Chapter 5.6/5.7 - Inequalities in triangles.
Chapter 6: Polygons and Quadrilaterals:
6.1: polygon angle sum theorem
6.2: Properties of parallelograms
6.3: Proving that a quadrilateral is a parallelogram.
6.4: Properties of Rhombuses, Rectangles, and squares.
6.5: Conditions for Rhombuses, Rectangles and squares.
6.6: Trapezoids and Kites.

6.8: Polygons in the coordinate plane.
6.9: proofs with coordinate geometry?

Chapter 7: Similarity:
7.1: Ratios and Proportions
7.2: Similar polygons.
7.3: Proving Triangles Similar.
7.4: Similarity in right triangles
7.5: Proportions in triangles.

Chapter 8: Right triangles and Trig.
Pg 17-19
8.1: Pythagorean theorem
8.2: Special right triangles
8.3: Trigonometry.
8.4: Angles of elevation and depression.
8.5: law of sines.
8.6: Law of cosines.

Chapter 10: Area Pg 20-22
10.1: Areas of parallelogram and triangles.
10.2: Area of trapezoids and rhombuses and Kites.
10.3: Area of regular polygons.
10.5 Trig and area.
10.6 Circles and Arcs.
10.7. Area of circles and sectors
10.8: Geometric Probability.

Chapter 12:
12.1: Tangent Lines 24-27
12.2: Chords and Arcs
12.3: Inscribed Angles
12.4: Angle Measures and Segment lengths.
12.5 Circles in the coordinate plane.

Chapter 11: Basic surface area and volume of solids. 5.6/5.7:

Quick Review

For any triangle,

- the measure of an exterior angle is greater than the measure of each of its remote interior angles
- if two sides are not congruent, then the larger angle lies opposite the longer side
- if two angles are not congruent, then the longer side lies opposite the larger angle
- the sum of any two side lengths is greater than the third

The Hinge Theorem states that if two sides of one triangle are congruent to two sides of another triangle, and the included angles are not congruent, then the longer third side is opposite the larger included angle.

Example

Which is greater, $B C$ or $A D$?
$\overline{B A} \cong \overline{C D}$ and $\overline{B D} \cong \overline{D B}$, so $\triangle A B D$ and $\triangle C D B$ have two pairs of congruent corresponding sides. Since $60>45$, you
 know $B C>A D$ by the Hinge Theorem.

Sec.. 5.6-5.7 Quiz:

Use the figure at the right. Complete each statement with $<,>$ or $=$.

1. $m \angle B A D<m \angle A B D$
2. $m \angle C B D>m \angle B C D$
3. $m \angle A B D<m \angle C B D$

4. In $\triangle L M O, m \angle L=40$ and $m \angle M=60$. List the angles and sides in order from smallest to largest.

$$
\angle 0=180-(40+60)=80^{\circ}
$$

$<L<\angle m \ll 0$
$\overline{M O}<\overline{\mathrm{LO}}<\overline{\mathrm{LM}}$
5. The lengths of two sides of a triangle are 8 ft and 10 ft . Write an inequality to show the possible values for x, the length of the third side.
if x is smaller side then...
$x+8 \geqslant 10$
$x>2 \longrightarrow \quad 2<x<18, \begin{aligned} & 8+10>x \\ & 18<x\end{aligned}$
6. Is it possible for a triangle to have sides with the given lengths? Explain.
a. 5 in ., 10 in ., 15 in .
b. $8 \mathrm{~cm}, 4 \mathrm{~cm}, 10 \mathrm{~cm}$
$5+10=15$
NO \rightarrow 5rydoos-

$$
\begin{aligned}
8+4 & >10 \\
\text { yes } \rightarrow & 2 \text { smallest sides } \\
& \text { ore grate then } \\
& 3 \text { sid side }
\end{aligned}
$$

7. Which is greater, $D E$ or $E F$? Explain.
$F E$ is greater given the

8. The base of an isosceles triangle has a length of 25 . What can you say about the lengths of the legs?

9. List the angles of $\triangle \boldsymbol{A B C}$ from smallest to largest. $A B=3, B C=4, C A=5$
$\angle C<\angle A<\angle B$
10. List the sides of $\triangle A B C$ from shortest to longest. $m \angle A=30, m \angle B=60, m \angle C=90$
$\square \overline{C B} a \infty \quad \overrightarrow{C B}<\overrightarrow{A C}<\overline{A B}$

Chapter 6:
Quadribterals
Parallelograms
(1) Both prs up. sidesarell
2) " " " anglesare \cong
3) opposite csare
(1) consecutive <s are supplementary

Rhombus
(1) $4=$ side lengths
(2) diagonals are 1
(3) Hiagonels bisect $\angle 5$
y
square
(1) $4 \cong$ sides
(3) $4 \cong$ angles
(3) 1 diagrals
(4) diagnols bisects all <s
(S) \cong diajonel,

What are two ways (Include which formula you would use) you can prove a quadrilateral is a parallelogram in the coordinate plane.
John proves a quadrilateral is a rectangle by proving that the diagonals of the quadrilateral are congruent. Explain why this proof is

incomplete.

Name a way to prove a parallelogram is a rhombus (include formula names).
(1) proreqposite sides die Il wing slope
(2) Prove opposite sides \cong using

Sam proves that one pair of opposite sides of a quadrilateral are
congruent. What has he proven? Why?
This is the coordinate of point F . (F is the midpoint of AP) if Trapezoid TRAP has a bottom base length of 4 a , top base length of 4 b and $\mathrm{EG}=2 \mathrm{C}$. $(-2 a, c)_{2}$

(1) prove twat it has $4 \cong$ sides wing distance Formula.
nothing.
-••
$F=\left(\frac{2 b+2 a}{2}, \frac{2 c+0}{2}\right)$
$F=(a+b, c)$

Chapter 7:

Geometry: Chapter 7 Review:

1) Ratios:7.1
A. Students should know what a ratio is. (See 7.1 notes)
B. Students should know how to represent a ratio in 3 different ways. (see 7.1 notes)

Ex: length of car: 14 ft 10 in . Length of model car: 8 in . Write the ratio of the length of a car to the length of the model car.

$$
\frac{\text { car }}{\operatorname{model} \text { car }}=\frac{147+10 \mathrm{in}}{\sin }=\frac{14 \times 12+10}{8}=\frac{178}{8}=\frac{8}{4}
$$

C. Students should understand extended ratios and know how to solve problems involving them.

Ex: A band director needs to purchase new uniforms. The ratio of small to medium to large uniforms is $3: 4: 6$.
a. If there are 260 total uniforms to purchase, how many will be small?

$$
3 x+4 x+6 x=260 \rightarrow 13 x=260
$$

small: $3 \times 20=60$ uniforms
$x=20$
b. How many of these uniforms will be medium?

$$
\text { medium: } 4 \times(20)=80 \text { uniform }
$$

c. How many of these uniforms will be large?

$$
\text { large: } 6 \times 20=120 \text { units }
$$

2) Proportions: 7.1
A. Students should understand what a proportion is. (see 7.1 notes)
B. Students should know how to find the cross products of a proportion to solve for an unknown value.

$$
4 \cdot 9=5(x-3)
$$

$$
\begin{aligned}
12(2 x-5) & =4 x \\
24 x-60 & =4 x \\
\text { c. } \frac{12}{x} & =\frac{4}{2 x-5}
\end{aligned}
$$

a. $\frac{3}{4} \times \frac{x}{6} \quad \begin{aligned} \frac{3 \cdot 6}{4} & =\frac{4}{4} \\ x & =4.5\end{aligned}$
$36=5 x-15 \rightarrow 51=5 x$
b. $\frac{4}{5} \times \frac{x-3}{9} \quad 10.2=x$
C. Students should be able to identify the means and extremes of a proportion and see that the proportion can represented several ways based on the properties of proportions.

Ex. 1) a. Write a proportion that has means 4 and 15 and extremes 6 and 10.

b. Write two more equivalent ratios to the one in part A.
D. Students should be able to solve application problems relating to proportions.

Ex. A meatloaf recipe uses 4 pounds of hamburger to feed 6 people. How many pounds of hamburger will be used to feed 15 people?

$$
\begin{aligned}
4 \cdot 15 & =6 x \\
60 & =6 x
\end{aligned}
$$

3) Similarity
A. Students should know what similarity means (see 7.2 notes)

When 2 polygons are similar:
a. All of the corresponding angles are \qquad
b. The ratio of the corresponding side-lengths are \qquad

Ex 1: List all pairs of congruent angles for the figures. Then write the ratios of the corresponding sides in a statement of proportionality.

1. $\triangle A B C \sim \triangle D E F$

$\angle A \cong \angle D$
$\angle B \cong \angle E$ $\angle C \equiv \angle F$
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
B. Students should be able to identify corresponding sides and angles and evaluate whether shapes are similar.
(To determine if two figures are similar, first confirm that all the angles are congruent. THEN set up the ratios of the sides of the one figure to the other and confirm all the ratios are proportional.)

EX:

$$
\begin{aligned}
& \frac{3}{6}=\frac{4}{8}=\frac{5}{10} \\
& \frac{1}{2}=\frac{1}{2}=\frac{1}{2} \text { Yes }
\end{aligned}
$$

C. Students should know how to list congruent angles, equal side ratios, and write a similarity statement.

D. Students should know what a scale factor is and be able to find it by comparing the side of one polygon to the corresponding sides of another
To find the scale factor of similar figures, find the ratio of 1 set of corresponding sides. Be sure the sides are corresponding!

Ex: Find the Scale Factor:

$$
\triangle L M N \sim \triangle P Q R
$$

$$
\frac{L m}{P Q}=\frac{9}{12}=\frac{3}{4}
$$

$$
\text { so } \frac{3}{4}=\frac{15}{Q R} \rightarrow \begin{aligned}
& 60=3 \overline{Q R} \\
& Q R=20
\end{aligned}
$$

$$
\begin{array}{r}
\frac{3}{4}=\frac{21}{P R}=84=3 P R \\
P R=28
\end{array}
$$

E. Students should be able to use a scale factors to find missing side length in similar polygons.

To find a missing side length, set up a proportion of corresponding sides, where one ratio of corresponding sides is the scale factor and the other is ratio is the one containing the ratio. Use cross-products to find the variable.

Ex: Find the value of the given variables in the similar polygons.

$x: \frac{3 x}{3}=\frac{80}{3}$
$x=\frac{80}{3} \quad \frac{y: 12}{4}=\frac{y}{2} \Rightarrow \begin{aligned} & 24=4 y \\ & 6=y\end{aligned}$
$z: \frac{16}{z}=\frac{1 x^{3}}{x_{1}}=3 z=16$

$$
z=16 / 3
$$

GKNM ~ VAPT

$$
\begin{aligned}
& \frac{3 x-2}{x+4}=\frac{4}{3} \Rightarrow 3(3 x-2)=4(x+4) \\
& 9 x-6=4 x+16 \\
&-4 x+6-4 x+4 \\
& 5 x=22 \\
& \mid x=4.4
\end{aligned}
$$

F. Students should be able to solve application problems involving scale factor and similarity. (think back to the mural problem and the map problem from section 7.2)

Ex. Brian bought a 3-D scale model of a pool table for his desk. The length of the model is 5.6 inches long. The length of the actual pool table is 7 feet long, and the width is about 3.9 feet.
a. What is the width of the model?

$$
\frac{5.6}{7}=\frac{x}{3.9} \rightarrow \frac{5.6 * 3.9}{7}=\frac{7}{7} x
$$

b. About how many times as wide as the model is the actual pool table?

$$
\begin{aligned}
& 7.12=\frac{84 i^{2}}{5.6 \text { in }} 15 \times \begin{array}{l}
\text { Stipes } \\
\text { greater. }
\end{array} \\
& 46.8 \mathrm{in}
\end{aligned}
$$

4) Similarity Postulates
A. Students should know the similarity postulates (A A~, SSS~, SAS~) and understand that when comparing sides, we are not comparing one side to its corresponding side, but instead, are comparing one ratio of sides to another.
B. Students should be able to determine if triangles are similar by these postulates.

Do the triangles have to be similar? If so, write a similarity statement and tell whether you would use AA ~, SAS ~, or SSS ~.
a.

$\frac{3}{5} \leftarrow \frac{12}{20}=\frac{21}{35} \rightarrow \frac{3}{5}$ Yes, SAS~ $\frac{3}{5}=\frac{3}{5} \sim \triangle M \in P \sim \triangle Q C T$
d.

b.

e.

Yes, SSS~ $\triangle X y z \sim \triangle P R Q$.

AHJK~ARST
C. Students should be able to solve for missing sides and angles of similar triangles.

$$
\frac{72}{2}=\frac{2 x^{2}}{2}
$$

$$
\begin{aligned}
\frac{15}{30}=\frac{x}{25.5} & =\frac{y}{37} \\
x=12.75, y & =18.5
\end{aligned}
$$

D. Students should be able to solve application problems involving similar triangles.

Ex.: 2-ft vertical post casts a 16 -in. shadow at the same time a nearby cell phone tower casts a $120-\mathrm{ft}$ shadow. How tall is the cell phone tower?

$$
\frac{24}{x}=\frac{16}{120}
$$

$$
\frac{N 0}{10} x=\frac{24120}{16}
$$

$$
\begin{aligned}
& x=186 f t \\
& x
\end{aligned}
$$

Ex. Explain why the triangles are similar, then find the distance across the lake.
vertical LS are \cong and they are right thargles $\left(90^{\circ}\right)$.
so they're simitar by AAm

$$
\begin{aligned}
\frac{90}{135}=\frac{120}{x} \rightarrow \frac{90 x}{90} & =\frac{120.135}{90} \\
x & =18077
\end{aligned}
$$

5) Similarity relationships within triangles.
A. Students should be able to use the side splitter theorem to set up proportions and find missing lengths.

$$
\begin{aligned}
\frac{12}{14}=\frac{9}{x} \rightarrow \frac{18 x}{12} & =\frac{9.14}{12} \\
x & =10.5
\end{aligned}
$$

B. Students should be able to use the side-splitter theorem converse to determine if lines (or planes) are parallel.
C. Students should be able to use the side-splitter theorem corollary to find missing lengths.

$$
\begin{aligned}
\frac{5}{6} & =\frac{12}{x} \\
5 x & =\frac{22}{6}
\end{aligned}
$$

D. Students should be able to use the triangle angle bisector theorem to find different length.

E. Students should' know that the triangle angle bisector theorem is directly related to the side-splitter theorem.

An angle bisector of a triangle divides the opposite side of the triangle into segments 5 cm and 3 cm long. A second side of the triangle is 7.5 cm long. Find all possible lengths for the third side of the triangle
F. Students should be able to solve application problems relating to the above listed theorems.

Ex. The figure below shows the locations of a high school, a computer store, a library, and a convention center. The, street along which the computer store and library are located bisects the obtuse angle formed by two of the other streets. Use the information in the figure to find the distance from the library to the convention center.

Ex.
. The figure shows three lots in a housing development. If the boundary lines separating the lots are parallel, what is $G F$ to the nearest tenth?

Quadrilateral: 4 sided polygon

(1) Both pr. opposite sides are II

Prove op. sides $I 1$ using slope]
B) Both pr apposite sides are \cong
[prove ep. sides § using distance]
3) Consecutive angles ore supplementary
[prove $1 L$ is supplementary to both of its consecutive LS]
opposite $\angle s$ are \cong
[prove opposite ls are \cong]
3) diagonals bisect eachother
[prove diagonals bisect using Mdpt.]

Trapazoid
(1) 2 bases
(2) 2 Leap- a)llobases
(3) Miasegment $=$ b) length $=\frac{1}{2}\left(b_{1}+b_{2}\right)$ (2) diagonals are perpendiculo
D $2 \cong$ Leg
(3) Long diagonal
(2) $2 \cong$ base $\angle s$ (bother. base Ls)
(3) diag p nolsare?
(4)

biscets Ls

B) Eprove Ip of opposite sides are $118 \cong$

Dias $4 \cong$ angles
prove right is using slope (din)
Dpiagonds are congruent
-prove diagonals are \cong using distance]

D Has 4 congment sides
(2) Diagonals ore perpendicular
[Prove diogoners it using slope]
(3) Diagonals are \angle biscetors
[one di prove 1 diapral bisects 2$]$
$\left.\begin{array}{r}\text { Square (must prove: I rectangle property AND } \\ \text { I Rhombus property }\end{array}\right)$
04 right angles (Rec) 1 Rhombus property
2) $4 \cong$ sides (ham)
(3) Congruent diagonals (Rec)
b) Ir diagonals (Rhom)
9) piagnals are \angle bisectors (Rec.)

Chapter 8: Right triangles and Trig.

Chapter 8 Review:

$$
\frac{a^{2}-b^{2}-c^{2}}{-2 b c}=\cos A
$$

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

$a^{2}=b^{2}+c^{2}=2 b c \cos A$ You must be able to solve for the missing angles and sides of a right triangle using the law of sines or the law of cosines (you must be able to figure out which one to use)

$$
\begin{aligned}
& \sin 7^{\circ}=\frac{400}{x} \\
& x=400 /(\sin 7) \approx 3,282.2= \\
& 3,300 \mathrm{~m}
\end{aligned}
$$

Baseball After fielding a ground ball, a pitcher is located 110 feet from first base and 57 feet from home plate as shown in the figure at the right. To the nearest tenth, what is the measure of the angle with its vertex at the pitcher?

$$
\begin{aligned}
& \cos x=\frac{90^{2}-110^{2}-57^{2}}{2(110)(57)} \\
& x=\cos ^{-1}(.5407)=54.7^{\circ}
\end{aligned}
$$

1. Navigation The Bermuda Triangle is a historically famous region of the Atlantic Ocean. The vertices of the triangle are formed by Miami, FL; Bermuda; and San Juan, Puerto Rico. The approximate dimensions of the Bermuda Triangle are shown in the figure at the right. Explain how you would find the distance from Bermuda to Miami. What is this distance to the nearest mile?

$$
\begin{aligned}
& \frac{\sin 55}{960}=\frac{\sin 63}{x} \\
& x=\frac{(\sin 63)(960)}{\sin 55}=0,044 \text { milos }
\end{aligned}
$$

KEY TO FINDING AREA OF SHAPES IS:

1. PYTHAGOREAN THEOREM
2. 30-60-90 TRIANGLES
3. 45-45-90 TRIANGLES.

Students should know how to find the"area of parallelograms and triangles.

Students should know how to find the area of trapezoids, rhombuses and kites.

$b_{1}=10$
$b_{2}=20$
$h=5$

$$
A=\frac{1}{2}(10+20) 5
$$

$15-5=75 \mathrm{~m}^{2}$

$d_{1}=(13.5 .2) d_{2}=(15.2)$
$A=\frac{1}{2} \cdot 27 \cdot 30=405 \mathrm{ff}^{2}$

Students should be able to find the area of compound shapes

$$
\begin{aligned}
& A=A_{\square}+A_{A} \\
& A=(5 \times 16)+\left(\frac{9.5 .9}{2}\right)=80+42.75= \\
& 122.75 \mathrm{~m}^{2}
\end{aligned}
$$

Students should know how to find the area of any polygon using $A=1 / 2$ ap

$$
A=\frac{1}{2} \cdot p \cdot a
$$

$$
\begin{aligned}
& a=7 \sqrt{3} \\
& p=14 \times 6
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{1}{2} \cdot 14 \cdot 6 \cdot 7 \sqrt{3}=42 \cdot 7 \sqrt{3} \\
& 294 \sqrt{3} \\
& \text { tween scale factor for length and }
\end{aligned} \approx 509 \mathrm{ft}^{2}
$$

Students should know the relationship between scale factor for length and scale factor for area.
Ex. A scale factor of $2 / 5$ in terms of length, turns into $2^{2} / 5^{2}=4 / 25$ when were talking about area.

Students should be able to find the area ratios of two similar shapes given the scale factor.

Ex. It will cost Monica $\$ 225$ to have carpet installed in a room that measures 14 ft by 12ft. At this rate, how much would it cost to have carpet installed in a similarly shaped family room with the larger dimension 35 feet?
Length

$$
\frac{14}{35}=\frac{2}{5}
$$

Area Ratio.

$$
\left(\frac{2}{5}\right)^{2}=\frac{4}{25}
$$

Setup proportion

$$
\frac{4}{25}=\frac{255}{x} \rightarrow
$$

$$
x=\frac{285 \cdot 25}{4}=
$$

For each pair of similar figures, find the ratio of the area of the first figure to the area of the second.
23.

$$
\begin{gathered}
\frac{6}{4}=\frac{3}{2} \\
\left(\frac{3}{2}\right)^{2}=\frac{9}{4}
\end{gathered}
$$

Students should know how to find the area and circumference of circles.
Ex. Find the area and circumference of the given circle.

$$
A=\pi(a)^{2}=81 \pi
$$

Students should be able to find the measure and length of an arc.

Find each measure.
35. $m \angle A P D=90^{\circ}$
36. $m \overparen{A C}=180-60=120^{\circ}$
37. $m \overline{A B D}$
38. $m \angle C P A$
$360-30=330^{\circ}$
$180-60=120^{\circ}$

Find the length of each arc shown in red. Leave your answer in terms of π.
39.

41.

40.

42.

$360-120^{\circ}$
34. $\frac{110}{360}(\pi .8)=\frac{11}{36}(8 \pi)=\frac{22}{9} \pi$ in
40. $\frac{668}{6366}(6 \pi)=\frac{1}{6} .6 \pi=\pi \mathrm{m}$
41. $\frac{50}{360}(20 \pi)=\frac{5}{36} \cdot 20 \pi=\frac{25}{4} \pi \mathrm{~m}$
42. $\frac{240}{360}(6 \pi)=\frac{2}{3} \cdot 6 \pi=4 \pi \mathrm{~m}$

Students should be able to find the area of a sector and section Find the area of the sector.

$$
\begin{aligned}
& \frac{120}{360}\left(\pi 4^{2}\right) \\
& \frac{1}{3}(16 \pi) \approx 16.76 f t^{3}
\end{aligned}
$$

Find the area of each shaded region. Round your answer to the nearest tenth.
45.

(46).

47. A circle has a radius of 20 cm . What is the area of the \leftarrow smaller" segment of the circle formed by a 60° arc?

$$
\begin{gathered}
r=20 \\
\frac{6 \%}{360}\left(\pi(20)^{2}\right) \rightarrow \frac{1}{6} \cdot 400 \pi=\frac{47 .}{269.4 \mathrm{~cm}^{2}}
\end{gathered}
$$ Round to the nearest tenth.

Students should know how to find geometric probability.
Probability Fly A lands on the edge of the ruler at a random point. Fly B lands on the surface of the target at a random point. Which fly is more likely to land in a yellow region? Explain.

$$
A=\frac{1}{2} \pi\left(6^{2}\right)-\frac{1}{2} \cdot 18 \sqrt{3}=
$$

$$
\begin{aligned}
& P\left(y_{1} 1(\omega)=\right. \\
& \pi\left(4^{2}\right)-\pi\left(2^{2}\right) \\
& 16 \pi-4 \pi=12 \pi
\end{aligned}
$$

$$
\frac{12 \pi}{16 \pi}=\frac{12}{16}=\frac{3}{4} \text { or } 75 \%
$$

$$
18 \pi-9 \sqrt{3}=\begin{aligned}
& 4 \\
& 41.0 \mathrm{~cm}^{2}
\end{aligned}
$$

Chapter 11: Surface area and volume

12-1 Tangent Lines

Quick Review

A tangent to a circle is a line that intersects the circle at exactly one point. The radius to that point is perpendicular to the tangent. From any point outside a circle, you can draw two segments tangent to a circle. Those segments are congruent.

Example

$\overrightarrow{P A}$ and $\overrightarrow{P B}$ are tangents. Find x.
The radii are perpendicular to the tangents. Add the angle measures of the quadrilateral:

$$
\begin{aligned}
x+90+90+40 & =360 \\
x+220 & =360 \\
x & =140
\end{aligned}
$$

12-3 Inscribed Angles

Quick Review

An inscribed angle has its vertex on a circle and its sides are chords. An intercepted arc has its endpoints on the
 sides of an inscribed angle, and its other points in the interior of the angle. The measure of an inscribed angle is half the measure of its intercepted arc.

Example

What is $m \widehat{P S}$? What is $m \angle R$?
The $m \angle Q=60$ is half of $m \widehat{P S}$, so $m \widehat{P S}=120 . \angle R$ intercepts the same arc as $\angle Q$, so $m \angle R=60$.

12-2 Chords and Arcs

Quick Review

A chord is a segment whose endpoints are on a circle. Congruent chords are equidistant from the center. A diameter that bisects a chord that is not a diameter is perpendicular to the chord. The perpendicular bisector of a chord contains the center of the circle.

Example

What is the value of d ?
Since the chord is bisected, $m \angle A C B=90$. The radius is is units. So an auxiliary segment from A to B is 13 units. Use the Pythagorean Theorem.

$$
\begin{aligned}
d^{2}+12^{2} & =13^{2} \\
d^{2} & =25 \\
d & =5
\end{aligned}
$$

\qquad

12-5 Circles in the Coordinate Plane

Quick Review

The standard form of an equation of a circle with center (h, k) and radius r is

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Example

Write the standard equation of the circle shown.
The center is $(-1,2)$. The radius is 2.
The equation of the circle is

$$
\begin{aligned}
& (x-(-1))^{2}+(y-2)^{2}=2^{2} \\
& \text { or }
\end{aligned}
$$

Chapter 12:
Students should be able to find missing angles and lengths (Pythagorean theorem-don't forget $(\mathbf{a}+\mathbf{b})^{\mathbf{2}}=\mathbf{a}^{\mathbf{2}} \mathbf{+ 2 a b + b ^ { 2 }) \text { based on tangent lines. }}$

Students should know how to confirm that a line is a tangent line (using Pythagorean theorem to see if it makes a right triangle)

Is one the sides of the triangle a tangent line?

$$
\begin{array}{r}
\frac{80}{16}=\frac{16 x}{10} \\
x=5
\end{array}
$$

check using pythagorean Theorem:

$$
5^{2}+15^{2}=16^{2} \rightarrow 25+225 \neq 256
$$

$a^{2}+b^{2} \neq c^{2}$ so NOT a tangent line.
Students should be able to find distances of tall objects to the horizon. (Think mt. Everest and Canada's CN tower problem from 12.1).

The peak of Mt. Everest is about 8850 m above sea level. About how many kilometers is it from the peak of Mt. Everest to the horizon if the Earth's radius is about 6400 km ? Draw a diagram to

$$
\frac{a^{2}+b^{2}=c^{2} \longrightarrow+c^{2}}{\sqrt{(06400)^{2}+6+(6400+8.85) 0} \geq c^{2}}
$$

$$
\begin{gathered}
x^{2}+6400^{2}=(6400+8.85)^{2} \\
x=\sqrt{6408.85^{2}-6400^{2}} \\
\approx 336.7 \mathrm{~km}
\end{gathered}
$$

Students should know how to find the perimeter of shapes given that they are tangent lines.

Find the perimeter of the shape below.

$$
(8+16)+(16+9)+(6+9)+(6+8)=78 \mathrm{~cm}
$$

Students should know how to find missing lengths and angles based on chord theorems.
(5)
$1 x^{2} x^{2}-79^{2}\left(x^{2} 5\right.$.

6.

$$
\sqrt{144}=\frac{1}{7} x
$$

$$
-12=\frac{1}{2} x \cdot \frac{1}{2}
$$

$$
x=24
$$

8.

$360-230-65=65^{\circ}$
$65^{\circ} \rightarrow$ Therefore $x=7$
Students should know how to find missing angles and arc measures based on the properties of inscribed and central angles.

Find the value of each variable. Lines that appear to be tangent are tangent, and the dot represents the center.

$$
\begin{aligned}
& \frac{1 .)}{x}=\frac{1}{2}(44)=22^{\circ} \\
& y=2(54)=108^{\circ}
\end{aligned}
$$

10.

$$
1=180-22-154=0
$$

(10)
/a vertical Ls

12.

$$
\begin{aligned}
& a=\frac{1}{2}(60)=30^{\circ} \\
& b=\frac{1}{2}(84)=42^{\circ} \\
& c=\frac{1}{2}(100+60)=80^{\circ} \\
& d=360-(100+60+84)=116^{\circ}
\end{aligned}
$$

(11). $x=\frac{1}{2}(150)=75^{\circ}$

$$
\begin{aligned}
& y=360-150=210^{\circ} \\
& w=\frac{1}{2}(210)=105^{\circ}
\end{aligned}
$$

(12)

$$
\begin{aligned}
& a=140^{\circ} \\
& b=\frac{1}{2}\left(140^{\circ}\right)=70^{\circ} \\
& c=\frac{1}{2}(360-140-125)=47.5^{\circ}
\end{aligned}
$$

Students should know the standard form of an equation of a circle and find the equation by given points.

Write the standard equation of each circle below.

$$
\begin{aligned}
& r=3 \\
& \text { center }=(0,-2)^{22} \\
& 1=x^{2}+(y+2)^{2}
\end{aligned}
$$

23.

$$
r=2
$$

$$
\text { cuts : }(3,2)
$$

$$
(x-3)^{2}+(y-2)^{2}=4
$$

$$
(x+3)^{2}+(y+4)^{2}=25
$$

1 Find r^{2}

$$
\begin{aligned}
& r^{2}=(-2-1)^{2}+(4-4)^{2}=9 \\
& 9=(x-1)^{2}+(y-4)^{2}
\end{aligned}
$$

26. What are the center and radius of the circle with equation $(x-7)^{2}+(y+5)^{2}=36$?

$$
\text { radius }=\sqrt{36}=6 \quad \text { center }(7,-5)
$$

What is the equation of a circle with diameter $A B$ where $A(3,0)$ and $B(7,0)$.

1) Find entry. Mdpt. Formula': $\left(\frac{3+7}{2}, \frac{0+0}{2}\right)=(5,0)$
2) Find r^{2} (use either A or B for (x, y))

$$
\begin{aligned}
& r^{2}=(7-5)^{2}+(0-0)^{2}=4 \\
& 4=(x-5)^{2}+y^{2}
\end{aligned}
$$

(2) [prl sides are sinlenstri] $\sqrt{ }$
(2) Censecative angles are supdiementary

(3) Qppessite $\angle s$ are \cong (both pr)

© [ppoved agond biseot?].

- [prore 1 pr of opposite sieles are $\cong 211]$

What is the surface area of a prism whose bases each have area $16 \mathrm{~m}^{2}$ and whose lateral surface area is $64 \mathrm{~m}^{2} ? \quad L A=64 \mathrm{~m}^{2} \quad B=16 \mathrm{~m}^{2}$

$$
S A=L \cdot A+2 B \Rightarrow S \cdot A=64+2(16)=64+32=96 \mathrm{~m}^{2}
$$

A cylindrical container with radius 12 cm and height 7 cm is covered in paper. What is the area of the paper? Round to the nearest whole number.
(A) $528 \mathrm{~cm}^{2}$
(B) $835 \mathrm{~cm}^{2}$
(C) $1055 \mathrm{~cm}^{2}$
(D) $1432 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \text { S.A }=2 \pi r h+2 \cdot \pi r^{2} \Rightarrow 2 \pi \cdot 12 \cdot 7+2 \pi\left(12^{2}\right) \\
& \text { Cylinder } \\
& 168 \pi+288 \pi= \\
& 456 \pi=\begin{array}{c}
1432 \\
\mathrm{~cm}^{2}
\end{array}
\end{aligned}
$$

. What is the surface area of the cone, to the nearest whole number?
(F) $221 \mathrm{~cm}^{2}$
(H) $304 \mathrm{~cm}^{2}$
(G) $240 \mathrm{~cm}^{2}$
(I) $620 \mathrm{~cm}^{2}$

$$
\left.S . A=\pi r l+B=\pi r l+\pi r^{2} \rightarrow \pi(5.5)(12.5)+\pi(5)\right)^{2}
$$

$$
r=9 / 2=4.5
$$

$$
76.5(\pi)=240.3 \approx
$$

$$
\ell=12.5
$$

$$
240 \mathrm{~cm}^{2}
$$

What is the lateral area of the square pyramid, to the nearest whole number?
(A) $165 \mathrm{~m}^{2}$
(C) $330 \mathrm{~m}^{2}$
(B) $176 \mathrm{~m}^{2}$
(D) $351 \mathrm{~m}^{2}$

$$
\begin{aligned}
& \text { L. } A=\frac{1}{2}(P) B \\
& P=11 \times 4=44 \\
& l=15 \quad \rightarrow \frac{1}{2} \cdot 44.15=330 \mathrm{~m}^{2}
\end{aligned}
$$

A sphere of radius r inside a cube touches each one of the six sides of the cube. What is the volume of the cube, in terms of r ?

$$
\begin{aligned}
& V=b \cdot h \cdot w \\
& V=2 r \cdot 2 r \cdot 2 r=(2 r)^{3}=8 r^{3}
\end{aligned}
$$

The height of a right circular cylinder is 5 and the diameter of its base is 4 . What is the distance from the center of one base to a point on the circumference of the other base?

$$
\begin{aligned}
& x^{2}=5^{2}+2^{2} \\
& x=\sqrt{25+4} \\
& x=\sqrt{24} \approx 5.4
\end{aligned}
$$

What is the maximum possible volume of a cube, in cubic inches, that could be inscribed inside a sphere with a radius of 3 inches?

$$
\left.\begin{array}{l}
x^{2}+x^{2}=36 \\
2 x^{2}=36 \\
x=\sqrt{4.8}
\end{array} \quad \approx(4.24264)^{3} \approx 76.4 \mathrm{in}^{3}\right) ~ \$
$$

. What is the lateral surface area of a cube with side length 9 cm ?

$$
\begin{aligned}
& \text { LA }=P \times h \\
& P=4 \times 9 \\
& h=q \\
& L \cdot A=4 \times 9 \times 9=81 \times 4=324 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& h^{2}+8^{2}=17^{2} \\
& h=\sqrt{289-64}=\sqrt{225}=15
\end{aligned}
$$

. Find the volume of the pyramid shown.

$$
\begin{aligned}
\text { Volume }= & \frac{1}{3} B \cdot h \\
& \frac{1}{3}(16)^{2} \cdot 5=1280 \mathrm{ft}^{3}
\end{aligned}
$$

Not drawn to scale

The interior dimensions of a rectangular fish tank are 4 feet long, 3 feet wide, and 2 feet high. The water level in the tank is 1 foot high. All of the water in this tank is poured into an empty second tank. If the interior dimensions of the second tank are 3 feet long, 2 feet wide, and 4 feet high, what is the height of the water in the second tank?

What is the maximum number of rectangular blocks measuring 3 inches by 2 inches by 1 inch that can be packed into a cube-shaped box whose interior measures 6 inches on an edge?

$$
\begin{aligned}
& \text { Box }=6^{3}=216 \mathrm{in}^{3} \\
& \text { Block }=3 \times 2 \times 1=6 \mathrm{in}^{3}
\end{aligned}
$$

$$
216 / 6=36 \text { blocks }
$$

7. If each edge of cube M with a unit length of 3 is increased by 50%, creating a second cube B, then what is the volume of cube B ?

$$
(4.5)^{3}=91.125 \text { units }^{3}
$$

18. How many boxes whose length is 3 inches, width is 2 inches, and height is 1 inch can fit into a box with dimensions length is 300 inches, width is 200 inches, and height is 100 inches.
A) 100,000
B) 10,000
C) 1,000
(D) $1,000,000$

$$
\frac{3^{\prime} 00 \times 8100 \times 100}{3 \times 2 \times 1}=(100)^{3}=1000,000
$$

17. The surface areas of the rectangular prism shown are given. If the lengths of the edges are integers, what is the volume in cubic inches?
A) 94
B) 168
C) 188
D) 1,152
E) 1.176

$$
\begin{aligned}
& \text { Volume }=L \times w \times h \\
& 4 \times 6 \times 7=168 \mathrm{in}^{2}
\end{aligned}
$$

. If each edge of a cube is doubled, the volume is multiplied by:

$$
V_{1}=x^{3}
$$

$$
V_{2}=(2 x)^{3}=8 x^{3}
$$

iF ledge is doubled-then volume is 8 times greater
Find the exact value of the volume of the cylinder shown.

