}$ be given.
If $\mu(E \backslash S)=0$, then $\nu()$

$$
\nu(E)=\nu(E \cap S)+\nu(E \backslash S)=\nu(E \cap S)=\int_{E \cap S} f d \mu=\int_{E \cap S} F d \mu+\int_{E \backslash S} F d \mu=\int_{E} F d \mu
$$

If $\mu(E \backslash S)>0$, then

$$
\mu(S \cup(E \backslash S))=\mu(S)+\mu(E \backslash S)>\alpha
$$

Thus $S \cup(E \backslash S) \notin \mathcal{S}$. It means $E \backslash S \notin \mathcal{S}$, otherwise $S \cup(E \backslash S)$ is a σ-finite so it is in \mathcal{S}. So $\mu(E \backslash S)=\infty$. Thus,

$$
\nu(E)=\infty=\nu(E \backslash S)=\int_{E \backslash S} \infty d \mu=\int_{E \backslash S} F d \mu=\int_{E} F d \mu
$$

Either ways allow us to say that

$$
F=\frac{d \nu}{d \mu} \quad \text { on } X
$$

Now, let's assume that μ is σ-finite and ν is positive. Then there is a sequence of disjoint sets $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
X=\bigcup_{n \in \mathbb{N}} E_{n} \quad \text { and } \mu\left(E_{n}\right)<\infty \quad \forall n \in \mathbb{N}
$$

Thus, there exits $F_{n}=\frac{d \nu}{d \mu}$ on E_{n} for $\forall n \in \mathbb{N}$. Then we can define a function as below.

$$
F=F_{n} \quad \text { on } E_{n} \forall n \in \mathbb{N}
$$

Note that F is defined on X.
Lastly, let μ be σ-finite and ν be signed measure. Due to the arguments above, there exist two functions $F^{+}=\frac{d \nu^{+}}{d \mu}$ and $F^{-}=\frac{d \nu^{-}}{d \mu}$, then $F=F^{+}-F^{-}=\frac{d \nu}{d \mu}$ (on X) is the function that we have found.

15.

Proof.
16. Suppose that μ, ν are σ-finite measure on (X, \mathcal{M}) with $\nu \ll \mu$, and let $\lambda=\mu+\nu$. If $f=\frac{d \nu}{d \lambda}$, then $0 \leq f<1 \mu$-a.e. and $\frac{d \nu}{d \mu}=\frac{f}{1-f}$.
Proof. .
Suppose that μ and ν are σ-finite measure on (X, \mathcal{M}), then by EX12, $\frac{d \nu}{d \mu} \geq 0 \mu-a . e .$. Also note that $\lambda=\mu+\nu$ is a σ-finite, so $\frac{d \nu}{d \lambda}=f \geq 0 \lambda$-a.e.. Since $\mu \ll \lambda, f \geq 0 \mu-a . e$. .
We need to prove that $\mu(E)=0$ where $E=\{x: f(x) \geq 1\}$.
Observe the below.

$$
0 \leq \mu(E)=\lambda(E)-\nu(E)=\int_{E} d \lambda-\int_{E} d \nu=\int_{E} d \lambda-\int_{E} f d \lambda=\int(1-f) d \lambda \leq \int_{E} 0 d \lambda=0
$$

Thus, $\mu(E)=0$, so $0 \leq f<1 \mu$-a.e.
Now, for $\forall E \in \mathcal{M}$ observe the below.

$$
\begin{aligned}
\int_{E} \frac{f}{1-f} d \mu & =\int_{E} \frac{f}{1-f} d \lambda-\int_{E} \frac{f}{1-f} d \nu \\
& =\int_{E} \frac{1}{1-f} d \nu-\int_{E} \frac{f}{1-f} d \nu \\
& =\int_{E} \frac{1-f}{1-f} d \nu \\
& =\nu(E)
\end{aligned}
$$

Therefore, $\frac{f}{1-f}=\frac{d \nu}{d \mu}$.
17.

Proof.
18.

Proof.
19.

Proof.
20.

Proof.
21.

Proof.
22.

Proof.
23.

Proof.
24.

Proof.
25.

Proof.
26.

Proof.
27.

Proof.
28. If $F \in N B V$, let $G(x)=\left|\mu_{F}\right|((-\infty, x])$ by showing that $G=T_{F}$ via the following steps.
a. From the definition of $T_{F}, T_{F} \leq G$.
b. $\left|\mu_{F}(E)\right| \leq \mu_{T_{F}(E)}$ when E is an interval, and hence when E is a Borel set.
c. $\left|\mu_{F}\right| \leq \mu_{T_{F}}$, and hence $G \leq T_{F}$.(use Exercise 21.)

Proof. .
Suppose that $F \in N B V$.
For any partition $\delta:-\infty=x_{0}<x_{1}<\cdots<x_{n}=x$, the relation below holds.

$$
G(x)=\left|\mu_{F}\right|((-\infty, x])=\sum_{i=1}^{n}\left|\mu_{F}\right|\left(\left(x_{i-1}, x_{i}\right]\right) \geq \sum_{i=1}^{n}\left|\mu_{F}\left(\left(x_{i-1}, x_{i}\right]\right)\right|=\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|=t_{\delta}
$$

Thus, $\left|\mu_{F}\right|((-\infty, x]) \geq T_{F}$. Recall that $\mu_{F}(E)=\mu_{P}(E)-\mu_{N}(E) \forall E$. Thus, if $\left\{A_{p}, A_{n}\right\}$ is a Hahn decomposition for μ_{F}, observe the below.

$$
\begin{aligned}
& \mu_{F}^{+}(E)=\mu_{F}\left(E \cap A_{p}\right)=\mu_{P}\left(E \cap A_{p}\right)-\mu_{N}\left(E \cap A_{p}\right) \leq \mu_{P}(E) \\
& \mu_{F}^{-}(E)=-\mu_{F}\left(E \cap A_{n}\right)=-\mu_{P}\left(E \cap A_{n}\right)+\mu_{N}\left(E \cap A_{n}\right) \leq \mu_{N}(E)
\end{aligned}
$$

Therefore,

$$
\left|\mu_{F}\right|(E)=\mu_{F}^{+}(E)+\mu_{F}^{-}(E) \leq \mu_{P}(E)+\mu_{N}(E)=\mu_{T_{F}}(E)
$$

It means that

$$
T_{F}(x)=P(x)+N(x)=\mu_{P}((-\infty, x])+\mu_{N}((-\infty, x]) \geq\left|\mu_{F}\right|((-\infty, x])=G(x)
$$

Thus, $T_{F}(x)=G(x)$.
29. If $F \in N B V$ is real-valued, then $\mu_{F}^{+}=\mu_{P}$ and $\mu_{F}^{-}=\mu_{N}$ where P and N are the positive and negative variations of F.(Use Exercise 28.)
Proof. .
We know that $P=\frac{1}{2}(T+F)$ and $N=\frac{1}{2}(T-F)$ which means $\mu_{P}=\frac{1}{2}\left(\mu_{T}+\mu_{F}\right)$ and $\mu_{N}=\frac{1}{2}\left(\mu_{T}-\mu_{F}\right)$.
Now, by Exercise 28, observe the below.

$$
\begin{aligned}
& \mu_{P}(E)=\frac{1}{2}\left(\mu_{T}(E)+\mu_{F}(E)\right)=\frac{1}{2}\left(\left|\mu_{F}\right|(E)+\mu_{F}(E)\right)=\frac{1}{2}\left(2 \mu_{F}^{+}(E)\right)=\mu_{F}^{+}(E) \quad \forall E \\
& \mu_{N}(E)=\frac{1}{2}\left(\mu_{T}(E)-\mu_{F}(E)\right)=\frac{1}{2}\left(\left|\mu_{F}\right|(E)-\mu_{F}(E)\right)=\frac{1}{2}\left(2 \mu_{T}^{-}(E)\right)=\mu_{T}^{-}(E) \quad \forall E
\end{aligned}
$$

30. Construct an increasing function on \mathbb{R} whose set of discontinuities is \mathbb{Q}.

Proof. .
Let $\mathbb{Q}=\left\{q_{n}\right\}_{n=1}^{\infty}$ such that $q_{n}<q_{n+1} \forall n \in \mathbb{N}$ and let f be a function defined as below.

$$
f=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \chi_{\left[q_{n}, \infty\right)} \quad f_{n}==^{l e t} \frac{1}{2^{n}} \chi_{\left[q_{n}, \infty\right)}
$$

Then f is increasing function.
For each irrational point x, since f_{n} is continuous at x and $\left|f_{n}\right| \leq \frac{1}{2^{n}} \forall n \in \mathbb{N}$, by Weierstrass M test, f is continuous at x.

Let $n \in \mathbb{N}$ and $\delta>0$ be given. Let $x=q_{n}+\frac{\delta}{2}$, then $x \in\left(q_{n}-\delta, q_{n}+\delta\right)$, but $\left|f\left(q_{n}\right)-f\left(q_{n}+\frac{\delta}{2}\right)\right| \geq \frac{1}{2^{n+1}}$. Thus, f is discontinuous at every rational number.

31.

Proof.
32.

Proof.
33. If F is increasing on \mathbb{R}, then $F(b)-F(a) \geq \int_{a}^{b} F^{\prime}(t) d t$.

Proof.
Define $F(x)=F(b) \forall x \geq b$, and let $f_{n}(x)=n\left(F\left(x+\frac{1}{n}\right)-F(x)\right)$. Since F is increasing, F is measureable and $f_{n} \geq 0$, so f_{n} is positively measurable function. Also, recalling that F is observe the below.

$$
\lim _{n \rightarrow \infty} \frac{F\left(x+\frac{1}{n}\right)-F(x)}{\frac{1}{n}}=F^{\prime}(x)
$$

Then by Fatou's Lemma,
$\int_{a}^{b} F^{\prime}(t) d t=\int_{a}^{b} \lim _{n \rightarrow \infty} \frac{F\left(t+\frac{1}{n}\right)-F(t)}{\frac{1}{n}} d t \leq \liminf _{n \rightarrow \infty} \int_{a}^{b} \frac{F\left(t+\frac{1}{n}\right)-F(t)}{\frac{1}{n}} d t=\liminf _{n \rightarrow \infty} n \int_{a}^{b} F\left(t+\frac{1}{n}\right)-F(t) d t$
Observe the below

$$
n \int_{a}^{b} F\left(t+\frac{1}{n}\right)-F(t) d t=n\left\{\int_{a+\frac{1}{n}}^{b+\frac{1}{n}} F(t) d t-\int_{a}^{b} F(t) d t\right\}=n\left\{\int_{b}^{b+\frac{1}{n}} F(t) d t-\int_{a}^{a+\frac{1}{n}} F(t) d t\right\}
$$

Since F is increasing,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} n\left\{\int_{b}^{b+\frac{1}{n}} F(t) d t-\int_{a}^{a+\frac{1}{n}} F(t) d t\right\} & \leq \liminf _{n \rightarrow \infty} \frac{\int_{b}^{b+\frac{1}{n}} F(b) d t-\int_{a}^{a+\frac{1}{n}} F(a) d t}{\frac{1}{n}}=\liminf _{n \rightarrow \infty} \frac{F(b) \frac{1}{n}-F(a) \frac{1}{n}}{\frac{1}{n}} \\
& =F(b)-F(a)
\end{aligned}
$$

Therefore,

$$
\int_{a}^{b} F^{\prime}(t) d t \leq F(b)-F(a)
$$

34.

Proof.

35.

Proof.
36. Let G be a continuous increasing function on [a.b] and let $G(a)=c, G(b)=d$.
a. If $E \subset[c, d]$ is a Borel set, then $m(E)=\mu_{G}\left(G^{-1}(E)\right.$). (First consider the case where E is an interval.)
b. If f is a Borel measurable and integrable function on $[c, d]$, then $\int_{c}^{d} f(y) d y=\int_{a}^{b} f(G(x)) d G(x)$. In particular, $\int_{c}^{d} f(y) d y=\int_{a}^{b} f(G(x)) G^{\prime}(x) d x$ if G is absolutely continuous.
c. The validity of (b) may fail if G is merely right continuous rather than continuous.

Proof. .
a.

Let $A=\left\{E \subset[c, d] \mid m(E)=\mu_{G}\left(G^{-1}(E)\right)\right\}$, and let I be an interval such that $\inf I=a<\infty$ and $\sup I=b<\infty$. Note that $G^{-1}(I)$ is an interval since G is continuous. And since G is increasing, $\inf G^{-1}(I)=G^{-1}(a)$ and $\sup G^{-1}(I)=G^{-1}(b)$. Thus, observe the below.

$$
\mu_{G}\left(G^{-1}(I)\right)=G\left(G^{-1}(b)\right)-G\left(G^{-1}(a)\right)=b-a=m(I)
$$

Thus, for any interval $I, I \in A$.
Also, note the below.

$$
\begin{aligned}
E \in A & \Longrightarrow \mu_{G}\left(G^{-1}\left(E^{c}\right)\right)=\mu_{G}\left(\left(G^{-1}(E)\right)^{c}\right)=\mu_{G}([a, b])-\mu_{G}\left(G^{-1}(E)\right)=m([a, b])-m(E)=m\left(E^{c}\right) \\
& \Longrightarrow E^{c} \in A
\end{aligned}
$$

If $\left\{E_{n}\right\}_{n \in \mathbb{N}} \subset A$ is a sequence of disjoint sets,

$$
\begin{aligned}
& \mu_{G}\left(G^{-1}\left(\bigcup_{n \in \mathbb{N}} E_{n}\right)\right)=\mu_{G}\left(\bigcup_{n \in \mathbb{N}} G^{-1}\left(E_{n}\right)\right)=\sum_{n \in \mathbb{N}} \mu_{G}\left(G^{-1}\left(E_{n}\right)\right)=\sum_{n \in \mathbb{N}} m\left(E_{n}\right)=m\left(\bigcup_{n \in \mathbb{N}} E_{n}\right) \\
& \Longrightarrow \bigcup_{n \in \mathbb{N}} E_{n} \in A
\end{aligned}
$$

Thus, A is an σ-algebra containing all interval which means $\mathcal{B}_{[c, d]} \subset A$. So we are done.
b.

Observe the below.

$$
\int_{c}^{d} \chi_{E}(y) d y=m(E)=\mu_{G}\left(G^{-1}(E)\right)=\int_{a}^{b} \chi_{G^{-1}(E)}(x) d \mu_{G}(x)=\int_{a}^{b} \chi_{E}(G(x)) d G(x)
$$

where χ_{E} is a characteristic function and E is in $\mathcal{B}_{[c, d]}$.
Then, if $\phi=\sum_{k=1}^{n} a_{k} \chi_{E_{k}}$ is a positive $\mathcal{B}_{[c, d]}-$ measurable simple function,
$\int_{c}^{d} \phi(y) d y=\int_{c}^{d} \sum_{k=1}^{n} a_{k} \chi_{E_{k}}(y) d y=\sum_{k=1}^{n} a_{k} \int_{c}^{d} \chi_{E_{k}}(y) d y=\sum_{k=1}^{n} a_{k} \int_{a}^{b} \chi_{E_{k}}(G(x)) d G(x)=\int_{a}^{b} \phi(G(x)) d G(x)$.
So it is true for any positive $\mathcal{B}_{[c, d]}$-measurable simple function.
Also, due to monotone convergence theorem, it is true for positive $\mathcal{B}_{[c, d]}$-measurable function, f, as we can observe below.

$$
\int_{c}^{d} f(y) d y=\lim _{n \rightarrow \infty} \int_{c}^{d} \phi_{n}(y) d y=\lim _{n \rightarrow \infty} \int_{a}^{b} \phi_{n}(G(x)) d G(x)=\int_{a}^{b} f(G(x)) d G(x)
$$

Where $\left\{\phi_{n}\right\}_{n \in \mathbb{N}}$ is an increasing sequence of simple functions converging to f.
As for the Borel measurable integrable function f, we need to firstly observe the below.

$$
\int_{a}^{b}|f(G(x))| d G(x)=\int_{c}^{d}|f(y)| d y<\infty
$$

From here, by definition of integration of integrable function, we get the below.

$$
\int_{c}^{d} f(y) d y=\int_{c}^{d} f^{+}(y) d y-\int_{c}^{d} f^{-}(y) d y=\int_{a}^{b} f^{+}(G(x)) d G(x)-\int_{a}^{b} f^{-}(G(x)) d G(x)=\int_{a}^{b} f(G(x)) d G(x)
$$

What if G is absolutely continuous?
Note that $\mu_{G}([a, x])=\int_{a}^{x} G^{\prime}(x) d x$ and $G^{\prime}(x) \in L^{+}$since G is increasing. By the homework question 14 from chapter 2,

$$
\int_{c}^{d} f(y) d y=\int_{a}^{b} f(G(x)) d G(x)=\int_{a}^{b} f(G(x)) G^{\prime}(x) d x
$$

c.

Think of the situation when $f(x)=y$ and $G(x)=\chi_{[0, \infty)}$. Then f is continuous so Borel measurable on $[0,1]$ and G is increasing right continuous function, but since $G(-1)=0$ and $G(1)=1$

$$
\int_{0}^{1} y d y=\frac{1}{2} \neq 1=1-0=G(1)-G\left(0^{-}\right)=\mu_{G}([0,1])=\int_{-1}^{1} G(x) d G(x)=\int_{-1}^{1} f(G(x)) d G(x)
$$

37.

Proof.

38.

Proof.
39. If $\left\{F_{j}\right\}$ is a sequence of nonnegative increasing function on [a,b] such that $F(x)=\sum_{n=1}^{\infty} F_{j}(x)<\infty$ for all $x \in[a, b]$, then $F^{\prime}(x)=\sum_{j=1}^{\infty} F_{j}^{\prime}(x)$ for a.e. $x \in[a, b]$.(It suffices to assume $F_{j} \in N B V$. Consider the measures $\mu_{F_{j}}$)

Proof. .

We can always assume that $F_{j} \in N B V$ by redefine the function as below.

$$
\hat{F}_{j}(x)=F_{j}\left(x^{+}\right)
$$

then $\hat{F}_{j}^{\prime}=F_{j}^{\prime}$ a.e. and let $\overline{F_{j}}=\hat{F}_{j}(x)-\hat{F}_{j}(a)$ and

$$
\begin{array}{ll}
\overline{F_{j}}(x)=0 & \forall x<a \\
\overline{F_{j}}(x)=\overline{F_{j}}(b) & \forall x>b
\end{array}
$$

Then $\overline{F_{j}} \in N B V$ and ${\overline{F_{j}}}^{\prime}=\hat{F}_{j}^{\prime}=F_{j}^{\prime}$.
Assume that $F_{j} \in N B V$, then there is a Lebesgue decomposition of $\mu_{F_{j}}$ and μ_{F} with respect to Lebesgue measure, m, as below.

$$
\mu_{F_{j}}=\lambda_{j}+\rho_{j}
$$

where $\lambda_{j} \perp m$, and $\rho_{j} \ll m$. Let's define two measures as below.

$$
\rho=\sum_{j=1}^{\infty} \rho_{j} \quad \lambda=\sum_{j=1}^{\infty} \lambda_{j}
$$

Let's prove that $\lambda \perp m$.
First suppose that $\left\{A_{j}, B_{j}\right\}$ is a partition for λ_{j} where A_{j} is λ_{j}-null and B_{j} is m-null. Then $\bigcup_{j=1}^{\infty} B_{j}$ is m-null since

$$
m\left(\bigcup_{j=1}^{\infty} B_{j}\right) \leq \sum_{j=1}^{\infty} m\left(B_{j}\right)=0
$$

Automatically, $\bigcap_{j=1}^{\infty} A_{j}$ is λ-null set and $\left\{\bigcap_{j=1}^{\infty} A_{j}, \bigcup_{j=1}^{\infty} B_{j}\right\}$ is a partition. So $\lambda \perp m$.
Let's prove that $\rho \ll m$.
Observe the below.

$$
\rho((-\infty, x])=\sum_{j=1}^{\infty} \rho_{j}((-\infty, x])=\sum_{j=1}^{\infty} \int_{-\infty}^{x} \frac{d \rho_{j}}{d m} d m=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \int_{-\infty}^{x} \frac{d \rho_{j}}{d m} d m=\lim _{n \rightarrow \infty} \int_{-\infty}^{x} \sum_{j=1}^{n} \frac{d \rho_{j}}{d m} d m
$$

Since F_{j} are increasing functions, so since $F_{j}^{\prime} \geq 0$, by monotone convergence theorem,

$$
\rho((-\infty, x])=\lim _{n \rightarrow \infty} \int_{-\infty}^{x} \sum_{j=1}^{n} \frac{d \rho_{j}}{d m} d m=\int_{-\infty}^{x} \lim _{n \rightarrow \infty} \sum_{j=1}^{n} \frac{d \rho_{j}}{d m} d m=\int_{-\infty}^{x} \sum_{j=1}^{\infty} \frac{d \rho_{j}}{d m} d m
$$

Thus, $\rho \ll m$.
Now observe the below.

$$
\mu_{F}((x, y])=\sum_{j=1}^{\infty} \mu_{F_{j}}((x, y])=\sum_{j=1}^{\infty} \lambda((x, y])+\sum_{j=1}^{\infty} \rho_{j}((x, y])=\lambda((x, y])+\rho((x, y])
$$

Since μ_{F} and m are σ-finite, the Lebesgue decomposition is unique.
Recall that $F_{j}^{\prime}(x)=\frac{d \rho_{j}}{d m} m-a . e$, then

$$
F^{\prime}(x)=\frac{d \rho}{d m}=\sum_{j=1}^{\infty} \frac{d \rho_{j}}{d m}=\sum_{j=1}^{\infty} F^{\prime}(x) \quad m-a . e .
$$

40. Let F denote the Cantor function on $[0,1]($ see $\oint 1.5)$, and set $F(x)=0$ for $x<0$ and $F(x)=1$ for $x>1$. Let $\left\{\left[a_{n}, b_{n}\right]\right\}$ be an enumeration of the closed subintervals of [0,1] with rational endpoints, and let $F_{n}(x)=F\left(\left(x-a_{n}\right) /\left(b_{n}-a_{n}\right)\right)$. Then $G=\sum_{n=1}^{\infty} \frac{F_{n}}{2^{n}}$ is continuous and strictly increasing on [0,1], and $G^{\prime}=0$ a.e.(Use Ex 39.)

Proof. .

Observe that $F_{n}(x) \leq 1 \forall x \in[0,1]$, so by Weierstrass M-test, the series, $\sum_{n=1}^{\infty} 2^{-n} F_{n}$ converges uniformly on $[0,1]$. Since each F_{n} is continuous, G is also continuous.

Let $a, b \in[0,1]$ such that $a<b$. Then there exists k such that $a<a_{k}<b_{k}<b$. Observe the below.

$$
G(b)-G(a)=\sum_{j=1}^{\infty} 2^{-n}\left\{F_{n}(b)-F_{n}(a)\right\} \geq \frac{1}{2^{k}}\left\{F_{k}(b)-F_{k}(a)\right\}=\frac{1}{2^{k}}>0
$$

Thus, G is strictly increasing on $[0,1]$.
By Exercise 39, since F_{n} is a sequence of nonnegative increasing functions,

$$
G^{\prime}(x)=\sum_{j=1}^{\infty} 2^{-n} F_{n}^{\prime}(x)=0 \quad m-\text { a.e } .
$$

since $F_{n}^{\prime}=0 m$-a.e.
41. Let $A \subset[0,1]$ be a Borel set such that $0<m(A \cap I)<m(I)$ for every subinterval I of $[0,1]$ (Exercise 33, Chapter 1)
a. Let $F(x)=m([0, x] \cap A)$. Then F is absolutely continuous and strictly increasing on $[0,1]$, but $F^{\prime}=0$ on a set of positive measure.
b. Let $G(x)=m([0, x] \cap A)-m([0, x] \backslash A)$. Then G is absolutely continuous on $[0,1]$, but G is not monotone on any subinterval of $[0,1]$.

Proof. .
a.

Note the below.

$$
F(x)=m([0, x] \cap A)=\int_{0}^{x} \chi_{A} d m
$$

Then clearly, F is absolutely continuous.
And for any $a, b \in[0,1]$ with $a<b$, observe the below.

$$
F(b)-F(a)=m(A \cap[a, b])>0
$$

by given condition. So F is strictly increasing.
However, observe the below.

$$
F^{\prime}(x)=\chi_{A}(x) \quad m-a . e .
$$

Thus, $F^{\prime}(x)=0$ on $[0,1] \cap A^{c}$. And following relation from the given condition shows it is a set of positive measure.

$$
m\left([0,1] \cap A^{c}\right)=m([0,1])-m([0,1] \cap A)>0
$$

b.

Note the below.

$$
G(x)=\int_{[0, x]} \chi_{A} d m-\int_{[0,1]} \chi_{A^{c}} d m=\int_{[0,1]} \chi_{A}-\chi_{A^{c}} d m
$$

Thus, G is absolutely continuous on $[0,1]$ and $G^{\prime}=\chi_{A}-\chi_{A^{c}} m-$ a.e.
And observe the below.

$$
\begin{aligned}
& G^{\prime}(x)=\chi_{A}(x)-\chi_{A^{c}}(x)=1-0=1 \quad \text { on a.e. }[0,1] \cap A \\
& G^{\prime}(x)=\chi_{A}(x)-\chi_{A^{c}}(x)=0-1=-1 \quad \text { on a.e. }[0,1] \cap A^{c}
\end{aligned}
$$

Now, for any subinterval $I \in[0,1]$, observe the below.

$$
\begin{aligned}
& m(I \cap A \cap[0,1])=m(I \cap A)>0 \\
& m\left(I \cap A^{c} \cap[0,1]\right)=m([0,1] \cap I)-m([0,1] \cap A \cap[0,1])=m(I)-m(A \cap I)>0
\end{aligned}
$$

Therefore, G is not monotone on any subinterval $I \subset[0,1]$
42.

Proof.
43.

Proof.
44.

Proof.
45.

Proof.
46.

Proof.

47.

Proof.
48.

Proof.
49.

Proof.
50.

Proof.
\square
51.

Proof.
52.

Proof.
53.

Proof.
54.

Proof. \square
55.

Proof.
56.

Proof.
57.

Proof.
58.

Proof.
59.

Proof.
60.

Proof.
61.

Proof.
62.

Proof.
63.

Proof.
64.

Proof.

