
Lexical Analysis

 Dragon Book Chapter 3
 Formal Languages
 Regular Expressions
 Finite Automata Theory
 Lexical Analysis using Automata

Phase Ordering of Front-Ends

 Lexical analysis (lexer)
 Break input string into “words” called tokens

 Syntactic analysis (parser)
 Recover structure from the text and put it in a parse tree

 Semantic Analysis
 Discover “meaning” (e.g., type-checking)
 Prepare for code generation
 Works with a symbol table

Similarity to Natural Languages

Tokens and a Parse Tree

 문장 : non-terminals

 주어 목적어 서술어 : non-terminals

대명사 조사 명사 조사 동사 : Tokens (also called terminals)

__ __ ____ __ ____

나 는 학교 를 간다

What is a Token?

 A syntactic category

 In English:
 Noun, verb, adjective, …

 In a programming language:
 Identifier, Integer, Keyword, White-space, …

 A token corresponds to a set of strings

Terms

 Token
 Syntactic “atoms” that are “terminal” symbols in the

grammar from the source language

 A data structure (or pointer to it) returned by lexer

 Patten
 A “rule” that defines strings corresponding to a token

 Lexeme
 A string in the source code that matches a pattern

An Example of these Terms

 int foo = 100;

 The lexeme matched by the pattern for the token
represents a string of characters in the source
program that can be treated as a lexical unit

What are Tokens For?

 Classify substrings of a given program
according to its role

 Parser relies on token classification
 e.g., How to handle reserved keywords? As an

identifier or a separate keyword for each?

 Output of the lexer is a stream of tokens
which is input to the parser

 How parser and lexer co-work?
 Parser leads the work

Lexical Analysis Problem

 Partition input string of characters into
disjoint substrings which are tokens

 Useful tokens here: identifier, keyword, relop,
integer, white space, (,), =, ;

Designing Lexical Analyzer

 First, define a set of tokens

Tokens should describe all items of interest

Choice of tokens depends on the language
and the design of the parser

 Then, describe what strings belongs to
each token by providing a pattern for it

Implementing Lexical Analyzer

 Implementation must do two thing:
 Recognize substrings corresponding to tokens

 Return the “value” or “lexeme” of the token: the substring
matching the category

Reading left-to-right, recognizing one token at a time

 The lexer usually discards “uninteresting” tokens that
do not contribute to parsing
 Examples: white space, comments

 Is it as easy as it sounds? Not actually!
 Due to lookahead and ambiguity issues (Look at the history)

Lexical Analysis in Fortran

 Fortran rule: white space is insignificant
 Example: “VAR1” is the same as “VA R1”

 Left-to-right reading is not enough
 DO 5 I = 1,25 ==> DO 5 I = 1 , 25
 DO 5 I = 1.25 ==> DO5I = 1.25

 Reading left-to-right cannot tell whether DO5I is a
variable or a DO statement until “.” or “,” is reached

 “Lookahead” may be needed to decide where a token
ends and the next token begins

 Even our simple example has lookahead issues
 e.g, “=“ and “==“

Lexical Analysis in PL/I

 PL/I keywords are not reserved

 IF THEN ELSE THEN = ELSE; ELSE ELSE = THEN

 PL/I Declarations

 DECLARE (ARG1, .. ,ARGN)

 Cannot tell whether DECLARE is a keyword or an array
reference until we see the charater that follows “)”,

requiring an arbitrarily long lookahead

Lexical Analysis in C++

 C++ template syntax:

Foo<Bar>

 C++ io stream syntax:

Cin >> var;

 But there is a conflict with nested templates

Foo<Bar<int>>

Review

 The goal of lexical analysis is to
 Partition the input string into lexemes

 Identify the token of each lexeme

 Left-to-right scan, sometimes requiring lookahead

 We still need
 A way to describe the lexemes of each token: pattern

 A way to resolve ambiguities
 Is “==“ two equal signs “=“ “=“ or a single relational op?

Specifying Tokens: Regular Languages

 There are several formalisms for specifying tokens
but the most popular one is “regular languages”

 Regular languages are not perfect but they have
 ∃a concise (though sometimes not user-friendly)

expression: regular expression

 ∃a useful theory to evaluate them finite automata

 ∃a well-understood, efficient implementation
 ∃a tool to process regular expressions lex

 Lexical definitions (regular expressions) lex

 a table-driven lexer (C program)

Formal Language Theory

 Alphabet ∑ : a finite set of symbols (characters)
 Ex: {a,b}, an ASCII character set

 String: a finite sequence of symbols over ∑
 Ex: abab, aabb, a over {a,b}; “hello” over ASCII
 Empty string є : zero-length string

 є≠Ø≠ {є}

 Language: a set of strings over ∑
 Ex: {a, b, abab} over {a,b}
 Ex: a set of all valid C programs over ASCII

Operations on Strings

 Concatenation (·):
 a · b = ab, “hello” · ”there” = “hellothere”

 Denoted by α · β = αβ

 Exponentiation:
 hello3 = hello · hello · hello = hellohellohello, hello0 = є

 Terms for parts of a string s
 prefix of s : A string obtained by removing zero or more trailing

symbols of string s: (Ex: ban is a prefix of banana)

 proper prefix of s: A non-empty prefix of s that is not s

Operations on Languages

 Lex X and Y be sets of strings
 Concatenation (·): X · Y = {x·y|x ∈ X, y ∈ Y}

 Ex: X = {Liz, Add} Y = {Eddie, Dick}

 X · Y = {LizEddie, LizDick, AddEddie,AddDick}

 Exponentiation: X2 = X · X
 X0 = є

 Union: X∪Y = {u|u ∈ X or u ∈ Y}

 Kleene’s Closure: X* = Xi

 Ex:X = {a,b}, X* = {є , a, b, aa, ab, ba, bb, aaa, ..}

Regular Languages over ∑

 Definition of regular languages over ∑

Ø is regular

{a} is regular

{є} is regular

R∪S is regular if R, S are regular

R·S is regular if R, S are regular

Nothing else

Regular Expressions (RE) over ∑

 In order to describe a regular language, we can use a
regular expression (RE), which is strings over ∑
representing the regular language

 Ø is a regular expression
 є is a regular expression
 a is regular expression for a ∈ ∑

 Let r, s be regular expressions. Then,
 (r) | (s) is a regular expression
 (r) · (s) is a regular expression
 (r)* is a regular expression

 Nothing else

 Ex: ∑ = {a, b}, ab|ba* = (a)(b)|((b)((a)*))

Regular Expressions & Languages

 Let s and r be REs
 L(Ø) = Ø, L(є) = {є}, L(a) = {a}

 L(s·r) = L(s) · L(r), L(s|r) = L(s) ∪ L(r)

 L(r*)=(L(r))*

 Anything that can be constructed by a finite number of
applications of the rules in the previous page is a regular
expression which equally describe a regular language

 Ex: ab* = {a, ab, abb, …}

 Quiz: what is a RE describing at least one a and any number of b’s
 (a|b)*a(a|b)* or (a*b*)*a(a*b*)*

Non-Regular Languages

 Not all languages are regular (i.e., cannot be
described by any regular expressions)

 Ex: set of all strings of balanced parentheses
 {(), (()), ((())), (((()))), …}

 What about (*)* ?

 Nesting can be described by a context-free grammar

 Ex: Set of repeating strings
 {wcw| w is a string of a’s and b’s}

 {aca, abcab, abacaba, …}

 Cannot be described even by a context-free grammar

 Regular languages are not that powerful

RE Shorthands

 r? = r|Є (zero or one instance of r)

 r+ = r·r* (positive closure)

 Charater class: [abc] = a|b|c, [a-z] = a|b|c|…|z

 Ex: ([ab]c?)+ = {a, b, aa, ab, ac, ba, bb, bc,…}

Regular Definition

 For convenience, we give names to regular expressions and define
other regular expressions using these names as if they are symbols

 Regular definition is a sequence of definitions of the following form,
d1 r1

d2 r2

…
dn rn

 di is a distinct name
 ri is a regular expression over the symbols in ∑ ∪{d1,d2,…,di-1}

 For lex we use regular definitions to specify tokens; for example,

 letter [A-Za-z]
 digit [0-9]
 id letter(letter|digit)*

Examples of Regular Expressions

 Our tokens can be specified by the following
 for for

 id letter(letter|digit)*

 relop <|<=|==|!=|>|>=

 num digit+(.digit+)?(E(+|-)?digit+)?

 Our lexer will strip out white spaces
 delim [\t\n]

 ws delim+

More Regular Expression Examples

 Regular expressions are all around you!

Phone numbers: (02)-880-1814

 ∑ = digit∪{-,(,)}

 exchange digit3

 phone digit4

 area (digit3)

 phone_number = area – exchange - phone

Another Regular Expression Example

 E-mail addresses: smoon@altair.snu.ac.kr
∑ = letter∪{.,@}

Name = letter+

Address =
name‘@’name‘.’name‘.’name‘.’name

Real e-mail address will be more elaborate but
still regular

 Other examples: file path names, etc.

Review and the Next Issue

 Regular expressions are a language specification that
describe many useful languages including set of tokens for
programming language compilers

 We still need an implementation for them

 Our problem is
 Given a string s and a regular expression R, is s ∈ L(R) ?

 Solution for this problem is the base of lexical analyzer

 A naïve solution: transition diagram and input buffering
 A more elaborate solution

 Using the theory and practice of deterministic finite automata (DFA)

Transition Diagram

 A flowchart corresponding to regular expression(s) to keep
track of information as characters are scanned
 Composed of states and edges that show transition

Input Buffering

 Two pointers are maintained
 Initially both pointers point the first character of the next lexeme

 Forward pointer scans; if a lexeme is found, it is set to the last
character of the lexeme found

 After processing the lexeme, both pointers are set to the
character immediately the lexeme

Making Lexer using Transition Diagrams

 Build a list of transition diagrams for all regular expressions

 Start from the top transition diagram and if it fails, try the
next diagram until found; fail() is used to move the forward
pointer back to the lexeme_beginning

 If a lexeme is found but requires retract(n), move the
forward pointer n charcters back

 Basically, these ideas are used when implementing
deterministic finite automata (DFA) in lex

Deterministic Finite Automata (DFA)

 Language recognizers with finite memory contained in states
 A DFA accepts/rejects a given string if it is/is not a language of the DFA

 Regular languages can be recognized by DFAs

Formal Definition of a DFA

 A deterministic finite state automata M = (∑, Q, δ, q0, F)
 ∑: alphabet

 Q: set of states

 δ: Qⅹ∑ Q, a transition function

 q0: the start state

 F: final states

 A run on an input x is a sequence of states by “consuming” x

 A string x is accepted by M if its run ends in a final state

 A language accepted by a DFA M, L(M) = {x|M accepts x}

Graphic Representation of DFA

A DFA Example: A Number

 num digit+(.digit+)?(E(+|-)?digit+)?

From Regular Expression to DFA

From DFA to Regular Expression

 We can determine a RE directly from a DFA either by
inspection or by “removing” states from the DFA

Nondeterministic Finite Automata (NFA)

 Conversion from RE to NFA is more straightforward
 є-transition

 Multiple transitions on a single input i.e., δ : Qⅹ∑ 2Q

 We will not cover much of NFA stuff in this lecture
 Conversion of NFA to DFA: subset construction Ch. 3.6

 From RE to an NFA: Thomson’s construction Ch. 3.7

 Minimizing the number of states in DFA: Ch. 3.9

 Equivalence of RE, NFA, and DFA:
 L(RE) = L(NFA) = L(DFA)

Subset Construction

 Basic Idea
 Each DFA state corresponds to a set of NFA states: keep track of

all possible states the NFA can be in after reading each symbol

 The number of states in DFA is exponential in the number of states
of NFA (maximum 2n states)

Thomson’s Construction

 From RE to NFA

Lexical Analysis using Automata

 Automata vs. Lexer
 Automata accepts/rejects strings

 Lexer recognizes tokens (prefixes) from a longer string

 Lookahead issues: number of characters that must be
read beyond the end of a lexeme to recognize it

 Resolving ambiguities:
 Longest lexeme rule

 Precedence rule

Longest Lexeme Rule

 In case of multiple matches longer ones are matched
 Ex: floating-point numbers (digit+.digit*(E(+|-)?digit+)?)

 Can be implemented with our buffer scheme: when we are in accept state,
mark the input position and the pattern; keep scanning until fail when we
retract the forward pointer back to the last position recorded

 Precedence rule of lex

 Another rule of lex to resolve ambiguities: In case of ties lex matches
the RE that is closer to the beginning of the lex input

Pitfall of Longest Lexeme Rule

The longest lexeme rule does not always work

 Ex: L = {ab, aba, baa} and input string abab

 Infinite maximum lookahead is needed for ababaaba...

 THIS IS A WRONG set of lexemes

 Unfortunately this might be a real life situation

 Ex: Floating-point numbers as defined above and
resolving “..” (DOTDOT); e.g., 1..2

Lookahead Operator of lex

 Lookahead Operator
 RE for lex input can include an operator “/” such as

ab/cd, where ab is matched only if it is followed by cd

 If matched at “d”, the forward pointer goes back to “b”
position before the lexeme ab is processed

Summary of Lexical Analysis

 Token, pattern, lexeme

 Regular languages

 Regular expressions (computational model, tools)

 Finite automata (DFA, NFA)

 Lexer using automata: longest lexeme rules

 Tool: lex

 Programming Assignment #1
 Writing a lexical analyzer for a subset of C, subc, using lex

(nested comments, lookaheads, hash tables)

