
Leveraging Virtual Machine Introspection for Hot-Hardening of Arbitrary
Cloud-User Applications

Sebastian Biedermann Stefan Katzenbeisser
Security Engineering Group, Technische Universität Darmstadt
{biedermann, katzenbeisser}@seceng.informatik.tu-darmstadt.de

Jakub Szefer
Computer Architecture and Security Laboratory, Yale University

jakub.szefer@yale.edu

Abstract

Correctly applying security settings of various different
applications is a time-consuming and in some cases a
very difficult task. Moreover, with explosion in cloud
computing popularity, cloud users are able to download
and run pre-packaged virtual appliances. Many users
may assume that these come with correct security set-
tings and never bother to check or update these settings.
In this paper we propose an architecture that can au-
tomatically and transparently improve security settings
of arbitrary network applications in a cloud computing
setup. Users can deploy virtual machines with differ-
ent applications, and our system will attempt to find and
test better security settings tailored towards their specific
setup. We call this approach “hot-hardening” since our
techniques are applied to running applications.

1 Introduction

The proposed architecture improves cloud computing
security and aids cloud computing users. In our sce-
nario, we assume a cloud computing provider that of-
fers Infrastructure-as-a-Service (IaaS) to its customers
on which virtual machines (VMs) can be deployed by
each cloud customer who has full administrative privi-
leges over this VM and who can install or modify arbi-
trary applications. An example for such a cloud provider
is the Amazon Elastic Compute Cloud (EC2)1 that pro-
vides different pre-packaged virtual instances for each
user who is willing to pay. Our work is inspired by the
Netflix Chaos Monkey project2, where different VMs are
automatically and randomly shut down by autonomous
agents to test resiliency of a cloud environment. In our
architecture, however, we never shut down VMs.

Instead, we propose a Security Monkey which is an
autonomous agent running in a separate VM. A Security
Monkey randomly identifies other user-VMs and auto-
matically attempts to improve their security settings –

and eventually the whole cloud environment would be
improved as a Security Monkey can periodically visit
and check all user-VMs. With the help of our architec-
ture, the security of user-VMs will be improved as a Se-
curity Monkey will automatically work within the back-
end network of a cloud computing environment in order
to find user-VMs running applications of which the secu-
rity settings are set too “low” and improve these settings.

In particular, automatically improving security config-
uration settings of known applications can be straightfor-
ward, because the meaning of the available settings are
known as well as their possible ranges and their effects
on the application. However, in this paper, we present
our ongoing work in building-up an architecture that can
automatically improve the configuration settings of arbi-
trary unknown applications. This goal introduces several
difficulties, first to identify if and which kind of config-
uration settings are actually available and what kind of
effect their modification has on the running application’s
characteristics.

Our proposed methods and techniques are generic,
which means the settings of unknown applications can
be improved and no previous knowledge about target ap-
plications is required. In our architecture, we only use
transparent techniques. Accordingly, the work-flow of a
target user-VM is not disrupted nor there is need to install
software components of our architecture on a user-VM.
Since the work-flow of the applications is not interrupted
and there is no need to terminate or shutdown any ap-
plications, we call our approach “hot-hardening”. To the
best of our knowledge, this work is the first approach
which tries to automatically improve security settings of
unknown running applications by leveraging virtualiza-
tion technologies without the need for any user interac-
tion.

The remainder of the paper is organized as follows:
Section 2 presents related work and Section 3 explains
our architecture. Section 4 evaluates the architecture,
Section 5 points out future work and Section 6 concludes.



2 Related Work

In this chapter, we present related work in the field of
“hot-patching”, of analysis of applications during their
run-time and of Virtual Machine Introspection (VMI).

2.1 Hot-Patching

Hot-patching is the process of upgrading a running pro-
gram by modifying its binary code while it executes.
This way, new functionality can be added to closed-
source applications, software updates can be deployed
or security vulnerabilities can be fixed without reboot-
ing. Hot-patching is very useful in order to reduce the
downtime in systems which require a high availability
but which need to be patched (e.g. important security
patches). Ramaswamy et al. [16] proposed to use Patch
Objects, a special encoding form for patches as ELF relo-
catable objects which can be applied more reliable. They
presented their techniques as an extension of the Appli-
cation Binary Interface (ABI). Huang et al. [12] proposed
a hot-patching framework that autonomously patches the
binary code by learning the possible causes of failures
and they demonstrated the feasibility on Web-based ap-
plications. Payer et al. [13] described a hot-patching ar-
chitecture by integrating dynamic patches with the help
of a virtualized sandbox based on dynamic binary trans-
lation. Their evaluation showed that their system can hot-
patch 45 of 49 web server bugs while adding only a low
execution overhead.

In our work, we propose an approach which we call
“hot-hardening”. Instead of fixing binary code, we fix
configuration settings.

2.2 Run-time Security Analysis

Analyzing the security characteristics of applications
during run-time can become a costly task and proposed
techniques are usually semi-automated. Often, the pro-
posed approaches intervene once an errors occurred.
Whitaker et al [19] proposed the Chronus tool, an archi-
tecture that automatically diagnoses configuration errors
and helps to find the point of failure. This is achieved by
searching across time for the point the system went into
a failed state with the help of a virtual machine. Rabkin
et al [15] proposed an architecture that uses static anal-
ysis in order to extract a list of configuration options for
a target program. Their analysis could find 95% of con-
figuration options and infer a type for the most options,
however, their techniques only work on Java source code.
Xu et al. [20] built a tool called Spex which automatically
infers configuration requirements from software source
code in order to detect misconfiguration. Especially, au-
tomated adaptions of the settings of firewall applications

are desirable. Al-Shaer et al. [1] presented a framework
for automatic testing of firewall configurations using pol-
icy and traffic generation to test successful deployment
of new rules.

In our architecture, we automatically identify potential
configuration settings of running applications.

2.3 Virtual Machine Introspection
Virtual Machine Introspection (VMI) is the technique of
locating and accessing the memory of a running VM
(usually a user-VM) from another isolated running VM
(usually an admin-VM) which is co-located on the same
hardware and which has required privileges to access
the hypervisor layer. VMI is transparent and does not
interrupt the work-flow of the target user-VM nor can
it be detected from there. VMI is especially of inter-
est for security-related techniques, e.g. intrusion de-
tection, since it offers the opportunity to built security
tools which are tamper-resistant ([10],[14],[4]). Fraser
et al. [9] developed self-repairing immunity architecture
running on an isolated VM that can rapidly restore pro-
cesses in a user-VM which have been infected and mod-
ified by malware. Srivastava et al. [17] proposed an
tamper-resistant application layer firewall based on VMI
techniques.

Besides the advantages of VMI, there are also some
difficulties, like the need for precise knowledge about the
structure of the target software setup of the user-VM in
order to close the so called “semantic-gap” ([8],[7]). This
is required to know locations of useful information on the
target user-VM’s memory. Recently, there have been ar-
chitectures proposed which do not only read the memory
of a co-resident user-VM but also write to specific loca-
tions. This way, for example processes can be implanted
into a user VM during run-time [11].

In our proposed architecture, we use fine-grained VMI
techniques to locate, read and write to potential configu-
ration settings of running applications.

3 Architecture of the Security Monkeys

As cloud computing deployments grow larger and lager,
we assume it will be unlikely that all VMs can be in-
spected and improved at once. We propose a Security
Monkey as being a movable VM having administrative
privileges and working on one user-VM after another.
The Security Monkey uses different techniques which
are introduced in this section and illustrated in Figure 1.

The Security Monkey can be live migrated [5] to a new
hardware node and this way relocated to a new pool of
user-VMs. Depending on the size of the cloud, a troop of
multiple Monkeys can run and improve the security set-
tings of a continuously changing pool of arbitrary user-

2



Figure 1: A Security Monkey working on a user-VM and
its clone using different transparent techniques.

VMs. Once a Security Monkey is migrated to a new node
it uses fine-grained transparent VMI techniques [6] on a
selected user-VM’s memory to discover the IP address
of the operating system, to detect running applications
and their virtual address ranges h1 and it scans for corre-
sponding open ports h2. Since we do not have any previ-
ous knowledge about any of the applications, the used
approaches are fully generic. This enables a Security
Monkey to improve settings even of unknown applica-
tions.

A Security Monkey uses a Setting Discovery strategy
(Section 3.2) to identify available potential configuration
settings for each found application and tries to locate
these settings in the running application’s memory. In
this strategy, VMI and live forensic techniques h3 are used
in order to transparently investigate specific memory re-
gions of the target application and transparently examine
disk sectors of corresponding target files on the raw stor-
age of the user-VM.

Only if potential configuration settings could be iden-
tified and located, the Security Monkey triggers live-
cloning h4 of the user-VM [18] with on-the-fly memory
modifications. During the copy process of this proce-
dure, the clone’s memory is modified so that it allows a
Security Monkey to log in h5 as an administrator [3]. A
clone of the user-VM is required since actively changing
settings of an application running on the original user-
VM could lead to interruptions and crashes as well as it
would cause misleading entries in the log files. The stor-
age of the user-VM is not cloned, in this case we rely on
a logical volume manager and only add a copy-on-write
virtual snapshot of the original storage to the clone.

In further steps, a Security Monkey uses a Setting Im-
provement strategy (Section 3.3) in which it applies VMI
techniques on the clone’s memory to set new well chosen
configuration settings for an application and to evaluate
if these new settings improved the target application’s se-

curity characteristics with the help of accessing the clone
and executing test-runs. This strategy is continuously re-
peated until better settings could be found, VMI is finally
used to deploy the new configuration settings on the tar-
get running application on the original user-VM.

3.1 Assumptions
The proposed architecture can improve the settings of ar-
bitrary and unknown applications. However, a few as-
sumptions about an application App need to be made
which allow the functioning of our Security Monkeys:

• App is a running Linux process and its virtual mem-
ory space is located within a user-VM’s memory.

• App maintains at least one open TCP or UDP port
for network communication with which a Security
Monkey can establish a connection.

• App has at least one configuration file located on
the user-VM’s storage.

These assumptions are very generic and usually met by
arbitrary Linux applications which use networking.

3.2 The Setting Discovery Strategy
In this section we describe in detail how a Security Mon-
key can identify and locate configuration values of even
an unknown application on the original user-VM.

3.2.1 Identification of Potential Configuration Files

According to our assumptions, a configuration file
should exist on the user-VM’s storage for each applica-
tion. Since we do not know which and even if config-
uration values for the application exists, and we also do
not know in which sectors the configuration file is stored
or how it is named, a Security Monkey needs to use a
generic strategy. To find files which are somehow re-
lated to the application, we can not use the application’s
open file descriptors, because configuration files are usu-
ally only read once during start-up. First, the Monkey
investigates the application’s memory regions in which
the executable (ELF) is stored as well as its allocated
heap and stack memory for short strings that appear to
be file names having a path. Subsequently, the Monkey
examines the user-VM’s raw storage with live forensics
techniques to verify which files do exist and to find other
files located under these paths. This way, the Monkey
creates a list of several existing files which are somehow
related to the application’s functionality. With the help
of a blacklist, the Monkey removes certain known files
(e.g. ’/etc/passwd’) from the list which finally results in
a list of potential configuration files.

3



3.2.2 Pattern Generation and Value Localization

In the next steps, the Security Monkey reads the corre-
sponding sectors of each identified potential configura-
tion file on the raw storage and analyzes the text-content
line-by-line. In multiple runs, it splits each line with dif-
ferent separators (e.g. tabs), removes blank content and
tries to convert each resulting token into an integer value.
If values could be found in the file, the Monkey com-
bines them to a value union Un of n values because we
assume that an application’s configuration setting is usu-
ally stored in memory combined in a struct or the loca-
tions of these values are at least close-by.

Finally, identified values in each potential configura-
tion file can also lead to a value union Un. In order to
locate a value union Un in the application’s memory, a
Monkey needs to generate patterns (regular expressions)
for each Un for which it can search. Based on experi-
ments, we decided that a pattern needs to have at least
three values to be characteristic and at most seven val-
ues to ensure a search process being feasible. If Un has
less than three values, Un is discarded. If Un contains
more than seven values, the Monkey selects the seven
most characteristic values.

Since the Monkey does not know the order of Un in
memory and it can not be sure that Un occurs in the same
order like it occurred in the file, the Monkey needs to
generate ∑

n
i=3(

n!
(n−i)! ) combinations of patterns for each

Un. This can result in a minimum of 6 and a maximum
of 13650 different patterns. Finally, the Monkey searches
for these patterns in the heap and the stack memory re-
gions of the application using VMI.

3.3 The Setting Improvement Strategy

In the most cases, an application has a configuration set-
ting which is not necessarily the optimal setting for this
application, especially regarding to its security charac-
teristics. In this section, we describe our ongoing work
in how a Security Monkey can automatically improve an
unknown application’s configuration setting once the po-
tential values could be identified and located in the run-
ning application’s memory.

Since the Security Monkey does not know the mean-
ing of the located configuration settings and if these set-
tings are somehow related to security characteristics in
general, it executes multiple-test runs while it receives
feedback about the application’s characteristics in each
test-run (Figure 2). The Monkey repetitively replaces a
located value union with a new value union in the clone’s
memory via VMI h1 and actively triggers the running ap-
plication h2 in order to receive and analyze the feedbackh3. The generated feedback is analyzed regarding to de-
fined security measures.

Figure 2: A Security Monkey deploying settings to an
application running inside a cloned user-VM and analyz-
ing the feedback after triggering.

A Security Monkey can retrieve measurements from
different points on the clone and interpret the feedback
in order to estimate the current security characteristics of
the unknown application to which new settings were set.
To take these measurements, the Monkey can actively
trigger the application on the network, on the system
level and it can also terminate and restart it. Depending
on the received feedback, a new value union for the next
test-run is selected. In particular, the Monkey selects new
values depending on the properties of the initially located
values (e.g. bigger differences for large initial values or
only powers of two for values which initially were pow-
ers of two). Most of the new settings will not increase the
measurement and some settings may cause the applica-
tion to terminate or to crash. In these cases, the Security
Monkey deploys and tests other settings and it also main-
tains a dump of the clone for rapid recovery.

4 Evaluation

For an implementation, we used a modified the Xen hy-
pervisor [2] which offered live migration [5] and live
cloning with account injection [3]. A Security Monkey
is an admin VM equipped with our Python scripts using
an introspection library3 and a forensic framework4. In
an evaluation, we used a Quad CPU with 2.67GHz and
4GB memory and a user-VM with Ubuntu Linux 12.04
and 1024MB memory. We installed 8 popular Linux net-
work applications on the user-VM.

In a first step, the Security Monkey analyzed the user-
VM and retrieves its IP address, a list of open ports and
information about all running network applications (8)
via VMI. On average (10 runs), this could be performed
in 5.4±0.1s. In the next steps, each detected application
is analyzed in detail. Figure 3 shows the timings for the
Setting Discovery strategy applied on each application.

On average (10 runs), the Setting Discovery strategy
required 13± 5s for an application. Most of the time
was needed to find the allocated virtual address ranges
of the specific memory regions (ELF, heap, stack) and

4



wuftp openssh nginx citadel samba cups squid mysql
0

5

10

15

20

25
se

co
nd

s

 

 
locating target memory used in analysis
search for potential config files and values
generate patterns for value unions
search for patterns

Figure 3: Timings required to analyze each application.

to retrieve the content. Finding potential configuration
files by searching for paths in the memory and locating
them on the raw storage required up to 5s. Extracting
value unions and generating patterns could be performed
in up to 1s, while searching for the patterns depends on
the memory content of the application and could take up
to 7s. Table 1 shows more results in detail.

For each application, multiple potential configuration
files could be automatically identified and in each case
the real configuration file was below them which finally
lead to the automatic identification of real configuration
values of the unknown applications and the generation of
useful patterns.

potential
configs

found values
(union(s))

patterns found at least
one pattern

wuftp 6 3 (1) 6 yes
openssh 10 6 (1) 1920 yes
nginx 12 7 (2) 13650 yes
citadel 11 5 (1) 300 yes
samba 6 4 (1) 48 no
cups 11 5 (1) 300 no
squid 5 7 (1) 13650 yes
mysql 7 5 (1) 300 yes

Table 1: Setting Discovery details for each application.

Finally, for 6 of the 8 applications, at least one of the
patterns could be located in the target application’s mem-
ory. Finding multiple patterns can be caused by false-
positives or the values being stored multiple times. Find-
ing no patterns can have different reasons: the values can
be stored in other regions than the stack and the heap
(e.g. anonymously mapped regions), not stored (e.g.
swapped) or converted or combined to unknown values.
After identifying applications and locating their potential
configuration settings, live cloning of the user-VM could
be performed in 6.5± 0.2s on average while on-the-fly
memory modification (with account injection) caused an
additional overhead of 2.1±0.6s (10 runs).

In order to test the feasibility of the automatic Setting
Improvement strategy, we first create a mechanism which
triggers a running application on the network with a lot of
new connections, sequenced and in parallel, which tries
to log-in with invalid and valid credentials (injected ac-
count) and which sends different amounts of data. The
Security Monkey uses this automatic mechanism to trig-
ger an application on its port and to monitor the sent traf-
fic of this application on the virtualized network. In our
test-runs, the Monkey analyzed how many TCP RST and
FIN flags are sent by the application and uses this in-
formation as feedback assuming a higher occurrence of
these flags is more restrictive and can be caused by the
application’s improved security characteristics.

Experiments showed that a Security Monkey can au-
tomatically improve the security characteristics of three
of the eight selected applications (37.5%) with the help
of this triggering mechanism and the analysis of the ap-
plication’s feedback. These results are caused by the fact
that each of the identified values of these three applica-
tions included a value which was directly related to net-
work restrictions (maximum login retries or maximum
connections in parallel). The effects of modifying these
values could be successfully detected by the Security
Monkey in the feedback.

5 Ongoing and Future Work

In future work, we want to improve our Setting Dis-
covery strategy, first by performing a large-scaled anal-
ysis of configuration files in order to identify interest-
ing classes of values and second, by including more dif-
ferent configuration setting types (e.g. also strings like
“md5” or “sha1”). In the Setting Improvement strategy,
we want to include more different triggering mechanisms
and measure and analyze feedback from multiple sources
(file and library usage, system calls). Additionally, we
want to show the feasibility of a fully automated Security
Monkey by using a combinatorial optimization algorithm
based on our techniques to find the optimal settings.

6 Conclusion

In this paper, we showed our current work in explor-
ing how security configuration settings of arbitrary and
unknown running applications can be automatically im-
proved in a cloud computing setup. We call this approach
“hot-hardening” and propose a Security Monkey, which
is an agent running in a separate VM that operates trans-
parently on identified applications by leveraging virtual-
ization technologies and that uses our proposed Setting
Discovery and Setting Improvement strategy. In an eval-
uation, we showed the feasibility of our strategies.

5



References
[1] AL-SHAER, E., EL-ATAWY, A., AND SAMAK, T. Automated

pseudo-live testing of firewall configuration enforcement. Se-
lected Areas in Communications, IEEE Journal on 27, 3 (2009),
302–314.

[2] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In Proceedings
of the nineteenth ACM symposium on Operating systems princi-
ples (2003), SOSP ’03, ACM, pp. 164–177.

[3] BIEDERMANN, S., AND TEWS, E. How to enable live cloning
of virtual machines using the xen hypervisor. In Technical Report
(2013).

[4] CARBONE, M., CONOVER, M., MONTAGUE, B., AND LEE, W.
Secure and robust monitoring of virtual machines through guest-
assisted introspection. In Research in Attacks, Intrusions, and
Defenses, D. Balzarotti, S. Stolfo, and M. Cova, Eds., vol. 7462 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2012, pp. 22–41.

[5] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration
of virtual machines. In Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation -
Volume 2 (Berkeley, CA, USA, 2005), NSDI’05, USENIX Asso-
ciation, pp. 273–286.

[6] DOLAN-GAVITT, B., BRYAN, P. D., AND LEE, W. Leverag-
ing forensic tools for virtual machine introspection. In Technical
Report (2011).

[7] DOLAN-GAVITT, B., LEEK, T., HODOSH, J., AND LEE, W.
Tappan zee (north) bridge: mining memory accesses for intro-
spection. In Proceedings of the 2013 ACM SIGSAC conference
on Computer &#38; communications security (2013), CCS ’13,
ACM, pp. 839–850.

[8] DOLAN-GAVITT, B., LEEK, T., ZHIVICH, M., GIFFIN, J., AND
LEE, W. Virtuoso: Narrowing the semantic gap in virtual ma-
chine introspection. In Security and Privacy (SP), 2011 IEEE
Symposium on (may 2011), pp. 297 –312.

[9] FRASER, T., EVENSON, M., AND ARBAUGH, W. Vici virtual
machine introspection for cognitive immunity. In Computer Se-
curity Applications Conference, 2008. ACSAC 2008. Annual (dec.
2008), pp. 87 –96.

[10] GARFINKEL, T., AND ROSENBLUM, M. A virtual machine in-
trospection based architecture for intrusion detection. In Network
and Distributed System Security Symposium (2003).

[11] GU, Z., DENG, Z., XU, D., AND JIANG, X. Process implanting:
A new active introspection framework for virtualization. In Reli-
able Distributed Systems (SRDS), 2011 30th IEEE Symposium on
(oct. 2011), pp. 147 –156.

[12] HUANG, H., TSAI, W.-T., AND CHEN, Y. Autonomous hot
patching for web-based applications. In Computer Software and
Applications Conference, 2005. COMPSAC 2005. 29th Annual
International (July 2005), vol. 2, pp. 51–56 Vol. 1.

[13] PAYER, M., AND GROSS, T. Hot-patching a web server: A case
study of asap code repair. In Privacy, Security and Trust (PST),
2013 Eleventh Annual International Conference on (July 2013),
pp. 143–150.

[14] PAYNE, B. D., CARBONE, M., SHARIF, M. I., AND LEE, W.
Lares: An architecture for secure active monitoring using virtu-
alization. In IEEE Symposium on Security and Privacy (2008),
pp. 233–247.

[15] RABKIN, A., AND KATZ, R. Static extraction of program config-
uration options. In Proceedings of the 33rd International Confer-
ence on Software Engineering (2011), ICSE ’11, ACM, pp. 131–
140.

[16] RAMASWAMY, A., BRATUS, S., SMITH, S., AND LOCASTO,
M. Katana: A hot patching framework for elf executables. In
Availability, Reliability, and Security, 2010. ARES ’10 Interna-
tional Conference on (Feb 2010), pp. 507–512.

[17] SRIVASTAVA, A., AND GIFFIN, J. Tamper-resistant, application-
aware blocking of malicious network connections. In Recent Ad-
vances in Intrusion Detection, vol. 5230 of Lecture Notes in Com-
puter Science. 2008, pp. 39–58.

[18] SUN, Y., LUO, Y., WANG, X., WANG, Z., ZHANG, B., CHEN,
H., AND LI, X. Fast live cloning of virtual machine based
on xen. In High Performance Computing and Communications,
2009. HPCC ’09. 11th IEEE International Conference on (2009),
pp. 392–399.

[19] WHITAKER, A., COX, R. S., AND GRIBBLE, S. D. Configu-
ration debugging as search: finding the needle in the haystack.
In Proceedings of the 6th conference on Symposium on Opeart-
ing Systems Design & Implementation - Volume 6 (Berkeley, CA,
USA, 2004), OSDI’04, USENIX Association, pp. 6–6.

[20] XU, T., ZHANG, J., HUANG, P., ZHENG, J., SHENG, T., YUAN,
D., ZHOU, Y., AND PASUPATHY, S. Do not blame users for
misconfigurations. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (2013), SOSP ’13,
ACM, pp. 244–259.

Notes
1http://aws.amazon.com/ec2/
2https://github.com/Netflix/SimianArmy/wiki/
3https://code.google.com/p/vmitools/
4https://code.google.com/p/volatility/

6


