Lexical Analysis

- Dragon Book Chapter 3
- Formal Languages
- Regular Expressions
- Finite Automata Theory
- Lexical Analysis using Automata

Phase Ordering of Front-Ends

Lexical analysis (lexer)

Break input string into "words" called tokens

Syntactic analysis (parser)

Recover structure from the text and put it in a parse tree

Semantic Analysis

- Discover "meaning" (e.g., type-checking)
- Prepare for code generation
- Works with a symbol table

Similarity to Natural Languages

Tokens and a Parse Tree

- : non-terminals
- : non-terminals
- : Tokens (also called terminals)

What is a Token?

- A syntactic category
 In English:

 Noun, verb, adjective, ...

 In a programming language:

 Identifier, Integer, Keyword, White-space, ...
- A token corresponds to a set of strings

Terms

Token

Syntactic "atoms" that are "terminal" symbols in the grammar from the source language

A data structure (or pointer to it) returned by lexer

Patten

A "rule" that defines strings corresponding to a token

Lexeme

□ A string in the source code that matches a pattern

An Example of these Terms

int foo = 100;

The lexeme matched by the pattern for the token represents a string of characters in the source program that can be treated as a lexical unit

What are Tokens For?

- Classify substrings of a given program according to its role
- Parser relies on token classification
 - e.g., How to handle reserved keywords? As an identifier or a separate keyword for each?
- Output of the lexer is a stream of tokens which is input to the parser
- How parser and lexer co-work?
 Parser leads the work

Lexical Analysis Problem

- Partition input string of characters into disjoint substrings which are tokens
- if (i==j)
 z = 0; => \tif (i==j)\n\t\tz = 0;\n\telse\n\t\tz = 1;
 else
 z = 1;
- Useful tokens here: identifier, keyword, relop, integer, white space, (,), =, ;

Designing Lexical Analyzer

- First, define a set of tokens
 Tokens should describe all items of interest
 Choice of tokens depends on the language and the design of the parser
- Then, describe what strings belongs to each token by providing a pattern for it

Implementing Lexical Analyzer

Implementation must do two thing:

- Recognize substrings corresponding to tokens
- Return the "value" or "lexeme" of the token: the substring matching the category

Reading left-to-right, recognizing one token at a time

- The lexer usually discards "uninteresting" tokens that do not contribute to parsing
 Examples: white space, comments
- Is it as easy as it sounds? Not actually!
 Due to lookahead and ambiguity issues (Look at the history)

Lexical Analysis in Fortran

Fortran rule: white space is insignificant
 Example: "VAR1" is the same as "VA R1"
 Left-to-right reading is not enough

■ DO 5 I = 1,25 ==> DO 5 I = 1,25

DO 5 I = 1.25 ==> DO5I = 1.25

Reading left-to-right cannot tell whether DO5I is a variable or a DO statement until "." or "," is reached

- "Lookahead" may be needed to decide where a token ends and the next token begins
- □ Even our simple example has lookahead issues

■ e.g, "=" and "=="

Lexical Analysis in PL/I

- PL/I keywords are not reserved IF THEN ELSE THEN = ELSE; ELSE ELSE = THEN
- PL/I Declarations
 DECLARE (ARG1, ..., ARGN)
- Cannot tell whether DECLARE is a keyword or an array reference until we see the charater that follows ")", requiring an arbitrarily long lookahead

Lexical Analysis in C++

- C++ template syntax: Foo<Bar>
- C++ io stream syntax:
 Cin >> var;
- But there is a conflict with nested templates
 Foo<Bar<int>>

Review

The goal of lexical analysis is to
 Partition the input string into lexemes
 Identify the token of each lexeme

Left-to-right scan, sometimes requiring lookahead

We still need

A way to describe the lexemes of each token: pattern

□ A way to resolve ambiguities

Is "==" two equal signs "=" "=" or a single relational op?

Specifying Tokens: Regular Languages

There are several formalisms for specifying tokens but the most popular one is "regular languages"

Regular languages are not perfect but they have

- ∃ a concise (though sometimes not user-friendly)
 expression: regular expression
- $\Box \exists$ a useful theory to evaluate them \rightarrow finite automata
- □ ∃ a well-understood, efficient implementation
- □ ∃ a tool to process regular expressions → lex
 Lexical definitions (regular expressions) → lex →
 a table-driven lexer (C program)

Formal Language Theory

- Alphabet ∑: a finite set of symbols (characters)
 □ Ex: {a,b}, an ASCII character set
- String: a finite sequence of symbols over ∑
 □ Ex: abab, aabb, a over {a,b}; "hello" over ASCII
 □ Empty string €: zero-length string
 € ≠ Ø ≠ {€}
- Language: a set of strings over ∑
 □ Ex: {a, b, abab} over {a,b}
 □ Ex: a set of all valid C programs over ASCII

Operations on Strings

Concatenation (·):

- \square a · b = ab, "hello" · "there" = "hellothere"
- \Box Denoted by $\alpha \cdot \beta = \alpha \beta$

Exponentiation:

□ hello³ = hello · hello · hello = hellohellohello, hello⁰ = ϵ

Terms for parts of a string s

- prefix of s : A string obtained by removing zero or more trailing symbols of string s: (Ex: ban is a prefix of banana)
- □ *proper prefix* of s: A non-empty prefix of s that is not s

Operations on Languages

- Lex X and Y be sets of strings
 □ Concatenation (·): X · Y = {x·y | x ∈ X, y ∈ Y}
 Ex: X = {Liz, Add} Y = {Eddie, Dick}
 - X · Y = {LizEddie, LizDick, AddEddie,AddDick}

 $\Box \text{ Exponentiation: } X^2 = X \cdot X$

• $X_0 = \varepsilon$

 $\Box \text{ Union: } X \cup Y = \{u | u \in X \text{ or } u \in Y\}$

 \Box Kleene's Closure: X* = $\bigcup_{i=0}^{\infty} X^i$

■ Ex:X = {a,b}, X* = {c, a, b, aa, ab, ba, bb, aaa, ..}

Regular Languages over Σ

• Definition of regular languages over Σ $\Box \emptyset$ is regular \Box {a} is regular \Box {**c**} is regular $\Box R \cup S$ is regular if R, S are regular $\Box R \cdot S$ is regular if R, S are regular □ Nothing else

Regular Expressions (RE) over Σ

- In order to describe a regular language, we can use a regular expression (RE), which is strings over ∑ representing the regular language
 - □ Ø is a regular expression
 - $\Box \in$ is a regular expression
 - \square a is regular expression for a $\in \Sigma$
 - □ Let r, s be regular expressions. Then,
 - (r) | (s) is a regular expression
 - (r) \cdot (s) is a regular expression
 - (r)* is a regular expression

Nothing else

 \Box Ex: $\sum = \{a, b\}, ab|ba^* = (a)(b)|((b)((a)^*))$

Regular Expressions & Languages

Let s and r be REs □ L(Ø) = Ø, L(€) = {€}, L(a) = {a} □ L(s·r) = L(s) · L(r), L(s|r) = L(s) ∪ L(r) □ L(r*)=(L(r))*

 Anything that can be constructed by a finite number of applications of the rules in the previous page is a regular expression which equally describe a regular language

 $\Box Ex: ab^* = \{a, ab, abb, ...\}$

Quiz: what is a RE describing at least one **a** and any number of **b**'s

(a|b)*a(a|b)* or (a*b*)*a(a*b*)*

Non-Regular Languages

- Not all languages are regular (i.e., cannot be described by any regular expressions)
 - □ Ex: set of all strings of balanced parentheses
 - {(), (()), ((())), (((()))), …}
 - What about (*)*?
 - Nesting can be described by a context-free grammar
 - Ex: Set of repeating strings
 - { w c w | w is a string of a's and b's }
 - {aca, abcab, abacaba, …}
 - Cannot be described even by a context-free grammar

Regular languages are not that powerful

RE Shorthands

- r? = r | € (zero or one instance of r)
- $r^+ = r \cdot r^*$ (positive closure)
- Charater class: [abc] = a|b|c, [a-z] = a|b|c|…|z
- Ex: ([ab]c?)⁺ = {a, b, aa, ab, ac, ba, bb, bc,…}

Regular Definition

- For convenience, we give names to regular expressions and define other regular expressions using these names as if they are symbols
- Regular definition is a sequence of definitions of the following form,
 $d_1 \rightarrow r_1$
 - $d_2 \rightarrow r_2$
 - ••••
 - $d_n \rightarrow r_n$
 - □ d_i is a distinct name
 - \Box r_i is a regular expression over the symbols in $\sum \cup \{d_1, d_2, \cdots, d_{i-1}\}$
- For lex we use regular definitions to specify tokens; for example,
 □ letter → [A-Za-z]
 - □ digit \rightarrow [0-9]
 - □ id → letter(letter|digit)*

Examples of Regular Expressions

- Our tokens can be specified by the following
 □ for → for
 - \Box id \rightarrow letter(letter|digit)*
 - $\square \text{ relop } \textbf{\rightarrow} < \mid <= \mid == \mid != \mid > \mid >=$
 - \Box num \rightarrow digit⁺(.digit⁺)?(E(+|-)?digit⁺)?
- Our lexer will strip out white spaces
 □ delim → [₩t₩n]
 - □ ws → delim⁺

More Regular Expression Examples

- Regular expressions are all around you!
 Phone numbers: (02)-880-1814
 - $\sum = \operatorname{digit} \cup \{-,(,)\}$
 - exchange \rightarrow digit³
 - phone → digit⁴
 - ∎ area → (digit³)
 - phone_number = area exchange phone

Another Regular Expression Example

- E-mail addresses: smoon@altair.snu.ac.kr
 ∑ = letter ∪ {.,@}
 Name = letter⁺
 - □Address =
 - name'@'name'.'name'.'name'.'name
 - Real e-mail address will be more elaborate but still regular
- Other examples: file path names, etc.

Review and the Next Issue

- Regular expressions are a language specification that describe many useful languages including set of tokens for programming language compilers
- We still need an implementation for them
- Our problem is
 Given a string *s* and a regular expression R, is *s* ∈ L(R) ?
- Solution for this problem is the base of lexical analyzer
- A naïve solution: transition diagram and input buffering
- A more elaborate solution
 - Using the theory and practice of deterministic finite automata (DFA)

Transition Diagram

 A flowchart corresponding to regular expression(s) to keep track of information as characters are scanned
 Composed of states and edges that show transition

lexeme_beginning

- Two pointers are maintained
 - Initially both pointers point the first character of the next lexeme
 - Forward pointer scans; if a lexeme is found, it is set to the last character of the lexeme found
 - After processing the lexeme, both pointers are set to the character immediately the lexeme

Making Lexer using Transition Diagrams

- Build a list of transition diagrams for all regular expressions
- Start from the top transition diagram and if it fails, try the next diagram until found; fail() is used to move the forward pointer back to the lexeme_beginning
- If a lexeme is found but requires retract(n), move the forward pointer n charcters back
- Basically, these ideas are used when implementing deterministic finite automata (DFA) in lex

Deterministic Finite Automata (DFA)

- Language recognizers with finite memory contained in states
 A DFA accepts/rejects a given string if it is/is not a language of the DFA
- Regular languages can be recognized by DFAs

Formal Definition of a DFA

- A deterministic finite state automata M = (\sum , Q, δ , q₀, F)
 - □ ∑: alphabet
 - Q: set of states
 - $\Box \delta$: Q x $\Sigma \rightarrow$ Q, a transition function
 - □ q₀: the start state
 - □ F: final states
- A run on an input x is a sequence of states by "consuming" x
- A string *x* is accepted by M if its run ends in a final state
- A language accepted by a DFA M, L(M) = {x|M accepts x}

Graphic Representation of DFA

A DFA Example: A Number

■ num → digit⁺(.digit⁺)?(E(+|-)?digit⁺)?

From Regular Expression to DFA

From DFA to Regular Expression

We can determine a RE directly from a DFA either by inspection or by "removing" states from the DFA

Nondeterministic Finite Automata (NFA)

 Conversion from RE to NFA is more straightforward

 c-transition
 c - transition
 c-transition
 c-transition
 c-transition
 c-transition
 c

□ Multiple transitions on a single input i.e., δ : Q × Σ → 2^Q

- We will not cover much of NFA stuff in this lecture
 Conversion of NFA to DFA: subset construction Ch. 3.6
 From RE to an NFA: Thomson's construction Ch. 3.7
 Minimizing the number of states in DFA: Ch. 3.9
- Equivalence of RE, NFA, and DFA:
 L(RE) = L(NFA) = L(DFA)

Subset Construction

Basic Idea

Each DFA state corresponds to a set of NFA states: keep track of all possible states the NFA can be in after reading each symbol

□ The number of states in DFA is exponential in the number of states of NFA (maximum 2ⁿ states)

Thomson's Construction

From RE to NFA

Lexical Analysis using Automata

Automata vs. Lexer

- Automata accepts/rejects strings
- □ Lexer recognizes *tokens* (prefixes) from a longer string
- Lookahead issues: number of characters that must be read beyond the end of a lexeme to recognize it
- Resolving ambiguities:
 - Longest lexeme rule
 - Precedence rule

Longest Lexeme Rule

In case of multiple matches longer ones are matched
 Ex: floating-point numbers (digit⁺.digit^{*}(E(+|-)?digit⁺)?)

Can be implemented with our buffer scheme: when we are in accept state, mark the input position and the pattern; keep scanning until fail when we retract the forward pointer back to the last position recorded

Precedence rule of lex

Another rule of lex to resolve ambiguities: In case of ties lex matches the RE that is closer to the beginning of the lex input

Pitfall of Longest Lexeme Rule

The longest lexeme rule does not always work Ex: L = {ab, aba, baa} and input string abab Infinite maximum lookahead is needed for ababaaba... THIS IS A WRONG set of lexemes

Unfortunately this might be a real life situation

Ex: Floating-point numbers as defined above and resolving ".." (DOTDOT); e.g., 1..2

Lookahead Operator of lex

Lookahead Operator

RE for lex input can include an operator "/" such as ab/cd, where ab is matched only if it is followed by cd

If matched at "d", the forward pointer goes back to "b" position before the lexeme ab is processed

Summary of Lexical Analysis

- Token, pattern, lexeme
- Regular languages
- Regular expressions (computational model, tools)
- Finite automata (DFA, NFA)
- Lexer using automata: longest lexeme rules
- Tool: lex
- Programming Assignment #1
 - Writing a lexical analyzer for a subset of C, subc, using lex (nested comments, lookaheads, hash tables)