# Free Commutative Integro-differential Algebras 

Li GUO

Rutgers University
(Joint work with G. Regensburger and M. Rosenkranz, and X. Gao and S. Zheng)

## Free differential algebras

- Differential algebra

$$
\begin{gathered}
d(x y)=d(x) y+x d(y)+\lambda d(x) d(y) . \\
d(u v) \mapsto_{\phi} d(u) v+u d(v)+\lambda d(u) d(v), \forall u, v \in R .
\end{gathered}
$$

This leads to normal forms $w$ with no products in $d$.

## Free differential algebras

- Differential algebra

$$
\begin{gathered}
d(x y)=d(x) y+x d(y)+\lambda d(x) d(y) . \\
d(u v) \mapsto_{\phi} d(u) v+u d(v)+\lambda d(u) d(v), \forall u, v \in R .
\end{gathered}
$$

This leads to normal forms $w$ with no products in $d$.

- Thus free commutative differential algebra (of weight $\lambda$ ) on a set $X$ is of the form

$$
\mathbf{k}\{X\}:=\mathbf{k}[\Delta X], \quad \Delta X:=\left\{x^{(n)} \mid x \in X, n \geq 0\right\}
$$

with concatenation product. Define $d_{X}: \mathbf{k}\{X\} \rightarrow \mathbf{k}\{X\}$ as follows. Let $w=u_{1} \cdots u_{k}, u_{i} \in \Delta(X), 1 \leq i \leq k$, be a commutative word from the alphabet set $\Delta(X)$. If $k=1$, so that $w=x^{(n)} \in \Delta(X)$, define $d_{X}(w)=x^{(n+1)}$. If $k>1$, recursively define

$$
d_{X}(w)=d_{X}\left(u_{1}\right) u_{2} \cdots u_{k}+u_{1} d_{X}\left(u_{2} \cdots u_{k}\right)+\lambda d_{X}\left(u_{1}\right) d_{X}\left(u_{2} \cdots u_{k}\right)
$$

Further define $d_{X}(1)=0$. Then $\left(\mathbf{k}\{X\}, d_{X}\right)$ is the free commutative differential algebra of weight $\lambda$ on the set $X$.

## Integral algebra

- What about integral algebra?


## Integral algebra

- What about integral algebra?
- What is an integral algebra? It is a special case of Rota-Baxter algebra.


## Integral algebra

- What about integral algebra?
- What is an integral algebra? It is a special case of Rota-Baxter algebra.
- Let $\mathbf{k}$ be a commutative ring. Let $\lambda \in \mathbf{k}$ be fixed. A Rota-Baxter operator of weight $\lambda$ on a $\mathbf{k}$-algebra $R$ is a linear map $P: R \rightarrow R$ such that

$$
P(x) P(y)=P(x P(y))+P(P(x) y)+\lambda P(x y), \forall x, y \in R
$$

## Integral algebra

- What about integral algebra?
- What is an integral algebra? It is a special case of Rota-Baxter algebra.
- Let $\mathbf{k}$ be a commutative ring. Let $\lambda \in \mathbf{k}$ be fixed. A Rota-Baxter operator of weight $\lambda$ on a $\mathbf{k}$-algebra $R$ is a linear map $P: R \rightarrow R$ such that

$$
P(x) P(y)=P(x P(y))+P(P(x) y)+\lambda P(x y), \forall x, y \in R .
$$

- References:

1. L. Guo, WHAT IS a Rota-Baxter Algebra, Notice of Amer. Math. Soc. 56 (2009), 1436-1437.
2. L. Guo, An Introduction to Rota-Baxter Algebra, International Press, 2012.

The integration operator I

- For continuous functions $f(x)$ and $g(x)$, define

$$
\begin{equation*}
F(x):=I[f](x):=\int_{0}^{x} f(s) d s, G(x):=I[g](x):=\int_{0}^{x} g(s) d s \tag{1}
\end{equation*}
$$

Then $F^{\prime}(x)=f(x), G^{\prime}(x)=g(x)$.

## The integration operator I

- For continuous functions $f(x)$ and $g(x)$, define

$$
\begin{equation*}
F(x):=I[f](x):=\int_{0}^{x} f(s) d s, G(x):=I[g](x):=\int_{0}^{x} g(s) d s . \tag{1}
\end{equation*}
$$

Then $F^{\prime}(x)=f(x), G^{\prime}(x)=g(x)$.

- The integration by parts formula

$$
\int_{0}^{x} F^{\prime}(t) G(t) d t=\left.F(t) G(t)\right|_{0} ^{x}-\int_{0}^{x} F(t) G^{\prime}(t) d t
$$

can be "rewritten" as

$$
\int_{0}^{x} f(t) G(t) d t=F(x) G(x)-\int_{0}^{x} F(t) g(t) d t .
$$

## The integration operator I

- For continuous functions $f(x)$ and $g(x)$, define

$$
\begin{equation*}
F(x):=I[f](x):=\int_{0}^{x} f(s) d s, G(x):=I[g](x):=\int_{0}^{x} g(s) d s . \tag{1}
\end{equation*}
$$

Then $F^{\prime}(x)=f(x), G^{\prime}(x)=g(x)$.

- The integration by parts formula

$$
\int_{0}^{x} F^{\prime}(t) G(t) d t=\left.F(t) G(t)\right|_{0} ^{x}-\int_{0}^{x} F(t) G^{\prime}(t) d t
$$

can be "rewritten" as

$$
\int_{0}^{x} f(t) G(t) d t=F(x) G(x)-\int_{0}^{x} F(t) g(t) d t .
$$

- Using Eq. (1), get $I[f I[g]](x)=I[f][[g](x)-I[I[f] g](x)$.

$$
\Lambda[f I[g]]=I[f] I[g]-I[I[f] g], \quad I[f] I[g]=I[f l[g]]+I[I[f] g] .
$$

## The integration operator I

- For continuous functions $f(x)$ and $g(x)$, define

$$
\begin{equation*}
F(x):=I[f](x):=\int_{0}^{x} f(s) d s, G(x):=I[g](x):=\int_{0}^{x} g(s) d s . \tag{1}
\end{equation*}
$$

Then $F^{\prime}(x)=f(x), G^{\prime}(x)=g(x)$.

- The integration by parts formula

$$
\int_{0}^{x} F^{\prime}(t) G(t) d t=\left.F(t) G(t)\right|_{0} ^{x}-\int_{0}^{x} F(t) G^{\prime}(t) d t
$$

can be "rewritten" as

$$
\int_{0}^{x} f(t) G(t) d t=F(x) G(x)-\int_{0}^{x} F(t) g(t) d t .
$$

- Using Eq. (1), get $I[f I[g]](x)=I[f][[g](x)-I[I[f] g](x)$.

$$
\Lambda[f I[g]]=I[f] I[g]-I[I[f] g], \quad I[f] I[g]=I[f l[g]]+I[I[f] g] .
$$

- An integral algebra is an algebra $R$ together with a linear operator $I: R \rightarrow R$ that satisfies

$$
I[f] l[g]=I[f l[g]]+I[g l[f]], \quad \forall f, g \in R .
$$

## Free commutative Rota-Baxter algebras

- Rota-Baxter algebra

$$
\begin{gathered}
P(x) P(y)=P(P(x) y)+P(x P(y))+\lambda P(x y) \\
P(x) P(y) \mapsto_{P} P(P(x) y)+P(x P(y))+\lambda P(x y)
\end{gathered}
$$

This leads to normal forms $w$ with no subwords of the form $P(x) P(y)$.

## Free commutative Rota-Baxter algebras

- Rota-Baxter algebra

$$
\begin{gathered}
P(x) P(y)=P(P(x) y)+P(x P(y))+\lambda P(x y) . \\
P(x) P(y) \mapsto_{P} P(P(x) y)+P(x P(y))+\lambda P(x y) .
\end{gathered}
$$

This leads to normal forms $w$ with no subwords of the form $P(x) P(y)$.

- In a commutative Rota-Baxter algebra, this means

$$
\begin{aligned}
\mathfrak{a}= & a_{0} P\left(a_{1} P\left(a_{2} P\left(\cdots P\left(a_{n}\right) \cdots\right)\right)\right), a_{i} \in A . \\
& \mathfrak{a}=a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n} \in A^{\otimes(n+1)} .
\end{aligned}
$$

The product is given by

$$
\mathfrak{a b}=\left(a_{0} b_{0}\right) \otimes\left(\left(a_{1} \otimes \cdots a_{n}\right) \amalg_{\lambda}\left(b_{1} \otimes \cdots \otimes b_{m}\right)\right) .
$$

$\Pi_{\lambda}$ is a shuffle like product, called mixable shuffle product.

## Mixable shuffle product

- Let $A$ be a commutative $\mathbf{k}$-algebra. Let $\Psi^{+}(A)=\bigoplus_{n \geq 0} A^{\otimes n}(=T(A))$. Consider the following products on $\Psi^{+}(A)$.


## Mixable shuffle product

- Let $A$ be a commutative $\mathbf{k}$-algebra. Let $\Psi^{+}(A)=\bigoplus_{n \geq 0} A^{\otimes n}(=T(A))$. Consider the following products on $\amalg^{+}(A)$.
- A shuffle of $\mathfrak{a}=a_{1} \otimes \ldots \otimes a_{m}$ and $\mathfrak{b}=b_{1} \otimes \ldots \otimes b_{n}$ is a tensor list of $a_{i}$ and $b_{j}$ without change the order of the $a_{i} s$ and $b_{j} s$.


## Mixable shuffle product

- Let $A$ be a commutative $\mathbf{k}$-algebra. Let $\Psi^{+}(A)=\bigoplus_{n \geq 0} A^{\otimes n}(=T(A))$. Consider the following products on $\amalg^{+}(A)$.
- A shuffle of $\mathfrak{a}=a_{1} \otimes \ldots \otimes a_{m}$ and $\mathfrak{b}=b_{1} \otimes \ldots \otimes b_{n}$ is a tensor list of $a_{i}$ and $b_{j}$ without change the order of the $a_{i} s$ and $b_{j} s$.
- A mixable shuffle is a shuffle in which some pairs $a_{i} \otimes b_{j}$ are merged into $a_{i} b_{j}$. Define $\left(a_{1} \otimes \ldots \otimes a_{m}\right) Ш_{\lambda}\left(b_{1} \otimes \ldots \otimes b_{n}\right)$ to be the sum of mixable shuffles of $a_{1} \otimes \ldots \otimes a_{m}$ and $b_{1} \otimes \ldots \otimes b_{n}$.


## Mixable shuffle product

- Let $A$ be a commutative $\mathbf{k}$-algebra. Let $\Psi^{+}(A)=\bigoplus_{n \geq 0} A^{\otimes n}(=T(A))$. Consider the following products on $\amalg^{+}(A)$.
- A shuffle of $\mathfrak{a}=a_{1} \otimes \ldots \otimes a_{m}$ and $\mathfrak{b}=b_{1} \otimes \ldots \otimes b_{n}$ is a tensor list of $a_{i}$ and $b_{j}$ without change the order of the $a_{i} s$ and $b_{j} s$.
- A mixable shuffle is a shuffle in which some pairs $a_{i} \otimes b_{j}$ are merged into $a_{i} b_{j}$.
Define $\left(a_{1} \otimes \ldots \otimes a_{m}\right) Ш_{\lambda}\left(b_{1} \otimes \ldots \otimes b_{n}\right)$ to be the sum of mixable shuffles of $a_{1} \otimes \ldots \otimes a_{m}$ and $b_{1} \otimes \ldots \otimes b_{n}$.
- Example:

$$
\begin{aligned}
& a_{1} \varpi_{\lambda}\left(b_{1} \otimes b_{2}\right) \\
& =a_{1} \otimes b_{1} \otimes b_{2}+b_{1} \otimes a_{1} \otimes b_{2}+b_{1} \otimes b_{2} \otimes a_{1} \quad \text { (shuffles) } \\
& +a_{1} b_{1} \otimes b_{2}+b_{1} \otimes a_{1} b_{2} \quad \text { (merged shuffles) }
\end{aligned}
$$

## Quasi-shuffle product

- The mixable shuffle product can also be defined recursively by the quasi-shuffle product (Hoffman, 2000).


## Quasi-shuffle product

- The mixable shuffle product can also be defined recursively by the quasi-shuffle product (Hoffman, 2000).
- Let $\amalg^{+}(A)=\bigoplus_{n \geq 0} A^{\otimes n}(=T(A))$.


## Quasi-shuffle product

- The mixable shuffle product can also be defined recursively by the quasi-shuffle product (Hoffman, 2000).
- Let $\amalg^{+}(A)=\bigoplus_{n \geq 0} A^{\otimes n}(=T(A))$.
- Let $\mathbf{1}_{\mathbf{k}} \in \mathbf{k}$ denote the unit. Let $\mathfrak{a}=a_{1} \otimes \cdots \otimes a_{m} \in A^{\otimes m}$ and $\mathfrak{b}=b_{1} \otimes \cdots \otimes b_{n} \in A^{\otimes n}$. Write $\mathfrak{a}=a_{1} \otimes \mathfrak{a}^{\prime}, \mathfrak{b}=b_{1} \otimes \mathfrak{b}^{\prime}$. We have $\left.\left(a_{1} \otimes \mathfrak{a}^{\prime}\right) ш\left(b_{1} \otimes \mathfrak{b}^{\prime}\right)=a_{1} \otimes\left(\mathfrak{a}^{\prime} ш\left(b_{1} \otimes \mathfrak{b}^{\prime}\right)\right)\right)+b_{1} \otimes\left(\left(a_{1} \otimes \mathfrak{a}^{\prime}\right) ш \mathfrak{b}^{\prime}\right)+a_{1} b_{1} \otimes\left(\mathfrak{a}^{\prime} ш \mathfrak{b}^{\prime}\right)$, with the convention that if $\mathfrak{a}=a_{1}$, then $\mathfrak{a}^{\prime}$ multiples as the identity.


## Quasi-shuffle product

- The mixable shuffle product can also be defined recursively by the quasi-shuffle product (Hoffman, 2000).
- Let $\amalg^{+}(A)=\bigoplus_{n \geq 0} A^{\otimes n}(=T(A))$.
- Let $\mathbf{1}_{\mathbf{k}} \in \mathbf{k}$ denote the unit. Let $\mathfrak{a}=a_{1} \otimes \cdots \otimes a_{m} \in A^{\otimes m}$ and $\mathfrak{b}=b_{1} \otimes \cdots \otimes b_{n} \in A^{\otimes n}$. Write $\mathfrak{a}=a_{1} \otimes \mathfrak{a}^{\prime}, \mathfrak{b}=b_{1} \otimes \mathfrak{b}^{\prime}$. We have $\left.\left(a_{1} \otimes \mathfrak{a}^{\prime}\right) ш\left(b_{1} \otimes \mathfrak{b}^{\prime}\right)=a_{1} \otimes\left(\mathfrak{a}^{\prime} ш\left(b_{1} \otimes \mathfrak{b}^{\prime}\right)\right)\right)+b_{1} \otimes\left(\left(a_{1} \otimes \mathfrak{a}^{\prime}\right) ш \mathfrak{b}^{\prime}\right)+a_{1} b_{1} \otimes\left(\mathfrak{a}^{\prime} ш \mathfrak{b}^{\prime}\right)$, with the convention that if $\mathfrak{a}=a_{1}$, then $\mathfrak{a}^{\prime}$ multiples as the identity.
- Example.
$a_{1} ш\left(b_{1} \otimes b_{2}\right)=a_{1} \otimes\left(\mathfrak{a}^{\prime} ш\left(b_{1} \otimes b_{2}\right)\right)+b_{1} \otimes\left(a_{1} ш b_{2}\right)+\left(a_{1} b_{1}\right) \otimes\left(\mathfrak{a}^{\prime} ш b_{2}\right)$
$=a_{1} \otimes\left(b_{1} \otimes b_{2}\right)+b_{1} \otimes\left(a_{1} ш b_{2}\right)+\left(a_{1} b_{1}\right) \otimes b_{2}$.
$=a_{1} \otimes b_{1} \otimes b_{2}+b_{1} \otimes a_{1} \otimes b_{2}+b_{1} \otimes b_{2} \otimes a_{1}+b_{1} \otimes a_{1} b_{2}+a_{1} b_{1} \otimes b_{2}$.


## Free commutative Rota-Baxter algebras

- A free Rota-Baxter algebra over another algebra $A$ is a Rota-Baxter algebra $Ш(A)$ with an algebra homomorphism $j_{A}: A \rightarrow \amalg(A)$ such that for any Rota-Baxter algebra $R$ and algebra homomorphism $f: A \rightarrow R$, there is a unique Rota-Baxter algebra homomorphism making the diagram commute



## Free commutative Rota-Baxter algebras

- A free Rota-Baxter algebra over another algebra $A$ is a Rota-Baxter algebra $Ш(A)$ with an algebra homomorphism $j_{A}: A \rightarrow \amalg(A)$ such that for any Rota-Baxter algebra $R$ and algebra homomorphism $f: A \rightarrow R$, there is a unique Rota-Baxter algebra homomorphism making the diagram commute

- When $A=\mathbf{k}[X]$, we have the free Rota-Baxter algebra over $X$.


## Free commutative Rota-Baxter algebras

- A free Rota-Baxter algebra over another algebra $A$ is a Rota-Baxter algebra $\amalg(A)$ with an algebra homomorphism $j_{A}: A \rightarrow \amalg(A)$ such that for any Rota-Baxter algebra $R$ and algebra homomorphism $f: A \rightarrow R$, there is a unique Rota-Baxter algebra homomorphism making the diagram commute

- When $A=\mathbf{k}[X]$, we have the free Rota-Baxter algebra over $X$.
- Recall $\left(\amalg^{+}(A), \varpi_{\lambda}\right)$ is an associative algebra. Then the tensor product algebra (scalar extension) $\amalg(A):=A \otimes \amalg^{+}(A)$ is an A-algebra.
Theorem (Guo-Keigher) $\amalg(A)$ with the shift operator $P(\mathfrak{a}):=1 \otimes \mathfrak{a}$ is the free commutative RBA over $A$.


## Examples

- The free commutative Rota-Baxter algebra on $\mathbf{k}$ (i.e., on the empty set) is

$$
\begin{gathered}
\amalg(\emptyset)=\oplus_{k \geq 1} \mathbf{k} a_{k}, \\
a_{m} a_{n}=\sum_{r=0}^{\min (m, n)}\binom{m+n-r}{m}\binom{m}{r} \lambda^{r} \mathbf{1}^{\otimes(m+n-r)} .
\end{gathered}
$$

When $\lambda=0$, we obtain the divided powers.

## Examples

- The free commutative Rota-Baxter algebra on $\mathbf{k}$ (i.e., on the empty set) is

$$
\begin{gathered}
\omega(\emptyset)=\oplus_{k \geq 1} \mathbf{k} a_{k}, \\
a_{m} a_{n}=\sum_{r=0}^{\min (m, n)}\binom{m+n-r}{m}\binom{m}{r} \lambda^{r} \mathbf{1}^{\otimes(m+n-r)} .
\end{gathered}
$$

When $\lambda=0$, we obtain the divided powers.

- The free commutative integral algebra (Rota-Baxter algebra of weight 0 ) on $\mathbf{k}[x]$ (i.e., on one generator $x$ ): Let J $:=\coprod_{k \geq 1} \mathbb{N}_{\geq 0}^{k}$. For $I=\left(i_{0}, \cdots, i_{k}\right) \in \mathcal{J}$, denote

$$
x^{\otimes l}:=x^{i_{0}} \otimes \cdots \otimes x^{i_{k}} .
$$

Then $\quad ш(\mathbf{k}[x])=\oplus_{\ell \in \mathfrak{j}} \mathbf{k} x^{\otimes!}$.
For $x^{\otimes I}=x^{i 0} \otimes x^{\top}$ and $x^{\otimes J}=x^{j 0} \otimes x^{J}$, we have

$$
x^{\otimes 1} x^{\otimes J}=x^{i_{0}+j_{0}} \otimes\left(x^{\top} \amalg x^{J}\right),
$$

where $\amalg$ is the shuffle product (partitions and multiple zeta values). 26

## Differential Rota-Baxter algebra

- A differential Rota-Baxter algebra (DRB) is a triple $(R, d, P)$ where $(R, d)$ is a differential algebra (of weight $\lambda$ ), $(R, P)$ is a Rota-Baxter algebra (of weight $\lambda$ ) such that $d \circ P=\mathrm{id}_{R}$.


## Differential Rota-Baxter algebra

- A differential Rota-Baxter algebra (DRB) is a triple $(R, d, P)$ where $(R, d)$ is a differential algebra (of weight $\lambda$ ), $(R, P)$ is a Rota-Baxter algebra (of weight $\lambda$ ) such that $d \circ P=\mathrm{id}_{R}$.
- These give three rewriting rules that imply that a normal form for the DRB algebra is of the form $\mathfrak{x}:=x_{0} \otimes x_{1} \otimes \cdots \otimes x_{n}, x_{i} \in \Delta X$.


## Differential Rota-Baxter algebra

- A differential Rota-Baxter algebra (DRB) is a triple $(R, d, P)$ where $(R, d)$ is a differential algebra (of weight $\lambda$ ), $(R, P)$ is a Rota-Baxter algebra (of weight $\lambda$ ) such that $d \circ P=\mathrm{id}_{R}$.
- These give three rewriting rules that imply that a normal form for the DRB algebra is of the form $\mathfrak{x}:=x_{0} \otimes x_{1} \otimes \cdots \otimes x_{n}, x_{i} \in \Delta X$.
- More generally, let $(A, d)$ be a differential algebra of weight $\lambda$. On the free commutative Rota-Baxter algebra $\left(\amalg(A), P_{A}\right)$, define

$$
\begin{gathered}
d_{A}: \amalg(A) \rightarrow \amalg(A), \\
d_{A}\left(x_{0} \otimes x_{1} \otimes \cdots \otimes x_{n}\right)=d_{0}\left(x_{0}\right) \otimes x_{1} \otimes \ldots \otimes x_{n} \\
+x_{0} x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n}+\lambda d_{0}\left(x_{0}\right) x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n} .
\end{gathered}
$$

Then $\left(\amalg(A), d_{A}, P_{A}\right)$ is the free commutative differential Rota-Baxter algebra on $A$.

## Differential Rota-Baxter algebra

- A differential Rota-Baxter algebra (DRB) is a triple $(R, d, P)$ where $(R, d)$ is a differential algebra (of weight $\lambda$ ), $(R, P)$ is a Rota-Baxter algebra (of weight $\lambda$ ) such that $d \circ P=\operatorname{id}_{R}$.
- These give three rewriting rules that imply that a normal form for the DRB algebra is of the form $\mathfrak{x}:=x_{0} \otimes x_{1} \otimes \cdots \otimes x_{n}, x_{i} \in \Delta X$.
- More generally, let $(A, d)$ be a differential algebra of weight $\lambda$. On the free commutative Rota-Baxter algebra $\left(\amalg(A), P_{A}\right)$, define

$$
\begin{gathered}
d_{A}: \amalg(A) \rightarrow \amalg(A), \\
d_{A}\left(x_{0} \otimes x_{1} \otimes \cdots \otimes x_{n}\right)=d_{0}\left(x_{0}\right) \otimes x_{1} \otimes \ldots \otimes x_{n} \\
+x_{0} x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n}+\lambda d_{0}\left(x_{0}\right) x_{1} \otimes x_{2} \otimes \ldots \otimes x_{n} .
\end{gathered}
$$

Then $\left(\amalg(A), d_{A}, P_{A}\right)$ is the free commutative differential Rota-Baxter algebra on $A$.

- Theorem (Guo-Keigher) Let $X$ be a set. The differential Rota-Baxter algebra $\left(\amalg(\mathbf{k}\{X\}), d_{\mathbf{k}\{X\}}, P_{\mathbf{k}\{X\}}\right)$ is the free differential Rota-Baxter algebra on $X$.


## Integro-differential algebras

- Note that the "integral by parts" formula in Rota-Baxter algebra

$$
I(f) I(g)=I(f I(g))+I(I(f) g)
$$

is a "purified" version of the original formula

$$
F G=I\left(F^{\prime} G\right)+I\left(F G^{\prime}\right)
$$

by taking the differentiation out of the picture. This needs to be put back in order to understand fully the algebraic structure in differential equations.

## Definition of Integro-differential Algebras

- An integro-differential $\mathbf{k}$-algebra of weight $\lambda$ (also called a $\lambda$-integro-differential $\mathbf{k}$-algebra) is a differential $\mathbf{k}$-algebra $(R, D)$ of weight $\lambda$ with a linear operator $\Pi: R \rightarrow R$ such that

$$
D \circ \Pi=\mathrm{id}_{R}
$$

and the initialization

$$
J:=\Pi \circ D
$$

satisfies

$$
J(x) J(y)=J(x) y+x J(y)-J(x y) \quad \text { for all } x, y \in R
$$

## Equivalent conditions

- Let $(R, D)$ be a differential algebra of weight $\lambda$ with a linear operator $\Pi$ on $R$ such that $D \circ \Pi=\mathrm{id}_{R}$. Denote $J=\Pi \circ D$, called the initialization, and $E=\mathrm{id}_{R}-J$, called the evaluation. Then the following statements are equivalent:

1. $(R, D, \Pi)$ is an integro-differential algebra;
2. $E(x y)=E(x) E(y)$ for all $x, y \in R$;
3. $\operatorname{ker} E=\mathrm{im} J$ is an ideal;
4. $J(x J(y))=x J(y)$ and $J(J(x) y)=J(x) y$ for all $x, y \in R$;
5. $J(x \Pi(y))=x \Pi(y)$ and $J(\Pi(x) y)=\Pi(x) y$ for all $x, y \in R$;
6. $x \Pi(y)=\Pi(D(x) \Pi(y))+\Pi(x y)+\lambda \Pi(D(x) y)$ and
$\Pi(x) y=\Pi(\Pi(x) D(y))+\Pi(x y)+\lambda \Pi(x D(y))$ for all $x, y \in R$;
7. $(R, D, \Pi)$ is a differential Rota-Baxter algebra and
$\Pi(E(x) y)=E(x) \Pi(y)$ and $\Pi(x E(y))=\Pi(x) E(y) \quad$ for all $x, y \in R$;
8. $(R, D, \Pi)$ is a differential Rota-Baxter algebra and
$J(E(x) J(y))=E(x) J(y)$ and
$J(J(x) E(y))=J(x) E(y) \quad$ for all $x, y \in R$.

## Equivalent conditions

- Let $(R, D)$ be a differential algebra of weight $\lambda$ with a linear operator $\Pi$ on $R$ such that $D \circ \Pi=\mathrm{id}_{R}$. Denote $J=\Pi \circ D$, called the initialization, and $E=\mathrm{id}_{R}-J$, called the evaluation. Then the following statements are equivalent:

1. $(R, D, \Pi)$ is an integro-differential algebra;
2. $E(x y)=E(x) E(y)$ for all $x, y \in R$;
3. $\operatorname{ker} E=\mathrm{im} J$ is an ideal;
4. $J(x J(y))=x J(y)$ and $J(J(x) y)=J(x) y$ for all $x, y \in R$;
5. $J(x \Pi(y))=x \Pi(y)$ and $J(\Pi(x) y)=\Pi(x) y$ for all $x, y \in R$;
6. $x \Pi(y)=\Pi(D(x) \Pi(y))+\Pi(x y)+\lambda \Pi(D(x) y)$ and
$\Pi(x) y=\Pi(\Pi(x) D(y))+\Pi(x y)+\lambda \Pi(x D(y))$ for all $x, y \in R$;
7. $(R, D, \Pi)$ is a differential Rota-Baxter algebra and $\Pi(E(x) y)=E(x) \Pi(y)$ and $\Pi(x E(y))=\Pi(x) E(y)$ for all $x, y \in R$;
8. ( $R, D, \Pi$ ) is a differential Rota-Baxter algebra and $J(E(x) J(y))=E(x) J(y)$ and $J(J(x) E(y))=J(x) E(y)$ for all $x, y \in R$.

- We will focus on 6: $\Pi(D(x) \Pi(y))=x \Pi(y)-\Pi(x y)-\lambda \Pi(D(x) y)$.

Integral by parts revisited

- $(R, D, \Pi)$ is an integro-differential algebra if and only if $(R, D)$ is a differential algebra, $D \circ \Pi=\mathrm{id}_{R}$ and

$$
\Pi(D(x) \Pi(y))-x \Pi(y)+\Pi(x y)+\lambda \Pi(D(x) y)=0, \quad \forall x, y \in R
$$

## Integral by parts revisited

- ( $R, D, \Pi$ ) is an integro-differential algebra if and only if $(R, D)$ is a differential algebra, $D \circ \Pi=\mathrm{id}_{R}$ and

$$
\Pi(D(x) \Pi(y))-x \Pi(y)+\Pi(x y)+\lambda \Pi(D(x) y)=0, \quad \forall x, y \in R .
$$

- Theorem Let $(A, D)$ be a differential algebra. Let $I_{I D}$ be the differential Rota-Baxter ideal of $\amalg(A)$ generated by elements in the above equations. Then the quotient differential Rota-Baxter algebra $Ш(A) / I_{D}$ is the free integro-differential algebra on $(A, D)$.


## Integral by parts revisited

- ( $R, D, \Pi$ ) is an integro-differential algebra if and only if $(R, D)$ is a differential algebra, $D \circ \Pi=\mathrm{id}_{R}$ and

$$
\Pi(D(x) \Pi(y))-x \Pi(y)+\Pi(x y)+\lambda \Pi(D(x) y)=0, \quad \forall x, y \in R .
$$

- Theorem Let $(A, D)$ be a differential algebra. Let $I_{I D}$ be the differential Rota-Baxter ideal of $\amalg(A)$ generated by elements in the above equations. Then the quotient differential Rota-Baxter algebra $Ш(A) / l_{D}$ is the free integro-differential algebra on $(A, D)$.
- The last equation suggests the rewriting rule

$$
\Pi(D(x) \Pi(y)) \mapsto_{I D} x \Pi(y)-\Pi(x y)-\lambda \Pi(D(x) y) .
$$

Working in the free differential Rota-Baxter algebra $\amalg(A)$ where $(A, d)$ is a differential algebra, this means that $d(x)$ should not appear in $\Pi$. More precisely, in $\mathfrak{a}=a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}$, $a_{1}, \cdots, a_{n-1} \in A$ should be "in complement of" $d(A)$, i.e., in $A_{T}$ such that $A=\operatorname{imd} \oplus A_{T}$. Such an $A$ is called regular.

Regular differential algebras

- Let $(A, d)$ be a differential algebra. A linear map $Q: A \rightarrow A$ is called a quasi-antiderivative if $d \circ Q \circ d=d$ and $Q \circ d \circ Q=Q$ (and $\operatorname{ker} Q \leq A$ if $\lambda \neq 0)$. Then $(A, d)$ is called regular. Take $T:=\operatorname{Id}-d \circ Q$.


## Regular differential algebras

- Let $(A, d)$ be a differential algebra. A linear map $Q: A \rightarrow A$ is called a quasi-antiderivative if $d \circ Q \circ d=d$ and $Q \circ d \circ Q=Q$ (and $\operatorname{ker} Q \leq A$ if $\lambda \neq 0)$. Then $(A, d)$ is called regular. Take $T:=\mathrm{Id}-d \circ Q$.
- $(A, d)$ is regular if and only if $A=A_{T} \oplus$ imd $=A_{J} \oplus$ ker $d$.


## Regular differential algebras

- Let $(A, d)$ be a differential algebra. A linear map $Q: A \rightarrow A$ is called a quasi-antiderivative if $d \circ Q \circ d=d$ and $Q \circ d \circ Q=Q$ (and $\operatorname{ker} Q \leq A$ if $\lambda \neq 0)$. Then $(A, d)$ is called regular. Take $T:=\mathrm{Id}-d \circ Q$.
- $(A, d)$ is regular if and only if $A=A_{T} \oplus$ imd $=A_{J} \oplus$ ker $d$.
- Let $X$ be a well ordered set. For $x_{1}^{\left(i_{1}\right)}, x_{2}^{\left(i_{2}\right)} \in \Delta X$ with $x_{1}, x_{2} \in X$ and $i_{1}, i_{2} \geq 0$, define

$$
x_{1}^{\left(i_{1}\right)} \leq x_{2}^{\left(i_{2}\right)} \Leftrightarrow\left(x_{1},-i_{1}\right) \leq\left(x_{2},-i_{2}\right) \text { lexicographically. }
$$

For example $x^{(2)}<x^{(1)}<x$. Also, $x_{1}<x_{2}$ implies $x_{1}^{\left(i_{1}\right)}<x_{2}^{\left(i_{2}\right)}$ for all $i_{1}, i_{2} \geq 0$.

## Regular differential algebras

- Let $(A, d)$ be a differential algebra. A linear map $Q: A \rightarrow A$ is called a quasi-antiderivative if $d \circ Q \circ d=d$ and $Q \circ d \circ Q=Q$ (and $\operatorname{ker} Q \leq A$ if $\lambda \neq 0)$. Then $(A, d)$ is called regular. Take $T:=\mathrm{Id}-d \circ Q$.
- $(A, d)$ is regular if and only if $A=A_{T} \oplus$ imd $=A_{J} \oplus$ ker $d$.
- Let $X$ be a well ordered set. For $x_{1}^{\left(i_{1}\right)}, x_{2}^{\left(i_{2}\right)} \in \Delta X$ with $x_{1}, x_{2} \in X$ and $i_{1}, i_{2} \geq 0$, define

$$
x_{1}^{\left(i_{1}\right)} \leq x_{2}^{\left(i_{2}\right)} \Leftrightarrow\left(x_{1},-i_{1}\right) \leq\left(x_{2},-i_{2}\right) \text { lexicographically. }
$$

For example $x^{(2)}<x^{(1)}<x$. Also, $x_{1}<x_{2}$ implies $x_{1}^{\left(i_{1}\right)}<x_{2}^{\left(i_{2}\right)}$ for all $i_{1}, i_{2} \geq 0$.

- Let $u \in C(\Delta X)$ (free commutative monoid) be in the form
$u=u_{0}^{j_{0}} \cdots u_{k}^{j_{k}}$, where $u_{0}, \cdots, u_{k} \in \Delta X, u_{0}>\cdots>u_{k}$ and $j_{0}, \cdots, j_{k} \geq 1$.
Call $u$ functional if either $u \in C(X)$ or $j_{k}>1$. Let $A=\mathbf{k}[\Delta X]$ and $A_{T}$ be the linear span of the functional monomials. Then $\mathbf{k}[\Delta X]=A_{T} \oplus$ imd and $\mathbf{k}\{X\}$ is a regular differential algebra.


## Construction of free integro-differential algebras

- Let $(A, d)$ be a regular differential algebra. Thus $A=\operatorname{imd} \oplus A_{T}$ and $A_{T}$ is a nonunitary subalgebra of $A$ when $\lambda \neq 0$.


## Construction of free integro-differential algebras

- Let $(A, d)$ be a regular differential algebra. Thus $A=\operatorname{imd} \oplus A_{T}$ and $A_{T}$ is a nonunitary subalgebra of $A$ when $\lambda \neq 0$.
- Let

$$
\amalg_{T}(A)=\oplus_{n \geq 0} A \otimes A_{T}^{\otimes n}=A \oplus\left(A \otimes A_{T}\right) \oplus \cdots
$$

be the $\mathbf{k}$-submodule of $\amalg(A)$. Since $A_{T}$ is assumed to be a nonunitary subalgebra if $\lambda \neq 0, \amalg_{T}(A)$ is a subalgebra of $\amalg(A)$.

## Construction of free integro-differential algebras

- Let $(A, d)$ be a regular differential algebra. Thus $A=\operatorname{imd} \oplus A_{T}$ and $A_{T}$ is a nonunitary subalgebra of $A$ when $\lambda \neq 0$.
- Let

$$
\amalg_{T}(A)=\oplus_{n \geq 0} A \otimes A_{T}^{\otimes n}=A \oplus\left(A \otimes A_{T}\right) \oplus \cdots
$$

be the $\mathbf{k}$-submodule of $\amalg(A)$. Since $A_{T}$ is assumed to be a nonunitary subalgebra if $\lambda \neq 0, \amalg_{T}(A)$ is a subalgebra of $\amalg(A)$.

- Let $A_{\varepsilon}:=\{\varepsilon(a) \mid a \in A\}$ be another copy of the algebra $A$, but with the zero derivation. Then both $A$ and $A_{\varepsilon}$ are $K$-algebras for $K:=\operatorname{ker} d$.


## Construction of free integro-differential algebras

- Let $(A, d)$ be a regular differential algebra. Thus $A=\operatorname{imd} \oplus A_{T}$ and $A_{T}$ is a nonunitary subalgebra of $A$ when $\lambda \neq 0$.
- Let

$$
\amalg_{T}(A)=\oplus_{n \geq 0} A \otimes A_{T}^{\otimes n}=A \oplus\left(A \otimes A_{T}\right) \oplus \cdots
$$

be the $\mathbf{k}$-submodule of $\amalg(A)$. Since $A_{T}$ is assumed to be a nonunitary subalgebra if $\lambda \neq 0, \amalg_{T}(A)$ is a subalgebra of $\amalg(A)$.

- Let $A_{\varepsilon}:=\{\varepsilon(a) \mid a \in A\}$ be another copy of the algebra $A$, but with the zero derivation. Then both $A$ and $A_{\varepsilon}$ are $K$-algebras for $K:=$ ker $d$.
- Define $I D(A):=A_{\varepsilon} \otimes_{K} Ш_{T}(A)=A_{\varepsilon} \otimes_{K}\left(A \otimes \amalg^{+}\left(A_{T}\right)\right)$ to be the tensor product algebra.


## Construction of free integro-differential algebras

- Let $(A, d)$ be a regular differential algebra. Thus $A=\operatorname{imd} \oplus A_{T}$ and $A_{T}$ is a nonunitary subalgebra of $A$ when $\lambda \neq 0$.
- Let

$$
\amalg_{T}(A)=\oplus_{n \geq 0} A \otimes A_{T}^{\otimes n}=A \oplus\left(A \otimes A_{T}\right) \oplus \cdots
$$

be the $\mathbf{k}$-submodule of $\amalg(A)$. Since $A_{T}$ is assumed to be a nonunitary subalgebra if $\lambda \neq 0, \amalg_{T}(A)$ is a subalgebra of $\amalg(A)$.

- Let $A_{\varepsilon}:=\{\varepsilon(a) \mid a \in A\}$ be another copy of the algebra $A$, but with the zero derivation. Then both $A$ and $A_{\varepsilon}$ are $K$-algebras for $K:=$ ker $d$.
- Define $I D(A):=A_{\varepsilon} \otimes_{K} Ш_{T}(A)=A_{\varepsilon} \otimes_{K}\left(A \otimes Ш^{+}\left(A_{T}\right)\right)$ to be the tensor product algebra.
- Define $d_{A}$ on $I D(A)$ by the product rule on the tensor product.


## Construction of free integro-differential algebras

- Let $(A, d)$ be a regular differential algebra. Thus $A=\operatorname{imd} \oplus A_{T}$ and $A_{T}$ is a nonunitary subalgebra of $A$ when $\lambda \neq 0$.
- Let

$$
Ш_{T}(A)=\oplus_{n \geq 0} A \otimes A_{T}^{\otimes n}=A \oplus\left(A \otimes A_{T}\right) \oplus \cdots
$$

be the $\mathbf{k}$-submodule of $ш(A)$. Since $A_{T}$ is assumed to be a nonunitary subalgebra if $\lambda \neq 0, \amalg_{T}(A)$ is a subalgebra of $\amalg(A)$.

- Let $A_{\varepsilon}:=\{\varepsilon(a) \mid a \in A\}$ be another copy of the algebra $A$, but with the zero derivation. Then both $A$ and $A_{\varepsilon}$ are $K$-algebras for $K:=$ ker $d$.
- Define $I D(A):=A_{\varepsilon} \otimes_{K} Ш_{T}(A)=A_{\varepsilon} \otimes_{K}\left(A \otimes Ш^{+}\left(A_{T}\right)\right)$ to be the tensor product algebra.
- Define $d_{A}$ on $I D(A)$ by the product rule on the tensor product.
- For $a=d(Q(a))+T(a) \in A$, define
$P_{A}(a)=Q(a)-\varepsilon(Q(a))+1 \otimes T(a)$.
For $\mathfrak{a}:=a_{0} \otimes \cdots \otimes a_{n} \in A \otimes\left(A_{\psi}\right)^{\otimes n}$, write $\mathfrak{a}=a_{0} \otimes \overline{\mathfrak{a}}, \overline{\mathfrak{a}} \in A_{\psi}^{\otimes n}$. Define

$$
P_{A}(\mathfrak{a})=Q\left(a_{0}\right) \otimes \overline{\mathfrak{a}}-P_{A}\left(Q\left(a_{0}\right) \overline{\mathfrak{a}}\right)+1 \otimes T\left(a_{0}\right) \otimes \overline{\mathfrak{a}} .
$$

## Construction of free integro-differential algebras

- Let $(A, d)$ be a regular differential algebra. Thus $A=\operatorname{imd} \oplus A_{T}$ and $A_{T}$ is a nonunitary subalgebra of $A$ when $\lambda \neq 0$.
- Let

$$
Ш_{T}(A)=\oplus_{n \geq 0} A \otimes A_{T}^{\otimes n}=A \oplus\left(A \otimes A_{T}\right) \oplus \cdots
$$

be the $\mathbf{k}$-submodule of $ш(A)$. Since $A_{T}$ is assumed to be a nonunitary subalgebra if $\lambda \neq 0, \amalg_{T}(A)$ is a subalgebra of $\amalg(A)$.

- Let $A_{\varepsilon}:=\{\varepsilon(a) \mid a \in A\}$ be another copy of the algebra $A$, but with the zero derivation. Then both $A$ and $A_{\varepsilon}$ are $K$-algebras for $K:=\operatorname{ker} d$.
- Define $I D(A):=A_{\varepsilon} \otimes_{K} Ш_{T}(A)=A_{\varepsilon} \otimes_{K}\left(A \otimes Ш^{+}\left(A_{T}\right)\right)$ to be the tensor product algebra.
- Define $d_{A}$ on $I D(A)$ by the product rule on the tensor product.
- For $a=d(Q(a))+T(a) \in A$, define
$P_{A}(a)=Q(a)-\varepsilon(Q(a))+1 \otimes T(a)$.
For $\mathfrak{a}:=a_{0} \otimes \cdots \otimes a_{n} \in A \otimes\left(A_{\psi}\right)^{\otimes n}$, write $\mathfrak{a}=a_{0} \otimes \overline{\mathfrak{a}}, \overline{\mathfrak{a}} \in A_{\psi}^{\otimes n}$. Define

$$
P_{A}(\mathfrak{a})=Q\left(a_{0}\right) \otimes \overline{\mathfrak{a}}-P_{A}\left(Q\left(a_{0}\right) \overline{\mathfrak{a}}\right)+1 \otimes T\left(a_{0}\right) \otimes \overline{\mathfrak{a}} .
$$

- Theorem (Guo-Regensburger-Rosenkranz) The triple (ID(A), $\left.d_{u}, P_{u}\right)$


Normal forms of integro-differential algebras

- Back to the rewriting rule

$$
\Pi(D(x) \Pi(y)) \mapsto_{\mathbb{I}} x \Pi(y)-\Pi(x y)-\lambda \Pi(D(x) y)
$$

## Normal forms of integro-differential algebras

- Back to the rewriting rule

$$
\Pi(D(x) \Pi(y)) \mapsto_{\mathbb{I}} x \Pi(y)-\Pi(x y)-\lambda \Pi(D(x) y)
$$

- Then in the free differential Rota-Baxter algebra $\amalg(\mathbf{k}\{X\})$. Elements of the form $d(x)$ should not appear in $\Pi(-\Pi(v))$. So for $\mathfrak{a}=a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}$ to be normal, we should have $a_{i} \in A_{T}, 1 \leq i \leq n-1$. This is quite hard to verify directly.


## Free integro-differential algebras by normal forms

- By the method of Gröbner-Shirshov basis, we obtain.

Theorem(Gao-Guo-Zheng) Let $X$ be a nonempty well-ordered set and $A:=\mathbf{k}\{X\}$. Let $\amalg(\mathbf{k}\{X\})=\amalg(\mathbf{k}[\Delta X])$, with the derivation $d$ and Rota-Baxter operator $P$, be the free commutative differential Rota-Baxter algebra of weight $\lambda$ on $X$. Let $l_{I D}$ be the differential Rota-Baxter ideal of $\amalg(\mathbf{k}\{X\})$ generated by
$S:=\{P(d(u) P(v))-u P(v)+P(u v)+\lambda P(d(u) v) \mid u, v \in Ш(\mathbf{k}\{X\})\}$.
Let $A_{T}$ be the submodule of $A=\mathbf{k}\{X\}$ spanned by functional monomials. Then the composition

$$
\amalg(A)_{T}:=A \oplus\left(\bigoplus_{k \geq 0} A \otimes A_{T}^{\otimes k} \otimes A\right) \hookrightarrow \amalg(A) \rightarrow \amalg(A) / I_{I D}
$$

of the inclusion and the quotient map is a linear bijection. Thus $Ш(A)_{T}$ gives an explicit construction of the free integro-differential algebra $\amalg(A) / I_{I D}$.

- References:
* L. Guo and W. Keigher, Baxter algebras and shuffle products, Adv. Math 150 (2000), 117-149.
* L. Guo and W. Keigher, On differential Rota-Baxter algebras, J.

Pure Appl. Algebra 212 (2008), 522-540.

* M. Rosenkranz and G. Regensburger, Solving and factoring boundary problems for linear ordinary differential equations in differential algebra, J. Symbolic Comput. 43 (2008), 515-544.
* L. Guo, G. Regensburger and M. Rosenkranz, On integro-differential algebras, J. Pure Appl. Algebra 218 (2014), 456-471.
* X. Gao, L. Guo and S. Zheng, Construction of free commutative integro-differential algebras by the method of Gröbner-Shirshov bases, Jour Algebra and Its Applications 13 (2014), 1350160.
* X. Gao and L. Guo, Constructions of free commutative integro-Differential algebras, Lecture Notes in Computer Science 8372 (2014), 1-22.
- References:
* L. Guo and W. Keigher, Baxter algebras and shuffle products, Adv. Math 150 (2000), 117-149.
*L. Guo and W. Keigher, On differential Rota-Baxter algebras, J.
Pure Appl. Algebra 212 (2008), 522-540.
* M. Rosenkranz and G. Regensburger, Solving and factoring boundary problems for linear ordinary differential equations in differential algebra, J. Symbolic Comput. 43 (2008), 515-544.
* L. Guo, G. Regensburger and M. Rosenkranz, On integro-differential algebras, J. Pure Appl. Algebra 218 (2014), 456-471.
* X. Gao, L. Guo and S. Zheng, Construction of free commutative integro-differential algebras by the method of Gröbner-Shirshov bases, Jour Algebra and Its Applications 13 (2014), 1350160.
* X. Gao and L. Guo, Constructions of free commutative integro-Differential algebras, Lecture Notes in Computer Science 8372 (2014), 1-22.


## - Thank You!

