Lexical Analysis

- Dragon Book Chapter 3
- Formal Languages
- Regular Expressions
- Finite Automata Theory
- Lexical Analysis using Automata

Phase Ordering of Front-Ends

- Lexical analysis (lexer)
\square Break input string into "words" called tokens
- Syntactic analysis (parser)
\square Recover structure from the text and put it in a parse tree
- Semantic Analysis
\square Discover "meaning" (e.g., type-checking)
\square Prepare for code generation
\square Works with a symbol table

Similarity to Natural Languages

Tokens and a Parse Tree

What is a Token?

- A syntactic category
\square In English:
- Noun, verb, adjective, ...
$\square \mathrm{In}$ a programming language:
- Identifier, Integer, Keyword, White-space, ...
- A token corresponds to a set of strings

Terms

- Token
\square Syntactic "atoms" that are "terminal" symbols in the grammar from the source language
\square A data structure (or pointer to it) returned by lexer
- Patten
\square A "rule" that defines strings corresponding to a token
- Lexeme
\square A string in the source code that matches a pattern

An Example of these Terms

- int foo = 100;

- The lexeme matched by the pattern for the token represents a string of characters in the source program that can be treated as a lexical unit

What are Tokens For?

- Classify substrings of a given program according to its role
- Parser relies on token classification
\square e.g., How to handle reserved keywords? As an identifier or a separate keyword for each?
- Output of the lexer is a stream of tokens which is input to the parser
■ How parser and lexer co-work?
\square Parser leads the work

Lexical Analysis Problem

- Partition input string of characters into disjoint substrings which are tokens

$$
\begin{aligned}
& \text { if (} \mathrm{i}==\mathrm{j} \text {) } \\
& z=0 ; \quad \Rightarrow \quad \backslash t i f(i==j) \backslash n \backslash t \backslash t z=0 ; \backslash n \backslash t e l s e \backslash n \backslash t \backslash t z=1 ; \\
& \text { else } \\
& z=1 ;
\end{aligned}
$$

- Useful tokens here: identifier, keyword, relop, integer, white space, (,), =, ;

Designing Lexical Analyzer

- First, define a set of tokens
\square Tokens should describe all items of interest
\square Choice of tokens depends on the language and the design of the parser

■ Then, describe what strings belongs to each token by providing a pattern for it

Implementing Lexical Analyzer

- Implementation must do two thing:
\square Recognize substrings corresponding to tokens
\square Return the "value" or "lexeme" of the token: the substring matching the category
Reading left-to-right, recognizing one token at a time
- The lexer usually discards "uninteresting" tokens that do not contribute to parsing
\square Examples: white space, comments
- Is it as easy as it sounds? Not actually!
\square Due to lookahead and ambiguity issues (Look at the history)

Lexical Analysis in Fortran

- Fortran rule: white space is insignificant
\square Example: "VAR1" is the same as "VA R1"
\square Left-to-right reading is not enough
- DO 5 I = 1,25 ==> DO $5 \mathrm{I}=1$, 25
- DO 5 I = 1.25 ==> DO5I = 1.25
\square Reading left-to-right cannot tell whether D05I is a variable or a DO statement until "." or "," is reached
\square "Lookahead" may be needed to decide where a token ends and the next token begins
\square Even our simple example has lookahead issues
- e.g, "=" and "=="

Lexical Analysis in PL/I

- PL/I keywords are not reserved

IF THEN ELSE THEN = ELSE; ELSE ELSE = THEN

- PL/I Declarations DECLARE (ARG1, .. ,ARGN)
- Cannot tell whether DECLARE is a keyword or an array reference until we see the charater that follows ")", requiring an arbitrarily long lookahead

Lexical Analysis in C++

- C++ template syntax:
-Foo<Bar>
- C++ io stream syntax:
\square Cin >> var;
- But there is a conflict with nested templates
-Foo<Bar<int>>

Review

- The goal of lexical analysis is to
\square Partition the input string into lexemes
\square Identify the token of each lexeme
- Left-to-right scan, sometimes requiring lookahead
- We still need
\square A way to describe the lexemes of each token: pattern
\square A way to resolve ambiguities
- Is "==" two equal signs "=" "=" or a single relational op?

Specifying Tokens: Regular Languages

- There are several formalisms for specifying tokens but the most popular one is "regular languages"
- Regular languages are not perfect but they have
$\square \exists$ a concise (though sometimes not user-friendly) expression: regular expression
$\square \exists$ a useful theory to evaluate them $\boldsymbol{\rightarrow}$ finite automata
$\square \exists$ a well-understood, efficient implementation
$\square \exists$ a tool to process regular expressions \rightarrow 1ex Lexical definitions (regular expressions) $\rightarrow 1 \mathrm{ex} \rightarrow$ a table-driven lexer (C program)

Formal Language Theory

- Alphabet Σ : a finite set of symbols (characters)
\square Ex: \{a,b\}, an ASCII character set
- String: a finite sequence of symbols over Σ
$\square E x:$ abab, aabb, a over $\{a, b\}$; "hello" over ASCII
\square Empty string ϵ : zero-length string
- $\epsilon \neq \varnothing \neq\{\epsilon\}$
- Language: a set of strings over Σ
$\square E x:\{a, b, a b a b\}$ over $\{a, b\}$
\square Ex: a set of all valid C programs over ASCII

Operations on Strings

- Concatenation (•):
$\square a \cdot b=a b$, "hello" • "there" = "hellothere"
\square Denoted by $\alpha \cdot \beta=\alpha \beta$
- Exponentiation:
\square hello $^{3}=$ hello \cdot hello \cdot hello $=$ hellohellohello, hello ${ }^{0}=\epsilon$
- Terms for parts of a string s
\square prefix of s: A string obtained by removing zero or more trailing symbols of string s : (Ex: ban is a prefix of banana)
\square proper prefix of s : A non-empty prefix of s that is not s

Operations on Languages

■ Lex X and Y be sets of strings
\square Concatenation $(\cdot): X \cdot Y=\{x \cdot y \mid x \in X, y \in Y\}$

- Ex: $X=\{$ Liz, Add $\} Y=\{$ Eddie, Dick $\}$
- $X \cdot Y=\{$ LizEddie, LizDick, AddEddie,AddDick\}
\square Exponentiation: $X^{2}=X \cdot X$
- $X^{0}=\epsilon$
\square Union: $X \cup Y=\{u \mid u \in X$ or $u \in Y\}$
\square Kleene's Closure: $X^{*}=\bigcup_{i=0}^{\infty} X^{i}$
- $E x: X=\{a, b\}, X^{*}=\{\epsilon, a, b, a a, a b, b a, b b, a a a, .$.

Regular Languages over Σ

- Definition of regular languages over Σ
$\square \varnothing$ is regular
$\square\{a\}$ is regular
$\square\{\epsilon\}$ is regular
$\square R \cup S$ is regular if R, S are regular
$\square R \cdot S$ is regular if R, S are regular
\square Nothing else

Regular Expressions (RE) over Σ

- In order to describe a regular language, we can use a regular expression (RE), which is strings over Σ representing the regular language
$\square \varnothing$ is a regular expression
$\square \epsilon$ is a regular expression
$\square \mathrm{a}$ is regular expression for $\mathrm{a} \in \Sigma$
\square Let r, s be regular expressions. Then,
- (r) | (s) is a regular expression
- (r) • (s) is a regular expression
- $(r)^{*}$ is a regular expression
\square Nothing else
$\square E x: \Sigma=\{a, b\}, a b\left|b a^{*}=(a)(b)\right|\left((b)\left((a)^{*}\right)\right)$

Regular Expressions \& Languages

- Let s and r be REs
$\square L(\varnothing)=\varnothing, L(\epsilon)=\{\boldsymbol{\epsilon}\}, L(a)=\{a\}$
$\square L(s \cdot r)=L(s) \cdot L(r), L(s \mid r)=L(s) \cup L(r)$
$\square L\left(r^{\star}\right)=(L(r))^{*}$
- Anything that can be constructed by a finite number of applications of the rules in the previous page is a regular expression which equally describe a regular language
$\square E x: a b^{*}=\{a, a b, a b b, \ldots\}$
\square Quiz: what is a RE describing at least one a and any number of b's
- (a|b)*a(a|b)* or (a*b*)"a(a*b")*

Non-Regular Languages

- Not all languages are regular (i.e., cannot be described by any regular expressions)
\square Ex: set of all strings of balanced parentheses
- \{(), (()), ((())), ((()))), …\}
- What about (*)* ?
- Nesting can be described by a context-free grammar
\square Ex: Set of repeating strings
- \{ $\{w \subset w \mid w$ is a string of a's and b's $\}$
- \{aca, abcab, abacaba, $\cdots\}$
- Cannot be described even by a context-free grammar
- Regular languages are not that powerful

RE Shorthands

- r ? $=r \mid \epsilon$ (zero or one instance of r)
- $r^{+}=r \cdot r^{\star}$ (positive closure)
- Charater class: $[a b c]=a|b| c,[a-z]=a|b| c|\cdots| z$
- Ex: $([a b] c ?)^{+}=\{a, b, a a, a b, a c, b a, b b, b c, \cdots\}$

Regular Definition

- For convenience, we give names to regular expressions and define other regular expressions using these names as if they are symbols
- Regular definition is a sequence of definitions of the following form, $\mathrm{d}_{1} \rightarrow \mathrm{r}_{1}$
$\mathrm{d}_{2} \rightarrow \mathrm{r}_{2}$
$d_{n} \rightarrow r_{n}$
$\square d_{i}$ is a distinct name
$\square r_{i}$ is a regular expression over the symbols in $\Sigma U\left\{d_{1}, d_{2}, \cdots, d_{i-1}\right\}$
- For lex we use regular definitions to specify tokens; for example,
\square letter \rightarrow [A-Za-z]
\square digit \rightarrow [0-9]
$\square \mathrm{id} \rightarrow$ letter(letter|digit)*

Examples of Regular Expressions

- Our tokens can be specified by the following \square for \rightarrow for
\square id \rightarrow letter(letter|digit)*
\square relop $\rightarrow\langle |<=|==|$! $=| \rangle| \rangle=$
\square num \rightarrow digit $^{+}\left(\right.$. digit $\left.^{+}\right)$? $\left(E(+\mid-)\right.$? digit $\left.{ }^{+}\right)$?
- Our lexer will strip out white spaces
\square delim \rightarrow [WtWn]
\square ws \rightarrow delim $^{+}$

More Regular Expression Examples

- Regular expressions are all around you!
\square Phone numbers: (02)-880-1814
- $\Sigma=\operatorname{digit} \cup\{-,()$,
- exchange \rightarrow digit 3
- phone \rightarrow digit ${ }^{4}$
- area \rightarrow (digit ${ }^{3}$)
- phone_number = area - exchange - phone

Another Regular Expression Example

■ E-mail addresses: smoon@altair.snu.ac.kr
$\square \Sigma=$ letter $\cup\{$.,@\}
\square Name = letter ${ }^{+}$
\square Address = name‘@’name‘.'name‘.'name‘.'name
\square Real e-mail address will be more elaborate but still regular
■ Other examples: file path names, etc.

Review and the Next Issue

- Regular expressions are a language specification that describe many useful languages including set of tokens for programming language compilers
- We still need an implementation for them
- Our problem is
\square Given a string s and a regular expression R, is $s \in L(R)$?
- Solution for this problem is the base of lexical analyzer
- A naïve solution: transition diagram and input buffering
- A more elaborate solution
\square Using the theory and practice of deterministic finite automata (DFA)

Transition Diagram

- A flowchart corresponding to regular expression(s) to keep track of information as characters are scanned
\square Composed of states and edges that show transition

Input Buffering

lexeme_beginning

- Two pointers are maintained
\square Initially both pointers point the first character of the next lexeme
\square Forward pointer scans; if a lexeme is found, it is set to the last character of the lexeme found
\square After processing the lexeme, both pointers are set to the character immediately the lexeme

Making Lexer using Transition Diagrams

- Build a list of transition diagrams for all regular expressions
- Start from the top transition diagram and if it fails, try the next diagram until found; fail() is used to move the forward pointer back to the lexeme_beginning
- If a lexeme is found but requires retract(n), move the forward pointer n charcters back
- Basically, these ideas are used when implementing deterministic finite automata (DFA) in 1ex

Deterministic Finite Automata (DFA)

- Language recognizers with finite memory contained in states
\square A DFA accepts/rejects a given string if it is/is not a language of the DFA
- Regular languages can be recognized by DFAs

Ex: identifier \rightarrow letter(letter|digit)*
x not in $L(M)$

Formal Definition of a DFA

- A deterministic finite state automata $M=\left(\Sigma, Q, \delta, a_{0}, F\right)$
$\square \Sigma$: alphabet
$\square \mathrm{Q}$: set of states
$\square \delta: Q \times \Sigma \rightarrow Q$, a transition function
$\square \mathrm{a}_{0}$: the start state
\square F: final states
- A run on an input \boldsymbol{x} is a sequence of states by "consuming" \boldsymbol{x}
- A string x is accepted by M if its run ends in a final state
- A language accepted by a DFA $M, L(M)=\{x \mid M$ accepts $x\}$

Graphic Representation of DFA

A DFA Example: A Number

■ num \rightarrow digit ${ }^{+}\left(\right.$. digit $\left.^{+}\right)$?(E(+|-)?digit $\left.{ }^{+}\right)$?

From Regular Expression to DFA

Regular Exp.
DFA

$\xrightarrow{\text { start }} \bigcirc \underset{\mathbf{b}}{\square} \bigcirc$

Regular Exp.
DFA

$\equiv \stackrel{\text { start }}{\longrightarrow} \bigcirc \xrightarrow{\mathbf{a} \mid \mathbf{b}} \bigcirc$

From DFA to Regular Expression

- We can determine a RE directly from a DFA either by inspection or by "removing" states from the DFA

$$
=(0) \equiv(0)
$$

Nondeterministic Finite Automata (NFA)

- Conversion from RE to NFA is more straightforward
$\square \varepsilon$-transition

\square Multiple transitions on a single input i.e., $\delta: Q \times \Sigma \rightarrow 2^{Q}$
- We will not cover much of NFA stuff in this lecture
\square Conversion of NFA to DFA: subset construction Ch. 3.6
\square From RE to an NFA: Thomson's construction Ch. 3.7
\square Minimizing the number of states in DFA: Ch. 3.9
- Equivalence of RE, NFA, and DFA:
$\square L(R E)=L(N F A)=L(D F A)$

Subset Construction

- Basic Idea
\square Each DFA state corresponds to a set of NFA states: keep track of all possible states the NFA can be in after reading each symbol
\square The number of states in DFA is exponential in the number of states of NFA (maximum 2^{n} states)

	$\{0\}$	$\{0,1\}$	$\{0,2\}$	$\{0,3\}$
a	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$
b	$\{0\}$	$\{0,2\}$	$\{0,3\}$	$\{0\}$

Thomson's Construction

- From RE to NFA

Lexical Analysis using Automata

- Automata vs. Lexer
\square Automata accepts/rejects strings
\square Lexer recognizes tokens (prefixes) from a longer string
\square Lookahead issues: number of characters that must be read beyond the end of a lexeme to recognize it
\square Resolving ambiguities:
- Longest lexeme rule
- Precedence rule

Longest Lexeme Rule

- In case of multiple matches longer ones are matched
\square Ex: floating-point numbers (digit ${ }^{+}$.digit*(E(+|-)?digit ${ }^{+}$)?)

\square Can be implemented with our buffer scheme: when we are in accept state, mark the input position and the pattern; keep scanning until fail when we retract the forward pointer back to the last position recorded
- Precedence rule of 1ex
\square Another rule of lex to resolve ambiguities: In case of ties 1ex matches the RE that is closer to the beginning of the lex input

Pitfall of Longest Lexeme Rule

The longest lexeme rule does not always work
$\square E x: L=\{a b, a b a, b a a\}$ and input string abab Infinite maximum lookahead is needed for ababaaba... THIS IS A WRONG set of lexemes
\square Unfortunately this might be a real life situation
Ex: Floating-point numbers as defined above and resolving ".." (DOTDOT); e.g., $1 . .2$

Lookahead Operator of lex

- Lookahead Operator
\square RE for lex input can include an operator "/" such as $a b / c d$, where $a b$ is matched only if it is followed by cd

\square If matched at "d", the forward pointer goes back to "b" position before the lexeme ab is processed

Summary of Lexical Analysis

- Token, pattern, lexeme
- Regular languages
- Regular expressions (computational model, tools)
- Finite automata (DFA, NFA)
- Lexer using automata: longest lexeme rules
- Tool: 1ex
- Programming Assignment \#1
\square Writing a lexical analyzer for a subset of C, subc, using 1 ex (nested comments, lookaheads, hash tables)

