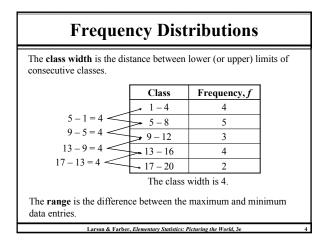
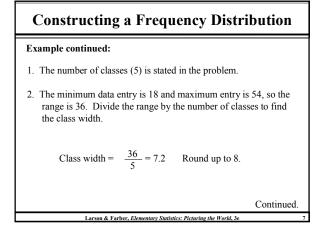

Chapter 2


Descriptive Statistics

§ 2.1

Frequency Distributions and Their Graphs


Constructing a Frequency Distribution

Guidelines

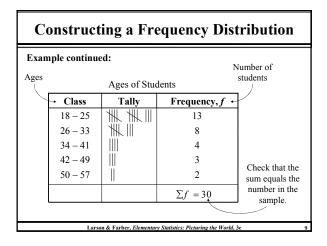
- Decide on the number of classes to include. The number of classes should be between 5 and 20; otherwise, it may be difficult to detect any patterns.
- 2. Find the class width as follows. Determine the range of the data, divide the range by the number of classes, and *round up to the next convenient number*.
- 3. Find the class limits. You can use the minimum entry as the lower limit of the first class. To find the remaining lower limits, add the class width to the lower limit of the preceding class. Then find the upper class limits.
- 4. Make a tally mark for each data entry in the row of the appropriate class.
- 5. Count the tally marks to find the total frequency f for each class.

Constructing a Frequency Distribution								
Example: The following data class. Construct a f			0					
	Ag	ges of	Stude	nts				
18	20	21	27	29	20			
19	30	32	19	34	19			
24	29	18	37	38	22			
30	39	32	44	33	46			
54	49	18	51	21	21			
					ng the World.	Continued.		

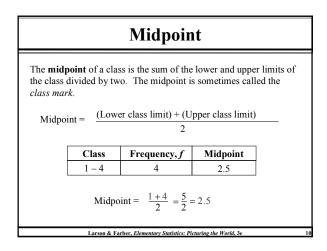
Constructing a Frequency Distribution

Example continued:

3. The minimum data entry of 18 may be used for the lower limit of the first class. To find the lower class limits of the remaining classes, add the width (8) to each lower limit.

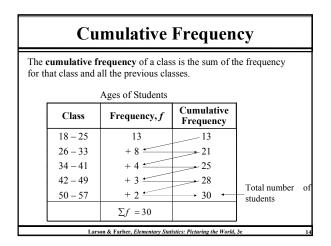

The lower class limits are 18, 26, 34, 42, and 50. The upper class limits are 25, 33, 41, 49, and 57.


- 4. Make a tally mark for each data entry in the appropriate class.
- 5. The number of tally marks for a class is the frequency for that class.


Larson & Farber, Elementary Statistics: Pictu

Continued.

ing the World,

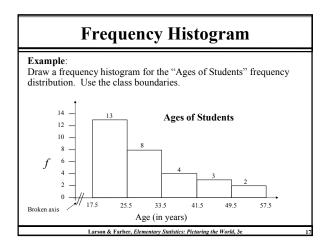

Midpoint								
Example: Find the midpoints for the "Ages of Students" frequency distribution. Ages of Students								
	Class Frequency f Midpoint							
	18 - 25	13	21.5 ←	18 + 25 = 43				
	26 - 33	8	29.5	$43 \div 2 = 21.5$				
	34 - 41	4	37.5					
	42 – 49	3	45.5					
	50 – 57	2	53.5					
$\Sigma f = 30$								
	Lars	on & Farber, <i>Elementary Stat</i>	istics: Picturing the World	, 3e 1				

	Relative Frequency							
the da class,	The relative frequency of a class is the portion or percentage of the data that falls in that class. To find the relative frequency of a class, divide the frequency f by the sample size n . Relative frequency = $\frac{\text{Class frequency}}{\text{Sample size}} = \frac{f}{n}$							
	Class	Frequency, f	Relative Frequency					
	1-4 4 0.222							
	$\sum f = 18$							
	Relative frequency $=\frac{f}{n} = \frac{4}{18} \approx 0.222$							
	La	son & Farber, Elementary	Statistics: Picturing the	World, 3e 12				

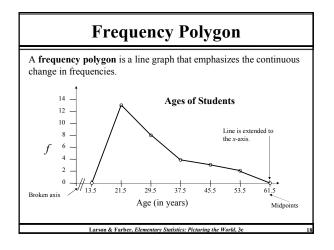
	Relative Frequency							
F	Example : Find the relative frequencies for the "Ages of Students" frequency distribution.							
	Class	Frequency, f	Relative Frequency ←	Portion of students				
	18 - 25	13	0.433	f 13				
	26 - 33	8	0.267	$\frac{f}{n} = \frac{13}{30}$				
	34 - 41	4	0.133	≈ 0.433				
	42 - 49	3	0.1					
	50 - 57	2	0.067					
		$\Sigma f = 30$	$\sum \frac{f}{n} = 1$					
		Larson & Farber, Elementar	y Statistics: Picturing the	World, 3e 13				

Frequency Histogram

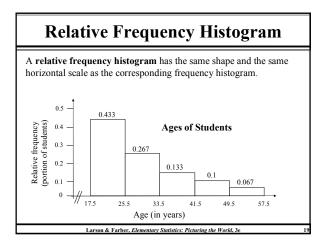
A **frequency histogram** is a bar graph that represents the frequency distribution of a data set.

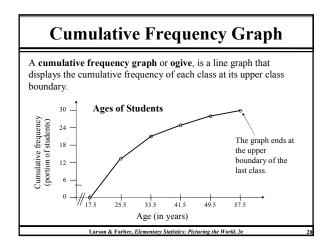

- 1. The horizontal scale is quantitative and measures the data values.
- 2. The vertical scale measures the frequencies of the classes.
- 3. Consecutive bars must touch.

Class boundaries are the numbers that separate the classes without forming gaps between them.

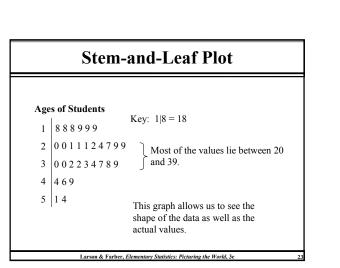

The horizontal scale of a histogram can be marked with either the class boundaries or the midpoints.

Class Boundaries								
Example: Find the class boundaries for the "Ages of Students" frequency distribution. Ages of Students								
Class Frequency, f Class Boundaries								
The distance from the upper limit of the first	18 - 25	13	17.5 - 25.5					
class to the lower limit	26 - 33	8	25.5 - 33.5					
of the second class is 1.	34 - 41	4	33.5 - 41.5					
	42 - 49	3	41.5 - 49.5					
Half this distance	50 - 57	2	49.5 - 57.5					
is 0.5. $\Sigma f = 30$								
Larson &	Farber, Elementary S	tatistics: Picturing the World,	3e 1					





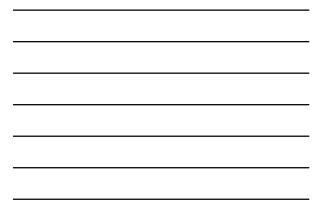
More Graphs and Displays

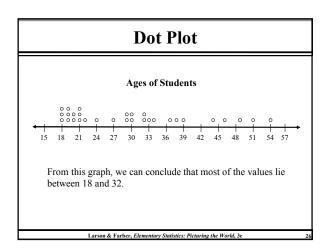

Stem-and-	Leaf Plot
-----------	------------------

In a stem-and-leaf plot, each number is separated into a stem (usually the entry's leftmost digits) and a leaf (usually the rightmost digit). This is an example of exploratory data analysis.

Example: The following data represents the ages of 30 students in a statistics class. Display the data in a stem-and-leaf plot.

	Ages of Students					
18	20	21	27	29	20	
19	30	32	19	34	19	
24	29	18	37	38	22	
30	39	32	44	33	46	
54	49	18	51	21	21	Continued
Larson & I	arber, I	Elementa	ry Statis	tics: Pict	uring the World.	, 3e

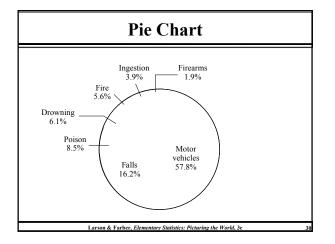

22



Stem-and-Leaf Plot								
Example: Construct a	Example : Construct a stem-and-leaf plot that has two lines for each stem.							
Age	s of Students	V 10 10						
1		Key: $1 8 = 18$						
1	888999							
2	0011124							
23	799							
3	002234							
3	789	From this graph, we can conclude						
4	4	that more than 50% of the data lie						
4	69	between 20 and 34.						
5	14							
5								
Į,	1							
	Larson & Farber, El	ementary Statistics: Picturing the World, 3e	2					

Dot Plot							
In a dot plot , each data entry is plotted, using a point, above a horizontal axis.							
Example: Use a dot plot to display the ages of the 30 students in the statistics class							
	Ag	es of	Stude	ents			
18	20	21	27	29	20		
19	30	32	19	34	19		
24	29	18	37	38	22		
30	39	32	44	33	46		
54	49	18	51	21	21	Continued.	
Larson &	Farber,	Elementa	ary Statis	tics: Pict	uring the World	d, 3e 2	

	Pie Chart							
A pie chart is a circle that is divided into sectors that represent categories. The area of each sector is proportional to the frequency of each category. Accidental Deaths in the USA in 2002								
	Туре	Frequency	1					
	Motor Vehicle	43,500						
	Falls	12,200						
	Poison	6,400						
	Drowning	4,600						
	Fire 4,200							
	Ingestion of Food/Object	2,900						
(Source: US Dept. of Transportation)	Firearms	1,400	Continued.					
	Larson & Farber, Elementary Statistics	: Picturing the World, 3e	27					

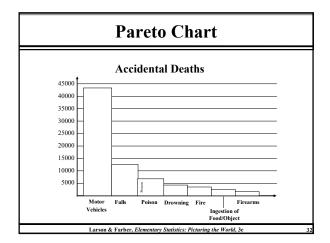


To create a pie chart for the data, find the relative frequency (percent) of each category.

Type Frequency Relative Frequency							
Motor Vehicle 43,500 0.578							
Falls 12,200 0.162							
Poison 6,400 0.085							
Drowning 4,600 0.061							
Fire	4,200	0.056					
Ingestion of Food/Object	2,900	0.039					
Firearms	1,400	0.019					
n = 75,200							
Larson & Farber, Elementary Statistics: Picturing the World, 3e							

Pie Chart							
Next, find the central angle. To find the central angle, multiply the elative frequency by 360°.							
Type Frequency Relative Frequency Angle							
Motor Vehicle	43,500	0.578	208.2°				
Falls 12,200 0.162 58.4°							
Poison	6,400	0.085	30.6°				
Drowning	4,600	0.061	22.0°				
Fire	4,200	0.056	20.1°				
Ingestion of Food/Object	2,900	0.039	13.9°				
Firearms 1,400 0.019 6.7°							
Continued							

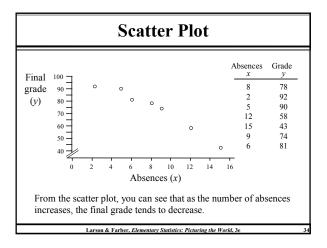
Pareto Chart


A **Pareto chart** is a vertical bar graph is which the height of each bar represents the frequency. The bars are placed in order of decreasing height, with the tallest bar to the left.

Accidental Deaths in the USA in 2002

	Туре	Frequency	
	Motor Vehicle	43,500	
	Falls	12,200	
	Poison	6,400	
	Drowning	4,600	1
	Fire	4,200	
	Ingestion of Food/Object	2,900	
ource: US Dept. of ansportation)	Firearms	1,400] _{Continu}

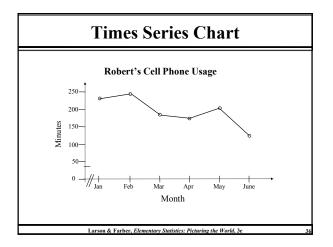
Larson & Farber, Elementary Statistics: Picturing the World, 3e


Scatter Plot

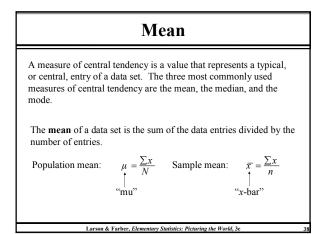
When each entry in one data set corresponds to an entry in another data set, the sets are called **paired data sets**.

In a **scatter plot**, the ordered pairs are graphed as points in a coordinate plane. The scatter plot is used to show the relationship between two quantitative variables.

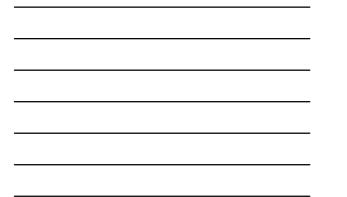
The following scatter plot represents the relationship between the number of absences from a class during the semester and the final grade.


Continued

A data set that is composed of quantitative data entries taken at regular intervals over a period of time is a time series. Example: The following table lists the number of minutes Robert used on his cell phone for the last six months. Month Minutes January 236 February 242 March 188 April 175 May 199 June 135	Times Series Chart								
MonthMinutesnumber of minutes RobertJanuary236used on his cell phone for theFebruary242March188April175Construct a time series chartMay199	regular intervals over a period of time is a time series . A time series chart is used to graph a time series.								
used on his cell phone for the last six months. January 230 February 242 March 188 April 175 Construct a time series chart for the number of minutes May	•	Month	Minutes	1					
last six months. February 242 March 188 April 175 Construct a time series chart May for the number of minutes 199	number of minutes freeter	January	236						
March 188 April 175 Construct a time series chart May for the number of minutes 199		February	242						
Construct a time series chart May 199	last six montils.	March	188						
for the number of minutes		April	175						
for the number of minutes June 135		May	199						
		June	135						
used. Continu	usea.	•		Continued.					



§ 2.3


Measures of Central Tendency

Mean								
Example: The following are the ages of all seven employees of a small company:								
53 32 61 57 39 44 57 Calculate the population mean.								
$\mu = \frac{\sum x}{N} = \frac{343}{7}$ Add the ages and divide by 7.								
= 49 years								
The mean age of the employees is 49 years.								
Larson & Farber, Elementary Statistics: Picturing the World, 3e 39								

Median								
The median of a data set is the value that lies in the middle of the data when the data set is ordered. If the data set has an odd number of entries, the median is the middle data entry. If the data set has an even number of entries, the median is the mean of the two middle data entries. Example: Calculate the median age of the seven employees.								
53	32	61	57	39	44	57		
To find the r	nedian,	sort the	e data.					
	39	44	53	57	57	61		
The median age of the employees is 53 years.								
Larson & Farber, Elementary Statistics: Picturing the World, 3e								

40

Mode						
The mode of a data set is the data entry that occurs with the greatest frequency. If no entry is repeated, the data set has no mode. If two entries occur with the same greatest frequency, each entry is a mode and the data set is called bimodal .						
Example:Find the mode of the ages of the seven employees. 53 32 61 57 39 44 57 The mode is 57 because it occurs the most times.						
An outlier is a data entry that is far removed from the other entries in the data set.						

Comparing the Mean, Median and Mode								
Example : A 29-year-old employee joins the company and the ages of the								he
employ 53	yees are 32	now: 61	57	39	44	57	29	
of cent	Recalculate the mean, the median, and the mode. Which measure of central tendency was affected when this new age was added? Mean = 46.5 The mean takes every value into account,							
but is affected by the outlier.Median = 48.5The median and mode are not influenced by extreme values.Mode = 57Strenge values.								
	I	arson & Fa	rber, <i>Elemen</i>	ntary Statisti	cs: Picturing	the World, 3	3e	4

Weighted Mean

A weighted mean is the mean of a data set whose entries have varying weights. A weighted mean is given by $-\sum (x \cdot w)$

 $\overline{x} = \frac{\sum (x \cdot w)}{\sum w}$

where w is the weight of each entry x.

Example:

Grades in a statistics class are weighted as follows: Tests are worth 50% of the grade, homework is worth 30% of the grade and the final is worth 20% of the grade. A student receives a total of 80 points on tests, 100 points on homework, and 85 points on his final. What is his current grade?

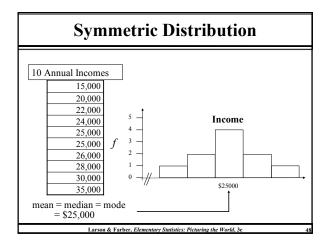
Larson & Farber, Elementary Statistics: Picturing the World, 3e

Continued.

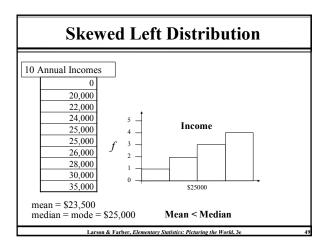
	Weighted Mean							
Begin by organizir	Begin by organizing the data in a table.							
Source	Source Score, x Weight, w xw							
Tests	80	0.50	40					
Homework	100	0.30	30					
Final	85	0.20	17					
$\overline{x} = \frac{\sum(x \cdot w)}{\sum w} = \frac{87}{100} = 0.87$ The student's current grade is 87%.								
Larson d	& Farber, <i>Elementary</i>	Statistics: Picturing the	e World, 3e					

Mea	n of a Frequency Distribution	l
The mean approximation	of a frequency distribution for a sample is ted by	
x	$f = \frac{\sum(x \cdot f)}{n}$ Note that $n = \sum f$	
where x an	df are the midpoints and frequencies of the classes.	
	ving frequency distribution represents the ages of 30 n a statistics class. Find the mean of the frequency	
	Continu	ıed

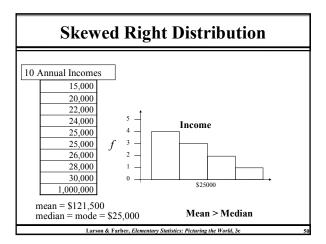
Me	Mean of a Frequency Distribution							
	Class midpoint							
	Class	x	f	$(x \cdot f)$				
	18-25	21.5	13	279.5				
	26-33	29.5	8	236.0				
	34-41	37.5	4	150.0				
	42 - 49	45.5	3	136.5				
	50 - 57	53.5	2	107.0				
			<i>n</i> = 30	$\Sigma = 909.0$				
TI	$\overline{x} = \frac{\sum(x \cdot f)}{n} = \frac{909}{30} = 30.3$ The mean age of the students is 30.3 years.							
	Larson & F	arber, <i>Elementa</i>	ary Statistics: Pie	cturing the World, 3e	46			

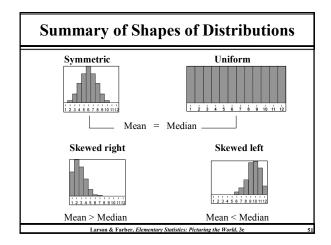


Shapes of Distributions


A frequency distribution is **symmetric** when a vertical line can be drawn through the middle of a graph of the distribution and the resulting halves are approximately the mirror images.

A frequency distribution is **uniform** (or **rectangular**) when all entries, or classes, in the distribution have equal frequencies. A uniform distribution is also symmetric.


A frequency distribution is skewed if the "tail" of the graph elongates more to one side than to the other. A distribution is **skewed left (negatively skewed)** if its tail extends to the left. A distribution is **skewed right (positively skewed)** if its tail extends to the right.



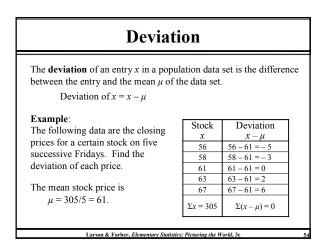
§ 2.4

Measures of Variation

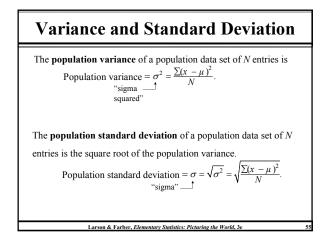
Range

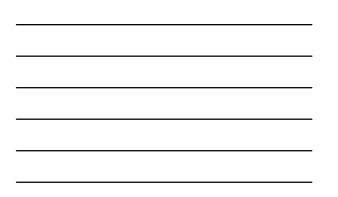
The **range** of a data set is the difference between the maximum and minimum date entries in the set.

Range = (Maximum data entry) – (Minimum data entry)

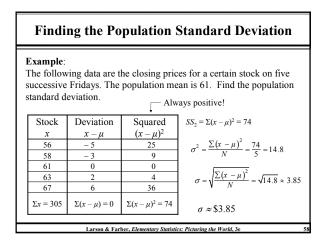

Example:

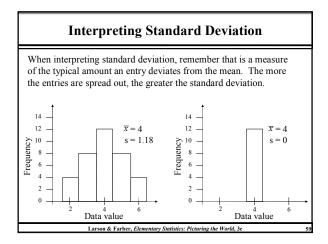
The following data are the closing prices for a certain stock on ten successive Fridays. Find the range.


Stock 56 56 57 58 61 63 63 67 67 67


Larson & Farber, Elementary Statistics: Picturing the World, 3e

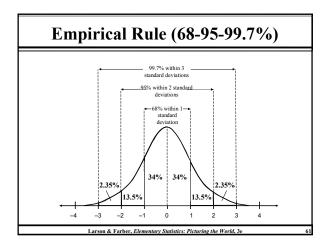
The range is 67 - 56 = 11.



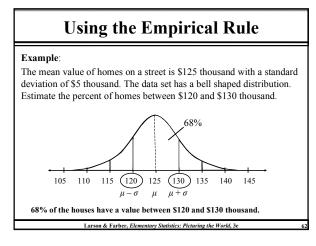


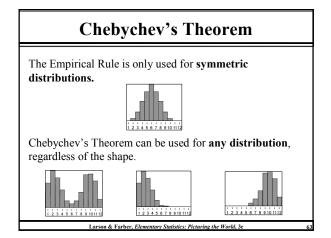
Gui	idelines	
I	n Words	In Symbols
1.	Find the mean of the population data set.	$\mu = \frac{\sum x}{N}$
2.	Find the deviation of each entry.	$x - \mu$
3.	Square each deviation.	$(x - \mu)^2$
4.	Add to get the sum of squares.	$SS_x = \sum (x - \mu)^2$
5.	Divide by N to get the population variance.	$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$
6.	Find the square root of the variance to get the population standard deviation.	$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$

Cuidelines					
Guidelines In Words In Symbols					
 Find the mean of the sample data set. Find the deviation of each entry. Square each deviation. Add to get the sum of squares. Divide by n - 1 to get the sample variance. Find the square root of the variance to get the sample standard deviation. 	$\overline{x} = \frac{\sum x}{n}$ $x - \overline{x}$ $(x - \overline{x})^2$ $SS_x = \sum (x - \overline{x})^2$ $s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$ $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$				



Empirical Rule (68-95-99.7%)


Empirical Rule

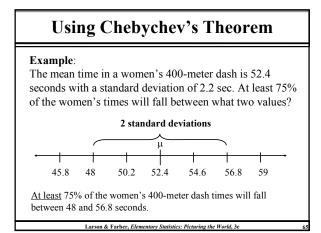

For data with a (symmetric) bell-shaped distribution, the standard deviation has the following characteristics.

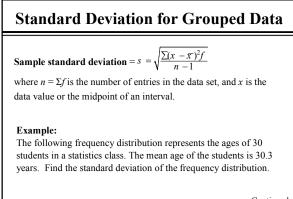
- 1. About 68% of the data lie within one standard deviation of the mean.
- 2. About 95% of the data lie within two standard deviations of the mean.
- 3. About 99.7% of the data lie within three standard deviation of the mean.

Chebychev's Theorem

The portion of any data set lying within *k* standard deviations (k > 1) of the mean is at least

$$1-\frac{1}{k^2}$$

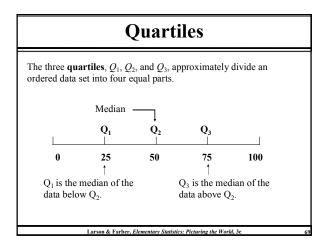

For k = 2: In any data set, at least $1 - \frac{1}{2^2} = 1 - \frac{1}{4} = \frac{3}{4}$, or 75%, of the


data lie within 2 standard deviations of the mean.

For k = 3: In any data set, at least $1 - \frac{1}{3^2} = 1 - \frac{1}{9} = \frac{8}{9}$, or 88.9%, of the

data lie within 3 standard deviations of the mean.

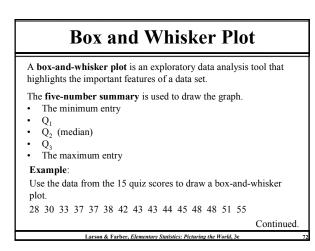
Larson & Farber, Elementary Statistics: Picturing the World, 3e

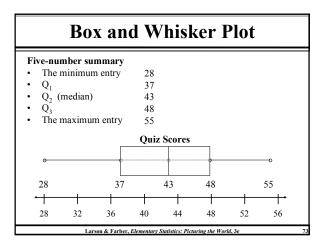

Larson & Farber, Elementary Statistics: Picturing the World, 3

Continued.

Standard Deviation for Grouped Data									
The mean age of the students is 30.3 years.									
	Class	x	f	$x - \overline{x}$	$(x-\overline{x})^2$	$(x-\overline{x})^2 f$			
	18 - 25	21.5	13	- 8.8	77.44	1006.72			
	26 - 33	29.5	8	- 0.8	0.64	5.12			
	34 - 41	37.5	4	7.2	51.84	207.36			
	42 – 49	45.5	3	15.2	231.04	693.12			
	50 - 57	53.5	2	23.2	538.24	1076.48			
			<i>n</i> = 30		$\Sigma = 2988.80$				
$s = \sqrt{\frac{\sum(x - \bar{x})^2 f}{n - 1}} = \sqrt{\frac{2988.8}{29}} = \sqrt{103.06} = 10.2$ The standard deviation of the ages is 10.2 years.									
Larson & Farber, <i>Elementary Statistics: Picturing the World</i> , 3e 6									

§ 2.5 Measures of Position




Finding Quartiles							
Example : The quiz scores for 15 students is listed below. Find the first, second and third quartiles of the scores. 28 43 48 51 43 30 55 44 48 33 45 37 37 42 38							
Order the data.							
Lower half	Upper half						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overbrace{44}^{44} 45 48 48 51 55$ $\overbrace{\mathcal{Q}_3}^{\dagger}$						
About one fourth of the students scores 37 or less; about one half score 43 or less; and about three fourths score 48 or less.							
Larson & Farber Flementary Statistics: Picturing the World 3e							

Interquartile RangeThe interquartile range (IQR) of a data set is the difference
between the third and first quartiles.
Interquartile range (IQR) = $Q_3 - Q_1$.Example:The quartiles for 15 quiz scores are listed below. Find the
interquartile range. $Q_1 = 37$ $Q_2 = 43$ $Q_3 = 48$ (IQR) = $Q_3 - Q_1$ The quiz scores in the middle
= 48 - 37The quiz scores in the middle
portion of the data set vary by at

= 11 points.

Percentiles and Deciles

Fractiles are numbers that partition, or divide, an ordered data set.

Percentiles divide an ordered data set into 100 parts. There are 99 percentiles: P_1 , P_2 , P_3 ... P_{99} .

Deciles divide an ordered data set into 10 parts. There are 9 deciles: D_1 , D_2 , D_3 ... D_9 .

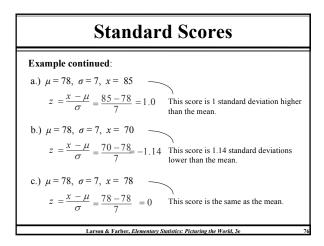
A test score at the 80th percentile (P_{80}) , indicates that the test score is greater than 80% of all other test scores and less than or equal to 20% of the scores.

Larson & Farber, Elementary Statistics: Picturing the World, 3e

Standard Scores

The **standard score** or *z*-score, represents the number of standard deviations that a data value, *x*, falls from the mean, μ .

$$z = \frac{\text{value} - \text{mean}}{\text{standard deviation}} = \frac{x - \mu}{\sigma}$$


Example:

The test scores for all statistics finals at Union College have a mean of 78 and standard deviation of 7. Find the *z*-score for

Larson & Farber, Elementary Statistics: Picturing the World,

- a.) a test score of 85,
- b.) a test score of 70,
- c.) a test score of 78.

Continued.

Relative Z-Scores

Example:

John received a 75 on a test whose class mean was 73.2 with a standard deviation of 4.5. Samantha received a 68.6 on a test whose class mean was 65 with a standard deviation of 3.9. Which student had the better test score?

John's z-score $z = \frac{x - \mu}{\sigma} = \frac{75 - 73.2}{4.5}$ = 0.4

Samantha's z-score $z = \frac{x - \mu}{\sigma} = \frac{68.6 - 65}{3.9} = 0.92$

John's score was 0.4 standard deviations higher than the mean, while Samantha's score was 0.92 standard deviations higher than the mean. Samantha's test score was better than John's.