

NRCS Segmental Method (TR-55) Shallow Concentrated Flow

Unpaved Areas:	$t_c = 0.001 (L_{flow}) / S^{0.53}$	(Equation 1.5)
Paved Areas:	$t_c = 0.0008 \ (L_{flow}) \ / \ S^{0.53}$	(Equation 1.6)
0	tration in minutes (min), from most remote point to p shed slope (ft/ft).	oint of interest (ft),
Note: Kirpich (1940	0) is another method	
		8

NRCS Segmental Method (TR-55) Shallow Concentrated Flow

Example: For a construction site watershed drainage area of 10 acres with an elevation drop of 12 ft over a flow length of 1000 ft, estimate time of concentration.

Slope, S = H / L_{flow} = 12 / 1000 = 0.012 ft/ft

Assume that the area is unpaved, therefore use Equation 1.5:

 $t_c = 0.001 (L_{flow}) / S^{0.53} = 0.001 (1000) / 0.012^{0.53} = 10.4 minutes$

Use $t_c = 10$ minutes

If the elevation drop for this site was 30 ft, the calculated value for t_c would be 6.4 minutes. It that case, use a t_c value of 5 minutes for determining rainfall intensity since the lower t_c produces a higher rainfall intensity and a more conservative estimate of peak runoff rate and basin size.

Table 1.2. Rational Met	hod C for Agricultural A	Areas. (Taken from Schwa	ab et al., 1971).
/egetation		Runoff Coefficient, C	
Slope	Sandy Loam ¹	Clay and Silt Loam ²	Tight Clay ³
Forest			
0-5% slope	0.10	0.30	0.40
5-10% slope	0.25	0.35	0.50
10-30% slope	0.30	0.50	0.60
Pasture			
0-5% slope	0.10	0.30	0.40
5-10% slope	0.16	0.36	0.55
10-30% slope	0.22	0.42	0.60
Cultivated			
0-5% slope	0.30	0.50	0.60
5-10% slope	0.40	0.60	0.70
10-30% slope	0.52	0.72	0.82

Area-Weighted Average C value

Example: Determine the weighted average runoff coefficient, C, for a 4-acre watershed with 1 acre of grassy field on clay soil at 3% slope and 3 acres of active construction on clay soil at 4% slope.

Land Cover	Α	С	(A) (C)
Pasture	1	0.40	0.40
Bare Soil	3	0.60	1.80
TOTAL	sum = 4		sum = 2.20

Weighted C = 2.20 / 4 = 0.55

For this example, estimate Q if rainfall intensity, i = 5.80 in/hr:

Q = (C) (i) (A) = (0.55) (5.80) (4) = 12.8 cfs

Example: Rational Method

Determine the 10-year peak runoff rate, Q_{10} , for a 5-acre construction site watershed near Asheville with a flow length = 600 ft and elevation drop = 36 ft. The land uses are shown below:

Land Use	A	С	(A) (C)
Forest, clay (11%)	1	0.60	0.60
Bare soil, clay (7%)	3	0.70	2.10
Grass, clay (3%)	1	0.40	0.40
	sum = 5 ac		sum = 3.10

Weighted Runoff Coefficient: C = 3.10 / 5 = 0.62

Average watershed slope, S = 36 / 600 = 0.06 ft/ft

Jarrett Max Area = 460 (0.06) = 27.6 ac; Since 5 < 27.6, use t_c = 5 min

Rainfall intensity for 10-year storm, i_{10} , is determined from Table 1.1 for a 5-minute rainfall in Asheville: i_{10} = 6.96 in/hr

Peak runoff rate, Q₁₀ = (0.62) (6.96) (5) = 21.6 cfs

W	or	ksl	he	et
~ ~		101	I C	

1.2. Estimate the 10-year peak runoff rate, Q_{10} , for a 20-acre construction site watershed near Raleigh with a flow length = 2000 ft and elevation drop = 60 ft. The land uses are half forest and half bare soil. Assume tight clay.

Land Use	A	С	(A) (C)
Forest	10	0.40	4.0
Bare soil	10	0.60	6.0
	sum = 20 ac		sum = 10.0

Weighted Runoff Coefficient: C = 10 / 20 = 0.5 Average watershed slope, S = 60 / 2000 = 0.03 ft/ft Jarrett Max Area = 460 (0.03) = 13.8 ac; Since 13.8 < 20, use other method Segmental Method: $t_c = 0.001 (2000) / 0.03^{0.53} = 12.8 \text{ min}$; use $t_c = 10 \text{ min}$ Rainfall intensity, $i_{10} = 5.58 \text{ in/hr}$ **Peak runoff rate, Q**₁₀ = (0.5) (5.58) (20) = 56 cfs

	Rainfa	all Energy D	istribution	
Varies by m	nonth due	to storm intensi	ty, Table 2.1 p	og 14
Example (F	Piedmont)	: April-July (4 m	onths)	
Part	ial-year fra	action = 0.06+0.	07+0.11+0.20	= 0.49
		Geographic Reg	ion, Figure 2.2	
	Month	110 & 116	117	
	Jan	0.03	0.02	
	Feb	0.04	0.02	
	Mar	0.05	0.03	
	Apr	0.06	0.04	
	May	0.07	0.06	
	Jun	0.11	0.14	
	Jul	0.20	0.23	
	Aug	0.21	0.20	
	Sep	0.11	0.15	
	Oct	0.05	0.06	
	Nov	0.04	0.03	
	Dec	0.03	0.02	20
				-

K, Soil Erodibility Factor

- · Represents soil's tendency to erode
- NRCS tables for most soils (Table 2.2, pg.17)

		B-Horizon				
Soil		Permeability	RUSLE	RUSLE	RUSLE	RUSLE
Series	HSG	in/hr	т	K(A)	K(B)	K(C)
Ailey	В	0.6 to 2.0	2	0.15	0.24	0.24
Appling	В	0.6 to 2.0	4	0.24	0.28	0.28
Autryville	А	2.0 to 6.0	5	0.10	0.10	0.10
Badin	В	0.6 to 2.0	3	0.15	0.24	0.15
Belhaven	D	0.2 to 6.0			0.24	0.24
Cecil	В	0.6 to 2.0	4	0.24	0.28	-21

CP, Cover-Conservation Practice	es Factor
Represents the effect of land cover & direction	of rills/chann
	or mis/oriani
Table 2.3 (pg 18) lists CP values (use high valu	les) letters de
	reference
Dere sell condition	
Bare soil condition	СР
Fill	
Packed, smooth	1.00 a
Fresh disked	0.95 a
Rough (offset disk)	0.85 a
Cut	
Loose to 12 inches, smooth	0.90 b
Loose to 12 inches, rough	0.80 b
Compacted by bulldozer	1.00 b
Compacted by bulldozer and tracked parallel to the contour	0.50 c
Rough, irregular tracked all directions	0.90 b
Surface Condition with No Cover	
Compact and smooth, scraped w/ bulldozer or scraper up / down hill	1.3 d
Compact and smooth, raked w/ bulldozer root rake up and down hill	1.2 d
	1.2 d
Compact and smooth, scraped w/bulldozer or scraper across slope Compact and smooth, raked w/bulldozer root rake across slope	0.9 d

Example: Erosion Estimate

Estimate erosion from a 5-acre site in Raleigh during March-May with R = 49. The site is 600 ft long with elevation drop of 48 ft, and soil type is Creedmoor.

Average slope = 48 / 600 = 0.08 ft/ft (8% slope)

Table 2.2: K value is 0.32 (assume B Horizon – subsoil)

Figure 2.3: LS value is 3.5 (slope length = 600 ft; slope = 8%)

Table 2.3: CP value is 1.0 (assume loose surface with no cover)

Erosion per acre = (49) (0.32) (3.5) (1.0) = 54.9 tons/acre (March-May)

Total erosion for 5 acres = (54.9)(5) = 274.4 tons (March-May)

If the construction period is July-September (partial-year R = 140): Erosion per acre = (140) (0.32) (3.5) (1.0) = 157 tons/acre (Jul-Sep) Total erosion for 5 acres = (157) (5) = 786 tons (Jul-Sep)

Secondary Road Erosion Est	imate	
$V_{ditch} = (C_{ditch}) (R) (K) (S_{ditch})$ (Equation 2.2)		
V _{ditch} = secondary road sediment volume expected in		_
cubic feet per acre (ft³/ac),	Side Slope	C _{ditch}
C _{ditch} = regression constant for secondary roads dependent on ditch side slopes,	4:1	291
•	3.5:1	341
R = Rainfall Factor for the duration of construction, K = Soil Erodibility Factor (B or C horizon),	3:1	399
S_{ditch} = slope of secondary road ditch (ft/ft).	2.5:1	467
ditch slope of secondary road attoir (1917).	2:1	549
Values of C _s are determined using Table 2.4 depending	1.5:1	659
on road ditch side slope.	1:1	808
	0.75:1	916
	0.5:1	1067
	2	5

Example: Secondary Road Erosion

Estimate erosion volume from a 2-acre secondary roadway construction during June-July in Carteret County with Goldsboro soil. The road ditch has a slope of 0.05 ft/ft and 2:1 side slopes.

Figures 2.1 and 2.2: Annual R = 340, and Carteret County is in Region 117 Table 2.1: During June-July, partial-year R = (0.14 + 0.23)(340) = 126Table 2.2: K value is 0.24 (assume B Horizon – subsoil) Table 2.4: C_{ditch} is 549 for 2:1 ditch side slopes V_{ditch} = $(549)(126)(0.24)(0.05) = 830 \text{ ft}^3/\text{ac} (Jun-Jul)$ Total erosion for 2 acres = $(830)(2) = 1,660 \text{ ft}^3 (Jun-Jul)$ To convert to cubic yards: Erosion = 1,660/27 = 61 cubic yards (Jun-Jul)

27

Worksheet 2.1. Estimate erosion from a 5-acre site in Wilmington during June-October with Cowee soil. The site is 800 ft long with elevation drop of 24 ft. Average slope = 24 / 800 = 0.03 ft/ft (3% slope) Figure 2.1 & 2.2: Annual R value is 350 and Region 117 Partial-year R = (0.14+0.23+0.20+0.15+0.06) (350) = 273 Table 2.2: K value is 0.28 (assume B Horizon – subsoil) Figure 2.3: LS value is 1.1 (slope length = 800 ft; slope = 3%) Table 2.3: CP value is 1.0 (assume loose surface with no cover) Erosion per acre = (273) (0.28) (1.1) (1.0) = 84.1 tons/acre (Jun-Oct) Total erosion for 5 acres = (84.1) (5) = 420 tons (Jun-Oct)

- 1. NC Sediment Pollution Control Act (E&SC Plans)
- 2. Self-Inspection
- 3. Jurisdictional Areas Conditions and Restrictions
 - US Army Corps of Engineers
 - NC DENR Division of Water Quality
- 4. Environmentally Sensitive Area (ESA) & Riparian Buffers
- 5. Reclamation Plans
- 6. NCG01 General Stormwater Permit

NC Sediment Pollution Control Act (SPCA) Mandatory Standards

- 1. E&SC plan must be submitted 30 days prior to disturbance for areas greater than or equal to 1 acre
- 2. Land disturbing activity must be conducted in accordance with approved E&SC Plan
- 3. Establish sufficient buffer zone between work zone and water courses
- 4. Provide groundcover on slopes within 21 <u>calendar days</u> after any phase of grading (NCG-01 takes precedence)
- 5. The angle of cut and fill slopes shall be no greater than sufficient for proper stabilization

31

NCG010000 (NCG01)

General Permit for Construction Activities, developed to meet federal NPDES requirements

NC DENR, Division of Water Resources delegated by EPA the authority to administer the program in North Carolina

The Erosion and Sedimentation Control plan contains the core requirements of the NPDES permit. Land Quality will work with DWR to administer that component of the NPDES permit

Projects disturbing 1 acre or more with an E&SC plan designed after <u>August 3, 2011</u> must meet new permit requirements

NCG	010000	(NCG01)
Site Area Description	Time Frame	Stabilization Time Frame Exceptions
Perimeter dikes, swales, ditches and slopes	7 days	None
High Quality Water (HQW) Zones	7 days	None
Slopes steeper than 3:1	7 days	If slopes are 10 ft or less in height and are not steeper than 2:1, then 14 days are allowed
Slopes 3:1 or flatter	14 days	7-days for slopes greater than 50 feet in length
All other areas with slopes flatter than 4:1	14 days	None (except for perimeters and HQW Zones) ³³

Streams 50	Surface Water	Turbidity
Streams 50	Classification	Not to Exceed Limit*
	Chucomo	
Lakes & Reservoirs 25	Streams	50
	Lakes & Reservoirs	25
Trout Waters 10	Trout Waters	10

Worksheet

4.1. Select a suitable channel liner for a triangular ditch with maximum depth of 1.2 ft and slope of 4.2%.

Table 4.1: NCDOT guidelines for >4% slope require TRM.

Equation 4.1: $\tau = (62.4 \text{ lbs/ft}^3) (1.2 \text{ ft}) (0.042 \text{ ft/ft}) = 3.14 \text{ lbs/ft}^2$

Table 4.3: Select a TRM channel lining with a maximum allowable tractiveforce greater than 3.14 lbs/ft² (N. American Green P550)

Table 1. BMP Selection							
ВМР	Location	Catchment	Structure	Sed. Ctl. Stone	Surface Area	Volume	Function
T. Rock Sed. Dam A	Swale/large ditch	< 1 ac.	Class I	Yes	435Q ₁₀	3600 ft ³ /ac	Remove sand
T. Rock Sed. Dam B	Drainage outlet	< 1 ac.	Class B	Yes	435Q ₁₀	3600 ft ³ /ac	Remove sand
Silt Basin B	Drainage outlet/ Adjacent to inlet	< 3 ac.	Earth	No	435Q ₁₀ (325Q ₁₀ @ inlets)	3600 ft ³ /ac (1800 ft ³ /ac @ inlets)	Remove sand
Skimmer Basin	Drainage outlet	< 10 ac.	Earth	No	325Q ₁₀	1800 ft ³ /ac	Remove sand
Infiltration Basin	Drainage outlet	< 10 ac.	Earth	No	325Q ₁₀	1800 ft ³ /ac	Remove sand
Riser Basin(non-perforated riser w/ skimmer)	Drainage outlet	< 100 ac.	Earth	No	435Q ₁₀	1800 ft ³ /ac	Remove silt, clay
Stilling Basin/Pumped	Near Borrow Pit/Culvert	N/A	Earth and Stone	No	2:1 L:W ratio	Based on dewatering	Remove silt, clay
Sp. Stilling Basin(Silt Bag)	Near stream	N/A	Filter Fabric	Yes	N/A	Variable	Remove sand
Rock Pipe Inlet Sed. Trap A		< 1 ac.	Class B	Yes	N/A	3600 ft3/ac	Remove sand
Rock Pipe Inlet Sed. Trap B		< 1 ac.	Class A	Yes	N/A	3600 ft3/ac	Remove sand
Slope Drain w/ Berm	Fil Slopes	< ½ ac.	12-inch pipe	No	N/A	N/A	Convey concentrated runo
Rock Inlet Sed. Trap A	Stormwater Inlet	< 1 ac.	Class B	Yes	N/A	3600 ft ³ /ac	Remove sand
Rock Inlet Sed. Trap B	Stormwater Inlet	< 1 ac.	Class A	Yes	N/A	3600 ft ³ /ac	Remove sand
Rock Inlet Sed. Trap C	Stormwater Inlet	< 1 ac.	1/4" wire mesh	Yes	N/A	N/A	Remove sand
T. Rock Silt Check A	Drainage outlet	< 1 ac.	Class B	Yes	435Q ₁₀	3600 ft ³ /ac	Remove sand
T. Rock Silt Check B	Channel	< ½ ac.	Class B	No	N/A	N/A	Reduce flow velocity
Temporary Earth Berm	Project perimeter	< 5 ac.	Earth	No	N/A	N/A	Divert offsite runoff
Temporary Silt Fence	Bottom of slope	< 1/4 acre per 100 feet<2%*	Silt fence	No	N/A	N/A	Create small basin; Remove sand, silt
Special Sediment Control Fence	Bottom of slope	< ½ ac.	1/4" wire mesh	Yes	N/A	N/A	Remove sand
Temporary Silt Ditch	Bottom of slope	< 5 ac.	Earth	No	N/A	N/A	Carry sediment/water
Temporary Diversion	Project & Stream	< 5 ac.	Earth	No	N/A	N/A	Divert turbid water
Earth Berm	perimeter	< 5 ac.	Earth	No	N/A	N/A	Divert clean or turbid wate
Clean Water Diversion	Project perimeter	<5 ac.	Earth & Fabric	No	N/A	N/A	Divert clean water
Construction Entrance	Exit to road	N/A	Class A	No	N/A	N/A	Clean truck tires
Safety Fence	Permitted Areas	N/A	Orange fence	No	N/A	N/A	Define permitted boundary
Borrow Pit Dewatering Basin	Adjacent to Borrow Pits	N/A	Earth	No	N/A	8.02xQxT	Remove Sand and reduce turbidity
Wattle/Coir Fiber Wattle	Channel	< ½ ac.	Natural Fibers	No	N/A	N/A	Incorporate PAM
Silt Check A with Matting and PAM	Channel	< ½ ac.	Class B	Yes	N/A	N/A	Reduce flow 43 ocity and incorporate PAM

Structure Sizing

Two Criteria: (see Table 1)

- 1. Minimum Volume (ft³) based on <u>disturbed</u> acres
- 2. Minimum Surface Area (ft²) based on total acres

Use Q_{10} for normal design

Use Q₂₅ for Environmentally Sensitive Areas, Upper Neuse River Basin, Jordan Lake

Device Outlet Type	Minimum Volume (ft ³)	Minimum Surface Area (ft²)
Weir	3600 ft ³ /ac	435 $Q_{\rm 10}$ or $Q_{\rm 25}$
Surface Outlet	1800 ft ³ /ac	325 Q_{10} or Q_{25}
Surface Outlet + Riser	1800 ft ³ /ac	435 Q_{10} or Q_{45}

Skimmer Basin Drainage area < 10 ac Surface Area = $325Q_{10}$ or $325Q_{25}$ **Skimmer Basin** Volume = 1800 ft³/ac disturbed IS A temporary basin with a trapezoidal spillway Depth = 3 ft at weir lined with filter fabric and equipped with a floating skimmer. Coir Baffles (3) USE In sensitive watershed areas and in locations where the drainage area is too large for L:W ratio 3:1 to 5:1 standard rock weir outlet. CONSTRUCT Basin with a Faircloth Skimmer at the outlet, a trapezoidal emergency spillway lined with filter fabric, and 3 coir fiber baffles. Storage capacity is 1800 cubic ft. per disturbed acre and surface area must accommodate the 10-year storm runoff. Limit the dam height to 5 ft. 48

Infiltration Basin

Drainage area < 10 ac Surface Area = 325Q₁₀ or 325Q₂₅ Volume = 1800 ft³/ac Depth = 3 ft at weir Coir Baffles (1-3) L:W ratio 3:1 to 5:1 Must dewater in 3 days or less Soil permeability must be at least 0.5 in/hr (from NRCS B or C soil horizon, slowest rate)

Example: Skimmer Basin with Baffles A. Select Faircloth Skimmer to dewater top 2 ft in 3 days Volume in top 2 ft, V_{skim} = 12,696 ft³ Dewater Rate, Q_{skim} = V_{skim} / t_{dewater} = 12,696 / 3 = 4,232 ft³ / day Select the Skimmer Size to carry at least 4,232 ft³/day From Table 5.1, a 2.5-inch skimmer carries 6,234 ft³/day with driving head, H_{skim} = 0.208 ft Why not use a 2-inch skimmer?

Skimmer	Q _{skimmer}	H _{skimmer}	
Diameter	Max Outflow Rate	Driving Head	
(inches)	(ft ³ / day) *	(ft) *	
1.5	1,728	0.125	
2.0	3,283	0.167	
2.5	6,234	0.208	
3.0	9,774	0.250	
4.0	20,109	0.333	
5.0	32,832	0.333	
6.0	51,840	0.417	
8.0	97,978	0.500	

Orifice Diameter for Skimmer

$$D_{orifice} = \sqrt{\frac{Q_{skim}}{2310\sqrt{H_{skim}}}}$$
(Equation 5.2)

$$D_{orifice} = \text{diameter of the skimmer orifice in inches (in)}$$

$$Q_{skimmer} = \text{basin outflow rate in cubic feet per day (ft^3/day)}$$

$$H_{skimmer} = \text{driving head at the skimmer orifice from Table 5.1 in feet (ft)}$$

$$D_{orifice} = \sqrt{\frac{Q_{skim}}{2310\sqrt{H_{skim}}}} = \sqrt{\frac{4,232}{2,310\sqrt{0.208}}} = 2.0 \text{ inches}$$
The orifice in the knockout plug is drilled to a 2-inch diameter.

Design: For a 5.5-acre construction site with $Q_{10} = 12$ cfs, design a basin to be dewatered in 3 days. Use 1.5:1 interior sideslopes and 3:1 length:width ratio.

- 1. Minimum volume and surface area
- 2. Width and length based on sideslopes
- 3. Dewatering flow rate (top 2 ft in 3 days)
- 4. Skimmer size and orifice diameter
- 5. Primary spillway barrel pipe size
- 6. Emergency spillway weir length
- 7. Baffle spacing

77

Worksheet 5.3. Skimmer Basin

Design: For a 5.5-acre construction site with $Q_{10} = 12$ cfs, design a basin to be dewatered in 3 days. Use 1.5:1 interior sideslopes and 3:1 length:width ratio.

1. Minimum Volume and Surface Area:

Minimum Volume = $1800 \times 5.5 \text{ acres} = 9,900 \text{ ft}^3$

Minimum Surface Area = $325Q_{10}$ = $325 \times 12 \text{ cfs}$ = 3,900 ft²

Depth = Volume / Area = $9,900 \text{ ft}^3 / 3,900 \text{ ft}^2 = 2.5 \text{ ft}$

For DOT projects, <u>Design Depth = 3 ft</u>

Surface area must be greater to account for sideslopes

78

Skimmer Diameter	Q _{skimmer} Max Outflow Rate	H _{skimmer} Driving Head
(inches)	(ft ³ / day) *	(ft) *
1.5	1,728	0.125
2.0	3,283	0.167
2.5	6,234	0.208
3.0	9,774	0.250
4.0	20,109	0.333
5.0	32,832	0.333
6.0	51,840	0.417
8.0	97,978	0.500

Worksheet 5.3. Skimmer Basin 5. Primary spillway barrel pipe size using $Q_{skim} = 2,450$ NCDOT: Use smooth pipe on 1% slope (minimum 4-inch) Figure 4.1 (Pipe Chart): At 1% slope, a 4-inch pipe carries up to 100 gpm = 19,300 ft³/day 6. Emergency spillway weir length: NCDOT: $L_{weir} = 12 \text{ cfs}/0.4 = 30 \text{ ft}$ 7. Baffle Spacing: Baffle spacing = $L_{top} / 4 = 111 / 4 = 28 \text{ ft}$

MODULE 6: Below Water Table Borrow Pits Dewatering Options

Tier I Methods

- Borrow Pit Dewatering Basin
- Land Application (Irrigation)
- Geotextile Bags
- Alum
- Gypsum
- Polyacrylamide (PAM)

Tier II Methods [rare & unique resources]

- Well Point Pumping
- Impoundments
- Cell Mining
- Sand Media Filtration
- Wet Mining

Borrow Pit Dewatering Basin

- Basin at pump outlet to settle sediment
- No area requirement
- Volume = pump rate x detention time:
 - Detention time = 2 hours minimum
 - V_{still} =16(Q_{still}) Q = pump rate in gpm
 - Max pump rate = 1,000 gpm (2.2 cfs)
- Maximum depth = 3 ft
- Earthen embankments are fill above grade
- L:W = 2:1 minimum
- Surface outlet:
 - Non-perforated riser pipe (12-inch)
 - Flashboard riser

<text><text><equation-block><equation-block><text><text><text><text>

Example: Borrow Pit Dewatering Basin **Width and length at top and base (trial & error):** Start with area = 1,600 ft² and a 2:1 length to width ratio $Trial Width, W_{top} = \sqrt{\frac{A}{L to W ratio}} = \sqrt{\frac{1,600}{2}} = 29 \text{ ft}$ To account for sideslopes, add to top width (try 4 ft): $Trial W_{top} = 29 + 4 = 33 \text{ ft}$ $Trial L_{top} = 2 \times W_{top} = 2 \times 33 = 66 \text{ ft}$

Worksheet 6.1: Borrow Pit Dewatering BasinCalculate volume (minimum required = 11,120 ft³): $Volume = \frac{d}{3} \left[W_{top} L_{top} + W_{base} L_{base} + \left(\frac{W_{top} L_{base} + W_{base} L_{top}}{2} \right) \right]$ $Volume = \frac{3}{3} \left[(48)(96) + (39)(87) + \left(\frac{(48)(87) + (39)(96)}{2} \right) \right]$ Volume = 11,960 ft³ (meets minimum requirement)
Surface Area (at weir elevation) = 48 x 96 = 4,600 ft²

For a borrow pit in Pitt Co wetland soil surface to the	kaggs Method Software Inp unty with Emporia soil (K = 6 ft/day), de impermeable layer is 10 ft, ground su Il in the inputs for the Skaggs Method s	epth from rface of			
program.					
File Windows Help	t 📓 Save As 📔 Help File 🗋 🚖 Check for updates				
C\LateralEffect\inputs\work	ksheetil,5;13.gen – 🖛 🛪				
Selection	Inputs				
	Parameters Geographic Location State North_Carolina County / City Physical Parameters Ditch Depth / Depth to Water in la 2 tr 24 inch Surface Depressional Storage In (2.5 cm) Depth to Restrictive Layer 10 ft 120 inch Drainable Porosity 0.035				
	123.9 ft	111			

<pre>{LateralEffect\inputs\wor</pre>	ksheet11_5_13.gen			x	
election	Inputs				
Inputs Project Information Parameters Gonductivity - User Conductivity - Soil Sur Analysis	Vi Soil ID	cified Lateral Conduc	ctivies will be used for Calo	culating Lateral Effe	
ools		Depth from Soil Surfa Bottom of Layer (in)	ici Hydraulic) Conductivity (in/hr)		
	Layer 1	120	3	Hydraulic conductivity =6ft/day*12in/ft*day/24h	
	Layer 2	0	0	= 3 in/hr	11
Copy Project	Layer 3	0	0		
copy noject	Layer 4	0	0		
	Layer 5	0	0		
	Layer 6	0	0		
Close Projec	Layer 7	0	0		
Close Projec	Layer 8	0	0		
crose Projection	•		III	•	
			129.9	ft Setback	