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ABSTRACT
ITRS has identified nano-magnet based spintronic devices as promis-
ing post-CMOS technologies for information processing and data
storage due to their ultra-low switching energy, non-volatility, su-
perior endurance, excellent retention time, high integration density
and compatibility with CMOS technology. As for data storage, spin-
tronic memory has been widely accepted as a universal high per-
formance next-generation non-volatile memory candidate. As for
information processing, spintronic computing remains complemen-
tary in its features to CMOS technology. In this paper, we present
two innovative spintronic computing primitives, i.e. spintronic ap-
proximate logic and spintronic stochastic neural network, which
both leverage the intrinsic spintronic device physics to achieve
much more compact and efficient designs than CMOS counter-
parts. In spintronic approximate logic, we employ the intrinsic
current-mode thresholding operation to implement an accuracy-
configurable adder and further demonstrate its application in ap-
proximate DSP applications. In spintronic stochastic neural net-
works, we leverage the stochastic properties of domain wall devices
and magnetic tunnel junction to implement a low-power and robust
artificial neural network design.
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1 INTRODUCTION
Nowadays, the insufficient ability of modern computing platforms
to deliver simultaneously energy efficient and high performance
computing solutions leads to a gap between meets and needs. Spe-
cially, owing to the boom in machine learning, artificial intelligence
and internet of things areas, data analytics can not only rely on
conventional computing methods. That’s why recently approxi-
mate computing [3, 13] and brain-inspired computing [5] have
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drawn a lot of attentions.Within current Boolean logic and Com-
plementary Metal Oxide Semiconductor (CMOS) based computing
platforms, such gap will keep widening mainly due to limitations
in devices and computing model. Of all nanoelectronic paradigms,
spintronic devices have attracted significant attention over the past
decade due to non-volatility, zero leakage current, high integration
density, low standby power, and back end of line fabrication with
CMOS technology [10]. However, these emerging devices often
exhibit strong stochastic switching behaviors and suffer from large
variations in both electrical characteristics and device reliability.
Therefore, how to efficiently leverage the unique device proper-
ties of emerging spintronic devices to facilitate new computing
tasks becomes a both intriguing and important research challenge.
In this paper, we first present a majority gate design employing
intrinsic current-mode thresholding operation of spintronic de-
vice to implement an accuracy configurable adder for approximate
DSP applications. Moreover, we also show that a stochastic-based
soft-limiting artificial neural network (S-ANN) can be efficiently
designed for brain-inspired computing employing spintonic devices.

2 APPROXIMATE COMPUTING
2.1 Spin-TD
In this section, we present spintronic Threshold Device (Spin-TD)
based on a composite device structure consisting of a Domain Wall
Motionmagnetic stripe (DWS) andMagnetic Tunnel Junction (MTJ).
The device structure is shown in Fig. 1a [3, 10]. It consists of a thin
and short (2nm×20nm×50nm) magnetic DWS connecting two fixed
anti-parallel magnetic domains. When the electrons are injected
into the lateral terminals (T1 or T2), they become spin-polarized
and exert a Spin-Transfer Torque (STT) on the Domain Wall (DW)
(i.e., the transition area between two domains). This spin-polarized
current can move DWwithin DWS. A fixed small magnet and DWS
beneath it form a MTJ to read the state of DWS. It is noteworthy
that an MTJ consists of two ferromagnetic layers (a free layer and
a fixed one as shown in Fig. 1a) with a tunneling oxide (commonly
MgO) barrier sandwiched between them [10].

The fixed layer of sense MTJ in Spin-TD is very small (20nm ×

20nm). The magnetization of DWS can be identified anti-parallel
(AP) or parallel (P) to the fixed layer by injecting a current (larger
than critical current) along it from its terminals (T1 to T2) or vice-
versa [10]. Hence, the Spin-TD can detect the polarity of current
flow at its input node, acting as an ultra-low voltage and compact
current comparator. The resistance states are binary, i.e. either high
(corresponding to AP configuration) or low (corresponding to P
configuration) and can be read employing the Spin-TD sense circuit.
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Figure 1: (a) Spin-TD structure, (b) Micro-magnetic simula-
tion for the DW position, (c) Spin-TD transfer function and
reset, (d) Simulated DW motion velocity vs. lateral current
density, (e) Resistance-area product vs. the thickness of tun-
neling oxide in AP and P states.

Table 1: Device parameters used in simulation.
Symbol Quantity Values

α Damping coefficient 0.02
Ku Uniaxial anisotropy constant 3.5 × 105 J/m3

Ms Saturation magnetization 6.8 × 105A/m
Aex Exchange stiffness 1.1 × 10−11 J/m
P Polarization 0.6

tMдO MgO thickness of MTJ 1.5 nm
(L.W .t )DW S DWS dimension 50 × 20 × 2nm3

The threshold of Spin-TD, i.e. the minimum current magnitude
required to switch the DWS magnetization (move DW from one
end to the other end), is determined by the critical current density
and DW velocity.

The transientmicro-magnetic simulation of DWposition (achieved
from OOMMF [15]) is illustrated in Fig. 1b, using device dimension
shown in Table 1, from 0.25 ns to 1.25 ns. Since the magnetization of
DWS beneath the MTJ is fully switched at 1 ns, the Spin-TD intrin-
sic threshold (Ith ) of this device can be considered 30µAwithin 1 ns
corresponding to DW velocity of ∼ 50m/s . Fig. 1c describes DWS
magnetization switch corresponding to the applied current pulse
(1 ns). A hysteresis effect can be observed due to DWM critical
current density. We benchmarked the micro-magnetic simulation
with the experimental data in [11] (the same nano-stripe width of
20nm is fabricated) and it shows a good match as shown in Fig. 1d.
The MTJ is modeled using NEGF-LLG solution (non-equilibrium
Green’s function and Landau-Lifshitz-Gilbert equations) for spin
to charge interface and calibrated with experimental data in [8, 11].
Resistance-area product vs. the thickness of tunneling oxide in AP
and P states in this work considering a constant voltage of 50mV is
plotted in Fig. 1e. For a 1 ns clock cycle, the oxide thickness in this
work is chosen to be 1.5 nm that results in a total power dissipation
of ∼ 1µW for the sensing circuit (including the clocking power). It
is worth noting that in the sense circuit, the transient current with
short duration (1 ns) and low magnitude (∼ 2µA) flows from T2 to
T3, which will not disturb the state of DWS (domain wall position).

Figure 2: Hybrid Spin-CMOS 3-input majority gate.
2.2 Spin-CMOS majority gate
In this section, we present a highly-scalable spin-CMOS majority
gate circuit design based on Spin-TD. The output of an n-input
Majority Gate (MG) (n is odd) is determined by the majority of its
inputs. For instance, the output is asserted to be logic value “1” only
when more than (n−1

2 ) of the inputs are “1”.
The proposed three-input MG circuit employing Spin-TD is

shown in Fig. 2. The input terminal (T1) is connected to a network
consisting of 3 pairs of NMOS-PMOS input transistors, in which all
of the input transistors work as Deep Triode region Current Sources
(DTCS) by applying V + ∆V=550mV and V − ∆V=450mV to the
source and drain, respectively. The proposed circuit is controlled
by two clock signals (CLKcompute and CLKsense ) and each clock
period is set to be 1 ns to synchronize with next stage circuits. Note
that, T2 of Spin-TD is connected to a constant voltage of V=500mV
and the voltage difference is ∆V=50mv, leading to an ultra-small
voltage drop and correspondingly-low power consumption.

During the computation clock interval, the binary input volt-
ages (VDD,GND) are applied at the gate of the input transistors,
leading to input current flowing into (positive) or out of (negative)
the connected Spin-TD. According to the principle of conservation
of electric charge, the direction and magnitude of total current at
intersection node depend on the algebraic sum of the input currents
(IA, IB and IC herein). This summation current (ISum ) determines
the position of DW as described in Section 2. By properly sizing the
input transistors, the current flowing to T1 from each input branch
is either +30µA or −30µA corresponding to input gate voltages as
high (“1”) or low (“0”), respectively. For instance, the input combi-
nation of (A,B,C)=(0,1,1) leads to (IA,IB ,IC )=(−30µA, +30µA, +30µA)
and the total current flowing into T1 is +30µA. Such current is equal
to the threshold current of the Spin-TD and relocates the domain
wall towards the T1 side, further resulting in the sense MTJ in an
anti-parallel high resistance state. During the sense phase, when
the CLKsense is high, a voltage divider between Spin-TD’s MTJ
and a fixed reference MTJ is formed to sense the resistance state
of spin-CMOS 3-input MG to produce reliable output voltage right
after the inverter. In this case, the sensing circuit will generate a
high output representing logic “1”.

2.3 Spin-CMOS accuracy-configurable Adder
2.3.1 Functionality Analysis. A full adder (FA) is one of the most

frequently-used components in arithmetic circuitry. In addition
to its regular use for addition, it is employed in other arithmetic
operations such as subtraction, multiplication, and division [3]. For



instance, multiplication has been implemented using successive
additions. Moreover, FA is the key component and optimization
target of many DSP algorithms. Hence, in order to obtain a high
performance DSP system, we need to design energy efficient and
low complexity adders [14]. While extensive work has been done
in designing approximate adders [13, 17], the research efforts on
accuracy-configurable approximate adders are limited. Let A,B,
and Cin be inputs of an accurate full adder, the principle Boolean
expression of Carry out (Cout ) and accurate Sum (Sumacc ) of FA
cell are as follows:

Cout = AB + ACin + BCin = M3(A, B, Cin ) (1)

Sumacc = ABCin + ĀB̄Cin + ĀB ¯Cin + AB̄ ¯Cin (2)

Some Boolean expressions for Sumacc and Cout of FA based on
inverters and MGs have been reported in [4]. As can be seen in
(1), Cout can be readily derived with a 3-input MG. Alternatively,
Sumacc can be obtained by using 3- and 5-input MG functions as:

Sumacc = ABCin + (AB .ACin .BCin )(A + B +Cin )

= M5(A, B, Cin, Cout , Cout )
(3)

Table 2 shows the truth table of an FA. A close observation
clarifies that six of eight outputs are correct if we make Sum = Cout .
Based on this observation, we propose a streamlined and cost-
effective approximate FA circuit comprising one 3-input MG and
one cascaded inverter. The approximate Sum output (SumApp ) of
this adder is given by:

SumApp = Cout = M3(A, B, Cin ) (4)

2.3.2 Spin-CMOS Implementation. The proposed spin-CMOS
implementation of the accuracy-configurable FA cell is shown in
Fig. 3 consisting of two stages: Stage 1 to generateCout and Sumapp
and Stage 2 to generate Sumacc . The first stage consists of a spin-
CMOS MG realizing an approximate FA (App. FA) according to
(1) and (4). As shown in Fig. 3, this circuit is designed with an ap-
propriate fan-out for producing SumApp output after one add-on
inverter, while Cout is already achieved according to the Boolean
expression in (1). Meanwhile, theCout (/Sumapp ) produced in Stage
1 is then connected to a similarly scaled input transistor network
but with a 2w

l ratio to provide a double weighted current as ex-
pressed in (3). The double weighted current in conjunction with
the sum of three primary inputs flow towards the T1 of the Stage
2’s MG (realizing a 5-input MG as depicted in the logical schematic
in Fig. 3). Consequently, the output voltage of this stage is Sumacc
realizing an accurate FA (Acc. FA). To provide the circuit with a
proper and streamlined configurability, the wire connection be-
tween these two stages is regulated using a CMOS transmission

Table 2: Truth table for accurate and approximate FAs.
Inputs Acc. Outputs App. Outputs

A B Cin Cout Sum Cout Sum

0 0 0 0 0 0 X 1 ✘

0 0 1 0 1 0 X 1 X
0 1 0 0 1 0 X 1 X
0 1 1 1 0 1 X 0 X
1 0 0 0 1 0 X 1 X
1 0 1 1 0 1 X 0 X
1 1 0 1 0 1 X 0 X
1 1 1 1 1 1 X 0 ✘

Figure 3: Logical schematic and circuit implementation of
Spin-CMOS accuracy-configurable FA.

gate (TG). Furthermore, the sum outputs of both stages are later-
ally connected to a 2:1 CMOS multiplexer implemented utilizing
two TGs to produce configurable sum (Sumconf ). Accordingly, the
proposed spin-CMOS accuracy-configurable circuit operates in two
different modes i.e. precision and approximation. In the precision
mode, the control knob (Ctrl) is high, so the intermediate TG is
ON and the double weighted current is routed to the second stage
MG. Consequently, the circuit functions as an accurate adder since
the second input of the multiplexer will be transmitted to the out-
put (Sumconf = Sumacc ). In the approximation mode, the Ctrl is
low and the double weighted branch is disconnected avoiding any
switching activity in second stage. Therefore, the Stage 1’s circuit
works as a low power approximate adder when Sumconf = Sumapp .

2.4 Performance
Comparison results between the proposed adder and previously
published CMOS-, MTJ-, Spin Hall Effect (SHE)- and Domain Wall
Motion (DWM)-based FAs are summarized in Table 3. Various met-
rics including the device count, total power consumption, and de-
lay are considered for the comparison. Note that the accuracy-
configurable circuit in this work is the only adder with the ap-
proximation configurability. For fair comparison, we have done
fixed-voltage scaling to 180nm process node by using the appropri-
ate scaling factor, which is (1/S2) for area and (1/S) for energy [1].
The results clearly show that the proposed accuracy-configurable
adder consumes less power than the other designs. For instance,
34.58% and 66% improvement in power consumption can be re-
ported for the precision and approximation modes, respectively,
over the best DWM-based FA design in [23]. In addition, compared
to the recently-published work by Roohi et al. in [24], the proposed
FA in precision mode can show ∼ 12.7× and 2.3× smaller power
and delay, respectively.

We expect that leveraging the proposed accuracy-configurable
adder could provide limited accuracy loss for improvements in other
circuit metrics such as power and speed while implementing image
processing applications. To examine this, we take widely-used Dis-
crete Cosine Transform (DCT)/ Inverse DCT (IDCT) as an image
compression algorithm as an example. We use the approximation
mode of the proposed accuracy-configurable FA only in the LSBs



Table 3: Comparison of FA designs.
Designs Device count Power Delay Config.

CMOS [21] 42 MOSs 71.1µW + 0.9nW 2200ps No

MTJ-based [21] 34 MOSs +
4 MTJs 2100 µW + 0nW 10200ps No

SHE-based [24] 23 MOSs +
3 SHEs 710µW + 0nW 7000ps No

LPM DWM [23] 20 MOSs +
4 MTJs + 2 DWSs 85µW + 0nW 877ps No

Prop. FA in prec. mode 28 MOSs+
4MTJs+ 2DWSs 55.6µW + 0nW 3000ps Yes

Prop. FA in approx. mode 28 MOSs+
4MTJs+ 2DWS 28.9µW + 0nW 2000ps Yes

of adders in a 20-bit DCT-IDCT architecture while exploiting the
precision mode in MSBs.

Fig. 4a shows the output quality for the base case and five dif-
ferent degrees of approximations in PSNR. It can be seen that by
increasing the approximation degree from the base case to 8 LSBs,
the PSNR only drops by 2.93 dB. The power consumption of the
DCT-IDCT circuit is evaluated using Synopsys Design Compiler
for both pure-CMOS and spin-CMOS circuits as depicted in Fig. 4b.
For pure-CMOS and spin-CMOS circuits, a Verilog code describ-
ing the truth table in Table 2 is considered for implementing the
approximate adder based on existing and developed cell libraries,
receptively, which is then used in 8-12 LSBs of a 20-bit DCT-IDCT
architecture. Simulation results show that for all cases the power
dissipation of the proposed spin-CMOS architecture is less than the
CMOS counterpart. Evidently, by changing the degree of approx-
imation, the power consumption of the entire system is changed.
For instance, 31.33% power saving is obtained for the spin-CMOS
architecture with 12 approximate LSBs in comparison with the base
case, although the output quality is degraded to a PSNR of 23.75 dB.
In a similar scenario, 8 approximate LSBs provide power saving of
20.4%, although the output quality is slightly degraded to 30.82 dB.

(a) (b)

Figure 4: (a) Output quality comparison of different approx-
imations, (b) Power consumption comparison of CMOS and
spin-CMOS DCT-IDCT.

3 STOCHASTIC ARTIFICIAL NEURAL
NETWORK (S-ANN)

3.1 Architecture of S-ANN
In this section, a stochastic-based ANN using Magnetic Tunnel
Junction (MTJ) and domain wall device is presented [5], which has
three main motivations. First, current emerging devices can not
simply be considered as an alternative to replace CMOS due to
large device variations. Thus, a new computation paradigm which
embraces and exploits physical characteristics of spintronic devices

instead of diminishing or circumventing them is essential. Second,
stochastic computing offers much simpler logic operation such
as multiplications and additions compared to expensive logic in
deterministic method. For example, deterministic multiplications
can be replaced with a simple AND operations of two random bit
streams. Third, experimental results show that computation in
the stochastic domain is much more robust than the deterministic
method. The stochastic-based Artificial Neural Network (S-ANN)
employsmultiple controlled random bit streams instead of weighted
sum operation in a deterministic ANN. Mathematically, we model
the neuron and synapse function as the following equation:

Y = f (
∑

Xi ⊕Wi − PTi ) (5)

where Y is the neuron output bit stream, Xi and Wi denote
the ith input bit stream and its corresponding synapse weighting
random bit stream, respectively. In addition, PTi denotes a threshold
in stochastic bit stream and f is the stochastic neuron transfer
function. The stochastic soft-limiting function is modeled as:

f (v) =


1 if v ≥ Ti

Pi−1 if Ti−1 < v < Ti
· · · · · · · · ·

P1 if T1 < v < T2
0 if v < T1

(6)

where v is the weighted sum of inputs in a stochastic bit stream,
T(1, · · ·,i ) is stochastic threshold range, P(1, · · ·i ) is output probability.
The training of S-ANN utilizes a conventional training algorithm, i.e.
the backpropagation training algorithm. Such training process be-
gins with initial weights, which are chosen randomly. The network
processes training data and inputs to the weights and functions
in the hidden layers. The resulting outputs are compared with the
desired outputs. If there is an error, it then propagates back through
the system, causing the system to adjust the weights for application
and for the next data that needs to be processed. In training process,
the deterministic sigmoid function is selected. Thus, the training
process of S-ANNwill not add any additional concerns. The training
process of S-ANN does not involve in any stochastic and non-linear
behavior within the S-ANN system. Once the training process is
done, the probable stochastic approximations are applied to trained
ANN, such as stochastic computing synthesis [2] and stochastic fi-
nite state machine [16]. Currently, most of stochastic ANNs employ
finite state machine to approximate learned transfer function [26].
The transfer function is approximated by stochastic state machine
using Markov chain theory. In Markov chain theory, each state is
connected serially, and the transition of different states is decided
by the input, which converts to the stochastic pulse stream. If the
incoming pulse is ′1′ then the state will move forward; otherwise,
it will keep at the current state. It is the probability of ′1′ appearing
in the stochastic pulse streams. However, in the S-ANN design, we
employ the DW device to approximate state and to integrate the
input bitstream. It is feasible to use deterministic learning approach
for this non-deterministic system because in S-ANN learning and
processing are distinct and approximated by the stochastic algo-
rithm. Fig. 5 shows an architecture of S-ANN. Instead of digital
deterministic value, the S-ANN propagates random bit stream.
3.2 Stochastic Switching of MTJ Devices
Numerous experimental results have shown that spintronic devices
exhibit complex switching behaviors due to the shifting of their
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Figure 5: Architecture of stochastic neuron in S-ANN.

intrinsic magnetic moment (spin) of electrons. For example, the
spin-torque switching characteristic of MTJ device is highly sto-
chastic and exhibits a well-defined probability as shown in Fig.
6b. Several recent works have realized that the MTJ’s switching
probability (Psw), depends on its intrinsic switching current and a
thermal stability parameter (∆). The thermal stability parameter
∆ is modeled as ∆ = Eu/kBT , Eu, kB, and T are uni-axial magnetic
anisotropy energy, Boltzmann’s constant, and temperature, respec-
tively. For example, if an initial state of MTJ is given as parallel state,
a write current Iw applied on MTJ device with a pulse duration t
can lead to a state switching under certain probability Psw. This
switching probability is defined as Psw = 1 − exp(−t/τp), where
τp is the switching time constant. Some recent works show how
to control the switching probability Psw by changing the applied
pulse duration and amplitude [12]. Therefore, using the applied
pulse duration and amplitude, the switching probability can be
concisely formulated as Psw(I ) = 1 − exp(− t

τp
exp(−∆(1 − I/Ic0))),

where Ic0 is the critical switching current at 0 K. In conclusion, the
certain switching probability of a given MTJ device can be modeled
by controlling the critical current Ic and the duration of applied
pulse current τp. In Fig. 6a, experimental and analytical results of
switching probability are plotted [22, 25].

(a)

Figure 6: (a) Experimental and analytical results of switch-
ing probability [9, 22, 25], (b) SPICE simulation results of
random signal generation.

3.3 Stochastic Synapse and Neuron
Fig. 7 shows the stochastic synapse design based on the reconfig-
urable random sample generator with one MTJ device and one
DW device. The key idea of the stochastic synapse is to designing
random sample generator by exploiting the stochastic switching
behavior of an MTJ device at different input currents under a fixed
pulse duration. The S-ANN architecture can be operated by two
modes. In configuration mode (Fig. 7a), the proper DW position is
programmed according to pre-computed stochastic weights. The
required writing current to MTJ is generated upon DW resistance.
During the operational mode shown in (Fig. 7b), depending on the
applied input either a logic “0" or “1" value, the applied voltage Vc
is written into the MTJ on the right hand. However, in order to
sense the DW position, a vertical current density must be smaller

than its critical value to avoid the shifting of DW position. Thus,
a PMOS transistor to amplify a small input current into a larger
output current is essential. In Fig. 7 c, d, e, the simulation results
have shown that an input small sensing current (< 30µA) to PMOS
transistor terminal can be effectively boosted into a larger current
at the output with a supply voltage(Vcc = 450mV ). In this paper,
we employ the conditional perturbation scheme [7] to generate
random sample and achieve a bit rate 2.7 times faster and consume
switch energy 6 times lower than conventional MTJ-based random
number generator method.
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To implement the stochastic neuron, multiple-phase pumping
circuit is presented and depicted in Fig. 8b. Differ from deterministic
DW device, the spin memristor DW device is employed [27]. In
stochastic neuron, three key parameters: th1, th2, andH are defined.
th1 and th2 denote the starting point and ending point of neural
signal transformation, while ∆ = H

th1−th2 denotes the slope of a
signal change. While a changing magnitude of current input to
the stochastic neuron, the DW of DW1 becomes to move. When
the Iin exceeds the critical of DW1, DW at DW1 starts to move.
Finally, the last DWn will start to move, when it receives a signal
from its previous stages. Therefore, one signal Vin is delivered to
the last DW device (DWn) and can be amplified depending on the
(DW2, ....,DWn ). Firstly, we model the function of input current and
DWmovement x as xi = f (Ii ). Using experimental results from DW
devices, the function f is approximated as a linear function. Thus,
the current passed to the next stage is equal to Vc1(B ·x1)+C

A , where
x1 and vc1 are defined as DW movement and supply voltage in
DW1, respectively. Consequently, the second stage output current
is equal to Vc2(B ·x2)+C

A , where x2 is defined as DW movement in
DW2 and equal to x2 = f (Vc1(B ·x1)+C

A ). The output current at the
last DW device can be calculated according to the equation on
above. Thus, representing a tri-layered DW structure, the output
current at the third DW device is amplified by factor Vc3 ·Vc2 ·Vc1,
approximately.
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3.4 Performance
In order to analyze the performance of the S-ANN, we select a
well-known neural network task for handwritten digits recognition
(MNIST). The MNIST dataset has 60K training samples and 10K
testing samples. The simulation process contains two steps: training
and pattern matching. In training process, the topology, synapse
weights, and neural transfer functions of the S-ANN are obtained
using the standard software and open resource code. Afterwards,
the S-ANN is built up and predetermined input voltages. We sum-
marize trade-off energy efficiency and recognition performance. In
Fig. 9a and b, we present trade-off energy and inaccuracy between S-
ANN and conventional CMOS-based stochastic ANN [6, 16, 18, 26].
Each experimental result is repeated ten times in order to minimize
random errors. The inaccuracy calculation is based upon comparing
the stochastic output with the corresponding probability. Compare
to the other stochastic neural networks in CMOS, the S-ANN has
high recognition rate. There are three reasons that consider as
accuracy degradation: 1) the scaled addition of bit-stream 2) the
Inter-stream correlation 3) transfer function FMS-approximation.
To improve the accuracy of stochastic ANN, we use KCL summa-
tion to overcome scaled addition issue, MTJ-based random number
generator to avoid inter-stream correlations, and emerging device
soft-limit approximation to reduce the approximation error. In en-
ergy comparison, the S-ANN using MTJ-based true random number
generator saves 8-10X energy compared with synthesized CMOS-
based LFSR [16, 19, 20, 26]. In Fig. 9a and b, we compare the energy
and inaccuracy with different bitstream sizes.

Figure 9: (a) Energy and inaccuracy comparison with differ-
ent bitstream sizes. (b) Area and Energy comparison at same
accuracy level.
4 CONCLUSION
In this paper, we presented two innovative spintronic computing
primitives, i.e. spintronic approximate logic and spintronic stochas-
tic neural network, which both leverage the intrinsic spintronic

device physics to achieve much more compact and efficient de-
signs than CMOS counterparts. In spintronic approximate logic,
we employed the intrinsic current-mode thresholding operation
to implement an accuracy configurable adder and further demon-
strate its application in approximate DSP applications. In spintronic
stochastic neuromorphic computation, we leveraged the stochastic
properties of domain wall devices and magnetic tunnel junction to
implement a low-power and robust artificial neural network design.
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