Level III: Erosion \& Sediment Certification Design of Erosion \& Sediment Control Plans

1. Hydrology
2. Erosion
3. Regulatory Issues
4. Open Channel Design
5. Sediment Retention BMPs
6. Below Water Table Borrow Pits

Runoff Hydrograph Estimation Methods

Two common methods:

Rational Method:
Peak Runoff Rate
Soil-Cover-Complex (SCS):
Runoff Volume
Peak Runoff Rate

Never combine these methods

Rational Method for Estimating Peak Runoff Rate

$$
\begin{equation*}
Q=(C)(i)(A) \tag{Equation1.1}
\end{equation*}
$$

$Q=$ peak runoff or discharge rate in cubic feet per second (cfs),
C = Rational Method runoff coefficient (decimal ranging from 0 to 1),
$\mathrm{i}=$ rainfall intensity for a given return period in inches per hour (in/hr), and
$\mathrm{A}=$ watershed drainage area in acres (ac).

Examples: $\quad 10$-year peak runoff, $Q_{10}=30 \mathrm{cfs}$
25 -year peak runoff, $Q_{25}=45 \mathrm{cfs}$

Time of Concentration, t_{c}

Time for water to travel from the Most Remote Point (MRP) to the Point of Interest (POI)

Methods for estimating t_{c}

1. Jarrett Shortcut Method
2. Segmental Method (TR-55)

Need to Know:

1. Watershed Area, A (acres)
2. Flow Length from MRP to POI, $\mathrm{L}(\mathrm{ft})$
3. Elevation Drop from MRP to POI, H (ft)

4. Land Use (assume graded, unpaved)

Jarrett Shortcut Method: t_{c}

$$
\begin{equation*}
S=H / L_{\text {flow }} \tag{Equation1.3}
\end{equation*}
$$

$\mathrm{S}=$ average watershed slope (ft/ft),
$\mathrm{H}=$ elevation change from most remote point to point of interest (ft), and
$\mathrm{L}_{\text {flow }}=$ flow length from most remote point to point of interest (ft).

$$
\mathrm{A}_{\text {Jarrett }}=460(\mathrm{~S})
$$

(Equation 1.4)
$\mathrm{A}_{\text {Jarrett }}=$ Jarrett Maximum Area in acres (ac), and
$\mathrm{S}=$ average watershed slope (ft/ft).

If the watershed area is less than the Jarrett Maximum Area, then $t_{c}=5 \mathrm{~min}$

NRCS Segmental Method (TR-55) Shallow Concentrated Flow

Unpaved Areas: $\quad t_{c}=0.001\left(\mathrm{~L}_{\text {flow }}\right) / \mathrm{S}^{0.53} \quad$ (Equation 1.5)
Paved Areas: $\quad t_{c}=0.0008\left(\mathrm{~L}_{\text {flow }}\right) / \mathrm{S}^{0.53} \quad$ (Equation 1.6)
$\mathrm{t}_{\mathrm{c}}=$ time of concentration in minutes (min),
$\mathrm{L}_{\text {flow }}=$ flow length from most remote point to point of interest (ft), $\mathrm{S}=$ average watershed slope (ft/ft).

Note: Kirpich (1940) is another method

NRCS Segmental Method (TR-55) Shallow Concentrated Flow

Example: For a construction site watershed drainage area of 10 acres with an elevation drop of 12 ft over a flow length of 1000 ft , estimate time of concentration.

$$
\text { Slope, } \mathrm{S}=\mathrm{H} / \mathrm{L}_{\text {flow }}=12 / 1000=0.012 \mathrm{ft} / \mathrm{ft}
$$

Assume that the area is unpaved, therefore use Equation 1.5:
$\mathrm{t}_{\mathrm{c}}=0.001\left(\mathrm{~L}_{\text {flow }}\right) / \mathrm{S}^{0.53}=0.001(1000) / 0.012^{0.53}=10.4$ minutes
Use $\mathrm{t}_{\mathrm{c}}=10$ minutes
If the elevation drop for this site was 30 ft , the calculated value for t_{c} would be 6.4 minutes. It that case, use a t_{c} value of 5 minutes for determining rainfall intensity since the lower t_{c} produces a higher rainfall intensity and a more conservative estimate of peak runoff rate and basin size.

Rainfall Data
 Need Intensity by Return Period and Duration
 Listed for some locations in Table 1.1 (pg. 10)

POINT PRECIPITATION FREQUENCY (PF) ESTIMATES
WITH 90\% CONFIDENCE INTERVALS AND SUPPLEMENTARY INFORMATION
NOAA Atlas 14, Volume 2, Version 3

PF tabular

AMS-based precipitation frequency estimates with 90% confidence intervals (in inches/hour)

Duration	Annual exceedance probability (1/years)							
	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500
5-min	$\begin{gathered} \hline \hline 5.18 \\ (4.765 .66) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.34 \\ (5.836 .91) \end{gathered}$	$\begin{gathered} \mathbf{7 . 1 4} \\ (6.547 .76) \end{gathered}$	$\begin{gathered} \hline 7.92 \\ (7.228 .63) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.46 \\ (7.689 .19) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.94 \\ (8.089 .72) \end{gathered}$	$\begin{gathered} \hline 9.34 \\ (8.4010 .2) \\ \hline \end{gathered}$	$\begin{gathered} 9.79 \\ (8.7410 .7) \end{gathered}$
10-min	$\begin{gathered} \hline 4.15 \\ (3.824 .53) \\ \hline \end{gathered}$	$\begin{gathered} 5.08 \\ (4.67[5.54) \end{gathered}$	$\begin{gathered} \hline \mathbf{5 . 7 1} \\ (5.236 .22) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.31 \\ (5.766 .87) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{6 . 7 3} \\ (6.117 .33) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 7.10 \\ (6.417 .72) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 7.41 \\ (6.668 .07) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 7.75 \\ (6.918 .45) \\ \hline \hline \end{gathered}$
15-min	$\begin{gathered} \hline 3.48 \\ (3.203 .80) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.28 \\ (3.944 .68) \end{gathered}$	$\begin{gathered} 4.81 \\ (4.415 .24) \end{gathered}$	$\begin{gathered} \hline 5.33 \\ (4.875 .81) \\ \hline \end{gathered}$	$\begin{gathered} 5.68 \\ (5.166 .18) \\ \hline \end{gathered}$	$\begin{gathered} 5.98 \\ (5.406 .51) \end{gathered}$	$\begin{gathered} \hline 6.23 \\ (5.606 .79) \\ \hline \end{gathered}$	$\begin{gathered} 6.50 \\ (5.807 .09) \end{gathered}$
30-min	$\begin{gathered} \hline 2.40 \\ (2.212 .63) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.04 \\ (2.803 .32) \end{gathered}$	$\begin{gathered} 3.49 \\ (3.203 .80) \end{gathered}$	$\begin{gathered} \hline 3.95 \\ (3.614 .30) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.28 \\ (3.894 .66) \end{gathered}$	$\begin{gathered} \hline 4.58 \\ (4.144 .98) \end{gathered}$	$\begin{gathered} \hline \hline 4.85 \\ (4.365 .29) \\ \hline \end{gathered}$	$\begin{gathered} 5.18 \\ (4.615 .64) \end{gathered}$
60-min	$\begin{gathered} \hline \hline 1.51 \\ (1.391 .65) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.95 \\ (1.792 .13) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 2 7} \\ (2.082 .47) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 2.63 \\ (2.402 .86) \\ \hline \end{gathered}$	$\begin{gathered} 2.90 \\ (2.633 .16) \end{gathered}$	$\begin{gathered} \hline 3.16 \\ (2.853 .43) \end{gathered}$	$\begin{gathered} \hline 3.40 \\ (3.063 .71) \end{gathered}$	$\begin{gathered} 3.71 \\ 10^{3.314 .05)} \\ \hline \end{gathered}$

Runoff Coefficient, C

Table 1.2. Rational Method C for Agricultural Areas. (Taken from Schwab et al., 1971).

Vegetation	Runoff Coefficient, C		
Slope	Sandy Loam ${ }^{1}$	Clay and Silt Loam ${ }^{2}$	Tight Clay 3
Forest			
$0-5 \%$ slope	0.10	0.30	0.40
$5-10 \%$ slope	0.25	0.35	0.50
$10-30 \%$ slope	0.30	0.50	0.60
Pasture			
$0-5 \%$ slope	0.10	0.30	0.40
$5-10 \%$ slope	0.16	0.36	0.55
$10-30 \%$ slope	0.22	0.42	0.60
Cultivated			
$0-5 \%$ slope	0.30	0.50	0.60
$5-10 \%$ slope	0.40	0.60	0.70
$10-30 \%$ slope	0.52	0.72	0.82

Area-Weighted Average C value

Example: Determine the weighted average runoff coefficient, C, for a 4-acre watershed with 1 acre of grassy field on clay soil at 3% slope and 3 acres of active construction on clay soil at 4\% slope.

Land Cover	A	C	(A) (C)
Pasture	1	0.40	0.40
Bare Soil	3	0.60	1.80
TOTAL	sum $=\mathbf{4}$		sum $=\mathbf{2 . 2 0}$

Weighted $C=2.20 / 4=0.55$
For this example, estimate Q if rainfall intensity, $\mathrm{i}=5.80 \mathrm{in} / \mathrm{hr}$:
$Q=(C)(i)(A)=(0.55)(5.80)(4)=12.8 \mathrm{cfs}$

Example: Rational Method

Determine the 10-year peak runoff rate, Q_{10}, for a 5 -acre construction site watershed near Asheville with a flow length $=600 \mathrm{ft}$ and elevation drop $=36 \mathrm{ft}$. The land uses are shown below:

Land Use	A	C	(A) (C)
Forest, clay (11\%)	1	0.60	0.60
Bare soil, clay (7\%)	3	0.70	2.10
Grass, clay (3\%)	1	0.40	0.40
	sum =5 ac		sum $=3.10$

Weighted Runoff Coefficient: $\mathrm{C}=3.10 / 5=0.62$
Average watershed slope, $\mathrm{S}=36 / 600=0.06 \mathrm{ft} / \mathrm{ft}$
Jarrett Max Area $=460(0.06)=27.6 \mathrm{ac}$; Since $5<27.6$, use $\mathrm{t}_{\mathrm{c}}=5 \mathrm{~min}$ Rainfall intensity for 10-year storm, i_{10}, is determined from Table 1.1 for a 5 -minute rainfall in Asheville: $i_{10}=6.96 \mathrm{in} / \mathrm{hr}$

Peak runoff rate, $Q_{10}=(0.62)(6.96)(5)=21.6 \mathrm{cfs}$

Emphasis on Diverting ‘Clean’ Runoff

Worksheet

1.2. Estimate the 10 -year peak runoff rate, Q_{10}, for a 20 -acre construction site watershed near Raleigh with a flow length $=2000 \mathrm{ft}$ and elevation drop $=$ 60 ft . The land uses are half forest and half bare soil. Assume tight clay.

Land Use	A	C	(A) (C)
Forest	10	0.40	4.0
Bare soil	10	0.60	6.0
	sum $=20 \mathrm{ac}$		sum $=10.0$

Weighted Runoff Coefficient: C = $10 / 20=0.5$
Average watershed slope, $\mathrm{S}=60 / 2000=0.03 \mathrm{ft} / \mathrm{ft}$
Jarrett Max Area $=460(0.03)=13.8$ ac; Since $13.8<20$, use other method
Segmental Method: $\mathrm{t}_{\mathrm{c}}=0.001(2000) / 0.03^{0.53}=12.8 \mathrm{~min}$; use $\mathrm{t}_{\mathrm{c}}=10 \mathrm{~min}$
Rainfall intensity, $i_{10}=5.58 \mathrm{in} / \mathrm{hr}$
Peak runoff rate, $Q_{10}=(0.5)(5.58)(20)=56 \mathrm{cfs}$

MODULE 2. Erosion

- Erosion Principles
- RUSLE: R, K, LS, CP

Universal Soil Loss Equation USLE / RUSLE
 $A_{\text {erosion }}=(R)(K)(L S)(C P)$
 (Equation 2.1)

$\mathrm{A}_{\text {erosion }}=$ longterm annual soil interrill + rill erosion in tons per acre per year (tons/ac-yr),
$\mathrm{R}=$ rainfall factor (dimensionless),
$\mathrm{K}=$ soil erodibility factor (dimensionless),
LS = slope-length factor (dimensionless),
CP = conservation practices factor (dimensionless).

R, Rainfall Factor

- Represents rainfall energy that causes erosion
- Higher R = higher erosion potential
- Annual R values, Figure 2.1, (pg 15)

Rainfall Energy Distribution

Varies by location: 3 zones in NC, Figure 2.2 (pg. 15)

19

Rainfall Energy Distribution

Varies by month due to storm intensity, Table 2.1 pg 14
Example (Piedmont): April-July (4 months)
Partial-year fraction $=0.06+0.07+0.11+0.20=0.49$

	Geographic Region, Figure 2.2	
Month	110 \& 116	$\mathbf{1 1 7}$
Jan	0.03	0.02
Feb	0.04	0.02
Mar	0.05	0.03
Apr	0.06	0.04
May	0.07	0.06
Jun	0.11	0.14
Jul	0.20	0.23
Aug	0.21	0.20
Sep	0.11	0.15
Oct	0.05	0.06
Nov	0.04	0.03
Dec	0.03	0.02

K, Soil Erodibility Factor

- Represents soil's tendency to erode
- NRCS tables for most soils (Table 2.2, pg.17)

Soil		B-HorizonPermeability	RUSLE	RUSLE	RUSLE	RUSLE
Series	HSG	in/hr	T	K(A)	K(B)	K(C)
Ailey	B	0.6 to 2.0	2	0.15	0.24	0.24
Appling	B	0.6 to 2.0	4	0.24	0.28	0.28
Autryville	A	2.0 to 6.0	5	0.10	0.10	0.10
Badin	B	0.6 to 2.0	3	0.15	0.24	0.15
Belhaven	D	0.2 to 6.0	--	--	0.24	0.24
Cecil	B	0.6 to 2.0	4	0.24	0.28	-z1

CP, Cover-Conservation Practices Factor

Represents the effect of land cover \& direction of rills/channels

Table 2.3 (pg 18) lists CP values (use high values) letters denote references

Bare soil condition	CP
Fill	1.00 a
Packed, smooth	0.95 a
Fresh disked	0.85 a
Rough (offset disk)	0.90 b
Cut	0.80 b
Loose to 12 inches, smooth	1.00 b
Loose to 12 inches, rough	0.50 c
Compacted by bulldozer	0.90 b
Compacted by bulldozer and tracked parallel to the contour	
Rough, irregular tracked all directions	1.3 d
Surface Condition with No Cover	1.2 d
Compact and smooth, scraped w/ bulldozer or scraper up / down hill	
Compact and smooth, raked w/ bulldozer root rake up and down hill	1.2 d
Compact and smooth, scraped w/bulldozer or scraper across slope	0.9 d
Compact and smooth, raked w/bulldozer root rake across slope	1.0 d
Loose as a disked plow layer	

Example: Erosion Estimate

Estimate erosion from a 5-acre site in Raleigh during March-May with $\mathrm{R}=49$.
The site is 600 ft long with elevation drop of 48 ft , and soil type is Creedmoor.

Average slope $=48 / 600=0.08 \mathrm{ft} / \mathrm{ft}(8 \%$ slope $)$
Table 2.2: K value is 0.32 (assume B Horizon - subsoil)
Figure 2.3: LS value is 3.5 (slope length $=600 \mathrm{ft}$; slope $=8 \%$)
Table 2.3: CP value is 1.0 (assume loose surface with no cover)
Erosion per acre $=(49)(0.32)(3.5)(1.0)=54.9$ tons/acre (March-May)
Total erosion for 5 acres $=(54.9)(5)=274.4$ tons (March-May)

If the construction period is July-September (partial-year $R=140$):
Erosion per acre $=(140)(0.32)(3.5)(1.0)=157$ tons/acre (Jul-Sep)
Total erosion for 5 acres $=(157)(5)=786$ tons (Jul-Sep)

Secondary Road Erosion Estimate

$V_{\text {ditch }}=\left(\mathrm{C}_{\text {ditch }}\right)(\mathrm{R})(\mathrm{K})\left(\mathrm{S}_{\text {ditch }}\right) \quad$ (Equation 2.2)
$\mathrm{V}_{\text {ditch }}=$ secondary road sediment volume expected in cubic feet per acre ($\mathrm{ft}^{3} / \mathrm{ac}$),
$\mathrm{C}_{\text {ditch }}=$ regression constant for secondary roads
dependent on ditch side slopes,
$R=$ Rainfall Factor for the duration of construction,
$K=$ Soil Erodibility Factor (B or C horizon),
$\mathrm{S}_{\text {ditch }}=$ slope of secondary road ditch (ft/ft).
Values of C_{s} are determined using Table 2.4 depending on road ditch side slope.

Side Slope	$\mathbf{C}_{\text {ditch }}$
$4: 1$	291
$3.5: 1$	341
$3: 1$	399
$2.5: 1$	467
$2: 1$	549
$1.5: 1$	659
$1: 1$	808
$0.75: 1$	916
$0.5: 1$	1067

Secondary Road Erosion Estimate

- Assume 30-ft Right of Way
- Estimate longitudinal slope of road ditch from 0.1 to 5%
- Estimate ditch side slopes of $1: 1$ to $3: 1$
- For the site, determine R and K
- Apply Equation 2.2

ERODES Spreadsheet: download software from NCDOT Roadside Field Operations Downloads:
www.ncdot.org/doh/operations/dp_chief_eng/roadside/fieldops/downloads

Example: Secondary Road Erosion

Estimate erosion volume from a 2-acre secondary roadway construction during June-July in Carteret County with Goldsboro soil. The road ditch has a slope of $0.05 \mathrm{ft} / \mathrm{ft}$ and $2: 1$ side slopes.

Figures 2.1 and 2.2: Annual $R=340$, and Carteret County is in Region 117
Table 2.1: During June-July, partial-year $R=(0.14+0.23)(340)=126$
Table 2.2: K value is 0.24 (assume B Horizon - subsoil)
Table 2.4: $\mathrm{C}_{\text {ditch }}$ is 549 for $2: 1$ ditch side slopes
$\mathrm{V}_{\text {ditch }}=(549)(126)(0.24)(0.05)=830 \mathrm{ft} 3 / \mathrm{ac}(\mathrm{Jun}-J u l)$
Total erosion for 2 acres $=(830)(2)=1,660 \mathrm{ft}^{3}(\mathrm{Jun}-\mathrm{Jul})$
To convert to cubic yards: Erosion = 1,660 / $27=61$ cubic yards (Jun-Jul)

Worksheet

2.1. Estimate erosion from a 5 -acre site in Wilmington during June-October with Cowee soil. The site is 800 ft long with elevation drop of 24 ft .

Average slope $=24 / 800=0.03 \mathrm{ft} / \mathrm{ft}$ (3% slope)
Figure 2.1 \& 2.2: Annual R value is 350 and Region 117
Partial-year $R=(0.14+0.23+0.20+0.15+0.06)(350)=273$
Table 2.2: K value is 0.28 (assume B Horizon - subsoil)
Figure 2.3: LS value is 1.1 (slope length $=800 \mathrm{ft}$; slope $=3 \%$)
Table 2.3: CP value is 1.0 (assume loose surface with no cover)
Erosion per acre $=(273)(0.28)(1.1)(1.0)=84.1$ tons/acre (Jun-Oct)
Total erosion for 5 acres $=(84.1)(5)=420$ tons $($ Jun-Oct $)$

MODULE 3. Regulatory Issues

1. NC Sediment Pollution Control Act (E\&SC Plans)
2. Self-Inspection
3. Jurisdictional Areas - Conditions and Restrictions

- US Army Corps of Engineers
- NC DENR Division of Water Quality

4. Environmentally Sensitive Area (ESA) \& Riparian Buffers
5. Reclamation Plans
6. NCG01 General Stormwater Permit

NC Sediment Pollution Control Act (SPCA) Mandatory Standards

1. E\&SC plan must be submitted 30 days prior to disturbance for areas greater than or equal to 1 acre
2. Land disturbing activity must be conducted in accordance with approved E\&SC Plan
3. Establish sufficient buffer zone between work zone and water courses
4. Provide groundcover on slopes within 21 calendar days after any phase of grading (NCG-01 takes precedence)
5. The angle of cut and fill slopes shall be no greater than sufficient for proper stabilization

NCG010000 (NCG01)

General Permit for Construction Activities, developed to meet federal NPDES requirements

NC DENR, Division of Water Resources delegated by EPA the authority to administer the program in North Carolina

The Erosion and Sedimentation Control plan contains the core requirements of the NPDES permit. Land Quality will work with DWR to administer that component of the NPDES permit

Projects disturbing 1 acre or more with an E\&SC plan designed after August 3, 2011 must meet new permit requirements

NCG010000 (NCG01)

Site Area Description	Time Frame	Stabilization Time Frame Exceptions
Perimeter dikes, swales, ditches and slopes	7 days	None
High Quality Water (HQW) Zones	7 days	None
Slopes steeper than 3:1	7 days	If slopes are 10 ft or less in height and are not steeper than 2:1, then 14 days are allowed
Slopes 3:1 or flatter	14 days	7-days for slopes greater than 50 feet in length
All other areas with slopes flatter than 4:1	14 days	None (except for perimeters and HQW Zones)

NCG010000 (NCG01)

Surface Dewatering Devices

Basins with drainage area 1 acre or larger must utilize a surface dewatering device in basins that discharge from the project

During Construction

- Delineate buffer zones
- Install EC devices as per approved E\&SC Plan
- Excavate/Build slopes in manner that allows for seeding of slopes
- Stage seed slopes
- Monitor the turbidity of Borrow Pit discharge
- Sites are considered "single source", unless the site has commercial status

Turbidity

Measure of water clarity: Higher turbidity tends to occur with more silt \& clay particles suspended in water

Measured by passing light through a small sample and measuring the light dispersion

Nephelometric Turbidity Units (NTUs)

No standard for runoff yet

Turbidity Limits

Surface Water Classification	Turbidity Not to Exceed Limit* (NTUs)
Streams	50
Lakes \& Reservoirs	25
Trout Waters	10

* If turbidity exceeds these levels due to natural background conditions, the existing turbidity level cannot be increased

Turbidity Limit Example Non-Trout Water Stream

* If turbidity exceeds NTU standard due to natural background conditions (upstream sample), the existing turbidity level cannot be increased.

MODULE 4. Open Channel Design

Table 4.1. NCDOT guidelines for selecting channel linings.
Channel Slope (\%) Recommended Channel Lining
< 1.5 Seed and Mulch
1.5 to $4.0 \quad$ Temporary Liners (RECP)
>4.0 Turf Reinforced Mats or Hard

Selecting a Channel Lining

$$
\tau=(\gamma)\left(\mathrm{d}_{\text {chan }}\right)\left(\mathrm{S}_{\text {chan }}\right)
$$

(Equation 4.1, pg 22)
$\tau=$ average tractive force acting on the channel lining (lbs/ft²)
$\gamma=$ unit weight of water, assumed to be $62.4 \mathrm{lbs} / \mathrm{ft}^{3}$
$\mathrm{d}_{\text {chan }}=$ depth of flow in the channel (ft)
$\mathrm{S}_{\text {chan }}=$ slope of the channel ($\mathrm{ft} / \mathrm{ft}$)
Select a channel lining that will resist the tractive force.

Example: Select a lining for a ditch with channel slope of $0.02 \mathrm{ft} / \mathrm{ft}$ and flow depth of 0.8 ft . NCDOT guidelines (Table 4.1) recommend temporary liner.
$\tau=\left(62.4 \mathrm{lb} / \mathrm{tt}^{3}\right)(0.8 \mathrm{ft})(0.02 \mathrm{ft} / \mathrm{ft})=1.0 \mathrm{lb} / \mathrm{ft}^{2}$
Table 4.3 (pg 23): Select a RECP with allowable tractive force $>1.0 \mathrm{lb} 4 \mathrm{ff}^{2}$

Worksheet

4.1. Select a suitable channel liner for a triangular ditch with maximum depth of 1.2 ft and slope of 4.2%.
Table 4.1: NCDOT guidelines for $>4 \%$ slope require TRM.
Equation 4.1: $\tau=\left(62.4 \mathrm{lbs} / \mathrm{ft}^{3}\right)(1.2 \mathrm{ft})(0.042 \mathrm{ft} / \mathrm{ft})=3.14 \mathrm{lbs} / \mathrm{ft}^{2}$
Table 4.3: Select a TRM channel lining with a maximum allowable tractive force greater than $3.14 \mathrm{lbs} / \mathrm{ft}^{2}$ (N. American Green P550)

MODULE 5. Sediment Retention BMPs for NCDOT

1. Selection \& Design Considerations
2. BMP Design Criteria
3. Example Specs and Calculations

NCDOT Roadside Environmental Unit Soil and Water Section:
http://ncdot.gov/doh/operations/dp_chief_eng/roadside/soil_water/

Sediment Retention BMPs

BMP	Location	Catchment	Structure	Sed. CtI. Stone	Surface Δ rea	Volume	Function
T. Rock Sed. Dam A	Swale/large ditch	$<1 \mathrm{ac}$.	Class I	Yes	$435 \mathrm{Q}_{10}$	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
T. Rock Sed. Dam B	Drainage outlet	$<1 \mathrm{ac}$.	Class B	Yes	$435 \mathrm{Q}_{10}$	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Silt Basin B	Drainage outlet/ Adjacent to inlet	< 3 ac .	Earth	No	$\begin{aligned} & 435 \mathrm{Q}_{10} \\ & \left(325 \mathrm{Q}_{10} @\right. \\ & \text { inlets }) \end{aligned}$	$\begin{aligned} & 3600 \mathrm{ft}^{3} / \mathrm{ac} \\ & \left(1800 \mathrm{ft}^{3} / \mathrm{ac}\right. \\ & @ \text { inlets }) \\ & \hline \end{aligned}$	Remove sand
Skimmer Basin	Drainage outlet	< 10 ac .	Earth	No	$325 \mathrm{Q}_{10}$	$1800 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Infiltration Basin	Drainage outlet	< 10 ac .	Earth	No	$325 \mathrm{Q}_{10}$	$1800 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Riser Basin(non-perforated riser w/ skimmer)	Drainage outlet	< 100 ac .	Earth	No	$435 Q_{10}$	$1800 \mathrm{ft}^{3} / \mathrm{ac}$	Remove silt, clay
Stilling Basin/Pumped	Near Borrow Pit/Culvert	N/A	Earth and Stone	No	$\begin{array}{\|l\|} \hline \text { 2:1 L:W } \\ \text { ratio } \\ \hline \end{array}$	Based on dewatering	Remove silt, clay
Sp. Stilling Basin(Silt Bag)	Near stream	N/A	Filter Fabric	Yes	N/A	Variable	Remove sand
Rock Pipe Inlet Sed. Trap A	Pipe inlet	$<1 \mathrm{ac}$.	Class B	Yes	N/A	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Rock Pipe Inlet Sed. Trap B	Pipe inlet	$<1 \mathrm{ac}$.	Class A	Yes	N/A	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Slope Drain w/ Berm	Fill Slopes	<1/2 ac.	12-inch pipe	No	N/A	N/A	Convey concentrated runoff
Rock Inlet Sed. Trap A	Stormwater Inlet	$<1 \mathrm{ac}$.	Class B	Yes	N/A	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Rock Inlet Sed. Trap B	Stormwater Inlet	$<1 \mathrm{ac}$.	Class A	Yes	N/A	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
Rock Inlet Sed. Trap C	Stormwater Inlet	$<1 \mathrm{ac}$.	$1 / 4{ }^{\prime \prime}$ wire mesh	Yes	N/A	N/A	Remove sand
T. Rock Silt Check A	Drainage outlet	$<1 \mathrm{ac}$.	Class B	Yes	$435 \mathrm{Q}_{10}$	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	Remove sand
T. Rock Silt Check B	Channel	<1/2 ac.	Class B	No	N/A	N/A	Reduce flow velocity
Temporary Earth Berm	Project perimeter	$<5 \mathrm{ac}$.	Earth	No	N/A	N/A	Divert offsite runoff
Temporary Silt Fence	Bottom of slope	$\begin{aligned} & <1 / 4 \text { acre per } \\ & 100 \text { feet }<2 \%^{*} \\ & \hline \end{aligned}$	Silt fence	No	N/A	N/A	Create small basin; Remove sand, silt
Special Sediment Control Fence	Bottom of slope	<1/2 ac.	1/4" wire mesh	Yes	N/A	N/A	Remove sand
Temporary Silt Ditch	Bottom of slope	$<5 \mathrm{ac}$.	Earth	No	N/A	N/A	Carry sediment/water
Temporary Diversion	Project \& Stream	$<5 \mathrm{ac}$.	Earth	No	N/A	N/A	Divert turbid water
Earth Berm	perimeter	$<5 \mathrm{ac}$.	Earth	No	N/A	N/A	Divert clean or turbid water
Clean Water Diversion	Project perimeter	$<5 \mathrm{ac}$.	Earth \& Fabric	No	N/A	N/A	Divert clean water
Construction Entrance	Exit to road	N/A	Class A	No	N/A	N/A	Clean truck tires
Safety Fence	Permitted Areas	N/A	Orange fence	No	N/A	N/A	Define permitted boundary
Borrow Pit Dewatering Basin	Adjacent to Borrow Pits	N/A	Earth	No	N/A	$8.02 \times \mathrm{XxT}$	Remove Sand and reduce turbidity
Wattle/Coir Fiber Wattle	Channel	<1/2ac.	Natural Fibers	No	N/A	N/A	Incorporate PAM
Silt Check A with Matting and PAM	Channel	<1/2 ac.	Class B	Yes	N/A	N/A	Reduce flow 4 80city and incorporate PAM

Structure Sizing

Two Criteria: (see Table 1)

1. Minimum Volume (ft^{3}) based on disturbed acres
2. Minimum Surface Area (ft^{2}) based on total acres

Use Q_{10} for normal design
Use Q_{25} for Environmentally Sensitive Areas, Upper Neuse River Basin, Jordan Lake

Device Outlet Type	Minimum Volume $\left(\mathrm{ft}^{3}\right)$	Minimum Surface Area $\left(\mathrm{ft}^{2}\right)$
Weir	$3600 \mathrm{ft}^{3} / \mathrm{ac}$	$435 \mathrm{Q}_{10}$ or Q_{25}
Surface Outlet	$1800 \mathrm{ft}^{3} / \mathrm{ac}$	$325 \mathrm{Q}_{10}$ or Q_{25}
Surface Outlet + Riser	$1800 \mathrm{ft}^{3} / \mathrm{ac}$	$435 \mathrm{Q}_{10}$ or Q_{44}

Porous Baffle Spacing

Baffles required in Silt Basins at drainage turnouts, Type A and B Temporary Rock Sediment Dams, Skimmer Basins, Stilling Basins:

3 baffles evenly-spaced if basin length > 20 ft
$\underline{2}$ baffles evenly-spaced if basin length $10-20 \mathrm{ft}$
1 baffle if basin length $\leq 10 \mathrm{ft}$ (State Forces)

Weir Length for Spillway

Skimmers and Infiltration Basins:
Weir Length $=\mathrm{Q}_{\text {peak }} / 0.4$
Temporary Sediment Dam - Type B:
Minimum 4ft for 1 acre or less

Skimmer Basin

Drainage area < 10 ac
Surface Area $=325 Q_{10}$ or $325 Q_{25}$

Skimmer Basin
Volume $=1800 \mathrm{ft} 3^{3} / \mathrm{ac}$ disturbed
Depth $=3 \mathrm{ft}$ at weir

IS

A temporary basin with a trapezoidal spillway lined with filter fabric and equipped with a floating skimmer.
Coir Baffles (3)
$\mathrm{L}: \mathrm{W}$ ratio $3: 1$ to $5: 1$
USE
In sensitive watershed areas and in locations where the drainage area is too large for standard rock weir outlet.

CONSTRUCT

Basin with a Faircloth Skimmer at the outlet, a trapezoidal emergency spillway lined with filter fabric, and 3 coir fiber baffles. Storage capacity is 1800 cubic ft . per disturbed acre and surface area must accommodate the 10 -year storm runoff. Limit the dam height to 5 ft .

48

- 15

Wattle	
Drainage area < $1 / 2$ ac	
May add PAM for turbidity control	
	Wattle with Polyacrylamide (PAM)
	IS A tubular device that consists of excelsior or synthetic netting.
	USE In temporary and permanent ditches to reduce runoff velocity and incorporate PAM in the form of powder into the runoff.
	CONSTRUCT \qquad ontrol matting. Wattles can be used with or

Check Dam \& Wattle Spacing

On NCDOT projects:

Coastal Plain: Spacing = $600 /$ slope (\%)

Example: For 2\% slope, space checks 300 ft apart
Piedmont and West: Spacing = $300 /$ slope (\%)

Example: For 3\% slope, space checks 100 ft apart

Infiltration Basin

Drainage area <10 ac
Surface Area $=325 Q_{10}$ or $325 Q_{25}$
Volume $=1800 \mathrm{ft}^{3} / \mathrm{ac}$
Depth $=3 \mathrm{ft}$ at weir
Coir Baffles (1-3)
L:W ratio $3: 1$ to $5: 1$
Must dewater in 3 days or less
Soil permeability must be at least $0.5 \mathrm{in} / \mathrm{hr}$
(from NRCS B or C soil horizon, slowest rate)

Guidelines for Infiltration Basins

- Locate in Coastal Plain
- Locate in fill slope with Temporary Silt Ditch bringing runoff
- Do NOT locate in "Soils Prone to Flooding"
- Do not locate in cut ditches

Figure 8.01a Major soil regions of North

Design Steps for Basins, Sediment Dams, \& Traps

1. Minimum volume and surface area
2. Width and length at the weir/spillway height based on sideslopes
3. Emergency spillway weir length

Temporary Rock Sediment Dam, Type B
1634.02

53

Skimmer Basin on Wade Ave.

Example: Temp Rock Sediment Dam Type B

Disturbed area $=1 \mathrm{ac} ; \quad \mathrm{Q}_{10}=2.5 \mathrm{cfs}$
Interior sideslopes $=1.5: 1 ; \quad \mathrm{L}: \mathrm{W}=3: 1$

1. Minimum Volume and Surface Area:

Minimum Volume $=3600 \times 1 \mathrm{ac}=3600 \mathrm{ft}^{3}$
Minimum Surface Area $=435 \mathrm{Q}_{10}=435 \times 2.5 \mathrm{cfs}=1088 \mathrm{ft}^{2}$
Depth $=$ Volume $/$ Area $=3600 \mathrm{ft}^{3} / 1088 \mathrm{ft}^{2}=3.3 \mathrm{ft}$
For DOT projects, Design Depth $=2$ to 3 ft
Therefore, use depth $=3 \mathrm{ft}$
Adjusted Area $=$ Volume $/$ depth $=3600 / 3=1200 \mathrm{ft}^{2}$
Surface area must be greater to account for sideslopes

Example: Temp Rock Sed Dam Type B

Volume $=\frac{\mathrm{d}}{3}\left[\mathrm{~W}_{\text {top }} \mathrm{L}_{\text {top }}+\mathrm{W}_{\text {base }} \mathrm{L}_{\text {base }}+\left(\frac{\mathrm{W}_{\text {top }} \mathrm{L}_{\text {base }}+\mathrm{W}_{\text {base }} \mathrm{L}_{\text {top }}}{2}\right)\right]$

Example: Temp Rock Sed Dam Type B

2. Width and depth at top and base (trial \& error):

Start with area $=1,200 \mathrm{ft}^{2}$ and a 3:1 length to width ratio

$$
\text { Trial Width, } \mathrm{W}_{\text {top }}=\sqrt{\frac{\mathrm{A}}{\mathrm{~L} \text { to } \mathrm{W} \text { ratio }}}=\sqrt{\frac{1200}{3}}=20 \mathrm{ft}
$$

To account for sideslopes, add to top width (try 3 ft):
Trial $\mathrm{W}_{\text {top }}=20+3=23 \mathrm{ft}$
Trial $\mathrm{L}_{\text {top }}=3 \times \mathrm{W}_{\text {top }}=3 \times 23=69 \mathrm{ft}$

Example: Temp Rock Sed Dam Type B

Calculate base width and base length using 1.5 to 1 sideslopes:
$W_{\text {base }}=W_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=23-(3 \times 1.5 \times 2)=14 \mathrm{ft}$ $L_{\text {base }}=L_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=69-(3 \times 1.5 \times 2)=60 \mathrm{ft}$

Example: Temp Rock Sed Dam Type B
Calculate volume (minimum required $=3,600 \mathrm{ft}^{3}$):

$$
\begin{aligned}
& \text { Volume }=\frac{d}{3}\left[W_{\text {top }} L_{\text {top }}+W_{\text {base }} L_{\text {base }}+\left(\frac{W_{\text {top }} L_{\text {base }}+W_{\text {base }} L_{\text {top }}}{2}\right)\right] \\
& \text { Volume }=\frac{3}{3}\left[(23)(69)+(14)(60)+\left(\frac{(23)(60)+(14)(69)}{2}\right)\right]
\end{aligned}
$$

Volume $=3600 \mathrm{ft}^{3}$ (meets minimum requirement)

Surface Area (at weir elevation) $=23 \times 69=1587 \mathrm{ft}^{2}$

Example: Temp Rock Sed Dam Type B

Not to Scale

Example: Temp Rock Sed Dam Type B

Principal spillway:
Water exits the basin via the Class B stone dam covered with sediment control stone

Rock weir:
Weir must be sized according to weir chart based on total drainage area (1 acre)

Weir Length $(1$ acre $)=4 \mathrm{ft}$
Baffles:
Since basin is 69 ft long, use 3 baffles spaced evenly. Divided the basin into 4 quarters, each 17 ft long

Design Steps: Skimmer Basin with Baffles

1. Minimum volume and surface area
2. Width and length based on sideslopes
3. Dewatering flow rate (top 2 ft in 3 days)
4. Skimmer size and orifice diameter
5. Primary spillway barrel pipe size
6. Emergency spillway weir length
7. Baffle spacing

Skimmer Basin

Example: Skimmer Basin with Baffles

Disturbed area $=10 \mathrm{ac} ; \mathrm{Q}_{10}=17 \mathrm{cfs} ;$ Dewater time $=3$ days; Interior sideslopes $=1.5: 1$; L:W = 3:1

1. Minimum Volume and Surface Area:

Minimum Volume $=1800 \times 10$ acres $=18,000 \mathrm{ft}^{3}$
Minimum Surface Area $=325 \mathrm{Q}_{10}=325 \times 17 \mathrm{cfs}=5,525 \mathrm{ft}^{2}$
Depth $=$ Volume $/$ Area $=18,000 \mathrm{ft}^{3} / 5,525 \mathrm{ft}^{2}=3.1 \mathrm{ft}$
For DOT projects, Design Depth $=3 \mathrm{ft}$
Therefore, adjust minimum surface area up:
Area $_{\text {min }}=$ Volume $/$ Design Depth $=18,000 \mathrm{ft}^{3} / 3 \mathrm{ft}=6,000 \mathrm{ft}^{2}$
Surface area must be greater to account for sideslopes

Example: Skimmer Basin with Baffles

Volume $=\frac{\mathrm{d}}{3}\left[\mathrm{~W}_{\text {top }} \mathrm{L}_{\text {top }}+\mathrm{W}_{\text {base }} \mathrm{L}_{\text {base }}+\left(\frac{\mathrm{W}_{\text {top }} \mathrm{L}_{\text {base }}+\mathrm{W}_{\text {base }} \mathrm{L}_{\text {top }}}{2}\right)\right]$

Example: Skimmer Basin with Baffles

2. Width and length at top and base (trial \& error):

Start with area $=6,000 \mathrm{ft}^{2}$ and a 3 to 1 length to width ratio

$$
\text { Trial Width, } W_{\text {top }}=\sqrt{\frac{A}{L \text { to W ratio }}}=\sqrt{\frac{6,000}{3}}=45 \mathrm{ft}
$$

To account for sideslopes, add to top width (try 3 ft):

$$
\begin{aligned}
& \text { Trial } \mathrm{W}_{\text {top }}=45+3=48 \mathrm{ft} \\
& \text { Trial } \mathrm{L}_{\text {top }}=3 \times \mathrm{W}_{\text {top }}=3 \times 48=144 \mathrm{ft}
\end{aligned}
$$

Example: Skimmer Basin with Baffles

Calculate base width and base length using 1.5 to 1 sideslopes: $W_{\text {base }}=W_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=48-(3 \times 1.5 \times 2)=39 \mathrm{ft}$ $\mathrm{L}_{\text {base }}=\mathrm{L}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=144-(3 \times 1.5 \times 2)=135 \mathrm{ft}$

Example: Skimmer Basin with Baffles

Calculate volume (minimum required $=18,000 \mathrm{ft}^{3}$):

$$
\begin{aligned}
& \text { Volume }=\frac{d}{3}\left[W_{\text {top }} L_{\text {top }}+W_{\text {base }} L_{\text {base }}+\left(\frac{W_{\text {top }} L_{\text {base }}+W_{\text {base }} L_{\text {top }}}{2}\right)\right] \\
& \text { Volume }=\frac{3}{3}\left[(48)(144)+(39)(135)+\left(\frac{(48)(135)+(39)(144)}{2}\right)\right]
\end{aligned}
$$

Volume $=18,225 \mathrm{ft}^{3}$ (meets minimum requirement)

Surface Area (at weir elevation) $=48 \times 144=6,912 \mathrm{ft}^{2}$

Example: Skimmer Basin with Baffles

Not to Scale

Example: Skimmer Basin with Baffles

3. Dewatering flow rate (top $\mathbf{2 ~ f t ~ i n ~} \mathbf{3}$ days)

Calculate width \& length at depth $=1 \mathrm{ft}$ using 1.5:1 sideslopes:
$\mathrm{W}_{1 \mathrm{ft}}=\mathrm{W}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=48-(2 \times 1.5 \times 2)=42 \mathrm{ft}$
$L_{1 \text { ft }}=L_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=144-(2 \times 1.5 \times 2)=138 \mathrm{ft}$
Calculate volume in the top 2 ft

$$
\begin{aligned}
& \text { Volume }=\frac{d}{3}\left[W_{\text {top }} L_{\text {top }}+W_{1 \text { ft }} L_{1 \text { fft }}+\left(\frac{W_{\text {top }} L_{\text {1ft }}+W_{1 \text { ft }} L_{\text {top }}}{2}\right)\right] \\
& \text { Volume }=\frac{2}{3}\left[(48)(144)+(42)(138)+\left(\frac{(48)(138)+(42)(144)}{2}\right)\right]
\end{aligned}
$$

Volume in top $2 \mathrm{ft}=12,696 \mathrm{ft}^{3}$

Example: Skimmer Basin with Baffles

4. Select Faircloth Skimmer to dewater top 2 ft in $\mathbf{3}$ days

Volume in top $2 \mathrm{ft}, \mathrm{V}_{\text {skim }}=12,696 \mathrm{ft}^{3}$
Dewater Rate, $\mathrm{Q}_{\text {skim }}=\mathrm{V}_{\text {skim }} / \mathrm{t}_{\text {dewater }}=12,696 / 3=4,232 \mathrm{ft}^{3} /$ day

Select the Skimmer Size to carry at least $4,232 \mathrm{ft}^{3} /$ day
From Table 5.1, a 2.5-inch skimmer carries $6,234 \mathrm{ft}^{3} /$ day with driving head, $\mathrm{H}_{\text {skim }}=$ 0.208 ft

Why not use a 2 -inch skimmer?

Select skimmer based on flow rate, Table 5.1

Skimmer Diameter (inches)	Q $_{\text {skimmer }}$ Max Outflow Rate $\left(\mathrm{ft}^{3} /\right.$ day $) *$	$\mathrm{H}_{\text {skimmer }}$ Driving Head $(\mathrm{ft}) *$
1.5	1,728	0.125
2.0	3,283	0.167
2.5	6,234	0.208
3.0	9,774	0.250
4.0	20,109	0.333
5.0	32,832	0.333
6.0	51,840	0.417
8.0	97,978	0.500

* Updated 2007: www.fairclothskimmer.com

Orifice Diameter for Skimmer
(Equation 5.2)
$\mathrm{D}_{\text {orifice }}=$ diameter of the skimmer orifice in inches (in)
$Q_{\text {skimmer }}=$ basin outflow rate in cubic feet per day ($\mathrm{ft}^{3} /$ day $)$
$\mathrm{H}_{\text {skimmer }}=$ driving head at the skimmer orifice from Table 5.1 in feet (ft)

$$
D_{\text {orifice }}=\sqrt{\frac{Q_{\text {skim }}}{2310 \sqrt{H_{\text {skim }}}}}=\sqrt{\frac{4,232}{2,310 \sqrt{0.208}}}=2.0 \text { inches }
$$

The orifice in the knockout plug is drilled to a 2-inch diameter.

Example: Skimmer Basin with Baffles

5. Primary spillway barrel pipe size using $Q_{\text {skim }}=4,232$

NCDOT: Use smooth pipe on 1% slope (minimum 4-inch)
Figure 4.1 (Pipe Chart pg 27): At 1\% slope, a 4-inch pipe carries up to $100 \mathrm{gpm}=19,300 \mathrm{ft}^{3} / \mathrm{day}$
6. Emergency spillway weir length:

NCDOT: $\mathrm{L}_{\text {weir }}=17 \mathrm{cfs} / 0.4=42.5 \mathrm{ft}$ or 43 ft

Based on Manning's $\mathrm{n}=0.0108$

Example: Skimmer Basin with Baffles

7. Baffle Spacing:

For $L_{\text {top }}>20 \mathrm{ft}$, use 3 baffles to divide into 4 chambers:
Baffle spacing $=L_{\text {top }} / 4=144 / 4=36 \mathrm{ft}$

Not to Scale

Worksheet 5.1. Infiltration Basin

Infiltration basin on Rains soil (permeability= $0.5 \mathrm{in} / \mathrm{hr}$) with drainage area of 8 acres?

Drainage area $=8 \mathrm{ac} ;$ permeability $=0.5 \mathrm{in} / \mathrm{hr}$

For NCDOT maximum depth $=3 \mathrm{ft}$
Dewatering time $=3 \mathrm{ft} \times \mathrm{hr} / 0.5 \mathrm{in} \times 12 \mathrm{in} / \mathrm{ft}=72 \mathrm{hr}$ or 3 days
Design volume $=1800 \times 8=14,400 \mathrm{ft}^{3}$
*NCDOT guidelines: drains in 3 days, drainage area <10ac., soil permeability at least $0.5 \mathrm{in} / \mathrm{hr}$

Worksheet 5.3. Skimmer Basin

Design: For a 5.5-acre construction site with $Q_{10}=12 \mathrm{cfs}$, design a basin to be dewatered in 3 days. Use 1.5:1 interior sideslopes and 3:1 length:width ratio.

1. Minimum volume and surface area
2. Width and length based on sideslopes
3. Dewatering flow rate (top 2 ft in 3 days)
4. Skimmer size and orifice diameter
5. Primary spillway barrel pipe size
6. Emergency spillway weir length
7. Baffle spacing

Worksheet 5.3. Skimmer Basin

Design: For a 5.5-acre construction site with $Q_{10}=12 \mathrm{cfs}$, design a basin to be dewatered in 3 days. Use 1.5:1 interior sideslopes and 3:1 length:width ratio.

1. Minimum Volume and Surface Area:

Minimum Volume $=1800 \times 5.5$ acres $=9,900 \mathrm{ft}^{3}$
Minimum Surface Area $=325 \mathrm{Q}_{10}=325 \times 12 \mathrm{cfs}=3,900 \mathrm{ft}^{2}$
Depth $=$ Volume $/$ Area $=9,900 \mathrm{ft}^{3} / 3,900 \mathrm{ft}^{2}=2.5 \mathrm{ft}$
For DOT projects, Design Depth $=3 \mathrm{ft}$

Surface area must be greater to account for sideslopes

Worksheet 5.3. Skimmer Basin

2. Width and Length at top and base (trial \& error):

Start with area $=3,900 \mathrm{ft}^{2}$ and a 3:1 length:width ratio

$$
\text { Trial Width, } \mathrm{W}_{\text {top }}=\sqrt{\frac{\mathrm{A}}{\mathrm{~L} \text { to W ratio }}}=\sqrt{\frac{3,900}{3}}=36 \mathrm{ft}
$$

Trial width add 1 ft to width $\mathrm{W}_{\text {top }}=36+1=37 \mathrm{ft}$
Trial Length, $\mathrm{L}_{\text {top }}=3 \times 37=111 \mathrm{ft}$

Try this width and length with $1.5: 1$ sideslopes to check if volume $>9,900 \mathrm{ft}^{3}$

Worksheet 5.3. Skimmer Basin

Calculate base width and base length using 1.5 to 1 sideslopes: $W_{\text {base }}=W_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=37-(3 \times 1.5 \times 2)=28 \mathrm{ft}$ $\mathrm{L}_{\text {base }}=\mathrm{L}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=111-(3 \times 1.5 \times 2)=102 \mathrm{ft}$

Worksheet 5.3. Skimmer Basin

Calculate volume (minimum required $=9,900 \mathrm{ft}^{3}$):

$$
\begin{aligned}
& \text { Volume }=\frac{\mathrm{d}}{3}\left[\mathrm{~W}_{\text {top }} \mathrm{L}_{\text {top }}+\mathrm{W}_{\text {base }} \mathrm{L}_{\text {base }}+\left(\frac{\mathrm{W}_{\text {top }} \mathrm{L}_{\text {base }}+\mathrm{W}_{\text {base }} \mathrm{L}_{\text {top }}}{2}\right)\right] \\
& \text { Volume }=\frac{3}{3}\left[(37)(111)+(28)(102)+\left(\frac{(37)(102)+(28)(111)}{2}\right)\right]
\end{aligned}
$$

Volume $=10,404 \mathrm{ft}^{3}$ (meets minimum requirement) Surface Area (at weir elevation) $=37 \times 111=4,107 \mathrm{ft}^{2}$

Worksheet 5.3. Skimmer Basin

Not to Scale

Worksheet 5.3. Skimmer Basin

3. Dewatering flow rate (top $\mathbf{2 ~ f t ~ i n ~} \mathbf{3}$ days)

Calculate width \& length at depth $=1 \mathrm{ft}$ using $1.5: 1$ sideslopes:
$\mathrm{W}_{1 \mathrm{ft}}=\mathrm{W}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=37-(2 \times 1.5 \times 2)=31 \mathrm{ft}$
$\mathrm{L}_{1 \text { ft }}=\mathrm{L}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=111-(2 \times 1.5 \times 2)=105 \mathrm{ft}$
Calculate volume in the top 2 ft

$$
\begin{aligned}
& \text { Volume }=\frac{\mathrm{d}}{3}\left[\mathrm{~W}_{\text {top }} \mathrm{L}_{\text {top }}+\mathrm{W}_{1 \mathrm{fft}} \mathrm{~L}_{1 \mathrm{fft}}+\left(\frac{\mathrm{W}_{\text {top }} \mathrm{L}_{1 \mathrm{ft}}+\mathrm{W}_{1 \mathrm{ft}} \mathrm{~L}_{\text {top }}}{2}\right)\right] \\
& \text { Volume }=\frac{2}{3}\left[(37)(111)+(31)(105)+\left(\frac{(37)(105)+(31)(111)}{2}\right)\right]
\end{aligned}
$$

Volume in top $2 \mathrm{ft}=7,350 \mathrm{ft}^{3}$

Worksheet 5.3. Skimmer Basin

4. Select Faircloth Skimmer to dewater top 2 ft in $\mathbf{3}$ days

Volume in top $2 \mathrm{ft}, \mathrm{V}_{\text {skim }}=7,350 \mathrm{ft}^{3}$
Daily $\mathrm{Q}_{\text {skim }}=7,350 / 3=2,450 \mathrm{ft}^{3} /$ day
Select the Skimmer Size to carry at least 2,450 ft³/day
From Table 5.1, a 2-inch skimmer carries $3,283 \mathrm{ft}^{3} /$ day with driving head, $\mathrm{H}_{\text {skim }}=0.167$ ft

$$
\begin{aligned}
& \quad \mathrm{D}_{\text {orifice }}=\sqrt{\frac{\mathrm{Q}_{\text {skim }}}{2310 \sqrt{\mathrm{H}}}}=\sqrt{\frac{2,450}{2,310 \sqrt{0.167}}}=1.6 \text { inches } \\
& \text { The orifice in the knockout plukims drilled to a 1.6-inch diameter. }
\end{aligned}
$$

Select skimmer based on flow rate, Table 5.1

Skimmer Diameter (inches)	$\mathrm{Q}_{\text {skimmer }}$ Max Outflow Rate $\left(\mathrm{ft}^{3} /\right.$ day $)$	$\mathrm{H}_{\text {skimmer }}$ Driving Head (ft) $*$
1.5	1,728	0.125
2.0	3,283	0.167
2.5	6,234	0.208
3.0	9,774	0.250
4.0	20,109	0.333
5.0	32,832	0.333
6.0	51,840	0.417
8.0	97,978	0.500

* Updated 2007: www.fairclothskimmer.com

Worksheet 5.3. Skimmer Basin

5. Primary spillway barrel pipe size using $Q_{\text {skim }}=2,450$

NCDOT: Use smooth pipe on 1\% slope (minimum 4-inch)
Figure 4.1 (Pipe Chart): At 1\% slope, a 4-inch pipe carries up to $100 \mathrm{gpm}=19,300 \mathrm{ft}^{3} /$ day
6. Emergency spillway weir length:

NCDOT: $L_{\text {weir }}=12 \mathrm{cfs} / 0.4=30 \mathrm{ft}$
7. Baffle Spacing:

Baffle spacing $=L_{\text {top }} / 4=111 / 4=28 \mathrm{ft}$

MODULE 6: Below Water Table Borrow Pits Dewatering Options

Tier I Methods

- Borrow Pit Dewatering Basin
- Land Application (Irrigation)
- Geotextile Bags
- Alum
- Gypsum
- Polyacrylamide (PAM)

Tier II Methods [rare \& unique resources]

- Well Point Pumping
- Impoundments
- Cell Mining
- Sand Media Filtration
- Wet Mining

Borrow Pit Dewatering Basin

- Basin at pump outlet to settle sediment
- No area requirement
- Volume = pump rate x detention time:
- Detention time $=2$ hours minimum

- $\mathrm{V}_{\text {still }}=16\left(\mathrm{Q}_{\text {still }}\right) \mathrm{Q}=$ pump rate in gpm
- Max pump rate $=1,000 \mathrm{gpm}(2.2 \mathrm{cfs})$
- Maximum depth $=3 \mathrm{ft}$
- Earthen embankments are fill above grade
- L:W = 2:1 minimum
- Surface outlet:
- Non-perforated riser pipe (12-inch)
- Flashboard riser

Turbidity Reduction: PAM at $1 \mathrm{mg} / \mathrm{L}$ in stilling basin
Powder: mix 1 pound of PAM per 100 gallons of water

Figure 6.1: At $Q_{\text {still }}=1000 \mathrm{gpm}$, inject liquid PAM mix at 1.3 gpm

Inject mix at pump intake (suction line) or just after water leaves pump

Floc-Log: turbulent flow 60-80 gpm inside corrugated plastic pipe (no inner liner)

Figure 6.1. PAM Injection (liquid mix)

Example: Borrow Pit Dewatering Basin

Design a Borrow Pit Dewatering Basin with 2-hour detention time, PAM injection, and pumping rate, $Q_{\text {still }}=300 \mathrm{gpm}$.

$$
\text { Volume: } \mathrm{V}_{\text {still }}=16\left(\mathrm{Q}_{\text {still }}\right) \quad \text { (Equation 6.1, pg 34) }
$$

$$
\mathrm{V}_{\text {still }}=16(300 \mathrm{gpm})=4,800 \mathrm{ft}^{3}
$$

For depth $=3 \mathrm{ft}$, minimum surface area:

$$
\text { Area }=\text { Volume/Depth }=4,800 \mathrm{ft}^{3} / 3 \mathrm{ft}=1,600 \mathrm{ft}^{2}
$$

Example: Borrow Pit Dewatering Basin

Width and length at top and base (trial \& error):
Start with area $=1,600 \mathrm{ft}^{2}$ and a 2:1 length to width ratio

$$
\text { TrialWidth, } \mathrm{W}_{\text {top }}=\sqrt{\frac{\mathrm{A}}{\mathrm{~L} \text { to } \mathrm{W} \text { ratio }}}=\sqrt{\frac{1,600}{2}}=29 \mathrm{ft}
$$

To account for sideslopes, add to top width (try 4 ft):
Trial $\mathrm{W}_{\text {top }}=29+4=33 \mathrm{ft}$
Trial $\mathrm{L}_{\text {top }}=2 \times \mathrm{W}_{\text {top }}=2 \times 33=66 \mathrm{ft}$

Example: Borrow Pit Dewatering Basin

Calculate base width and base length using 1.5 to 1 sideslopes: $\mathrm{W}_{\text {base }}=\mathrm{W}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=33-(3 \times 1.5 \times 2)=24 \mathrm{ft}$ $\mathrm{L}_{\text {base }}=\mathrm{L}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=66-(3 \times 1.5 \times 2)=57 \mathrm{ft}$

Example: Borrow Pit Dewatering Basin

Calculate volume (minimum required $=4,824 \mathrm{ft}^{3}$):
Volume $=\frac{d}{3}\left[W_{\text {top }} L_{\text {top }}+W_{\text {base }} L_{\text {base }}+\left(\frac{W_{\text {top }} L_{\text {base }}+W_{\text {base }} L_{\text {top }}}{2}\right)\right]$
Volume $=\frac{3}{3}\left[(33)(66)+(24)(57)+\left(\frac{(33)(57)+(24)(66)}{2}\right)\right]$

Volume $=5,300 \mathrm{ft}^{3}$ (meets minimum requirement)

Surface Area (at weir elevation) $=33 \times 66=2,200 \mathrm{ft}^{2}$

Example: Borrow Pit Dewatering Basin

Spillway Options:

- Riser Pipe (12-inch diameter) with invert at 3 ft depth
- Flashboard Riser with invert at 3 ft depth and flow rate of 300 gpm (0.67 cfs)

PAM Injection:

Mix 1 pound of PAM powder per 100 gallons of water
Figure 6.1: $Q_{\text {still }}=300 \mathrm{gpm}$, inject liquid PAM mix at 0.4 gpm Inject mix at pump intake (suction line) or just after water leaves pump

Worksheet 6.1: Borrow Pit Dewatering Basin

Design a Borrow Pit Dewatering Basin with 2-hour detention, PAM injection, and pumping rate, $Q_{\text {still }}=1 \mathrm{MGD}=695 \mathrm{gpm}$.

$$
\begin{aligned}
& \text { Volume: } V_{\text {still }}=16\left(Q_{\text {still }}\right) \\
& V_{\text {still }}=16(695 \mathrm{gpm})=11,120 \mathrm{ft}^{3}
\end{aligned}
$$

For depth $=3 \mathrm{ft}$, minimum surface area:

$$
\text { Area }=\text { Volume/Depth }=11,120 \mathrm{ft}^{3} / 3 \mathrm{ft}=3,700 \mathrm{ft}^{2}
$$

Worksheet 6.1: Borrow Pit Dewatering Basin

Width and length at top and base (trial \& error):
Start with area $=3,700 \mathrm{ft}^{2}$ and a $2: 1$ length to width ratio

$$
\text { TrialWidth, } \mathrm{W}_{\text {top }}=\sqrt{\frac{\mathrm{A}}{\mathrm{~L} \text { to W ratio }}}=\sqrt{\frac{3,700}{2}}=43.0 \mathrm{ft}
$$

To account for sideslopes, add to top width (try 5 ft):
Trial $W_{\text {top }}=43+5=48 \mathrm{ft}$
Trial $\mathrm{L}_{\text {top }}=2 \times \mathrm{W}_{\text {top }}=2 \times 48=96 \mathrm{ft}$

Worksheet 6.1: Borrow Pit Dewatering Basin

Calculate base width and base length using 1.5 to 1 sideslopes:
$W_{\text {base }}=W_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=48-(3 \times 1.5 \times 2)=39 \mathrm{ft}$ $\mathrm{L}_{\text {base }}=\mathrm{L}_{\text {top }}-($ depth $\times 1.5 \times 2$ sides $)=96-(3 \times 1.5 \times 2)=87 \mathrm{ft}$

Worksheet 6.1: Borrow Pit Dewatering Basin

Calculate volume $\left(\right.$ minimum required $\left.=11,120 \mathrm{ft}^{3}\right)$:

$$
\begin{aligned}
& \text { Volume }=\frac{d}{3}\left[W_{\text {top }} L_{\text {top }}+W_{\text {base }} L_{\text {base }}+\left(\frac{W_{\text {top }} L_{\text {base }}+W_{\text {base }} L_{\text {top }}}{2}\right)\right] \\
& \text { Volume }=\frac{3}{3}\left[(48)(96)+(39)(87)+\left(\frac{(48)(87)+(39)(96)}{2}\right)\right]
\end{aligned}
$$

Volume $=11,960 \mathrm{ft}^{3}$ (meets minimum requirement)

Surface Area (at weir elevation) $=48 \times 96=4,600 \mathrm{ft}^{2}$

Worksheet 6.1: Borrow Pit Dewatering Basin

Spillway Options:

- Riser Pipe (12-inch diameter) with invert at 3 ft depth
- Flashboard Riser with invert at 3 ft depth and flow rate of 695 gpm (1.6 cfs)

PAM Injection:
Mix 1 pound of PAM powder per 100 gallons of water
Figure 6.1: $Q_{\text {still }}=695 \mathrm{gpm}$, inject liquid PAM mix at 0.9 gpm Inject mix at pump intake (suction line) or just after water leaves pump

Below Water Table Sites: Wetland Protection

Type 1: Flow from wetland to pit
Type 2: Flow from pit to wetland
Does not require Skaggs Method calculations
Minimum 25 ft buffer (setback) from wetland
Minimum 50 ft buffer from stream
Type 3: Flow-through pits: wetland to pit on one side, pit to wetland on other side

For Types 1 \& 3 or uncertain flow direction:

- 400 ft buffer OR
- Skaggs Method calculations

Skaggs Method: Determine Setback

Wetland hydrology is defined as an area where the water table is normally within 1.0 ft of the soil surface for a continuous critical duration, defined as $5-12.5 \%$ of the growing season. The 5% was used in the Skaggs method.

Calculate "Lateral Effect," or setback, x

Skaggs Method: Determine Setback

Soil Characteristics:

- Effective hydraulic conductivity, \mathbf{K}_{e} (Soil Survey or site investigation)
- Drainable porosity, $\mathrm{f}=\mathbf{0 . 0 3 5}$ for DOT applications

Climate:

Threshold Time for water table drawdown of $0.83 \mathrm{ft}, \mathbf{T}_{\mathbf{2 5}}=\mathbf{t}$
Depth to water table at borrow pit: $\mathrm{d}_{\mathrm{o}}=2 \mathrm{ft}$

Surface Depressional Storage:

1 inch if area is relatively smooth
2 inches if area is rough with shallow depressions

Surface Storage

Surface storage $=2$ in

Natural Forest or Pocosin

Land planed agricultural field

Skaggs Method: Determine Setback

$h_{o}=$ average profile depth to restrictive layer (measured from wetland soil surface)
$\mathrm{d}_{\mathrm{o}}=2 \mathrm{ft}=$ depth from wetland soil surface to water in the borrow pit $\left(d_{o}=h_{o}-d\right)$. For NCDOT, $d_{o}=2 \mathrm{ft}$
$d=$ depth of pit water to restrictive layer, $d=h_{o}-2 \mathrm{ft}$

Skaggs Method Software

www.ncdot.org/doh/Operations/dp chief eng/roadside/fieldops/downloads/
Inputs:

- Soil type (information only)
- County
- Depth from wetland surface to water in pit ($\mathrm{d}_{\mathrm{o}}=2 \mathrm{ft}, \mathrm{NCDOT}$)
- Surface depressional storage (1 inch smooth, 2 inches rough)
- Depth from wetland surface to restrictive layer, h_{o}
- Drainable Porosity of the soil, $\mathrm{f}=0.035$ for NCDOT
- Effective Hydraulic Conductivity of each soil layer between pit and wetland, K_{e}, inches per hour

Example: Skaggs Method

The wetland is located in Johnston County on a Rains soil. From wetland soil surface to impermeable/restrictive layer is 15 ft . Soil hydraulic conductivity is 4ft/day. The wetland has a natural rough surface. What is the minimum lateral setback?

Worksheet 6.2. Skaggs Method Software Input

For a borrow pit in Pitt County with Emporia soil ($\mathrm{K}=6 \mathrm{ft} /$ day), depth from wetland soil surface to the impermeable layer is 10 ft , ground surface of wetland area is smooth, fill in the inputs for the Skaggs Method software program.

Worksheet 6.2. Skaggs Method Software Input

For a borrow pit in Pitt County with Emporia soil ($\mathrm{K}=6 \mathrm{ft} /$ day), depth from wetland soil surface to the impermeable layer is 10 ft , ground surface of wetland area is smooth, fill in the inputs for the Skaggs Method software program.

