

Jarrett Shortcut Method: t_c

Example: For a watershed drainage area of 5 acres with an elevation drop of 10 ft over a flow length of 500 ft, what is the average slope and the Jarrett Maximum Area?

Slope, S = H / L_{flow} = 10 / 500 = 0.02 ft/ft

Jarrett Max Area, A_{Jarrett} = 460 (0.02) = 9.2 acres

Since the watershed drainage area of 5 acres < 9.2 acres, use $t_c = 5 \text{ min}$

Example: For a watershed drainage area of 7 acres with an elevation drop of 8 ft over a flow length of 720 ft, what is the average slope and the Jarrett Maximum Area?

Slope, S = H / L_{flow} = 8 / 720 = 0.011 ft/ft

Jarrett Max Area, $A_{Jarrett} = 460 (0.011) = 5.1 acres$

Since the watershed drainage area of 7 acres > 5.1 acres, the Jarrett Shortcut does not apply, and a different method must be used.

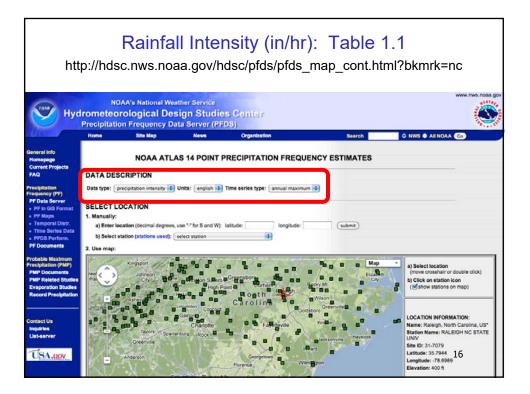
13

NRCS Segmental Method (TR-55) Shallow Concentrated Flow

Unpaved Areas: $t_c = 0.001 (L_{flow}) / S^{0.53}$ (Equation 1.5)Paved Areas: $t_c = 0.0008 (L_{flow}) / S^{0.53}$ (Equation 1.6) t_c = time of concentration in minutes (min),
 L_{flow} = flow length from most remote point to point of interest (ft),
S = average watershed slope (ft/ft).Note: Kirpich (1940) is another method

NRCS Segmental Method (TR-55) Shallow Concentrated Flow

Example: For a construction site watershed drainage area of 10 acres with an elevation drop of 12 ft over a flow length of 1000 ft, estimate time of concentration.


Slope, S = H / L_{flow} = 12 / 1000 = 0.012 ft/ft

Assume that the area is unpaved, therefore use Equation 1.5:

 $t_c = 0.001 (L_{flow}) / S^{0.53} = 0.001 (1000) / 0.012^{0.53} = 10.4 minutes$

Use $t_c = 10$ minutes

If the elevation drop for this site was 30 ft, the calculated value for t_c would be 6.4 minutes. It that case, use a t_c value of 5 minutes for determining rainfall intensity since the lower t_c produces a higher rainfall intensity and a more conservative estimate of peak runoff rate and basin size.

			Ra	infall D)ata			
	Nood	Intone	ity by B	Return	Doriod	land [Juratio	n
	Neeu	IIILEIIS	пу бу г	<i>Letuin</i>	renou	anu L	uialioi	
	Li	sted fo	or some	e locati	ons in	Table	1.1	
		POINT	F PRECIPIT/	ATION FREG	QUENCY (P	F) ESTIMA	ES	
		WITH		E INTERVALS AN		ARY INFORMATI	ON	
		WITHS		E INTERVALS AN AA Atlas 14, Volu		ARY INFORMATI	ON	
			NO	AA Atlas 14, Volu	me 2, Version 3	ARY INFORMATI	ON	
PF	tabular	WITH S	NO		me 2, Version 3	ARY INFORMATI	ON	Print
PF		PF graphica	NO I Sup	AA Atlas 14, Volu	me 2, Version 3			
PF		PF graphica	NO I Sup	AA Atlas 14, Volu plementary inform ncy estimates	me 2, Version 3 hation with 90% cc	onfidence int		
PF	AMS-ba	PF graphica	NO	AA Atlas 14, Volu plementary inform ncy estimates Annual exce	me 2, Version 3 nation with 90% cc edance probab	onfidence int ility (1/years)	ervals (in inc	:hes/hour) ¹
	AMS-ba	PF graphica ased precipit	NO	AA Atlas 14, Volu plementary inform ncy estimates Annual exce 1/25	me 2, Version 3 hation with 90% cc edance probab 1/50	onfidence int ility (1/years) 1/100	ervals (in inc	thes/hour) ¹ 1/500
	AMS-ba	PF graphica	NO	AA Atlas 14, Volu plementary inform ncy estimates Annual exce	me 2, Version 3 nation with 90% cc edance probab	onfidence int ility (1/years)	ervals (in inc	:hes/hour) ¹
Duration	AMS-ba 1/2 5.18 (4.76(5.56) 4.15	PF graphica ased precipit 1/5 6.34 (5.83:6.91) 5.08	NO I Sup action frequer 1/10 7.14 (6.547.76) 5.71	AA Atlas 14, Volu plementary inform ncy estimates Annual exce 1/25 7.92 (7.2218.63) 6.31	me 2, Version 3 hation with 90% cc edance probab 1/50 8.46 (7.689.19) 6.73	00000000000000000000000000000000000000	ervals (in inc 1/200 9.34 (8.40:10.2) 7.41	thes/hour) ¹ 1/500 9.79 (8.74±10.7) 7.75
Duration 5-min 10-min	AMS-ba 1/2 5.18 (4.76:5.66)	PF graphica ased precipit 1/5 6.34 (5.83:6.91)	NO I Sup tation frequer 1/10 7.14 (6.54:7.76)	AA Atlas 14, Volu plementary inform ncy estimates Annual exce 1/25 7.92 (7.22:8.63)	me 2, Version 3 hation with 90% cc edance probab 1/50 8.46 (7.68:9.19)	0nfidence int ility (1/years) 1/100 8.94 (8.08:9.72)	ervals (in inc 1/200 9.34 (8.4010.2)	thes/hour) ¹ 1/500 9.79 (8.74⊐0.7)
Duration 5-min	AMS-ba 1/2 5.18 (4.76:5.66) 4.15 (3.82:4.53)	PF graphica ased precipit 1/5 6.34 (5.83.6.91) 5.08 (4.67.5.54)	NO 1 Sup 1/10 7.14 (6.54.7.76) 5.71 (5.23.6.22)	AA Atlas 14, Volu plementary inform incy estimates Annual exce 1/25 (7.22.8.63) (5.76:6.87)	me 2, Version 3 hation with 90% cc edance probab 1/50 (7.88.9.19) 6.73 (6.11.7.33)	Difidence int ility (1/years) 1/100 8.94 (8.08.9.72) 7.10 (6.41.7.72)	1/200 9.34 (8.40.10.2) 7.41 (6.66:3.07)	thes/hour) ¹ 1/500 9.79 (8.74⊡0.7) 7.75 (6.91⊞.45)
Duration 5-min 10-min	AMS-ba 1/2 5.18 (4.76:5.66) 4.15 (3.82:4.53) 3.48	PF graphica ased precipit 1/5 6.34 (5.8316.91) 5.08 (4.67.5.54) 4.28	NO 1 Sup 1/10 7.14 (6.54.7.76) 5.71 (5.23: 6.22) 4.81	AA Atlas 14, Volu plementary inform ncy estimatess Annual exce 1/25 7.92 (7.22:8.63) 6.31 (5.76:87) 5.33	me 2, Version 3 ation with 90% ccc edance probab 1/50 8.46 (7.68:9.19) 6.73 (6.117.33) 5.68	Denfidence int ility (1/years) 1/100 8.94 (8.08/9.72) 7.10 (6.41/7.72) 5.98	ervals (in inc 1/200 9.34 (8.40:10.2) 7.41 (6.66:3.07) 6.23	1/500 9.79 (8.74±0.7) 7.75 (6.91±8.45) 6.50

Table 1.2. Rational Meth	od C for Agricultural A	Areas. (Taken from Schwa	ab et al., 1971).		
Vegetation	Runoff Coefficient, C				
Slope	Sandy Loam	Tight Clay			
Forest/wooded					
0-5% slope	0.10	0.30	0.40		
5-10% slope	0.25	0.35	0.50		
10-30% slope	0.30	0.50	0.60		
Pasture/grass					
0-5% slope	0.10	0.30	0.40		
5-10% slope	0.16	0.36	0.55		
10-30% slope	0.22	0.42	0.60		
Cultivated/bare soil					
0-5% slope	0.30	0.50	0.60		
5-10% slope	0.40	0.60	0.70		
10-30% slope	0.52	0.72	0.82		

Area-Weighted Average C value

Example: Determine the weighted average runoff coefficient, C, for a 4-acre watershed with 1 acre of grassy field on clay soil at 3% slope and 3 acres of active construction on clay soil at 4% slope.

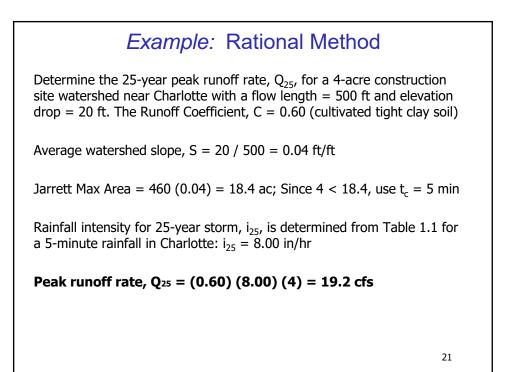
Land Cover	Α	С	(A) (C)
Pasture	1	0.40	0.40
Bare Soil	3	0.60	1.80
TOTAL	sum = 4		sum = 2.20

Weighted C = 2.20 / 4 = 0.55

For this example, estimate Q if rainfall intensity, i = 5.80 in/hr:

Q = (C) (i) (A) = (0.55) (5.80) (4) = 12.8 cfs

19


Example: Rational Method


Determine the 10-year peak runoff rate, Q_{10} , for a 5-acre construction site watershed near Asheville with a flow length = 600 ft and elevation drop = 36 ft. The land uses are shown below:

Land Use	А	С	(A) (C)
Forest, clay (11%)	1	0.60	0.60
Bare soil, clay (7%)	3	0.70	2.10
Grass, clay (3%)	1	0.40	0.40
	sum = 5 ac		sum = 3.10

Weighted Runoff Coefficient: C = 3.10 / 5 = 0.62Average watershed slope, S = 36 / 600 = 0.06 ft/ft Jarrett Max Area = 460 (0.06) = 27.6 ac; Since 5 < 27.6, use $t_c = 5$ min Rainfall intensity for 10-year storm, i_{10} , is determined from Table 1.1 for a 5-minute rainfall in Asheville: $i_{10} = 6.96$ in/hr

Peak runoff rate, Q₁₀ = (0.62) (6.96) (5) = 21.6 cfs

Worksheet

1.1 Estimate the 25-year return period peak runoff rate from a watershed near Greensboro that is 5x1.96 inches on a map (scale: 1inch=200ft). The watershed has an average slope of 5.5% and a weighted average runoff coefficient of 0.65.

C = 0.65

A = 9 ac (1000ft x 392 ft)

 $t_c = 5 \text{ min } [A_{Jarrett} = 460 (0.055) = 25 \text{ which is greater than 9}]$ $i_{25} = 7.46 \text{ in/hr}$

Q₂₅ = (C) (i) (A) = (0.65) (7.46 in/hr) (9 ac) = 44 cfs

23

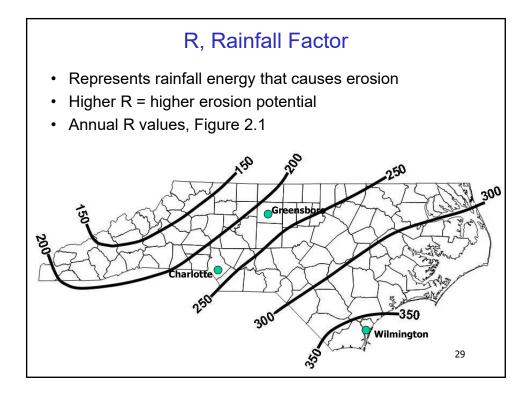
Worksheet

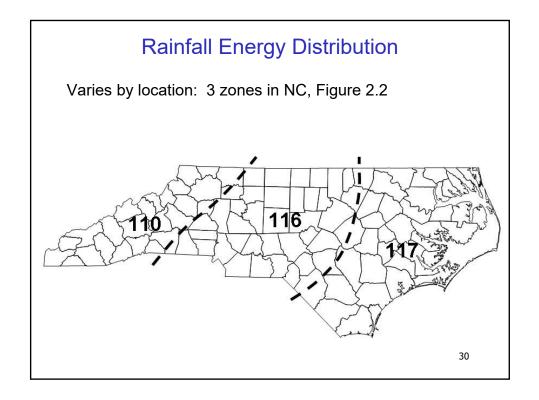
1.2. Estimate the 10-year peak runoff rate, Q_{10} , for a 20-acre construction site watershed near Raleigh with a flow length = 2000 ft and elevation drop = 60 ft. The land uses are half forest and half bare soil. Assume tight clay.

Land Use	A	С	(A) (C)
Forest	10	0.40	4.0
Bare soil	10	0.60	6.0
	sum = 20 ac		sum = 10.0

Weighted Runoff Coefficient: C = 10 / 20 = 0.5 Average watershed slope, S = 60 / 2000 = 0.03 ft/ft Jarrett Max Area = 460 (0.03) = 13.8 ac; Since 13.8 < 20, use other method Segmental Method: $t_c = 0.001 (2000) / 0.03^{0.53} = 12.8$ min; use $t_c = 10$ min Rainfall intensity, $i_{10} = 5.58$ in/hr

Peak runoff rate, $Q_{10} = (0.5) (5.58) (20) = 56$ cfs




Factors Influencing Erosion

- Climate: Precipitation, freezing
- Soil Characteristics:
 - Texture
 - Structure
 - Organic matter
 - Permeability
- Land Shape:
 - Slope
 - Length of Slope
- Land Use:
 - Land cover, BMPs

<text><equation-block><text><text><text><text><text>

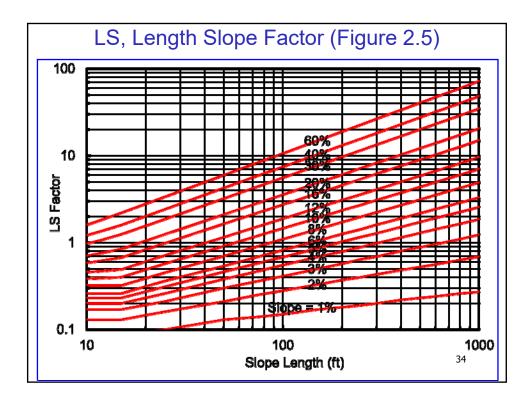
31

Rainfall Energy Distribution

Varies by month due to storm intensity, Table 2.1

Example (Piedmont): April-July (4 months)

Partial-year fraction = 0.06+0.07+0.11+0.20 = 0.49


	Geographic Reg	ion, Figure 2.2
Month	110 & 116	117
Jan	0.03	0.02
Feb	0.04	0.02
Mar	0.05	0.03
Apr	0.06	0.04
May	0.07	0.06
Jun	0.11	0.14
Jul	0.20	0.23
Aug	0.21	0.20
Sep	0.11	0.15
Oct	0.05	0.06
Nov	0.04	0.03
Dec	0.03	0.02

Examples: Rainfall Factor, RDetermine Partial-Year R for Raleigh in March through May:Figure 2.1: Annual R value for Raleigh is 270Figure 2.2: Raleigh is located in Region 116Table 2.1: March-May, fraction R is 0.05 + 0.06 + 0.07 = 0.18Partial-year R for March-May (3 months) = (0.18) (270) = 49If the construction period is July-September:Partial-year R = (0.20 + 0.21 + 0.11) (270) = 140Determine Partial-Year R for Charlotte in April through July:Figure 2.1: Annual R value for Charlotte is 230Figure 2.2: Charlotte is located in Region 116Table 2.1: Apr-Jul, fraction R is 0.06 + 0.07 + 0.11 + 0.20 = 0.44Partial-year R for Apr-Jul (4 months) = (0.44) (230) = 10132

K, Soil Erodibility Factor

- · Represents soil's tendency to erode
- NRCS tables for most soils (Table 2.2)

	B-Horizon				
	Permeability	RUSLE	RUSLE	RUSLE	RUSLE
HSG	in/hr	Т	K(A)	K(B)	K(C)
В	0.6 to 2.0	2	0.15	0.24	0.24
В	0.6 to 2.0	4	0.24	0.28	0.28
А	2.0 to 6.0	5	0.10	0.10	0.10
В	0.6 to 2.0	3	0.15	0.24	0.15
D	0.2 to 6.0			0.24	0.24
В	0.6 to 2.0	4	0.24	0.28	- 3 3
	B B A B D	Permeability HSG in/hr B 0.6 to 2.0 B 0.6 to 2.0 A 2.0 to 6.0 B 0.6 to 2.0	Permeability RUSLE HSG in/hr T B 0.6 to 2.0 2 B 0.6 to 2.0 4 A 2.0 to 6.0 5 B 0.6 to 2.0 3 D 0.2 to 6.0	Permeability RUSLE RUSLE HSG in/hr T K(A) B 0.6 to 2.0 2 0.15 B 0.6 to 2.0 4 0.24 A 2.0 to 6.0 5 0.10 B 0.6 to 2.0 3 0.15 D 0.2 to 6.0	Permeability RUSLE RUSLE RUSLE HSG in/hr T K(A) K(B) B 0.6 to 2.0 2 0.15 0.24 B 0.6 to 2.0 4 0.24 0.28 A 2.0 to 6.0 5 0.10 0.10 B 0.6 to 2.0 3 0.15 0.24 D 0.2 to 6.0 0.24

CP, Cover-Conservation Practices	s Facto	r
Represents the effect of land cover & direction o	f rills/char	nnels
Table 2.3 lists CP values (use high values)	letters o referen	
Bare soil condition	CP	1
Fill		1
Packed, smooth	1.00 a	1
Fresh disked	0.95 a	1
Rough (offset disk)	0.85 a	1
Cut		1
Loose to 12 inches, smooth	0.90 b	1
Loose to 12 inches, rough	0.80 b	1
Compacted by bulldozer	1.00 b	1
Compacted by bulldozer and tracked parallel to the contour	0.50 c	1
Rough, irregular tracked all directions	0.90 b]
Surface Condition with No Cover		
Compact and smooth, scraped w/ bulldozer or scraper up / down hill	1.3 d	
Compact and smooth, raked w/ bulldozer root rake up and down hill	1.2 d	
Compact and smooth, scraped w/bulldozer or scraper across slope	1.2 d	
Compact and smooth, raked w/bulldozer root rake across slope	0.9 d	35
Loose as a disked plow laver	1.0 d	כוב

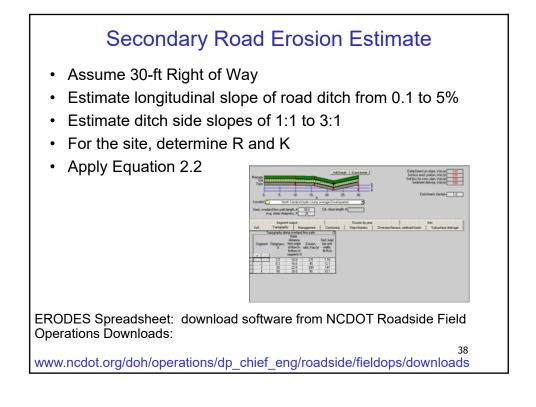
Example: Erosion Estimate

Estimate erosion from a 5-acre site in Raleigh during March-May with R = 49. The site is 600 ft long with elevation drop of 48 ft, and soil type is Creedmoor.

Average slope = 48 / 600 = 0.08 ft/ft (8% slope)

Table 2.2: K value is 0.32 (assume B Horizon – subsoil)

Figure 2.3: LS value is 3.5 (slope length = 600 ft; slope = 8%)


Table 2.3: CP value is 1.0 (assume loose surface with no cover)

Erosion per acre = (49) (0.32) (3.5) (1.0) = 54.9 tons/acre (March-May)

Total erosion for 5 acres = (54.9)(5) = 274.5 tons (March-May)

If the construction period is July-September (partial-year R = 140): Erosion per acre = (140) (0.32) (3.5) (1.0) = 157 tons/acre (Jul-Sep) Total erosion for 5 acres = (157) (5) = 786 tons (Jul-Sep)

Secondary Road Erosion Est	imate	
$V_{ditch} = (C_{ditch}) (R) (K) (S_{ditch})$ (Equation 2.2)		
V _{ditch} = secondary road sediment volume expected in cubic feet per acre (ft³/ac),	Side Slope	C _{ditch}
C _{ditch} = regression constant for secondary roads	4:1	291
dependent on ditch side slopes,	3.5:1	341
R = Rainfall Factor for the duration of construction, K = Soil Erodibility Factor (B or C horizon),	3:1	399
$S_{ditch} = slope of secondary road ditch (ft/ft).$	2.5:1	467
	2:1	549
Values of C _s are determined using Table 2.4 depending	1.5:1	659
on road ditch side slope.	1:1	808
	0.75:1	916
	0.5:1	1067
	3	7

Example: Secondary Road Erosion

Estimate erosion volume from a 2-acre secondary roadway construction during June-July in Carteret County with Goldsboro soil. The road ditch has a slope of 0.05 ft/ft and 2:1 side slopes.

Figures 2.1 and 2.2: Annual R = 340, and Carteret County is in Region 117 Table 2.1: During June-July, partial-year R = (0.14 + 0.23)(340) = 126Table 2.2: K value is 0.24 (assume B Horizon – subsoil) Table 2.4: C_{ditch} is 549 for 2:1 ditch side slopes V_{ditch} = $(549)(126)(0.24)(0.05) = 830 \text{ ft}^3/\text{ac}$ (Jun-Jul) Total erosion for 2 acres = $(830)(2) = 1,660 \text{ ft}^3$ (Jun-Jul) To convert to cubic yards: Erosion = 1,660 / 27 = 61 cubic yards (Jun-Jul)

39

Example: Secondary Road Erosion

Estimate erosion volume from a 1.5-acre secondary roadway construction during September-October in Halifax County with Rains soil. The road ditch has a slope of 0.02 ft/ft and 3:1 side slopes.

Figures 2.1 and 2.2: Annual R = 270, and Halifax County is in Region 117 Table 2.1: During Sep-Oct, partial-year R = (0.15 + 0.06) (270) = 57Table 2.2: K value is 0.24 (assume B Horizon – subsoil) Table 2.4: C_{ditch} is 399 for 3:1 ditch side slopes V_{ditch} = (399) (57) (0.24) (0.02) = 109 ft³/ac (Sep-Oct) Total erosion for 1.5 acres = (109) (1.5) = 164 ft³ (Sep-Oct) To convert to cubic yards: Erosion = 164 / 27 = 6.1 cubic yards (Sep-Oct)

Worksheet

2.1. Estimate erosion from a 5-acre site in Wilmington during June-October with Cowee soil. The site is 800 ft long with elevation drop of 24 ft.

Average slope = 24 / 800 = 0.03 ft/ft (3% slope) Figure 2.1 & 2.2: Annual R value is 350 and Region 117 Partial-year R = (0.14+0.23+0.20+0.15+0.06) (350) = 273 Table 2.2: K value is 0.28 (assume B Horizon – subsoil) Figure 2.3: LS value is 1.1 (slope length = 800 ft; slope = 3%) Table 2.3: CP value is 1.0 (assume loose surface with no cover) Erosion per acre = (273) (0.28) (1.1) (1.0) = 84.1 tons/acre (Jun-Oct) Total erosion for 5 acres = (84.1) (5) = 420 tons (Jun-Oct)

41

Worksheet

2.2. Estimate erosion volume from a 2-acre secondary roadway construction during September-October in Catawba County with Helena soil. The road ditch has a slope of 0.02 ft/ft and 1.5:1 side slopes.

Figures 2.1 & 2.2: Annual R = 180, and Region is 116 Table 2.1: Sep-Oct, partial-year R = (0.11 + 0.05) (180) = 29 Table 2.2: K value is 0.28 (assume B Horizon – subsoil) Table 2.4: C_{ditch} is 659 for 1.5:1 ditch side slopes V_{ditch} = (659) (29) (0.28) (0.02) = 107 ft³/ac (Sep-Oct) Total erosion for 2 acres = (107) (2) = 214 ft³ (Sep-Oct) To convert to cubic yards: Erosion = 214 / 27 = 8 cubic yards (Sep-Oct)

43

MODULE 3. Regulatory Issues

- 1. NC Sediment Pollution Control Act (1973)
- 2. NPDES: NCG01 General Stormwater Permit
- 3. Jurisdictional Areas Conditions and Restrictions
 - US Army Corps of Engineers
 - NC DEQ Division of Water Resources
- 4. Environmentally Sensitive Area (ESA) & Riparian Buffers
- 5. Reclamation Plans: Staging, Borrow, Waste

	Roadside	Environme	ntal Uni	it Soil a	and Wat	er Sectior
http://ncdot.	gov/doh/operatio	ns/dp%5Fchief%	5Feng/roa	<u>idside/soi</u>	<u>%5Fwater/s</u>	pecial_provisio
Nor	th Carolina Departmen adside Enviror	t of Transportation mental Unit Soil & Water Section	HOME	CONTACT	SEARCHI	► NC DOT ④ NC DOH ■ NC GOV
		Erosion and	Sediment Contro	ol Special P	rovisions Details	s Downloads Li
HOME » Spec	Provisions					1000
3:24 F	on and Sediment (PM 1/10/2008 The below o ave Adobe Acrobat you ma	documents are in 🖹 PD		quire Adobe A	crobat. If you do	
FOR	E: CONTACT THE S EROSION CONTRO					
0	303(d) Listed Streams Borrow Pit Dewatering B Central Coastal Plain C	A STATE AND A STATE OF	UA) Rules			
Ű						

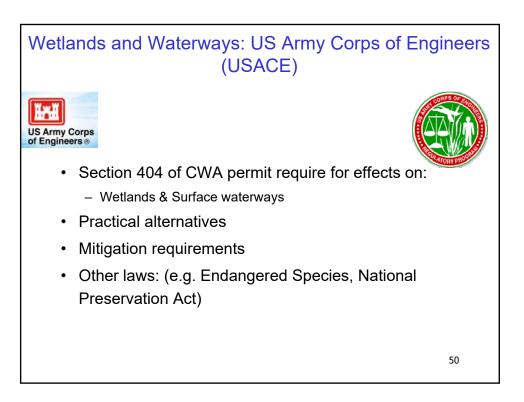
NC Sediment Pollution Control Act (SPCA) Mandatory Standards

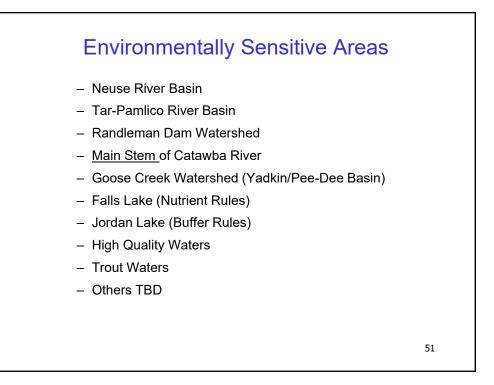
- 1. E&SC plan must be submitted 30 days prior to disturbance for areas greater than or equal to 1 acre
- 2. Land disturbing activity must be conducted in accordance with approved E&SC Plan
- 3. Establish sufficient buffer zone between work zone and water courses
- 4. Provide groundcover on slopes within 21 <u>calendar days</u> after any phase of grading (NCG-01 takes precedence)
- 5. The angle of cut and fill slopes shall be no greater than sufficient for proper stabilization

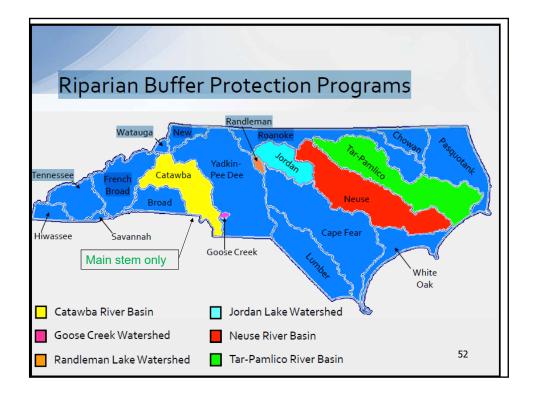
45

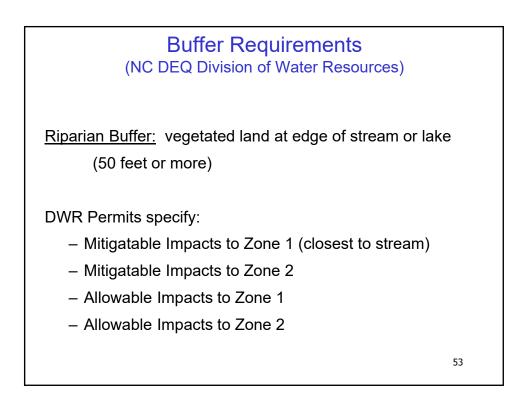
NPDES Program: NCG010000 (NCG01)

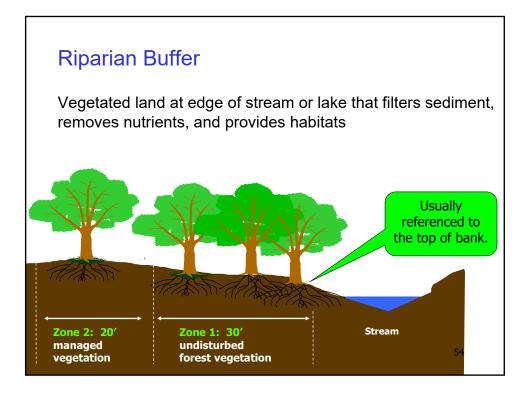
General Permit for Construction Activities, developed to meet federal NPDES requirements for activities disturbing > 1 acre

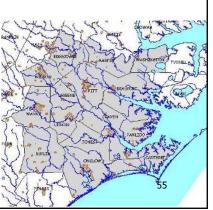

NCDEQ, Division of Water Resources delegated by EPA the authority to administer the program in North Carolina


The Erosion and Sedimentation Control plan contains the core requirements of the NPDES permit, but NCG01 has additional requirements.


NCG	010000	(NCG01)
Site Area Description	Time Frame	Stabilization Time Frame Exceptions
Perimeter dikes, swales, ditches and slopes	7 days	None
High Quality Water (HQW) Zones	7 days	None
Slopes steeper than 3:1	7 days	If slopes are 10 ft or less in length and are not steeper than 2:1, then 14 days are allowed
Slopes 3:1 or flatter	14 days	7-days for slopes greater than 50 feet in length
All other areas with slopes flatter than 4:1	14 days	None (except for perimeters and HQW Zones) 47







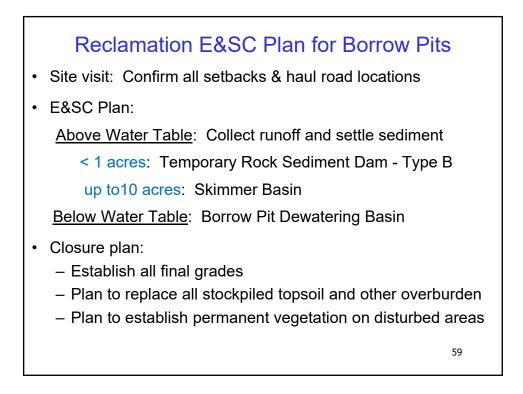
Central Coastal Plain Capacity Use Area (CCPCUA)

- Includes 15 Eastern counties: Beaufort, Carteret, Craven, Duplin, Edgecombe, Greene, Jones, Lenoir, Martin, Onslow, Pamlico, Pitt, Washington, Wayne, Wilson
- Annual registration and reporting of withdrawals is required for surface and ground water users of more than 10,000 GPD
- Permits are required for ground water users of more than <u>100,000 GPD</u>

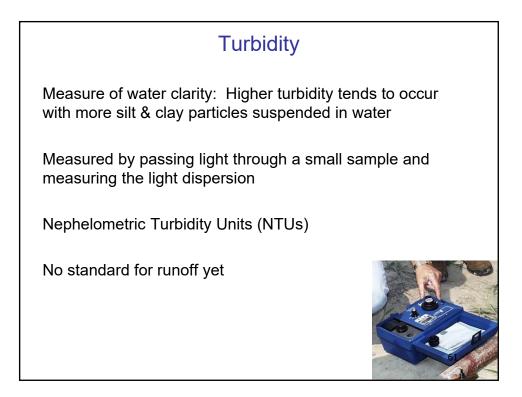
Reclamation Plans for Offsite Staging, Borrow, Waste Areas

Land disturbing activities associated with project that exceed project limits:

- Staging areas: might not need a plan
- Waste stockpiles (permanent or temporary)
- Borrow sites: newly-created pit must have dewatering basin

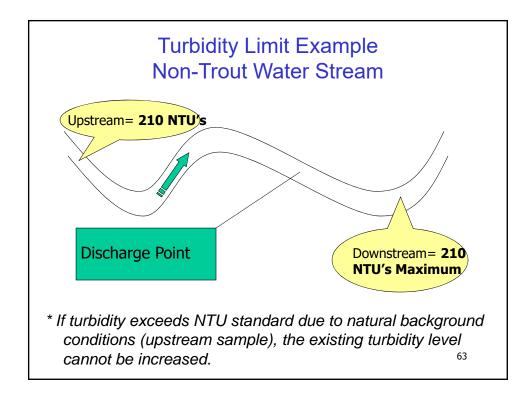

Staging Areas

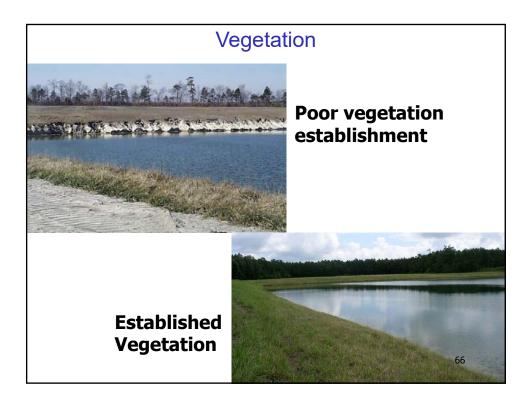

Temporary areas, beyond project limits, utilized during the pursuit of a contract, to store equipment, materials, supplies, or other activities related to project


- · Require environmental evaluation only if
 - No erodible material
 - No land disturbing activities
- Require full reclamation plan if contain
 - Erodible material (EM)
 - Land disturbing activities (LDA)
- Exempt if no EM & LDA and located at "existing facilities"
 - Unless jurisdiction features are present
- Overnight parking of equipment related to mobile operations are exempt

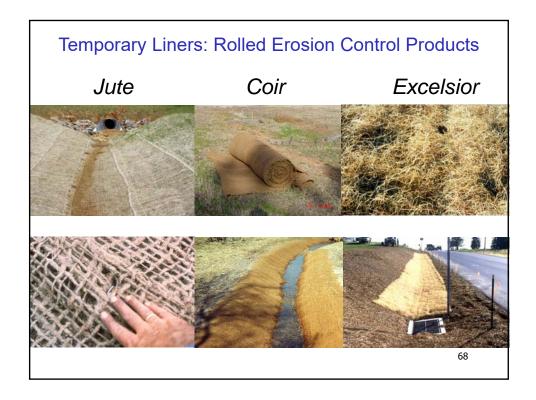
Reclamation Plan

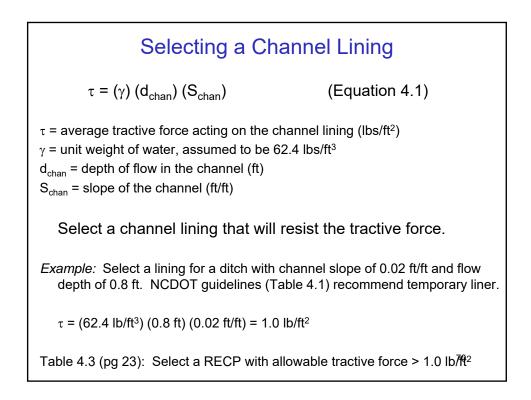
- Reclamation Plan required for all sites regardless of size
- Approved by DOT Lead Engineer
- Elements of a Reclamation Plan:
 - Reclamation Plan form
 - Vicinity Map
 - Signatures
 - Environmental Evaluation
 - State Historical Preservation Office (SHPO) Letter
 - E&SC Plan with adequately designed measures
 - Seeding specifications
 - 1-year post final review




Turbidity Limits				
Surface Water Classification	Turbidity Not to Exceed Limit* (NTUs)			
Streams	50			
Lakes & Reservoirs	25			
Trout Waters	10			

* If turbidity exceeds these levels due to natural background conditions, the existing turbidity level cannot be increased



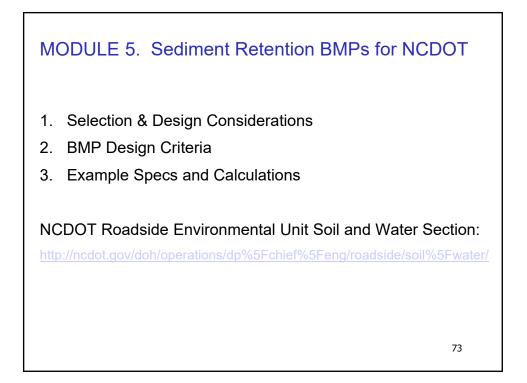


Example: Select a suitable channel liner for a triangular ditch with maximum depth of 1 ft and slope of 1%.

Table 4.1: NCDOT guidelines for 1% slope allow seed and mulch or RECP Equation 4.1: $\tau = (62.4 \text{ lbs/ft}^3) (1 \text{ ft}) (0.01 \text{ ft/ft}) = 0.6 \text{ lbs/ft}^2$

Table 4.3: Apply seed and mulch or select a RECP channel lining with a maximum allowable tractive force greater than 0.6 lbs/ft².

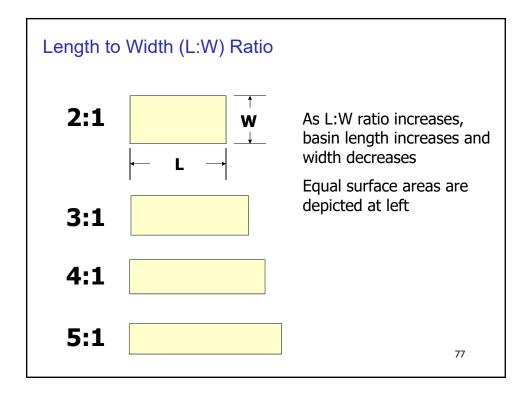
Example: Select a suitable channel liner for a triangular ditch with maximum depth of 2 ft and slope of 5%.

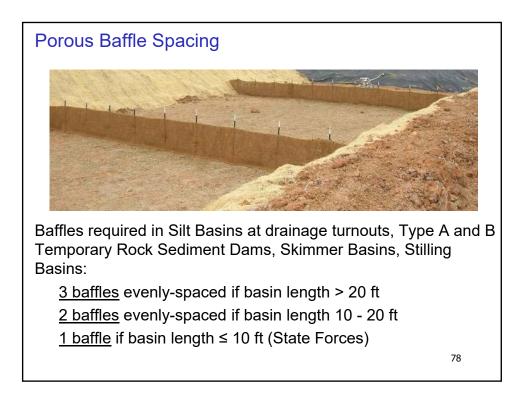

Table 4.1: NCDOT guidelines for 5% slope require a TRM or hard liner.

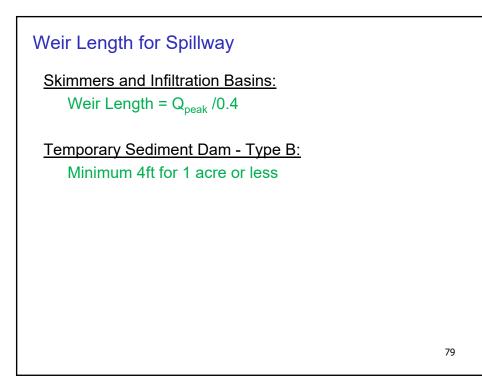
Equation 4.1: $\tau = (62.4 \text{ lbs/ft}^3) (2 \text{ ft}) (0.05 \text{ ft/ft}) = 6.2 \text{ lbs/ft}^2$

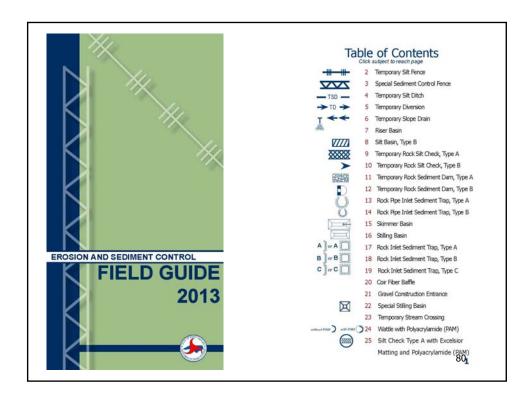
Table 4.3: Select a TRM channel lining with a maximum allowable tractive force greater than 6.2 lbs/ft².

71


Worksheet 4.1. Select a suitable channel liner for a triangular ditch with naximum depth of 1.2 ft and slope of 4.2%. Table 4.1: NCDOT guidelines for >4% slope require TRM. Equation 4.1: \(\tau\) = (62.4 lbs/ft³) (1.2 ft) (0.042 ft/ft) = 3.14 lbs/ft² Table 4.3: Select a TRM channel lining with a maximum allowable tractive force greater than 3.14 lbs/ft² (N. American Green P550)



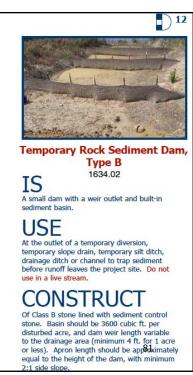

Table 1. BMP Selection BMP	Location	Catchment	Structure	Sed. Ctl. Stone	Surface Area	Volume	Function
T. Rock Sed. Dam A	Swale/large ditch		Class			3600 ft3/ac	Demous and
T. Rock Sed. Dam A	Drainage outlet	< 1 ac.	Class B	Yes Yes	435Q ₁₀ 435Q ₁₀	3600 ft /ac 3600 ft ³ /ac	Remove sand Remove sand
Silt Basin B		< 1 ac.	Earth	No	435Q ₁₀ 435Q ₁₀	3600 ft ³ /ac	Remove sand
Sill Dasin D	Drainage outlet/ Adjacent to inlet	< 3 ac.	Earth	INO	(325Q ₁₀ (325Q ₁₀ @ inlets)	(1800 ft ³ /ac @ inlets)	Remove sand
Skimmer Basin	Drainage outlet	< 10 ac.	Earth	No	325Q ₁₀	1800 ft ³ /ac	Remove sand
Infiltration Basin	Drainage outlet	< 10 ac.	Earth	No	325Q ₁₀	1800 ft ³ /ac	Remove sand
Riser Basin(non-perforated riser w/ skimmer)	Drainage outlet	< 100 ac.	Earth	No	435Q ₁₀	1800 ft ³ /ac	Remove silt, clay
Stilling Basin/Pumped	Near Borrow Pit/Culvert	N/A	Earth and Stone	No	2:1 L:W ratio	Based on dewatering	Remove silt, clay
Sp. Stilling Basin(Silt Bag)	Near stream	N/A	Filter Fabric	Yes	N/A	Variable	Remove sand
Rock Pipe Inlet Sed. Trap A		< 1 ac.	Class B	Yes	N/A	3600 ft ³ /ac	Remove sand
Rock Pipe Inlet Sed. Trap B		< 1 ac.	Class A	Yes	N/A	3600 ft ³ /ac	Remove sand
Slope Drain w/ Berm	Fill Slopes	< 1/2 ac.	12-inch pipe	No	N/A	N/A	Convey concentrated rund
Rock Inlet Sed. Trap A	Stormwater Inlet	< 1 ac.	Class B	Yes	N/A	3600 ft ³ /ac	Remove sand
Rock Inlet Sed. Trap B	Stormwater Inlet	< 1 ac.	Class A	Yes	N/A	3600 ft ³ /ac	Remove sand
Rock Inlet Sed. Trap C	Stormwater Inlet	< 1 ac.	1/4" wire mesh	Yes	N/A	N/A	Remove sand
T. Rock Silt Check A	Drainage outlet	< 1 ac.	Class B	Yes	435Q ₁₀	3600 ft ³ /ac	Remove sand
T. Rock Silt Check B	Channel	< 1/2 ac.	Class B	No	N/A	N/A	Reduce flow velocity
Temporary Earth Berm	Project perimeter	< 5 ac.	Earth	No	N/A	N/A	Divert offsite runoff
Temporary Silt Fence	Bottom of slope	< 1/4 acre per 100 feet<2%*	Silt fence	No	N/A	N/A	Create small basin; Remove sand, silt
Special Sediment Control Fence	Bottom of slope	< ½ ac.	1/4" wire mesh	Yes	N/A	N/A	Remove sand
Temporary Silt Ditch	Bottom of slope	< 5 ac.	Earth	No	N/A	N/A	Carry sediment/water
Temporary Diversion	Project & Stream	< 5 ac.	Earth	No	N/A	N/A	Divert turbid water
Earth Berm	perimeter	< 5 ac.	Earth	No	N/A	N/A	Divert clean or turbid wate
Clean Water Diversion	Project perimeter	<5 ac.	Earth & Fabric	No	N/A	N/A	Divert clean water
Construction Entrance	Exit to road	N/A	Class A	No	N/A	N/A	Clean truck tires
Safety Fence	Permitted Areas	N/A	Orange fence	No	N/A	N/A	Define permitted boundary
Borrow Pit Dewatering Basin	Adjacent to Borrow Pits	N/A	Earth	No	N/A	8.02xQxT	Remove Sand and reduce turbidity
Wattle/Coir Fiber Wattle	Channel	< ½ ac.	Natural Fibers	No	N/A	N/A	Incorporate PAM
Silt Check A with Matting and PAM	Channel	< ½ ac.	Class B	Yes	N/A	N/A	Reduce flow 74 ocity and incorporate PAM


Structure Sizing				
<u>Two Criteria: (see T</u>	<u>Table 1)</u>			
1. Minimum Vo	lume (ft³) based on <u>d</u>	i sturbed acres		
2. Minimum Su	r face Area (ft²) based	l on <u>total</u> acres		
Use Q ₁₀ for normal design Use Q ₂₅ for Environmentally Sensitive Areas, Upper Neuse River Basin, Jordan Lake				
Device Outlet Type	Minimum Volume (ft ³)	Minimum Surface Area (ft²)		
Weir	3600 ft ³ /ac	435 $Q_{\rm 10}$ or $Q_{\rm 25}$		
Surface Outlet	1800 ft ³ /ac	325 $Q_{\rm 10}$ or $Q_{\rm 25}$		
Surface Outlet + Riser	1800 ft ³ /ac	435 Q_{10} or Q_{25}		

Examples:	Sizing BMPs	
	ulate minimum volume and surface area for a s 6-acre construction site (all disturbed) with ${\sf Q}_{10}$	
Volume:	$V_{\text{basin}} \ge 1,800 \text{ ft}^3 \text{ per acre of disturbed land}$	
	V _{basin} ≥ 1,800 ft³/ac (6 ac) = 10,800 ft³	
Surface Area:	$A_{\text{basin}} \ge 325 \text{ Q}_{10}$ (skimmer =surface outlet)	
	A _{basin} ≥ 325 (20) = 6,500 ft ²	
•	ulate minimum volume and surface area for a T Dam Type B serving a 1-acre construction site Q ₁₀ = 7 cfs.	
Volume:	$V_{\text{basin}} \ge 3,600 \text{ ft}^3 \text{ per acre of disturbed land}$	
	V _{basin} ≥ 3,600 ft³/ac (1 ac) = 3,600 ft³	
Surface Area:	$A_{\text{basin}} \ge 435 \text{ Q}_{10}$	
	$A_{\text{basin}} \ge 435 (7) = 3,045 \text{ ft}^2$	76
	basin - 100 (1) 0,010 1	

Temporary Rock Sediment Dam, Type B

Drainage area < 1 ac


Surface Area = $435Q_{10}$ or $435Q_{25}$

Volume = 3600 ft³/ac

Coir Baffles

Minimum Weir Length = 4 ft for 1acre or less

L:W ratio 2:1 to 5:1

Skimmer Basin

Drainage area < 10 ac

Surface Area = $325Q_{10}$ or $325Q_{25}$

Volume = 1800 ft³/ac disturbed

Depth = 3 ft at weir

Coir Baffles (3)

L:W ratio 2:1 to 6:1

Sideslopes 1.5:1 max.

Dam height <= 5 ft

Skimmer Basin

IS

A temporary basin with a trapezoidal spillway lined with filter fabric and equipped with a floating skimmer.

USE

In sensitive watershed areas and in locations where the drainage area is too large for standard rock weir outlet.

CONSTRUCT Basin with a Faircloth Skimmer at the outlet, a

trapezoidal emergency spillway lined with filter fabric, and 3 coir fiber baffles. Storage capacity is 1800 cubic ft. per disturbed acre and surface area must accommodate the 10-year storm runoff. Limit the dam height to 5 ft.

82

Faircloth Skimmer (surface outlet)

Designed to captures 90% of fine (silts & clay) sediment when water is held for 24 hours

Rock Pipe Inlet Sediment Trap, Type A

Drainage area < 1 ac

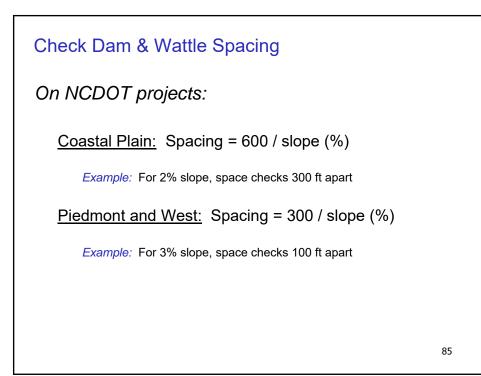
Volume = 3600 ft³/ac

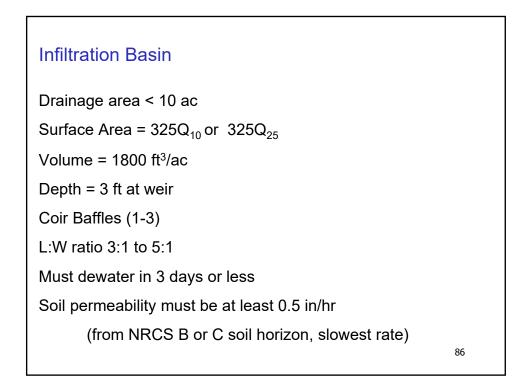
Pipe inlet no greater than 36 in

Dam height = 18 inches

Class B stone lined with sediment control stone

Locate > 30 ft from travel lane

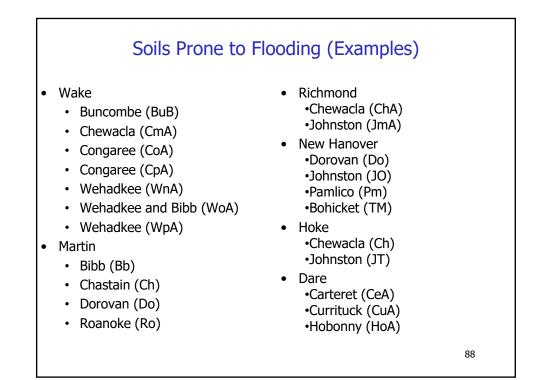

Rock Pipe Inlet Sediment Trap, Type A 1635.01

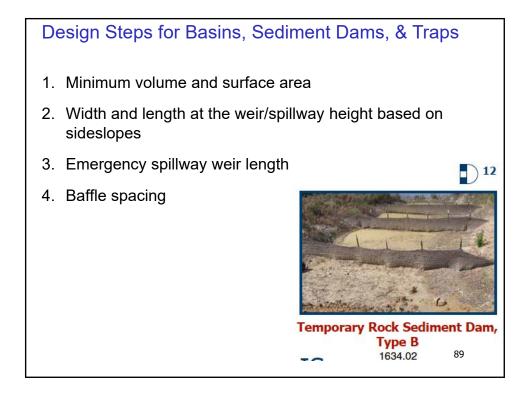

IS A horseshoe-shaped device which prevents sediment from entering a pipe structure.

At a pipe inlet that receives flow from one or more directions and is at least 30 ft. from a vehicular travel lane.

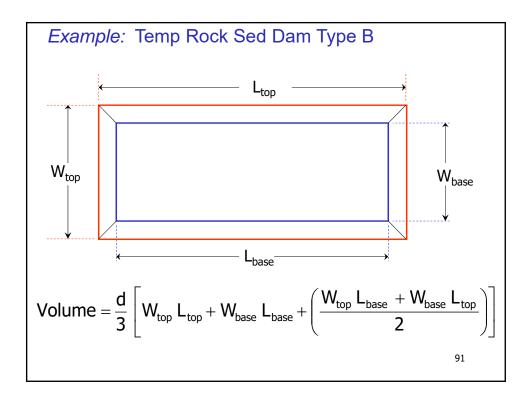
CONSTRUCT Of Class B stone lined with sediment control stone. Surround the structure with a sediment storage area built to 3600 cubic ft. per disturbed acre. The dam must be a minimum 18 in. high.

> 84 ^ **13**





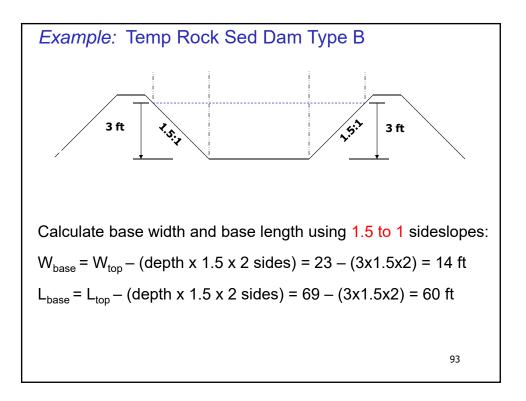
Guidelines for Infiltration Basins

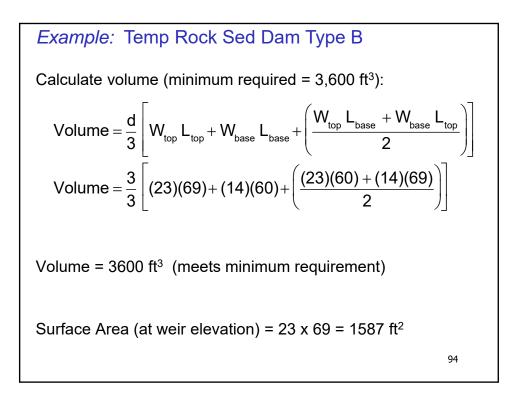

- Locate in Coastal Plain
- Locate in fill slope with Temporary Silt Ditch bringing runoff
- Do NOT locate in "Soils Prone to Flooding"
- Do not locate in cut ditches

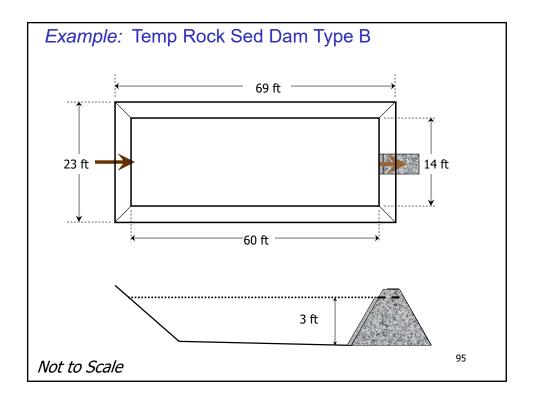
87

Example: Temp Rock Sediment Dam Type B
Disturbed area = 1 ac; Q ₁₀ = 2.5 cfs
Interior sideslopes = 1.5:1; L:W = 3:1
1. Minimum Volume and Surface Area:
Minimum Volume = $3600 \times 1 \text{ ac} = 3600 \text{ ft}^3$
Minimum Surface Area = 435 Q_{10} = 435 x 2.5 cfs = 1088 ft ²
Depth = Volume / Area = 3600 ft ³ / 1088 ft ² = 3.3 ft
For DOT projects, <u>Design Depth = 2 to 3 ft</u>
Therefore, use depth = 3 ft
Adjusted Minimum Area = Volume / depth = 3600 / 3 = 1200 ft ²
Surface area must be greater to account for sideslopes
90

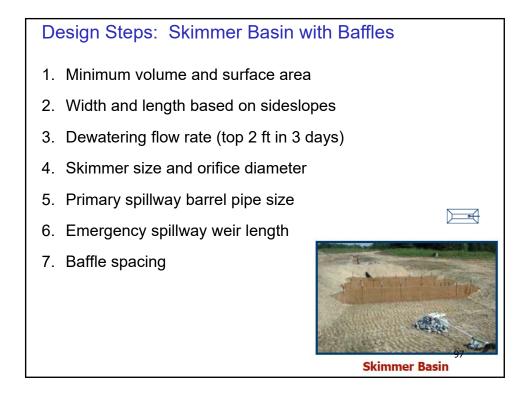
Example: Temp Rock Sed Dam Type B

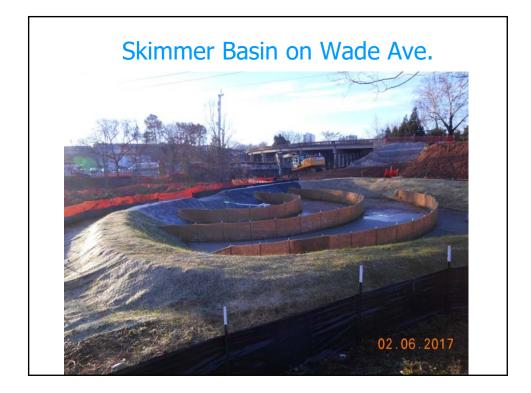

2. Width and depth at top and base (trial & error):


Start with area = $1,200 \text{ ft}^2$ and a 3:1 length to width ratio


Trial Width,
$$W_{top} = \sqrt{\frac{A}{L \text{ to W ratio}}} = \sqrt{\frac{1200}{3}} = 20 \text{ ft}$$

To account for sideslopes, add to top width (try 3 ft):


Trial
$$W_{top} = 20 + 3 = 23$$
 ft
Trial $L_{top} = 3 \times W_{top} = 3 \times 23 = 69$ ft



Example: Temp Rock Sed Dam Type B	
Principal spillway:	
Water exits the basin via the Class B stone dam covered with sediment control stone	
Rock weir:	
Weir must be sized according to weir chart based on total drainage area (1 acre)	
Weir Length (1 acre) = 4 ft	
Baffles:	
Since basin is 69 ft long, use 3 baffles spaced evenly. Divided the basin into 4 quarters, each 17 ft long	
96	

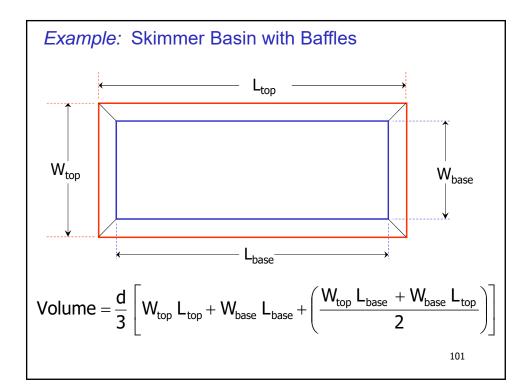
Example: Skimmer Basin with Baffles

Disturbed area = 9.9 ac; Q_{10} = 17 cfs; Dewater time = 3 days; Interior sideslopes = 1.5:1; L:W = 3:1

1. Minimum Volume and Surface Area:

Minimum Volume = $1800 \times 9.9 \text{ acres} = 17,820 \text{ ft}^3$

Minimum Surface Area = $325Q_{10}$ = $325 \times 17 \text{ cfs}$ = 5,525 ft²


Depth = Volume / Area = $17,820 \text{ ft}^3 / 5,525 \text{ ft}^2 = 3.2 \text{ ft}$

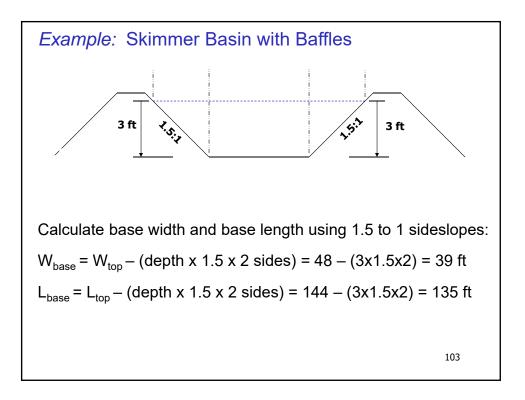
For DOT projects, <u>Design Depth = 3 ft</u>

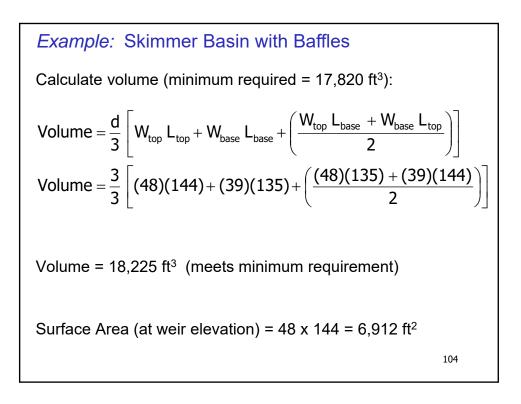
Therefore, adjust minimum surface area up:

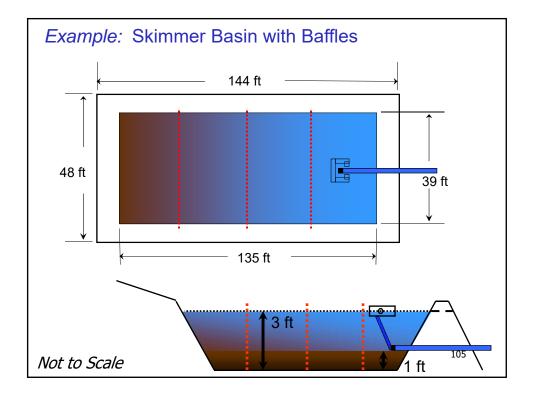
Area_{min} = Volume / Design Depth = 17,820 ft³ / 3 ft = 5,940 ft²

Surface area must be greater to account for sideslopes

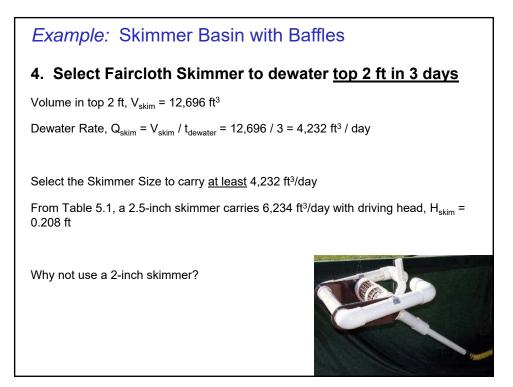
Example: Skimmer Basin with Baffles

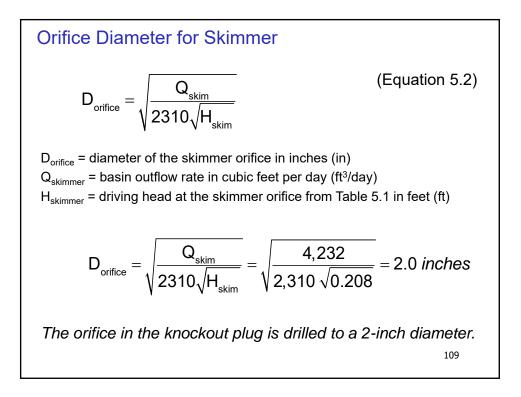

2. Width and length at top and base (trial & error):

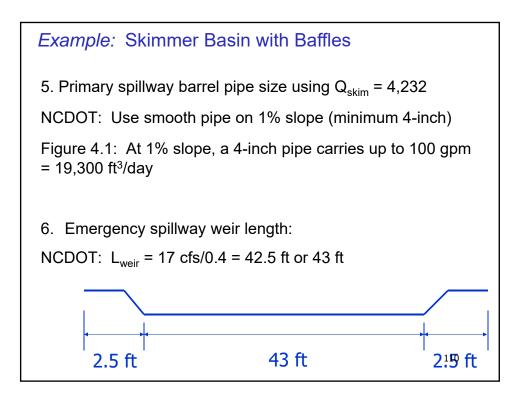

Start with area = $5,940 \text{ ft}^2$ and a 3 to 1 length to width ratio

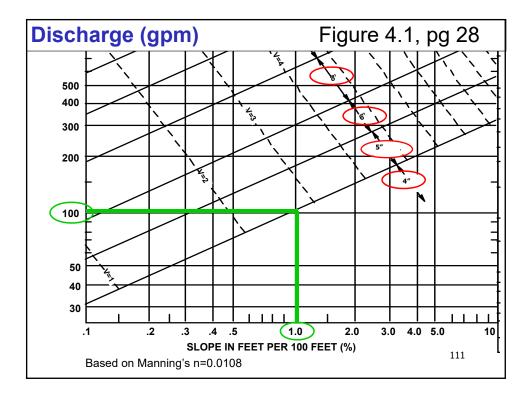

Trial Width,
$$W_{top} = \sqrt{\frac{A}{L \text{ to W ratio}}} = \sqrt{\frac{5940}{3}} = 45 \text{ ft}$$

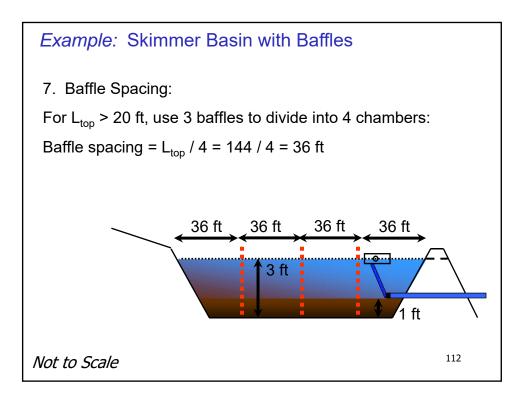
To account for sideslopes, add to top width (try 3 ft):


Trial
$$W_{top} = 45 + 3 = 48$$
 ft
Trial $L_{top} = 3 \times W_{top} = 3 \times 48 = 144$ ft

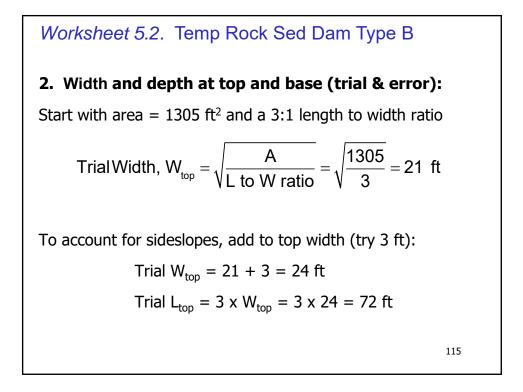


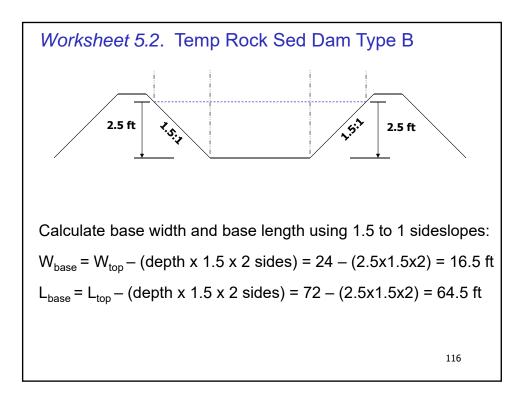


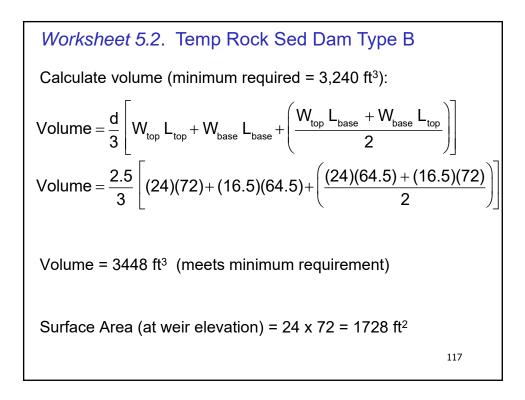

Example: Skimmer Basin with Baffles 3. Dewatering flow rate (top 2 ft in 3 days) Calculate width & length at depth =1 ft using 1.5:1 sideslopes: $W_{1ft} = W_{top} - (depth x 1.5 x 2 sides) = 48 - (2x1.5x2) = 42 ft$ $L_{1ft} = L_{top} - (depth x 1.5 x 2 sides) = 144 - (2x1.5x2) = 138 ft$ Calculate volume in the top 2 ft $Volume = \frac{d}{3} \left[W_{top} L_{top} + W_{1ft} L_{1ft} + \left(\frac{W_{top} L_{1ft} + W_{1ft} L_{top}}{2} \right) \right]$ $Volume = \frac{2}{3} \left[(48)(144) + (42)(138) + \left(\frac{(48)(138) + (42)(144)}{2} \right) \right]$ Volume in top 2 ft = 12,696 ft³

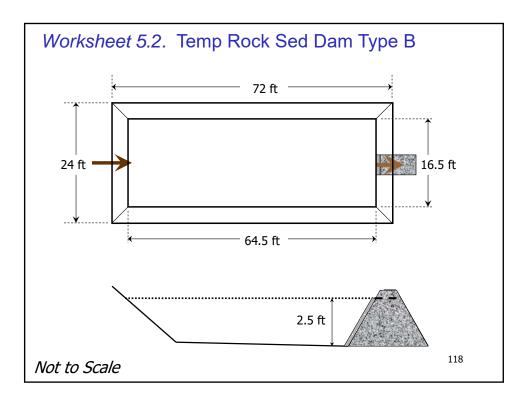


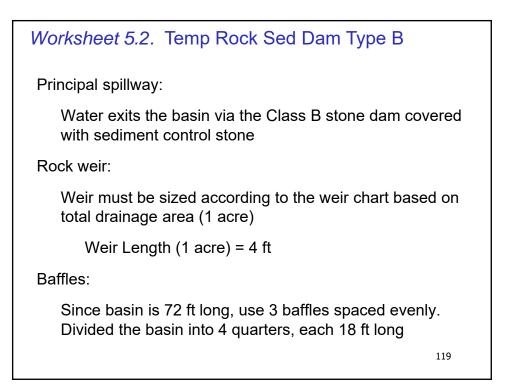
Skimmer	Q _{skimmer}	H _{skimmer}
Diameter	Max Outflow Rate	Driving Head
(inches)	(ft ³ / day) *	(ft) *
1.5	1,728	0.125
2.0	3,283	0.167
2.5	6,234	0.208
3.0	9,774	0.250
4.0	20,109	0.333
5.0	32,832	0.333
6.0	51,840	0.417
8.0	97,978	0.500








```
Worksheet 5.1. Infiltration Basin
Infiltration basin on Rains soil (permeability= 0.5 in/hr) with drainage area of 8 acres?
Drainage area = 8 ac; permeability = 0.5 in/hr
For NCDOT maximum depth = 3ft
Dewatering time = 3ft x hr/0.5 in x 12 in/ft = 72 hr or 3 days
Design volume = 1800 x 8 = 14,400 ft<sup>3</sup>
*NCDOT guidelines: drains in 3 days, drainage area <10ac., soil permeability at least 0.5 in/hr</p>
```


Worksheet 5.2. Temp Rock Sed Dam Type B
Disturbed area = 0.9 ac; Q ₁₀ = 3 cfs;
Interior sideslopes = 1.5:1; L:W = 3:1
1. Minimum Volume and Surface Area:
Minimum Volume = 3600 x 0.9 ac = 3240 ft ³
Minimum Surface Area = 435 Q_{10} = 435 x 3 cfs = 1305 ft ²
Depth = Volume / Area = 3240 ft ³ / 1305 ft ² = 2.5 ft
For DOT projects, <u>Design Depth = 2 to 3 ft</u>
Therefore, use depth = 2.5 ft
Surface area must be greater to account for sideslopes
114

Worksheet 5.3. Skimmer Basin

Design: For a 5.5-acre construction site with $Q_{10} = 12$ cfs, design a basin to be dewatered in 3 days. Use 1.5:1 interior sideslopes and 3:1 length:width ratio.

- 1. Minimum volume and surface area
- 2. Width and length based on sideslopes
- 3. Dewatering flow rate (top 2 ft in 3 days)
- 4. Skimmer size and orifice diameter
- 5. Primary spillway barrel pipe size
- 6. Emergency spillway weir length
- 7. Baffle spacing

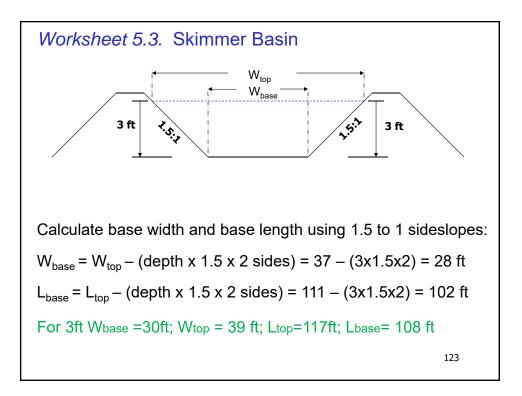
Worksheet 5.3. Skimmer Basin

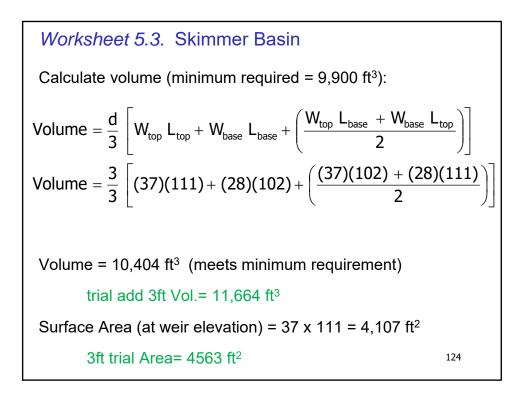
Design: For a 5.5-acre construction site with $Q_{10} = 12$ cfs, design a basin to be dewatered in 3 days. Use 1.5:1 interior sideslopes and 3:1 length:width ratio.

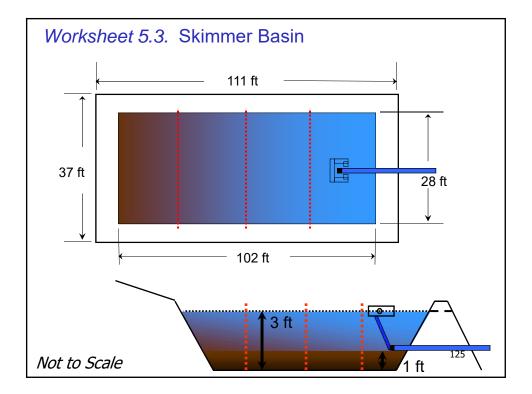
1. Minimum Volume and Surface Area:

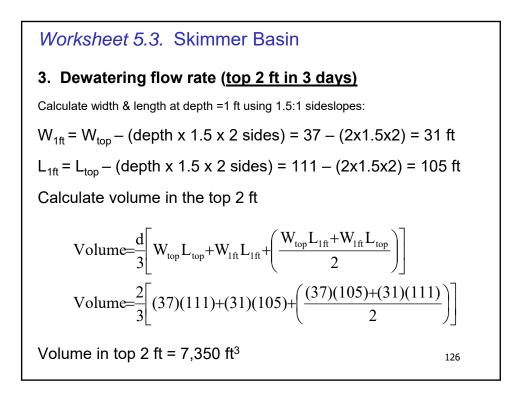
Minimum Volume = 1800 x 5.5 acres = 9,900 ft³

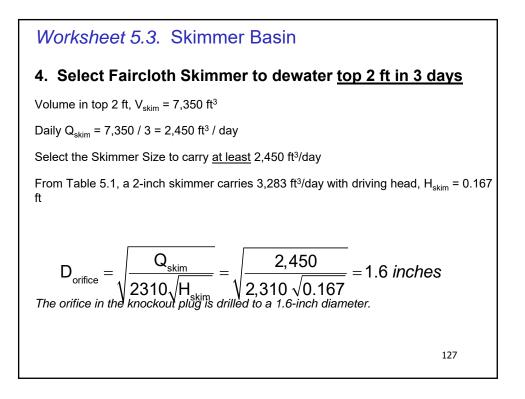
Minimum Surface Area = $325Q_{10}$ = $325 \times 12 \text{ cfs} = 3,900 \text{ ft}^2$

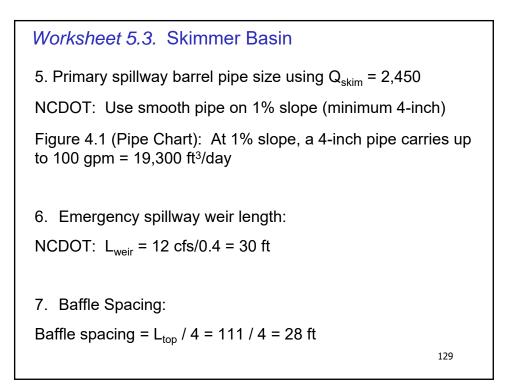

Depth = Volume / Area = 9,900 ft³ / 3,900 ft² = 2.5 ft


For DOT projects, <u>Design Depth = 3 ft</u>


Surface area must be greater to account for sideslopes


121


Worksheet 5.3. Skimmer Basin**J. Width and Length at top and base (trial & error):**Start with area = 3,900 ft² and a 3:1 length:width ratio $Trial Width, W_{top} = \sqrt{\frac{A}{L to W ratio}} = \sqrt{\frac{3,900}{3}} = 36.1 \text{ ft}$ Trial Width, W_{top} = 37 ft round up, 36ft doesn't workTrial Length, L_{top} = 3 × 37 = 111 ftTry this width and length with 1.5:1 sideslopes to check if volume > 9,900 ft3



Sel	ect skimmer bas	ed on flow rate, T	able 5.1	
	Skimmer Diameter (inches)	Q _{skimmer} Max Outflow Rate (ft ³ / day) *	H _{skimmer} Driving Head (ft) *	
	1.5	1,728	0.125	
	2.0	3,283	0.167	
	2.5	6,234	0.208	
	3.0	9,774	0.250	
	4.0	20,109	0.333	
	5.0	32,832	0.333	
	6.0	51,840	0.417	
	8.0	97,978	0.500	
* Up	odated 2007: www.	fairclothskimmer.co	m ¹²⁸	

MODULE 6: Below Water Table Borrow Pits Dewatering Options

Tier I Methods

- Borrow Pit Dewatering Basin
- Land Application (Irrigation)
- Geotextile Bags
- Alum
- Gypsum
- Polyacrylamide (PAM)

Tier II Methods [rare & unique resources]

- Well Point Pumping
- Impoundments
- Cell Mining
- Sand Media Filtration
- Wet Mining

Borrow Pit Dewatering Basin

- Basin at pump outlet to settle sediment
- No area requirement
- Volume = pump rate x detention time:
 - Detention time = 2 hours minimum
 - $V_{still} = 16(Q_{still})$ Q = pump rate in gpm
 - Max pump rate = 1,000 gpm (2.2 cfs)
- Maximum depth = 3 ft
- · Earthen embankments are fill above grade
- L:W = 2:1 minimum
- Surface outlet:
 - Non-perforated riser pipe (12-inch)
 - Flashboard riser

Turbidity Reduction: PAM at 1 mg/L in stilling basin

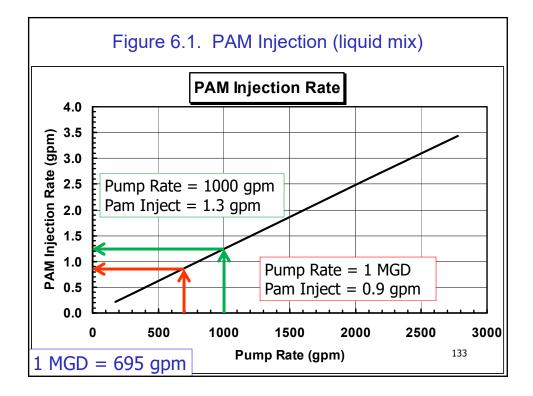
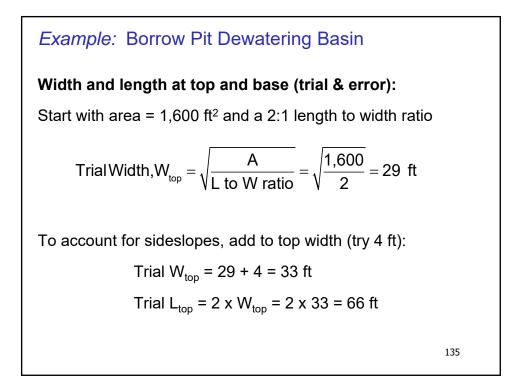
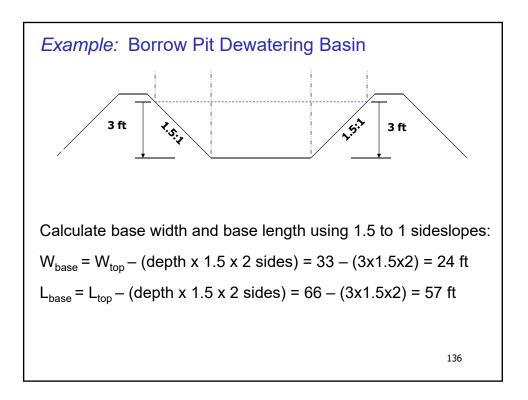
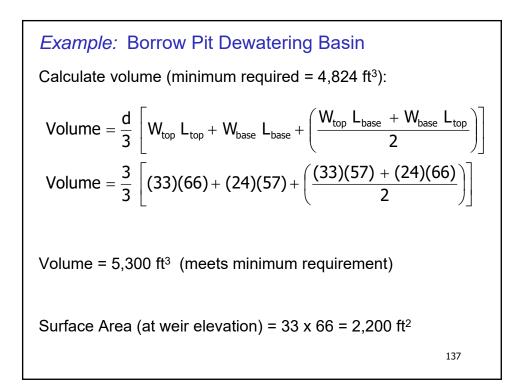
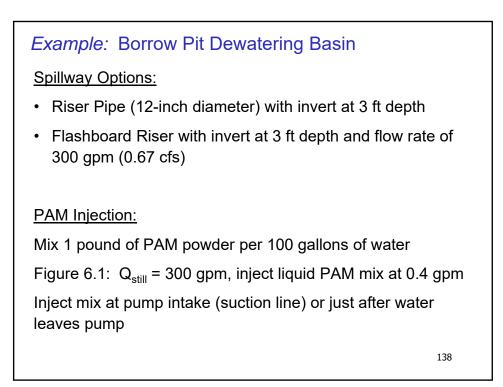

<u>Powder:</u> mix 1 pound of PAM per 100 gallons of water

Figure 6.1: At Q_{still} = 1000 gpm, inject liquid PAM mix at 1.3 gpm

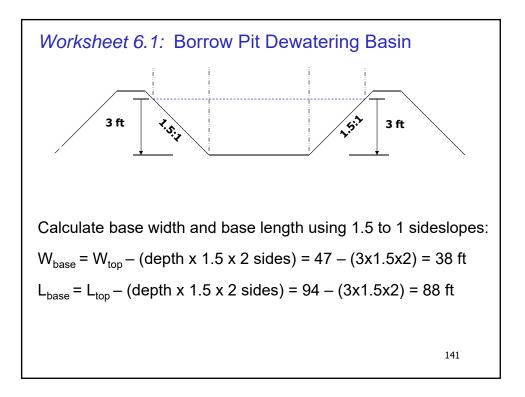

Inject mix at pump intake (suction line) or just after water leaves pump

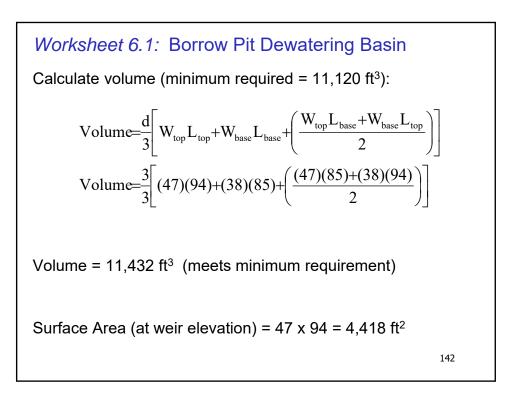

<u>Floc-Log:</u> turbulent flow 60-80 gpm inside corrugated plastic pipe (no inner liner)

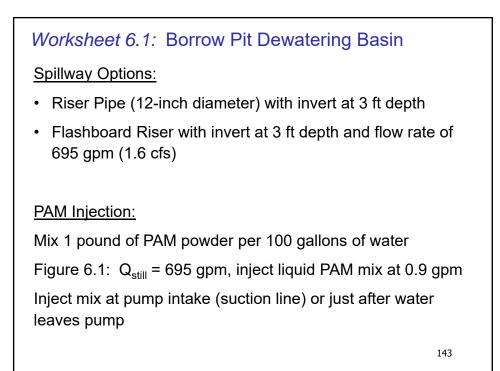


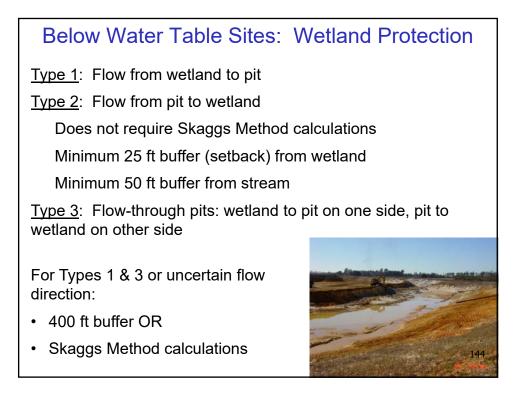


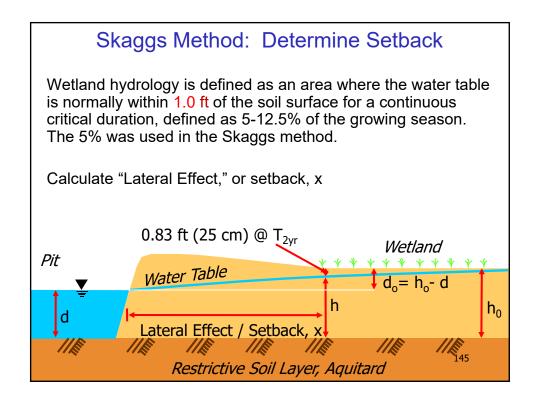
Example: Borrow Pit Dewatering Basin with 2-hour detention time, PAM injection, and pumping rate, $Q_{still} = 300$ gpm. $P_{still} = 16 (Q_{still}) (Equation 6.1, pg 34)$ $C_{still} = 16 (300 \text{ gpm}) = 4,800 \text{ ft}^3$ For depth = 3 ft, minimum surface area: $Area = Volume/Depth = 4,800 \text{ ft}^3 / 3 \text{ ft} = 1,600 \text{ ft}^2$

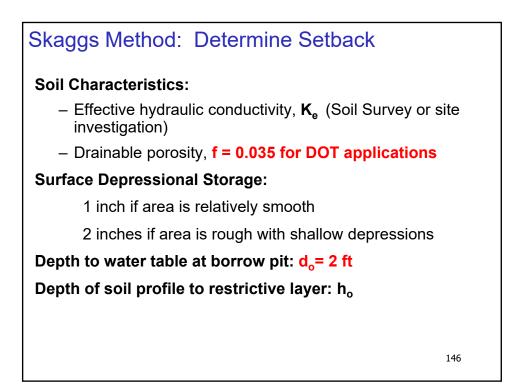


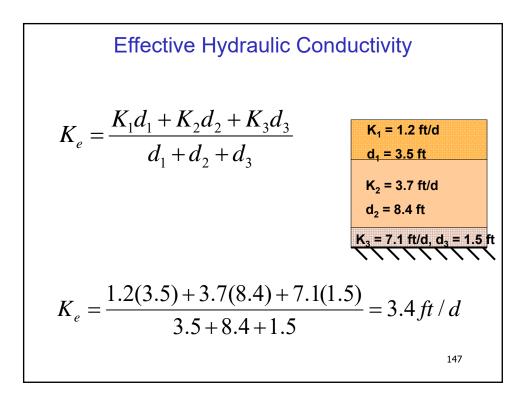


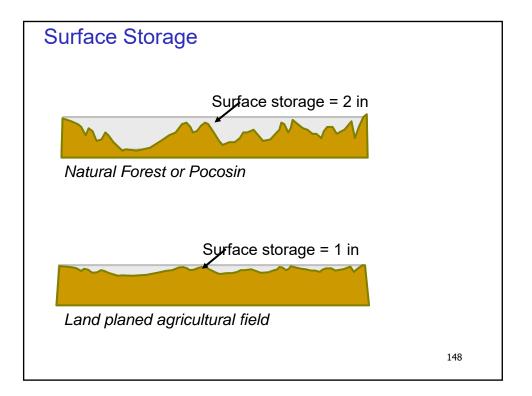


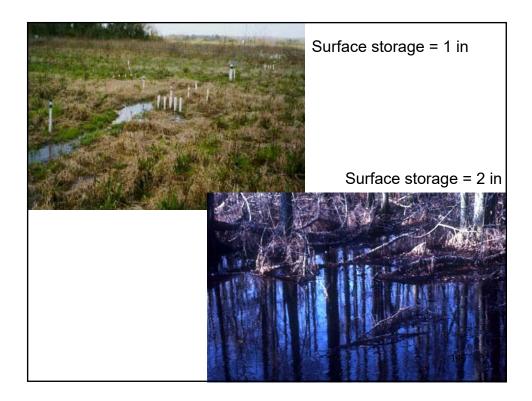

<text><text><equation-block><equation-block><text><text><text><text>

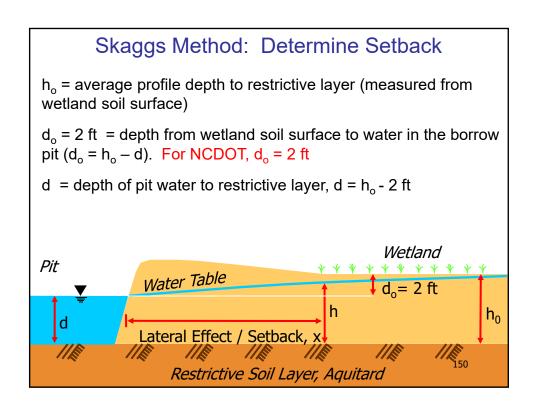

Worksheet 6.1: Borrow Pit Dewatering Basin Width and length at top and base (trial & error): Start with area = 3,700 ft² and a 2:1 length to width ratio $Trial Width, W_{top} = \sqrt{\frac{A}{L to W ratio}} = \sqrt{\frac{3,700}{2}} = 43.0 ft$ To account for sideslopes, add to top width (try 4 ft): $Trial W_{top} = 43 + 4 = 47 ft$ $Trial L_{top} = 2 \times W_{top} = 2 \times 47 = 94 ft$ 140

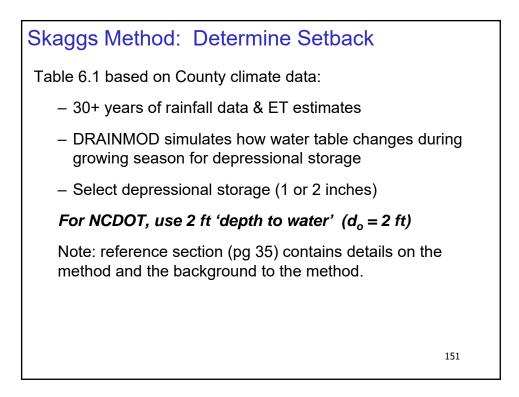


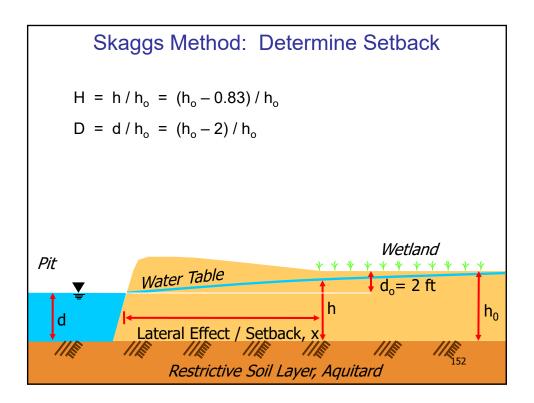


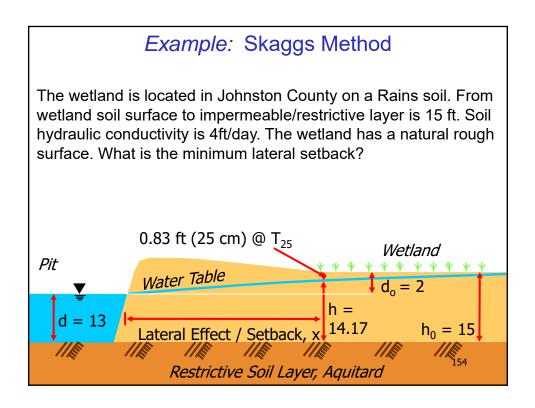


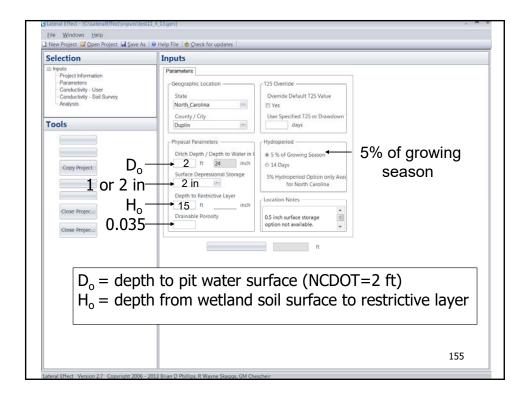




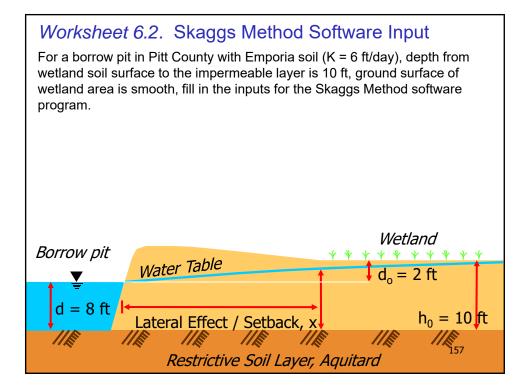


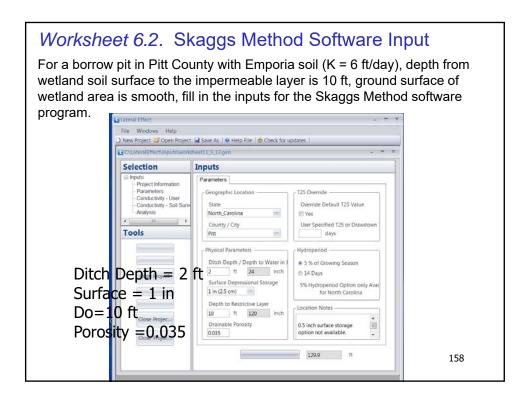


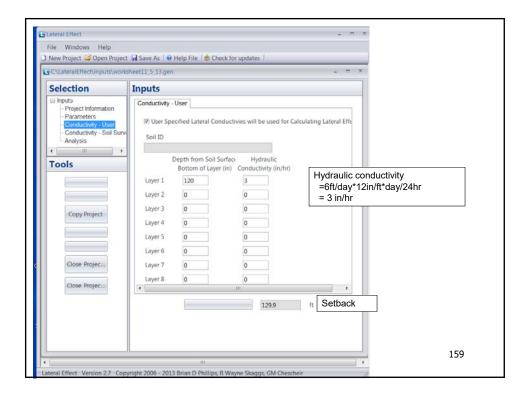




www.ncdot.org/doh/Operations/dp_chief_eng/roadside/fieldops/downloads/


Inputs:


- Soil type (information only)
- County
- Depth from wetland surface to water in pit ($d_o = 2$ ft, NCDOT)
- Surface depressional storage (1 inch smooth, 2 inches rough)
- Depth from wetland soil surface to restrictive layer, h_o
- · Drainable porosity of the soil, f=0.035 for NCDOT
- Effective Hydraulic Conductivity of each soil layer between pit and wetland, K_e , inches per hour



Selection	Inputs		
Inputs Project Information Parameters Project Information Conducting Conducting Conducting Copy Project Cose Projec Close Projec	Conductivity - User If User Specified Lateral Conductivies will be used for Calculating Lateral Eff Soil ID Muckalee Depth from Soil Surface Hydraulic Bottom of Layer (in) Layer 1 180 2 Hydraulic Layer 3 0 0 0 0 100 Layer 4 0 104.3		
	156		

