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Phase Ordering of Front-Ends 

 Lexical analysis (lexer) 
 Break input string into “words” called tokens 
 

 Syntactic analysis (parser) 
 Recover structure from the text and put it in a parse tree 

 

 Semantic Analysis 
 Discover “meaning” (e.g., type-checking)  
 Prepare for code generation 
 Works with a symbol table 



Similarity to Natural Languages 

Tokens and a Parse Tree 

             문장                                    :   non-terminals 

  주어                       목적어              서술어           :   non-terminals 

  
대명사   조사           명사           조사        동사            :  Tokens (also called terminals) 

__   __     ____   __   ____ 

나   는     학교   를   간다   



What is a Token? 

 A syntactic category 

 In English: 
 Noun, verb, adjective, … 

 In a programming language: 
 Identifier, Integer, Keyword, White-space, … 

 A token corresponds to a set of strings 

 



Terms 

 Token 
 Syntactic “atoms” that are “terminal” symbols in the 

grammar from the source language 

 A data structure (or pointer to it) returned by lexer 

 Patten 
 A “rule” that defines strings corresponding to a token 

 Lexeme 
 A string in the source code that matches a pattern 



An Example of these Terms 

 int foo = 100; 
 
 
 
 
 

 
 
  
 
 

 

 The lexeme matched by the pattern for the token 
represents a string of characters in the source 
program that can be treated as a lexical unit 



What are Tokens For? 

 Classify substrings of a given program 
according to its role 

 Parser relies on token classification 
 e.g., How to handle reserved keywords? As an 

identifier or a separate keyword for each? 

 Output of the lexer is a stream of tokens 
which is input to the parser 

 How parser and lexer co-work? 
 Parser leads the work 



Lexical Analysis Problem 

 Partition input string of characters into 
disjoint substrings which are tokens 

 

 

 

 

 Useful tokens here: identifier, keyword, relop, 
integer, white space, (, ), =, ; 



Designing Lexical Analyzer 

 First, define a set of tokens 

Tokens should describe all items of interest 

Choice of tokens depends on the language 
and the design of the parser 

 

 Then, describe what strings belongs to 
each token by providing a pattern for it  



Implementing Lexical Analyzer 

 Implementation must do two thing: 
 Recognize substrings corresponding to tokens 

 Return the “value” or “lexeme” of the token: the substring 
matching the category 

Reading left-to-right, recognizing one token at a time 
 

 The lexer usually discards “uninteresting” tokens that 
do not contribute to parsing  
 Examples: white space, comments 

 

 Is it as easy as it sounds? Not actually! 
 Due to lookahead and ambiguity issues (Look at the history) 



Lexical Analysis in Fortran 

 Fortran rule: white space is insignificant 
 Example: “VAR1” is the same as “VA R1” 

 Left-to-right reading is not enough 
 DO 5 I = 1,25   ==> DO  5  I  =  1 , 25 
 DO 5 I = 1.25   ==> DO5I = 1.25 

 Reading left-to-right cannot tell whether DO5I is a 
variable or a DO statement until “.” or “,” is reached 

 “Lookahead” may be needed to decide where a token 
ends and the next token begins 

 Even our simple example has lookahead issues 
 e.g, “=“ and “==“ 



Lexical Analysis in PL/I 

 PL/I keywords are not reserved 

 IF THEN ELSE THEN = ELSE; ELSE ELSE = THEN 
 

 PL/I Declarations 

 DECLARE (ARG1, .. ,ARGN) 
 

 Cannot tell whether DECLARE is a keyword or an array 
reference until we see the charater that follows “)”, 

requiring an arbitrarily long lookahead 



Lexical Analysis in C++ 

 C++ template syntax: 

Foo<Bar> 

 C++ io stream syntax: 

Cin >> var; 

 But there is a conflict with nested templates 

Foo<Bar<int>> 



Review 

 The goal of lexical analysis is to 
 Partition the input string into lexemes 

 Identify the token of each lexeme 
 

 Left-to-right scan, sometimes requiring lookahead 
 

 We still need 
 A way to describe the lexemes of each token: pattern 

 A way to resolve ambiguities 
 Is “==“ two equal signs “=“ “=“ or a single relational op? 



Specifying Tokens: Regular Languages 

 There are several formalisms for specifying tokens 
but the most popular one is “regular languages” 
 

 Regular languages are not perfect but they have 
 ∃a concise (though sometimes not user-friendly) 

expression: regular expression 

 ∃a useful theory to evaluate them  finite automata 

 ∃a well-understood, efficient implementation 
 ∃a tool to process regular expressions  lex 

 Lexical definitions (regular expressions)  lex   

    a table-driven lexer (C program) 



Formal Language Theory 

 Alphabet ∑ : a finite set of symbols (characters) 
 Ex: {a,b}, an ASCII character set 

 

 String: a finite sequence of symbols over ∑ 
 Ex: abab, aabb, a over {a,b}; “hello” over ASCII 
 Empty string є : zero-length string 

 є≠Ø≠ {є} 
 

 Language: a set of strings over ∑ 
 Ex: {a, b, abab} over {a,b} 
 Ex: a set of all valid C programs over ASCII 



Operations on Strings 

 Concatenation (·): 
 a · b = ab, “hello” · ”there” = “hellothere” 

 Denoted by α · β = αβ 
 

 Exponentiation: 
 hello3 = hello · hello · hello = hellohellohello, hello0 = є  

 

 Terms for parts of a string s 
 prefix of s : A string obtained by removing zero or more trailing 

symbols of string s: (Ex: ban is a prefix of banana) 

 proper prefix of s: A non-empty prefix of s that is not s 



Operations on Languages 

 Lex X and Y be sets of strings 
 Concatenation (·): X · Y = {x·y|x ∈ X, y ∈ Y} 

 Ex: X = {Liz, Add} Y = {Eddie, Dick} 

 X · Y = {LizEddie, LizDick, AddEddie,AddDick} 
 

 Exponentiation: X2 = X · X 
 X0 = є  

 

 Union: X∪Y = {u|u ∈ X or u ∈ Y} 
 

 Kleene’s Closure: X* =        Xi 

 Ex:X = {a,b}, X* = {є , a, b, aa, ab, ba, bb, aaa, ..} 



Regular Languages over ∑ 

 Definition of regular languages over ∑ 

Ø is regular 

{a} is regular 

{є} is regular 

R∪S is regular if R, S are regular 

R·S is regular if R, S are regular 

Nothing else 



Regular Expressions (RE) over ∑  

 In order to describe a regular language, we can use a 
regular expression (RE), which is strings over ∑ 
representing the regular language 
 

 Ø is a regular expression  
 є is a regular expression 
 a is regular expression for a ∈ ∑ 

 Let r, s be regular expressions. Then, 
 (r) | (s) is a regular expression 
 (r) · (s) is a regular expression 
 (r)* is a regular expression 

 Nothing else 
 

 Ex: ∑ = {a, b}, ab|ba* = (a)(b)|((b)((a)*)) 



Regular Expressions & Languages 

 Let s and r be REs 
 L(Ø) = Ø, L(є ) = {є}, L(a) = {a} 

 L(s·r) = L(s) · L(r), L(s|r) = L(s) ∪ L(r) 

 L(r*)=(L(r))* 

 Anything that can be constructed by a finite number of 
applications of the rules in the previous page is a regular 
expression which equally describe a regular language 
 

 Ex: ab* = {a, ab, abb, …} 

 Quiz: what is a RE describing at least one a and any number of b’s 
 (a|b)*a(a|b)*  or  (a*b*)*a(a*b*)* 



Non-Regular Languages 

 Not all languages are regular (i.e., cannot be 
described by any regular expressions) 

 Ex: set of all strings of balanced parentheses  
 {(), (()), ((())), (((()))),  …} 

 What about (* )* ? 

 Nesting can be described by a context-free grammar 

 Ex: Set of repeating strings  
 {wcw| w is a string of a’s and b’s} 

 {aca, abcab, abacaba, …} 

 Cannot be described even by a context-free grammar 

 Regular languages are not that powerful  



RE Shorthands 

 r? = r|Є (zero or one instance of r) 

 r+ = r·r*   (positive closure) 

 Charater class: [abc] = a|b|c, [a-z] = a|b|c|…|z 

 Ex: ([ab]c?)+ = {a, b, aa, ab, ac, ba, bb, bc,…} 



Regular Definition 

 For convenience, we give names to regular expressions and define 
other regular expressions using these names as if they are symbols 
 

 Regular definition is a sequence of definitions of the following form, 
d1  r1 

d2  r2 

… 
dn  rn 

 di is a distinct name 
 ri is a regular expression over the symbols in ∑ ∪{d1,d2,…,di-1} 

 
 For lex we use regular definitions to specify tokens; for example, 

 letter  [A-Za-z] 
 digit  [0-9] 
 id  letter(letter|digit)* 



Examples of Regular Expressions 

 Our tokens can be specified by the following 
 for  for 

 id  letter(letter|digit)* 

 relop  <|<=|==|!=|>|>= 

 num  digit+(.digit+)?(E(+|-)?digit+)? 

 Our lexer will strip out white spaces 
 delim  [ \t\n] 

 ws  delim+ 



More Regular Expression Examples 

 Regular expressions are all around you! 

Phone numbers: (02)-880-1814 

  ∑ = digit∪{-,(,)} 

 exchange  digit3 

 phone  digit4 

 area  (digit3) 

 phone_number = area – exchange - phone 



Another Regular Expression Example 

 E-mail addresses: smoon@altair.snu.ac.kr 
∑ = letter∪{.,@} 

Name = letter+ 

Address = 
name‘@’name‘.’name‘.’name‘.’name 

Real e-mail address will be more elaborate but 
still regular 

 Other examples: file path names, etc. 



Review and the Next Issue 

 Regular expressions are a language specification that 
describe many useful languages including set of tokens for 
programming language compilers 
 

 We still need an implementation for them 
 

 Our problem is 
 Given a string s and a regular expression R, is s ∈ L(R) ? 

 

 Solution for this problem is the base of lexical analyzer 
 

 A naïve solution: transition diagram and input buffering 
 A more elaborate solution 

 Using the theory and practice of deterministic finite automata (DFA) 



Transition Diagram 

 A flowchart corresponding to regular expression(s) to keep 
track of information as characters are scanned 
 Composed of states and edges that show transition 

 
 
 
 
 
 

  
 
 
 
 



Input Buffering 

 

 

 

 

 Two pointers are maintained 
 Initially both pointers point the first character of the next lexeme 

 Forward pointer scans; if a lexeme is found, it is set to the last 
character of the lexeme found 

 After processing the lexeme, both pointers are set to the 
character immediately the lexeme 



Making Lexer using Transition Diagrams 

 Build a list of transition diagrams for all regular expressions 

 

 Start from the top transition diagram and if it fails, try the 
next diagram until found; fail() is used to move the forward 
pointer back to the lexeme_beginning 

 

 If a lexeme is found but requires retract(n), move the 
forward pointer n charcters back 
 

 Basically, these ideas are used when implementing 
deterministic finite automata (DFA) in lex 



Deterministic Finite Automata (DFA) 

 Language recognizers with finite memory contained in states 
 A DFA accepts/rejects a given string if it is/is not a language of the DFA  

 Regular languages can be recognized by DFAs 
 
 
 
 
 
 
 
 

  



Formal Definition of a DFA 

 A deterministic finite state automata M = (∑, Q, δ, q0, F) 
 ∑: alphabet 

 Q: set of states 

 δ: Qⅹ∑  Q, a transition function 

 q0: the start state 

 F: final states 
 

 A run on an input x is a sequence of states by “consuming” x 
 

 A string x is accepted by M if its run ends in a final state 
 

 A language accepted by a DFA M, L(M) = {x|M accepts x} 



Graphic Representation of DFA 



A DFA Example: A Number 

 

 

 

 

 num  digit+(.digit+)?(E(+|-)?digit+)? 

 



From Regular Expression to DFA 



From DFA to Regular Expression 

 We can determine a RE directly from a DFA either by 
inspection or by “removing” states from the DFA 

 

 

 

 

 

 

  

 



Nondeterministic Finite Automata (NFA) 

 Conversion from RE to NFA is more straightforward 
 є-transition 

 

 Multiple transitions on a single input i.e., δ : Qⅹ∑  2Q 
 

 We will not cover much of NFA stuff in this lecture 
 Conversion of NFA to DFA: subset construction Ch. 3.6 

 From RE to an NFA: Thomson’s construction Ch. 3.7 

 Minimizing the number of states in DFA: Ch. 3.9 
 

 Equivalence of RE, NFA, and DFA: 
 L(RE) = L(NFA) = L(DFA) 



Subset Construction 

 Basic Idea 
 Each DFA state corresponds to a set of NFA states: keep track of 

all possible states the NFA can be in after reading each symbol 
 

 The number of states in DFA is exponential in the number of states 
of NFA (maximum 2n states) 

 
 
 
 
 

   



Thomson’s Construction 

 From RE to NFA 



Lexical Analysis using Automata 

 Automata vs. Lexer 
 Automata accepts/rejects strings 

 Lexer recognizes tokens (prefixes) from a longer string 

 Lookahead issues: number of characters that must be 
read beyond the end of a lexeme to recognize it 

 Resolving ambiguities: 
 Longest lexeme rule 

 Precedence rule 



Longest Lexeme Rule 

 In case of multiple matches longer ones are matched 
 Ex: floating-point numbers (digit+.digit*(E(+|-)?digit+)?) 

 
 
 
 
 

 Can be implemented with our buffer scheme: when we are in accept state, 
mark the input position and the pattern; keep scanning until fail when we 
retract the forward pointer back to the last position recorded 

 
 Precedence rule of lex 

 Another rule of lex to resolve ambiguities: In case of ties lex matches 
the RE that is closer to the beginning of the lex input 



Pitfall of Longest Lexeme Rule 

The longest lexeme rule does not always work 

 Ex: L = {ab, aba, baa} and input string abab 

 Infinite maximum lookahead is needed for ababaaba... 

 THIS IS A WRONG set of lexemes 

 Unfortunately this might be a real life situation 

 Ex: Floating-point numbers as defined above and 
resolving “..” (DOTDOT ); e.g., 1..2 



Lookahead Operator of lex 

 Lookahead Operator 
 RE for lex input can include an operator “/” such as 

ab/cd, where ab is matched only if it is followed by cd 

 

 

 If matched at “d”, the forward pointer goes back to “b” 
position before the lexeme ab is processed 



Summary of Lexical Analysis 

 Token, pattern, lexeme 

 Regular languages 

 Regular expressions (computational model, tools) 

 Finite automata (DFA, NFA) 

 Lexer using automata: longest lexeme rules 

 Tool: lex 

 Programming Assignment #1 
 Writing a lexical analyzer for a subset of C, subc, using lex 

(nested comments, lookaheads, hash tables) 


