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Virial Theorem Mon 23jan17

Levine pp 416-426 and
https://en.wikipedia.org/wiki/Virial_theorem

From Wikipedia, the free encyclopedia In mechanics, the virial theorem provides
a general equation that relates the average over time of the total kinetic energy,
of a stable system consisting of N particles, bound by potential forces, with that of
the total potential energy where angle brackets represent the average over time
of the enclosed quantity. Mathematically, the theorem states

where F, represents the force on the kth particle, which is located at position r,.
The word virial for the right-hand side of the equation derives from vis, the Latin
word for "force" or "energy", and was given its technical definition by Rudolf
Clausius in 1870.14
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Rudolf Claussius (wikipedia)

1850, first stated the basic ideas of the Second Law of
Thermodynamics.

In 1865 he introduced the concept of entropy.

In 1870 he introduced the virial theorem which applied to heat.

The virial theorem applies to ALL stable systems,
classical and quantum.

For example, Fritz Zwicky in ~1930 was the first to use
the virial theorem to deduce the existence of unseen
matter, which is now called dark matter — still a major
mystery in astrophysics.



Major bottom line:

When the potential energy, V, due to interaction of any two
particles is proportional to ", then: <T> =5 n <V/>.

For Coulomb energy, n =-1, therefore

<T> = -)4 <V/> for all atoms and molecules, the motions of
the planets, etc.

For a harmonic oscillator, V=1/2 kx?, n= 2 so that
<T>=<V>, again in either classical or quantum mechanics.



Our Main Interest:

In Quantum Chemistry, obeying of the virial theorem is checked at each
iteration of ab initio SCF energﬂcomputations at each geometry of an
optimization to ensure that (<]>=-1/2<V>, asseenina

piece of typical output from Gapssian 09:
Initial guess from the checkpoint file: "PH-2ap.chk"
B after Tr=_ 0.000000 0.000000 0.p0O0O000
Rot= 1.000000 0.000000 0.000000 0.000150 Ang= 0.02 deg.

Keep R1 ints in memory in canonical fgrm, NReq=13642697.
Requested convergence on RMS densify matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on enefgy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RHF) = -461.8988454253 A.U. after 10 cycles

NFock= 10 Conv=0.66D-08 -V/T=2.0019
Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 11Cent= 0 I0pCIX= 0 NMat=1 NMatS=1 NMatT=0.
*xxxx Axes restored to original set *****

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z
1 7 -0.000241441 -0.000077968 0.000305746
2 6 0.000214225 0.000060731 -0.000156949
3 1 -0.000040286 -0.000008538 -0.000006346
yil 7 0000167728 -0 OO0O0O65086 0 000341279



Spherical Harmonics: Curvature, Kinetic Energy,
and Orbital Nodes in Spherical systems

http://www.falstad.com/gmatom/
David Manthey's Grand Orbital Table

Levine: ppl102, 107-110

Chem 514 Handout #7 October, 1985

More on Atomic Orbitals
[__ZT. Nature of the solutions |

I

We won't be concerned with the details of "solving" the Schrodinger
BEquation for the H atom in this course, but, it's not too hard to show
that one may break it down into 3 separate equations, each depending on
only one of the 3 variables r, @ , and ¢ Whenever this hagpens, one
finds that the well behaved solutions (the orbitals) are products of 3
functions, each depending on only r, © or ¢ and each orbital is
characterized by 3 integer quantum numbers, n, 1, and m, (3 because

space is 3-dimensional).


http://www.falstad.com/qmatom/
http://www.orbitals.com/orb/orbtable.htm
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each has powers of cos ® in it. The product of the two angular parts

is the same for every spherical problem, not just for quantum mechanics

of atoms. Thus it's given a special name and symbol.
R, (r) is the product of

L o b a polynomial (which
©) = spHERICAL NECS provides NODES, and

The Rﬁf} describes the Radial Motion (in and out). The f.i;:;are the famous and and exponential,
associated Laguerre Polynomials. All these equations and sclutions were which has no nodes.

known and solved by mathematicians in the 1800's or earlier. This should

serve to make the distinction between theory and mathematics. The same
math appears in many different theories. What Schroedinger did was

discover how to map physical reality onto existing mathematics.



http://bison.ph.bham.ac.uk/index.php?page=bison,background

The Sun is a sphere. Below are calculations of the nodal
patterns of seismic waves in the Sun, published by an
Astrophysics group at the University of Birmingham in England.

These nodes depend on
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EXAMPLE:n=10,1=7,m=2 , i.e., a 10j orbital.

total nodes= 9 (n-1)
planes = 2
cones =95
spheres = 2
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Angular kinetic energy

(a “pseudo potential”). Its
derivative gives “centrifugal
force”.
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Fig. 4-2. Graphs of radial wave functions, R, (r) (dashed lines), and distribution
[unctions, r?R2,(r) (solid lines), for the hydrogen atom. Units of R are m™?2
230

und units of 72 R* are m !, Vertical lines murk the average value of r foran electron
in cach orbital.
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Shapes of nodes

cones on z axis
0 nodes (radial nodes): shape =? (includes the xy plane,

a cone with 6 =90)

I’ rnodes (radial nodes): shape =? spherical
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¢ nodes (radial nodes): shape =? planes CONTAINING z axis

i.e., perpendicular to xy plane
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2. \ The @ Equation}
Its fairly easy to show that > @ = —a
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and that @=Ne

me= 0' :1' 12' evssvese

Integer values come from requirement that (Zb () = @C@f-lﬂ')



The significance is found from noting that
Fany),

Ly E (7P )‘k Angylan
“uEm JE = Kinetic energy
Z/q (r si176) -

due to motion around the z axis, i.e., that in xy plane.

Examine the Schroedinger Equation and note that

Ly = -T2

AP*

L= —<h e

Note the parallel to linear momentum.

. C:(”%: d?m - W\X/\ Q"“\

and qu are eigenfunctions of (f - with eigenvalues m’t\ o
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=2, | Ihe e E:ms:r.maj .
They are the associated Legendre palynamials and have the form:
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when these functions change sign the node is a cone, in general. The
cones are about the z axis and come in pairs except the @ = 90° case,

which is a flattened cone (the xy plane). Thus, for 4f, m=o0 |,

iml o 3
P P & S Cose — Co%8
4 3
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there are 3 conical nodes +
— Y
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We will see that / , the total angular momentum quantum number has the
very neat significance:

r,f = # of angular nodes_}
so#of © nodes= Z - |m|, i.e., the largest power of cos & in

the polynamial.

/| The & Rewtion 2ud Buncrion |

Looking at the Schrodinger Bquation from Handout #6 we can see
‘Tradia_}_ +V(r) + Tang LPnlm = En anlm

Where Tang = Cf(e)!b) 2“ r:' . .

After operating on LP nlm bY Tang the equation becames
R 2.
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which shows that < A .
' r ”fﬂo)
P
Thus, the size of an orbital <o ﬂ_z , which is sensible. "iaut one

may also find E from = ) = - Z in agreement with the
hzZIJ dg

uncertainty principle. Comparing the two formilas shows that

HE . z ' =




since H = rr) @e©) CE @) ~ the nodal surfaces
correspond to
| r = const. = sphere

© = const. = cone (aboot D

¢= const. = planes 1 to xy

What are the
formulas for the
number of each

Let us now tabulate the first sewveral orbitals and learn the formulas
for number of each kind of node. Examine functions on p 23 of Murrell,

ial. L ®m  pme cnodes ©nodes  Pnodes  Total type of node and
1 0 0 1s 0 0 0 0 thetotal number of
2 0 0 2s 1 0 0 1 nodes?

2 1 0 2pz 0’ 1 0 1

2 1 1 2Pty O 0 1 1

30 0 3s 2 0 0 2

31 0 3pz 1 1 0 2

3 1 1 3,y 1 o 1 2

3 2 0 3d,, 0 2 0 2

3 2 1 Mgz O 1 1 2

3 2 2 wxy,x,;y, 0 0o - 2 2



The cbviocus relationships hold true for all cases:

total nodes = -1

number of ©® nodes = m

total angular nodes = X '

number of © nodes = Q-iml
nur;ber'ofrnodes = n=- £ -1

Thus, a 4f orbital with m = 2 has 3 nodes total. But ,Q = 3 so there
2 Cb nodes and 1 © node and there are no smerical(r) nodes  7his orbita

looks like !

N



special note on DRAWING ATOMIC ORBITALS copyright Patrik R.Callis
24jan2017

The following procedure is suggested as the best way
to display the nodal patterns of atomic orbitals.

(1)First make two perspective drawings of the
orbital values on a spherical shell at a distance beyond
the last r node. One of these should be looking down the 2
axis, the other from the side so as to show all of the
planar nodes. These two will show the number of conical
and planar nodes but will not show the spherical(r) nodes.

(2) Now draw a crossection through the center
which cuts between two planar nodes. This will display the
cones again and will also show the spherical nodes. The
planes will not be seen on this view,

EXAMPLE!n=10,1=7?,m=2 , i.e., & 10]J orbital.

total nodes= ¢ (n-1)
planes =2
cones =9
spheres =2
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