Level of Accuracy Practically Achievable in Radiation Therapy

David Followill and RPC staff August 6, 2013

Sources of Treatment Uncertainty

- Machine functioning
- Radiation dose determination
- Patient specific data for treatment planning
- Radiation dose calculation in the patient
- Transfer of treatment plan to treatment machine
- Day to day variation in the treatment (machine/patient motion/set up)

Modern Treatment Units

- Modern units for a specific make/model/energy have nearly the same dosimetry parameters.
- 2. RPC measurements based standard data typically within 1-1.5%
- 3. QA methodology and equipment have come a long way.

However this does not mean we can become lackadaisical in performing our QA

The RPC has spent the last 45 years trying to minimize the uncertainty in radiation dose delivery and improve the accuracy for the clinical trial participating institutions.

In water phantom reference calibrations indicates a spread in the machine output of ~2.5% for 95% of the data since TG-51 was implemented Contributing factors

1. T&P

2. N_{d.w}

3. P_{elec}

4. cables

5. Depth

7. Field size

9. End effect

8. TG-51 factors

10. %dd correction

11. Human error

6. SSD

		REFERENCE CALIBRATION				
		PHOTON	ELECTRON			
2000-2006	output	1.004	0.991			
	2 std dev.	±0.026	±0.022			
2006-2013	output	1.004	1.017			
	2 std dev.	±0.026	±0.024			

WARNING!

I KNEW THEY WERE OFF BUT I THOUGHT IT WOULD ALL AVERAGE OUT.

Trilogy						
		6 MV			10 MV	
<u>Parameter</u>	<u>RPC</u>	<u>Inst.</u>	<u>RPC/Inst.</u>	<u>RPC</u>	<u>Inst.</u>	<u>RPC/Inst.</u>
K _{TP} comparison	1.007	1.002	1.005	1.007	1.002	1.005
$(N_{D, w})(K_{e})$	5.346	5.336	1.002	5.346	5.336	1.002
Ppol	1.000	1.001	0.999	1.000	1.001	0.999
ko	-	-	-	0.981	0.979	1.002
Pion	1.002	0.999	1.003	1.002	0.999	1.003
%dd(10)	170.655	1/0.662	1.011	-	-	-
N _{D,w} (inst)	5.336	5.328	1.002	5.336	5.328	1.002
water to muscle	170.990	1/1.000	1.010	1/0.990	1/1.000	1.010
		product	1.032		product	1.023
			(1.027)			(1.019)

iine gj			_				_		
		6 MeV			9 MeV			12 MeV	
<u>Parameter</u>	<u>RPC</u>	<u>Inst.</u>	<u>RPC/Inst.</u>	<u>RPC</u>	<u>Inst.</u>	<u>RPC/Inst.</u>	<u>RPC</u>	<u>Inst.</u>	<u>RPC/Inst.</u>
K _{TP} comparison	1.007	1.002	1.005	1.007	1.002	1.005	1.007	1.002	1.005
$(N_{D,w})(K_{e})$	5.346	5.336	1.002	5.346	5.336	1.002	5.346	5.336	1.002
N _{D,w} (inst)	5.336	5.328	1.002	5.336	5.328	1.002	5,336	5.328	1.002
Pgr	1.008	0.987	1.021	-	-	-	1.000	0.998	1.002
measure depth		1.5			2.0			3.0	me
%dd(dref)	170.960	1/0.979	1.020	-	-	-	1/0.996	1/0.998	1.002
			1.051			1.009	-		1.013
			(1.034)			(1.006)			(1.016)

Triloav

Now one of the hottest topics – output factors (OPF)

- Really no problem with OPFs $\geq 4 \times 4 \text{ cm}^2$
 - RPC data show $2\sigma = ~1\%$
- What about $< 4 \times 4 \text{ cm}^2$?

Contributing factors

- 1. Chamber vol.
- 2. Cables
- 3. Field size
- 4. Depth
- 5. SSD
- 6. Human error

TG-155 Small Field Dosimetry Corrections

Situation is even worse if you consider using field sizes less then 0.5 x 0.5 cm²

Francescon et al 2011 data

The Problem is that our Dragon is very small!

Radiological Physics Center

Tables of standard small field factors

TABLE 1. The RPC-measured and institution treatment planning system-calculated small field size dependence output factor values for Varian machines. The values in square brackets and parentheses beneath each energy for each field size value are the average absolute percent differences and standard deviations of the values, respectively. For each energy and field size, the number of measurements (accelerators) is also shown.

Field Size	Varian 6 M	V Var	ian 10 MV	Varian 15 MV		arian 15 MV Varian 18 MV	
$(cm \times cm)$	RPC Insti	tution RPC	Institution	RPC	Institution	RPC	Institution
$10\!\times\!10$	1.000 1.0	000 1.000	1.000	1.000	1.000	1.000	1.000
6×6	0.921 0.9 (0.013) (0.0 [0.9%] (n=64)	929 0.946 004) (0.017) [0.953 (0.016) 0.7%] (n=9)	0.951 (0.008) [0.5 (n=	0.950 (0.008) 5%] =14)	0.949 (0.011) [0. (n [.]	0.950 (0.014) 5%] =16)
4×4	0.865 0.9 (0.018) (0.0 [1.3%] (n=64)	874 0.900 021) (0.024) [0.912) (0.030) 1.3%] (n=9)	0.909 (0.013) [1.1 (n=	0.909 (0.017) [%] =14)	0.902 (0.014) [1. (n=	0.900 (0.024) 1%] =16)
3×3	0.828 0.9 (0.017) (0.0 [1.7%] (n=62)	841 0.867 025) (0.020) [0.875) (0.025) 1.2%] (n=9)	0.874 (0.014) [1.3 (n=	0.877 (0.019) 3%] =12)	0.861 (0.014) [1. (n:	0.856 (0.027) 7%] =16)
2×2	0.786 0.7 (0.019) (0.0 [2.3%] (n=55)	796 0.817 031) (0.015) [(0.828 (0.019) 1.8%] [n=11)	0.803 (0.016) [2.8 (n=	0.813 (0.038) 3%] =10)	0.784 (0.015) [3. (n:	0.782 (0.034) 5%] =15)

erson

Radiological Physics Center

Followill et al 2012

RPC: 0.8 - 2.4%] It's HARD!

Wedges – Our <u>nemesis</u> yet they should be our friend!

It's not a hard measurement, you just need to take the time to center your chamber accurately (<0.5% rdg change when wedge flipped)

The RPC finds a wedge factor outside our ±2% criterion in a THIRD of the sites we visit.

Off Axis Factors can SURPRISE you

Matched machines may have the same dosimetry data but their profiles may be quite different.

Machine A

Position	<u>RPC</u>	Institution ⁺	<u>RPC/Inst.</u>		
5 cm left	1.036	1.024	1.01		2 ~
10 cm left/right	1.060/1.065	1.040	1.02/1.02	UAD	20
15 cm left	1.080	1.040	1.03*	5	1.8%
Machine B				10	2.4%
Position	<u>RPC</u>	Institution ⁺	RPC/Inst.	15	2 20/
5 cm left	1.016	1.024	0.99	15	J.Z 70
10 cm left/right	1.018/1.013	1.040	0.98/0.97*		
10 cm toward/away	1.019/1.012	1.040	0.98/0.97*		
15 cm left	1.016	1.052	0.97*		

On-Site Dosimetry Review Audit

Discrepancies Discovered (Jan. '05 – April '13)

	Number of institutions
Discrepancies Regarding:	Receiving rec. (n = 206)
Review QA Program	152 (74%)
Photon Field Size Dependence	138 (67%)
Wedge Factor (WF)	66 (32%)
Off-axis Factors (OAF)/Beam symmetry	60 (29%)
Electron Calibration	35 (17%)
Photon Depth Dose	33 (16%)
Electron Depth Dose	25 (12%)
Photon Calibration	16 (8%)

Number of Institutions

Sort of Disturbing to the RT community when Das *et al* published their findings on variations between prescribed and planned doses.

Figure 1. Dosimetric variations between the prescribed and planned doses among 803 patients from five medical institutions with different treatment planning systems. **Vertical lines** separate the data according to treatment planning system (from left to right: Oncentra, BrainScan, Pinnacle, CMS-XiO, Eclipse). The **horizontal line** at 1.0 represents no dose deviation; the **horizontal lines** at 1.1 and 0.9 represent dose deviations of +10% and -10%, respectively, between the planned dose and the prescribed dose.

Das et al 2008

Clinical Trial Patient Case Rapid Review

- Rapid review (pre-treatment review) is designed to evaluate the plan prior to treatment to ensure it meets the protocol prescription specifications.
- 56 IMRT Gyne rapid reviews were performed in 2013 (to date)
 - 22 submitted twice (39%)
 - 6 submitted three times (11%)
 - 2 had to submit 4 times.

Sources of Treatment Uncertainty

- Machine functioning
- Radiation dose determination
- Patient specific data for treatment planning
- Radiation dose calculation in the patient
- Transfer of treatment plan to treatment machine
- Day to day variation in the treatment (machine/patient motion/set up)

Benefits of RPC Phantoms

- Independent "end to end" audit
 - 1. Imaging
 - 2. Planning/dose calculation
 - 3. Setup
 - 4. Delivery
- Uniform phantoms and dosimeters
- Standardized analysis
- Uniform pass/fail criteria
- Allows inst. to inst. comparison

Patient

Phantom

Pelvis (10)

H&N (30)

Spine (8)

SRS Head (10)

RPC Phantoms

Thorax (10)

Liver (6)

RPC Phantoms for Protons

prostate phantom

head phantom

lung phantom

spine phantom

Phantom Irradiations per Year

Varian 6 MV IMRT H&N

RPC Radiological Physics Center

21

Lung Phantom TLD results

Lung Phantom TLD results

Percent of pixels passing 5%/3mm gamma criteria

Phantom Accomplishments

- Setting a standard for IMRT use in national and international clinical trials
- Use of heterogeneity corrections for modern algorithms
- Test ability to hit a moving target(s)
- Provide <u>consistent</u> and <u>independent</u> QA evaluation tool
- Testing proton therapy planning and dose calculations

Phantom Results

Comparison between institution's plan and delivered dose.

Phantom	H&N	Prostate	Spine	Lung
Irradiations	1368	419	419 176	
Pass	1135 (83%)	359 (86%)	119 (68%)	535 (81%)
Fail	233	61	57	129
Criteria	7%/4mm	7%/4mm	5%/3mm	5%/5mm

Phantom Statistics

Number of Machines

Number of Physicists per Machine

Progress is being Made!

Pay Attention to the Basics as well

Thoughts to Consider

The goal in radiotherapy is to achieve the golden ±5% dose delivery goal for our patients.

Realistically I believe that there are many good RT sites that deliver well within 5%, but there are many that probably, for some patients, are somewhere between 5-10%.

Primary reasons

Human error Don't understand the complex processes Don't pay attention to QA results Resources

Be Willing to Consider an Independent Audit

- 1. Local physicist at another RT center
- 2. Physicist at your center/physics group
- 3. Consulting physicists
- 4. Former medical physics classmates
- 5. Radiological Physics Center

Conclusions

- 1. Take more time and ask questions.
- 2. Reread the task group report.
- 3. Read the clinical trial protocol.
- 4. Be willing to admit you were wrong and learn from your mistakes.
- 5. Place more responsibility on manufacturers to implement more accurate systems.
- 6. MLC QA!
- 7. Use only the most recent heterogeneity correction algorithms (preferably Monte Carlo or Acuros XB).
- Small field dosimetry caution, how small can we really go?
- 9. Implement IGRT for heaven's sake.
- 10. Be inquisitive, don't just believe others at face value.