Free Commutative Integro-differential Algebras

Li GUO

Rutgers University

(Joint work with G. Regensburger and M. Rosenkranz, and X. Gao and S. Zheng)

Free differential algebras

Differential algebra

$$d(xy) = d(x)y + xd(y) + \lambda d(x)d(y).$$

$$d(uv) \mapsto_{\phi} d(u)v + ud(v) + \lambda d(u)d(v), \forall u, v \in R.$$

This leads to normal forms w with no products in d.

Free differential algebras

Differential algebra

$$d(xy) = d(x)y + xd(y) + \lambda d(x)d(y).$$

 $d(uv) \mapsto_{\phi} d(u)v + ud(v) + \lambda d(u)d(v), \forall u, v \in R.$

This leads to normal forms w with no products in d.

Thus free commutative differential algebra (of weight λ) on a set X is of the form

$$\mathbf{k}\{X\} := \mathbf{k}[\Delta X], \quad \Delta X := \{x^{(n)} \mid x \in X, n \ge 0\}$$

with concatenation product. Define $d_X : \mathbf{k}\{X\} \to \mathbf{k}\{X\}$ as follows. Let $w = u_1 \cdots u_k, u_i \in \Delta(X), 1 \le i \le k$, be a commutative word from the alphabet set $\Delta(X)$. If k = 1, so that $w = x^{(n)} \in \Delta(X)$, define $d_X(w) = x^{(n+1)}$. If k > 1, recursively define

$$d_X(w) = d_X(u_1)u_2\cdots u_k + u_1d_X(u_2\cdots u_k) + \lambda d_X(u_1)d_X(u_2\cdots u_k).$$

Further define $d_X(1) = 0$. Then $(\mathbf{k}\{X\}, d_X)$ is the free commutative differential algebra of weight λ on the set X.

What about integral algebra?

- What about integral algebra?
- What is an integral algebra? It is a special case of Rota-Baxter algebra.

- What about integral algebra?
- What is an integral algebra? It is a special case of Rota-Baxter algebra.
- Let k be a commutative ring. Let λ ∈ k be fixed. A Rota-Baxter operator of weight λ on a k-algebra R is a linear map P : R → R such that

 $P(x)P(y) = P(xP(y)) + P(P(x)y) + \lambda P(xy), \ \forall x, y \in R.$

- What about integral algebra?
- What is an integral algebra? It is a special case of Rota-Baxter algebra.
- Let k be a commutative ring. Let λ ∈ k be fixed. A Rota-Baxter operator of weight λ on a k-algebra R is a linear map P : R → R such that

$$P(x)P(y) = P(xP(y)) + P(P(x)y) + \lambda P(xy), \ \forall x, y \in R.$$

References:

1. L. Guo, WHAT IS a Rota-Baxter Algebra, *Notice of Amer. Math. Soc.* **56** (2009), 1436-1437.

2. L. Guo, An Introduction to Rota-Baxter Algebra, International Press, 2012.

For continuous functions f(x) and g(x), define

$$F(x) := I[f](x) := \int_0^x f(s) ds, G(x) := I[g](x) := \int_0^x g(s) ds.$$
(1)
Then $F'(x) = f(x), G'(x) = g(x).$

For continuous functions f(x) and g(x), define

$$F(x) := I[f](x) := \int_0^x f(s) ds, G(x) := I[g](x) := \int_0^x g(s) ds.$$
(1)

Then F'(x) = f(x), G'(x) = g(x).

The integration by parts formula

$$\int_0^x F'(t)G(t)dt = F(t)G(t)\big|_0^x - \int_0^x F(t)G'(t)\,dt$$

can be "rewritten" as
$$\int_0^x f(t)G(t) dt = F(x)G(x) - \int_0^x F(t)g(t) dt$$

For continuous functions f(x) and g(x), define

$$F(x) := I[f](x) := \int_0^x f(s) ds, G(x) := I[g](x) := \int_0^x g(s) ds.$$
(1)

Then F'(x) = f(x), G'(x) = g(x).

The integration by parts formula

$$\int_0^x F'(t)G(t)dt = F(t)G(t)\Big|_0^x - \int_0^x F(t)G'(t)\,dt$$

can be "rewritten" as
$$\int_0^x f(t)G(t) dt = F(x)G(x) - \int_0^x F(t)g(t) dt.$$

► Using Eq. (1), get /[f /[g]](x) = /[f]/[g](x) - /[/[f]g](x).
/[f /[g]] = /[f]/[g] - /[/[f]g], /[f]/[g] = /[f /[g]] + /[/[f]g].

For continuous functions f(x) and g(x), define

$$F(x) := I[f](x) := \int_0^x f(s) ds, G(x) := I[g](x) := \int_0^x g(s) ds.$$
(1)

Then F'(x) = f(x), G'(x) = g(x).

The integration by parts formula

$$\int_0^x F'(t)G(t)dt = F(t)G(t)\big|_0^x - \int_0^x F(t)G'(t)\,dt$$

can be "rewritten" as
$$\int_0^x f(t)G(t) dt = F(x)G(x) - \int_0^x F(t)g(t) dt.$$

- ► Using Eq. (1), get I[f I[g]](x) = I[f]I[g](x) I[I[f]g](x). $I[f I[g]] = I[f]I[g] - I[I[f]g], \quad I[f]I[g] = I[f I[g]] + I[I[f]g].$
- ► An integral algebra is an algebra *R* together with a linear operator $I: R \to R$ that satisfies $I[f]I[g] = I[f I[g]] + I[g I[f]], \quad \forall f, g \in R.$

Rota-Baxter algebra

$$P(x)P(y) = P(P(x)y) + P(xP(y)) + \lambda P(xy).$$

$$P(x)P(y) \mapsto_P P(P(x)y) + P(xP(y)) + \lambda P(xy).$$

This leads to normal forms w with no subwords of the form P(x)P(y).

Rota-Baxter algebra

$$P(x)P(y) = P(P(x)y) + P(xP(y)) + \lambda P(xy).$$

 $P(x)P(y) \mapsto_P P(P(x)y) + P(xP(y)) + \lambda P(xy).$

This leads to normal forms w with no subwords of the form P(x)P(y).

In a commutative Rota-Baxter algebra, this means

$$\mathfrak{a} = a_0 P(a_1 P(a_2 P(\cdots P(a_n) \cdots))), a_i \in A.$$
$$\mathfrak{a} = a_0 \otimes a_1 \otimes \cdots \otimes a_n \in A^{\otimes (n+1)}.$$

The product is given by

$$\mathfrak{ab} = (a_0b_0)\otimes ((a_1\otimes\cdots a_n)\boxplus_{\lambda}(b_1\otimes\cdots\otimes b_m)).$$

 III_{λ} is a shuffle like product, called mixable shuffle product.

Let A be a commutative k-algebra. Let III⁺(A) = ⊕_{n≥0} A^{⊗n}(= T(A)). Consider the following products on III⁺(A).

- ► Let *A* be a commutative **k**-algebra. Let $\operatorname{III}^+(A) = \bigoplus_{n \ge 0} A^{\otimes n} (= T(A))$. Consider the following products on $\operatorname{III}^+(A)$.
- A shuffle of a = a₁ ⊗ ... ⊗ am and b = b₁ ⊗ ... ⊗ bn is a tensor list of ai and bi without change the order of the ais and bis.

- Let A be a commutative k-algebra. Let III⁺(A) = ⊕_{n≥0} A^{⊗n}(= T(A)). Consider the following products on III⁺(A).
- A shuffle of a = a₁ ⊗ ... ⊗ am and b = b₁ ⊗ ... ⊗ bn is a tensor list of ai and bj without change the order of the ais and bjs.
- ► A mixable shuffle is a shuffle in which some pairs a_i ⊗ b_j are merged into a_ib_j.

Define $(a_1 \otimes \ldots \otimes a_m) \prod_{\lambda} (b_1 \otimes \ldots \otimes b_n)$ to be the sum of mixable shuffles of $a_1 \otimes \ldots \otimes a_m$ and $b_1 \otimes \ldots \otimes b_n$.

- ► Let *A* be a commutative **k**-algebra. Let $\operatorname{III}^+(A) = \bigoplus_{n \ge 0} A^{\otimes n} (= T(A))$. Consider the following products on $\operatorname{III}^+(A)$.
- A shuffle of a = a₁ ⊗ ... ⊗ am and b = b₁ ⊗ ... ⊗ bn is a tensor list of ai and bj without change the order of the ais and bjs.
- ► A mixable shuffle is a shuffle in which some pairs a_i ⊗ b_j are merged into a_ib_j.

Define $(a_1 \otimes \ldots \otimes a_m) \amalg_{\lambda} (b_1 \otimes \ldots \otimes b_n)$ to be the sum of mixable shuffles of $a_1 \otimes \ldots \otimes a_m$ and $b_1 \otimes \ldots \otimes b_n$.

Example:

 $\begin{aligned} &a_1 \boxplus_{\lambda} (b_1 \otimes b_2) \\ &= a_1 \otimes b_1 \otimes b_2 + b_1 \otimes a_1 \otimes b_2 + b_1 \otimes b_2 \otimes a_1 \quad (\text{shuffles}) \\ &+ a_1 b_1 \otimes b_2 + b_1 \otimes a_1 b_2 \quad (\text{merged shuffles}). \end{aligned}$

The mixable shuffle product can also be defined recursively by the quasi-shuffle product (Hoffman, 2000).

- The mixable shuffle product can also be defined recursively by the quasi-shuffle product (Hoffman, 2000).
- Let $\operatorname{III}^+(A) = \bigoplus_{n \ge 0} A^{\otimes n} (= T(A)).$

- The mixable shuffle product can also be defined recursively by the quasi-shuffle product (Hoffman, 2000).
- Let $\operatorname{III}^+(A) = \bigoplus_{n \ge 0} A^{\otimes n} (= T(A)).$
- ▶ Let $\mathbf{1}_{\mathbf{k}} \in \mathbf{k}$ denote the unit. Let $\mathfrak{a} = a_1 \otimes \cdots \otimes a_m \in A^{\otimes m}$ and $\mathfrak{b} = b_1 \otimes \cdots \otimes b_n \in A^{\otimes n}$. Write $\mathfrak{a} = a_1 \otimes \mathfrak{a}', \ \mathfrak{b} = b_1 \otimes \mathfrak{b}'$. We have

$$(a_1\otimes \mathfrak{a}') \boxplus (b_1\otimes \mathfrak{b}') = a_1 \otimes (\mathfrak{a}' \boxplus (b_1\otimes \mathfrak{b}'))) + b_1 \otimes ((a_1\otimes \mathfrak{a}') \boxplus \mathfrak{b}') + a_1 b_1 \otimes (\mathfrak{a}' \boxplus \mathfrak{b}'),$$

with the convention that if $a = a_1$, then a' multiples as the identity.

- The mixable shuffle product can also be defined recursively by the quasi-shuffle product (Hoffman, 2000).
- Let $\operatorname{III}^+(A) = \bigoplus_{n \ge 0} A^{\otimes n} (= T(A)).$
- ▶ Let $\mathbf{1}_{\mathbf{k}} \in \mathbf{k}$ denote the unit. Let $\mathfrak{a} = a_1 \otimes \cdots \otimes a_m \in A^{\otimes m}$ and $\mathfrak{b} = b_1 \otimes \cdots \otimes b_n \in A^{\otimes n}$. Write $\mathfrak{a} = a_1 \otimes \mathfrak{a}'$, $\mathfrak{b} = b_1 \otimes \mathfrak{b}'$. We have

$$(a_1 \otimes \mathfrak{a}') \amalg (b_1 \otimes \mathfrak{b}') = a_1 \otimes (\mathfrak{a}' \amalg (b_1 \otimes \mathfrak{b}'))) + b_1 \otimes ((a_1 \otimes \mathfrak{a}') \amalg \mathfrak{b}') + a_1 b_1 \otimes (\mathfrak{a}' \amalg \mathfrak{b}'),$$

with the convention that if $a = a_1$, then a' multiples as the identity.

Example.

 $\begin{aligned} a_1 & \boxplus (b_1 \otimes b_2) = a_1 \otimes (\mathfrak{a}' \boxplus (b_1 \otimes b_2)) + b_1 \otimes (a_1 \boxplus b_2) + (a_1 b_1) \otimes (\mathfrak{a}' \boxplus b_2) \\ &= a_1 \otimes (b_1 \otimes b_2) + b_1 \otimes (a_1 \boxplus b_2) + (a_1 b_1) \otimes b_2. \\ &= a_1 \otimes b_1 \otimes b_2 + b_1 \otimes a_1 \otimes b_2 + b_1 \otimes b_2 \otimes a_1 + b_1 \otimes a_1 b_2 + a_1 b_1 \otimes b_2. \end{aligned}$

► A free Rota-Baxter algebra over another algebra *A* is a Rota-Baxter algebra III(A) with an algebra homomorphism $j_A : A \to III(A)$ such that for any Rota-Baxter algebra *R* and algebra homomorphism $f : A \to R$, there is a unique Rota-Baxter algebra homomorphism making the diagram commute

► A free Rota-Baxter algebra over another algebra *A* is a Rota-Baxter algebra III(A) with an algebra homomorphism $j_A : A \to III(A)$ such that for any Rota-Baxter algebra *R* and algebra homomorphism $f : A \to R$, there is a unique Rota-Baxter algebra homomorphism making the diagram commute

• When $A = \mathbf{k}[X]$, we have the free Rota-Baxter algebra over X.

► A free Rota-Baxter algebra over another algebra *A* is a Rota-Baxter algebra III(A) with an algebra homomorphism $j_A : A \to III(A)$ such that for any Rota-Baxter algebra *R* and algebra homomorphism $f : A \to R$, there is a unique Rota-Baxter algebra homomorphism making the diagram commute

- When $A = \mathbf{k}[X]$, we have the free Rota-Baxter algebra over X.
- ► Recall (III⁺(A), III_λ) is an associative algebra. Then the tensor product algebra (scalar extension) III(A) := A ⊗ III⁺(A) is an A-algebra.
 - **Theorem** (Guo-Keigher) III(*A*) with the shift operator $P(\mathfrak{a}) := 1 \otimes \mathfrak{a}$ is the free commutative RBA over *A*.

Examples

The free commutative Rota-Baxter algebra on k (i.e., on the empty set) is

$$\operatorname{III}(\emptyset) = \bigoplus_{k \ge 1} \mathbf{k} a_k,$$
$$a_m a_n = \sum_{r=0}^{\min(m,n)} \binom{m+n-r}{m} \binom{m}{r} \lambda^r \mathbf{1}^{\otimes (m+n-r)}$$

٠

When $\lambda = 0$, we obtain the divided powers.

Examples

The free commutative Rota-Baxter algebra on k (i.e., on the empty set) is

$$\operatorname{III}(\emptyset) = \oplus_{k \ge 1} \mathbf{k} a_k,$$

$$a_m a_n = \sum_{r=0}^{\min(m,n)} \binom{m+n-r}{m} \binom{m}{r} \lambda^r \mathbf{1}^{\otimes (m+n-r)}.$$

When $\lambda = 0$, we obtain the divided powers.

The free commutative integral algebra (Rota-Baxter algebra of weight 0) on k[x] (i.e., on one generator x):
 Let ℑ := ∐_{k≥1} ℕ^k_{≥0}. For I = (i₀, · · · , i_k) ∈ ℑ, denote

$$\mathbf{x}^{\otimes l} := \mathbf{x}^{l_0} \otimes \cdots \otimes \mathbf{x}^{l_k}.$$

Then $\operatorname{III}(\mathbf{k}[x]) = \bigoplus_{I \in \mathcal{I}} \mathbf{k} x^{\otimes I}$. For $x^{\otimes I} = x^{i_0} \otimes x^{\overline{I}}$ and $x^{\otimes J} = x^{j_0} \otimes x^{\overline{J}}$, we have $x^{\otimes I} x^{\otimes J} = x^{i_0+j_0} \otimes \left(x^{\overline{I}} \boxplus x^{\overline{J}}\right)$,

where III is the shuffle product (partitions and multiple zeta values). 26

▶ A differential Rota-Baxter algebra (DRB) is a triple (R, d, P) where (R, d) is a differential algebra (of weight λ), (R, P) is a Rota-Baxter algebra (of weight λ) such that $d \circ P = id_R$.

- A differential Rota-Baxter algebra (DRB) is a triple (R, d, P) where (R, d) is a differential algebra (of weight λ), (R, P) is a Rota-Baxter algebra (of weight λ) such that d ∘ P = id_R.
- ► These give three rewriting rules that imply that a normal form for the DRB algebra is of the form $\mathfrak{x} := x_0 \otimes x_1 \otimes \cdots \otimes x_n, x_i \in \Delta X$.

- ▶ A differential Rota-Baxter algebra (DRB) is a triple (R, d, P) where (R, d) is a differential algebra (of weight λ), (R, P) is a Rota-Baxter algebra (of weight λ) such that $d \circ P = id_R$.
- ► These give three rewriting rules that imply that a normal form for the DRB algebra is of the form $\mathfrak{x} := x_0 \otimes x_1 \otimes \cdots \otimes x_n, x_i \in \Delta X$.
- ► More generally, let (A, d) be a differential algebra of weight λ. On the free commutative Rota-Baxter algebra (III(A), P_A), define

 d_A : III(A) \rightarrow III(A),

$$d_A(x_0 \otimes x_1 \otimes \cdots \otimes x_n) = d_0(x_0) \otimes x_1 \otimes \ldots \otimes x_n + x_0 x_1 \otimes x_2 \otimes \ldots \otimes x_n + \lambda d_0(x_0) x_1 \otimes x_2 \otimes \ldots \otimes x_n.$$

Then $(III(A), d_A, P_A)$ is the free commutative differential Rota-Baxter algebra on A.

- A differential Rota-Baxter algebra (DRB) is a triple (R, d, P) where (R, d) is a differential algebra (of weight λ), (R, P) is a Rota-Baxter algebra (of weight λ) such that d ∘ P = id_R.
- ► These give three rewriting rules that imply that a normal form for the DRB algebra is of the form $\mathfrak{x} := x_0 \otimes x_1 \otimes \cdots \otimes x_n, x_i \in \Delta X$.
- ► More generally, let (A, d) be a differential algebra of weight λ. On the free commutative Rota-Baxter algebra (III(A), P_A), define

 $d_A: \operatorname{III}(A) \to \operatorname{III}(A),$

$$d_{\mathcal{A}}(x_0 \otimes x_1 \otimes \cdots \otimes x_n) = d_0(x_0) \otimes x_1 \otimes \cdots \otimes x_n + x_0 x_1 \otimes x_2 \otimes \cdots \otimes x_n + \lambda d_0(x_0) x_1 \otimes x_2 \otimes \cdots \otimes x_n.$$

Then $(III(A), d_A, P_A)$ is the free commutative differential Rota-Baxter algebra on A.

► Theorem (Guo-Keigher) Let X be a set. The differential Rota-Baxter algebra (Ш(k{X}), d_{k{X}}, P_{k{X}}) is the free differential Rota-Baxter algebra on X.

Integro-differential algebras

Note that the "integral by parts" formula in Rota-Baxter algebra

I(f)I(g) = I(fI(g)) + I(I(f)g)

is a "purified" version of the original formula

$$FG = I(F'G) + I(FG')$$

by taking the differentiation out of the picture. This needs to be put back in order to understand fully the algebraic structure in differential equations.

Definition of Integro-differential Algebras

An integro-differential k-algebra of weight λ (also called a λ-integro-differential k-algebra) is a differential k-algebra (R, D) of weight λ with a linear operator Π: R → R such that

$$D \circ \Pi = \mathrm{id}_R$$

and the initialization

$$J: = \Pi \circ D$$

satisfies

$$J(x)J(y) = J(x)y + xJ(y) - J(xy)$$
 for all $x, y \in R$.

Equivalent conditions

- ▶ Let (R, D) be a differential algebra of weight λ with a linear operator Π on R such that $D \circ \Pi = id_R$. Denote $J = \Pi \circ D$, called the initialization, and $E = id_R J$, called the evaluation. Then the following statements are equivalent:
 - 1. (R, D, Π) is an integro-differential algebra;

2.
$$E(xy) = E(x)E(y)$$
 for all $x, y \in R$;

3. ker
$$E = imJ$$
 is an ideal;

4.
$$J(xJ(y)) = xJ(y)$$
 and $J(J(x)y) = J(x)y$ for all $x, y \in R$;

5.
$$J(x\Pi(y)) = x\Pi(y)$$
 and $J(\Pi(x)y) = \Pi(x)y$ for all $x, y \in R$;

6.
$$x\Pi(y) = \Pi(D(x)\Pi(y)) + \Pi(xy) + \lambda\Pi(D(x)y)$$
 and
 $\Pi(x)y = \Pi(\Pi(x)D(y)) + \Pi(xy) + \lambda\Pi(xD(y))$ for all $x, y \in R$;

- 7. (R, D, Π) is a differential Rota-Baxter algebra and $\Pi(E(x)y) = E(x)\Pi(y)$ and $\Pi(xE(y)) = \Pi(x)E(y)$ for all $x, y \in R$;
- 8. (R, D, Π) is a differential Rota-Baxter algebra and J(E(x)J(y)) = E(x)J(y) and J(J(x)E(y)) = J(x)E(y) for all $x, y \in R$.

Equivalent conditions

- ▶ Let (R, D) be a differential algebra of weight λ with a linear operator Π on R such that $D \circ \Pi = id_R$. Denote $J = \Pi \circ D$, called the initialization, and $E = id_R J$, called the evaluation. Then the following statements are equivalent:
 - 1. (R, D, Π) is an integro-differential algebra;

2.
$$E(xy) = E(x)E(y)$$
 for all $x, y \in R$;

3. ker
$$E = imJ$$
 is an ideal;

4.
$$J(xJ(y)) = xJ(y)$$
 and $J(J(x)y) = J(x)y$ for all $x, y \in R$;

5.
$$J(x\Pi(y)) = x\Pi(y)$$
 and $J(\Pi(x)y) = \Pi(x)y$ for all $x, y \in R$;

6.
$$x\Pi(y) = \Pi(D(x)\Pi(y)) + \Pi(xy) + \lambda\Pi(D(x)y)$$
 and
 $\Pi(x)y = \Pi(\Pi(x)D(y)) + \Pi(xy) + \lambda\Pi(xD(y))$ for all $x, y \in R$;

- 7. (R, D, Π) is a differential Rota-Baxter algebra and $\Pi(E(x)y) = E(x)\Pi(y)$ and $\Pi(xE(y)) = \Pi(x)E(y)$ for all $x, y \in R$;
- 8. (R, D, Π) is a differential Rota-Baxter algebra and J(E(x)J(y)) = E(x)J(y) and J(J(x)E(y)) = J(x)E(y) for all $x, y \in R$.
- We will focus on 6: $\Pi(D(x)\Pi(y)) = x\Pi(y) \Pi(xy) \lambda \Pi(D(x)y)$.

Integral by parts revisited

 (R, D, Π) is an integro-differential algebra if and only if (R, D) is a differential algebra, D ∘ Π = id_R and

 $\Pi(D(x)\Pi(y)) - x\Pi(y) + \Pi(xy) + \lambda\Pi(D(x)y) = 0, \quad \forall x, y \in R.$

Integral by parts revisited

 (R, D, Π) is an integro-differential algebra if and only if (R, D) is a differential algebra, D ∘ Π = id_R and

 $\Pi(D(x)\Pi(y)) - x\Pi(y) + \Pi(xy) + \lambda\Pi(D(x)y) = 0, \quad \forall x, y \in R.$

Theorem Let (A, D) be a differential algebra. Let I_{ID} be the differential Rota-Baxter ideal of III(A) generated by elements in the above equations. Then the quotient differential Rota-Baxter algebra III(A)/I_{ID} is the free integro-differential algebra on (A, D).

Integral by parts revisited

(R, D, Π) is an integro-differential algebra if and only if (R, D) is a differential algebra, D ∘ Π = id_R and

 $\Pi(D(x)\Pi(y)) - x\Pi(y) + \Pi(xy) + \lambda\Pi(D(x)y) = 0, \quad \forall x, y \in R.$

- Theorem Let (A, D) be a differential algebra. Let I_{ID} be the differential Rota-Baxter ideal of III(A) generated by elements in the above equations. Then the quotient differential Rota-Baxter algebra III(A)/I_{ID} is the free integro-differential algebra on (A, D).
- The last equation suggests the rewriting rule

 $\Pi(D(x)\Pi(y))\mapsto_{ID} x\Pi(y)-\Pi(xy)-\lambda\Pi(D(x)y).$

Working in the free differential Rota-Baxter algebra III(*A*) where (A, d) is a differential algebra, this means that d(x) should not appear in Π . More precisely, in $\mathfrak{a} = a_0 \otimes a_1 \otimes \cdots \otimes a_n$, $a_1, \cdots, a_{n-1} \in A$ should be "in complement of" d(A), i.e., in A_T such that $A = \operatorname{im} d \oplus A_T$. Such an *A* is called regular.

Let (A, d) be a differential algebra. A linear map Q : A → A is called a quasi-antiderivative if d ∘ Q ∘ d = d and Q ∘ d ∘ Q = Q (and ker Q ≤ A if λ ≠ 0). Then (A, d) is called regular. Take T := Id − d ∘ Q.

- Let (A, d) be a differential algebra. A linear map Q : A → A is called a quasi-antiderivative if d ∘ Q ∘ d = d and Q ∘ d ∘ Q = Q (and ker Q ≤ A if λ ≠ 0). Then (A, d) is called regular. Take T := Id − d ∘ Q.
- (A, d) is regular if and only if $A = A_T \oplus imd = A_J \oplus \ker d$.

- Let (A, d) be a differential algebra. A linear map Q : A → A is called a quasi-antiderivative if d ∘ Q ∘ d = d and Q ∘ d ∘ Q = Q (and ker Q ≤ A if λ ≠ 0). Then (A, d) is called regular. Take T := Id − d ∘ Q.
- (A, d) is regular if and only if $A = A_T \oplus \operatorname{im} d = A_J \oplus \ker d$.
- ► Let X be a well ordered set. For $x_1^{(i_1)}, x_2^{(i_2)} \in \Delta X$ with $x_1, x_2 \in X$ and $i_1, i_2 \ge 0$, define

$$x_1^{(i_1)} \leq x_2^{(i_2)} \Leftrightarrow (x_1,-i_1) \leq (x_2,-i_2)$$
 lexicographically.

For example $x^{(2)} < x^{(1)} < x$. Also, $x_1 < x_2$ implies $x_1^{(i_1)} < x_2^{(i_2)}$ for all $i_1, i_2 \ge 0$.

- Let (A, d) be a differential algebra. A linear map Q : A → A is called a quasi-antiderivative if d ∘ Q ∘ d = d and Q ∘ d ∘ Q = Q (and ker Q ≤ A if λ ≠ 0). Then (A, d) is called regular. Take T := Id − d ∘ Q.
- (A, d) is regular if and only if $A = A_T \oplus \operatorname{im} d = A_J \oplus \ker d$.
- ► Let X be a well ordered set. For $x_1^{(i_1)}, x_2^{(i_2)} \in \Delta X$ with $x_1, x_2 \in X$ and $i_1, i_2 \ge 0$, define

$$x_1^{(i_1)} \leq x_2^{(i_2)} \Leftrightarrow (x_1, -i_1) \leq (x_2, -i_2)$$
 lexicographically.

For example $x^{(2)} < x^{(1)} < x$. Also, $x_1 < x_2$ implies $x_1^{(i_1)} < x_2^{(i_2)}$ for all $i_1, i_2 \ge 0$.

▶ Let $u \in C(\Delta X)$ (free commutative monoid) be in the form

$$u=u_0^{j_0}\cdots u_k^{j_k}, ext{ where } u_0,\cdots,u_k\in\Delta X, u_0>\cdots>u_k ext{ and } j_0,\cdots,j_k\geq 1.$$

Call *u* functional if either $u \in C(X)$ or $j_k > 1$. Let $A = \mathbf{k}[\Delta X]$ and A_T be the linear span of the functional monomials. Then $\mathbf{k}[\Delta X] = A_T \oplus \operatorname{im} d$ and $\mathbf{k}\{X\}$ is a regular differential algebra.

▶ Let (A, d) be a regular differential algebra. Thus $A = imd \oplus A_T$ and A_T is a nonunitary subalgebra of A when $\lambda \neq 0$.

- ▶ Let (*A*, *d*) be a regular differential algebra. Thus $A = imd \oplus A_T$ and A_T is a nonunitary subalgebra of *A* when $\lambda \neq 0$.
- Let

$$\operatorname{III}_{\mathcal{T}}(\mathcal{A}) = \oplus_{n \geq 0} \mathcal{A} \otimes \mathcal{A}_{\mathcal{T}}^{\otimes n} = \mathcal{A} \oplus (\mathcal{A} \otimes \mathcal{A}_{\mathcal{T}}) \oplus \cdots$$

- ▶ Let (A, d) be a regular differential algebra. Thus $A = imd \oplus A_T$ and A_T is a nonunitary subalgebra of A when $\lambda \neq 0$.
- Let

$$\operatorname{III}_{\mathcal{T}}(\mathcal{A}) = \oplus_{n \geq 0} \mathcal{A} \otimes \mathcal{A}_{\mathcal{T}}^{\otimes n} = \mathcal{A} \oplus (\mathcal{A} \otimes \mathcal{A}_{\mathcal{T}}) \oplus \cdots$$

be the **k**-submodule of III(*A*). Since A_T is assumed to be a nonunitary subalgebra if $\lambda \neq 0$, III_T(*A*) is a subalgebra of III(*A*).

Let A_ε := {ε(a) | a ∈ A} be another copy of the algebra A, but with the zero derivation. Then both A and A_ε are K-algebras for K := ker d.

- ▶ Let (A, d) be a regular differential algebra. Thus $A = imd \oplus A_T$ and A_T is a nonunitary subalgebra of A when $\lambda \neq 0$.
- Let

$$\operatorname{III}_{\mathcal{T}}(\mathcal{A}) = \oplus_{n \geq 0} \mathcal{A} \otimes \mathcal{A}_{\mathcal{T}}^{\otimes n} = \mathcal{A} \oplus (\mathcal{A} \otimes \mathcal{A}_{\mathcal{T}}) \oplus \cdots$$

- Let A_ε := {ε(a) | a ∈ A} be another copy of the algebra A, but with the zero derivation. Then both A and A_ε are K-algebras for K := ker d.
- ▶ Define ID(A) := A_ε ⊗_K III_T(A) = A_ε ⊗_K (A ⊗ III⁺(A_T)) to be the tensor product algebra.

- ► Let (A, d) be a regular differential algebra. Thus $A = imd \oplus A_T$ and A_T is a nonunitary subalgebra of A when $\lambda \neq 0$.
- Let

$$\operatorname{III}_{\mathcal{T}}(\mathcal{A}) = \oplus_{n \geq 0} \mathcal{A} \otimes \mathcal{A}_{\mathcal{T}}^{\otimes n} = \mathcal{A} \oplus (\mathcal{A} \otimes \mathcal{A}_{\mathcal{T}}) \oplus \cdots$$

- Let A_ε := {ε(a) | a ∈ A} be another copy of the algebra A, but with the zero derivation. Then both A and A_ε are K-algebras for K := ker d.
- ► Define $ID(A) := A_{\varepsilon} \otimes_{K} III_{T}(A) = A_{\varepsilon} \otimes_{K} (A \otimes III^{+}(A_{T}))$ to be the tensor product algebra.
- Define d_A on ID(A) by the product rule on the tensor product.

- ▶ Let (A, d) be a regular differential algebra. Thus $A = imd \oplus A_T$ and A_T is a nonunitary subalgebra of A when $\lambda \neq 0$.
- Let

$$\operatorname{III}_{\mathcal{T}}(\mathcal{A}) = \oplus_{n \geq 0} \mathcal{A} \otimes \mathcal{A}_{\mathcal{T}}^{\otimes n} = \mathcal{A} \oplus (\mathcal{A} \otimes \mathcal{A}_{\mathcal{T}}) \oplus \cdots$$

- Let A_ε := {ε(a) | a ∈ A} be another copy of the algebra A, but with the zero derivation. Then both A and A_ε are K-algebras for K := ker d.
- ► Define $ID(A) := A_{\varepsilon} \otimes_{K} III_{T}(A) = A_{\varepsilon} \otimes_{K} (A \otimes III^{+}(A_{T}))$ to be the tensor product algebra.
- Define d_A on ID(A) by the product rule on the tensor product.
- ► For $a = d(Q(a)) + T(a) \in A$, define $P_A(a) = Q(a) - \varepsilon(Q(a)) + 1 \otimes T(a)$. For $\mathfrak{a} := a_0 \otimes \cdots \otimes a_n \in A \otimes (A_{\psi})^{\otimes n}$, write $\mathfrak{a} = a_0 \otimes \overline{\mathfrak{a}}, \overline{\mathfrak{a}} \in A_{\psi}^{\otimes n}$. Define $P_A(\mathfrak{a}) = Q(a_0) \otimes \overline{\mathfrak{a}} - P_A(Q(a_0)\overline{\mathfrak{a}}) + 1 \otimes T(a_0) \otimes \overline{\mathfrak{a}}$.

- ► Let (A, d) be a regular differential algebra. Thus $A = imd \oplus A_T$ and A_T is a nonunitary subalgebra of A when $\lambda \neq 0$.
- Let

$$\operatorname{III}_{\mathcal{T}}(\mathcal{A}) = \oplus_{n \geq 0} \mathcal{A} \otimes \mathcal{A}_{\mathcal{T}}^{\otimes n} = \mathcal{A} \oplus (\mathcal{A} \otimes \mathcal{A}_{\mathcal{T}}) \oplus \cdots$$

- Let A_ε := {ε(a) | a ∈ A} be another copy of the algebra A, but with the zero derivation. Then both A and A_ε are K-algebras for K := ker d.
- ▶ Define ID(A) := A_ε ⊗_K III_T(A) = A_ε ⊗_K (A ⊗ III⁺(A_T)) to be the tensor product algebra.
- Define d_A on ID(A) by the product rule on the tensor product.
- ► For $a = d(Q(a)) + T(a) \in A$, define $P_A(a) = Q(a) - \varepsilon(Q(a)) + 1 \otimes T(a)$. For $\mathfrak{a} := a_0 \otimes \cdots \otimes a_n \in A \otimes (A_{\psi})^{\otimes n}$, write $\mathfrak{a} = a_0 \otimes \overline{\mathfrak{a}}, \overline{\mathfrak{a}} \in A_{\psi}^{\otimes n}$. Define $P_A(\mathfrak{a}) = Q(a_0) \otimes \overline{\mathfrak{a}} - P_A(Q(a_0)\overline{\mathfrak{a}}) + 1 \otimes T(a_0) \otimes \overline{\mathfrak{a}}$.
- ► Theorem (Guo-Regensburger-Rosenkranz) The triple $(ID(A), d_u, P_u)$ is the free commutative integre 48 (for orbital algebra on (A, d))

Normal forms of integro-differential algebras

Back to the rewriting rule

 $\Pi(D(x)\Pi(y))\mapsto_{ID} x\Pi(y)-\Pi(xy)-\lambda\Pi(D(x)y).$

Normal forms of integro-differential algebras

Back to the rewriting rule

$$\Pi(D(x)\Pi(y))\mapsto_{ID} x\Pi(y)-\Pi(xy)-\lambda\Pi(D(x)y).$$

Then in the free differential Rota-Baxter algebra III(k{X}). Elements of the form *d*(*x*) should not appear in Π(−Π(*v*)). So for a = a₀ ⊗ a₁ ⊗ ··· ⊗ a_n to be normal, we should have a_i ∈ A_T, 1 ≤ i ≤ n − 1. This is quite hard to verify directly.

Free integro-differential algebras by normal forms

By the method of Gröbner-Shirshov basis, we obtain. Theorem(Gao-Guo-Zheng) Let X be a nonempty well-ordered set and A := k{X}. Let III(k{X}) = III(k[ΔX]), with the derivation d and Rota-Baxter operator P, be the free commutative differential Rota-Baxter algebra of weight λ on X. Let I_{ID} be the differential Rota-Baxter ideal of III(k{X}) generated by

$$S := \{ P(d(u)P(v)) - uP(v) + P(uv) + \lambda P(d(u)v) \mid u, v \in \operatorname{III}(\mathbf{k}\{X\}) \}.$$

Let A_T be the submodule of $A = \mathbf{k}\{X\}$ spanned by functional monomials. Then the composition

$$\mathrm{III}(A)_{\mathcal{T}} := A \oplus \left(\bigoplus_{k \ge 0} A \otimes A_{\mathcal{T}}^{\otimes k} \otimes A \right) \hookrightarrow \mathrm{III}(A) \to \mathrm{III}(A) / I_{ID}$$

of the inclusion and the quotient map is a linear bijection. Thus $III(A)_T$ gives an explicit construction of the free integro-differential algebra $III(A)/I_{ID}$.

References:

* L. Guo and W. Keigher, Baxter algebras and shuffle products, *Adv. Math* **150** (2000), 117-149.

* L. Guo and W. Keigher, On differential Rota-Baxter algebras, *J. Pure Appl. Algebra* **212** (2008), 522-540.

* M. Rosenkranz and G. Regensburger, Solving and factoring boundary problems for linear ordinary differential equations in differential algebra, *J. Symbolic Comput.* **43** (2008), 515-544.

* L. Guo, G. Regensburger and M. Rosenkranz, On integro-differential algebras, *J. Pure Appl. Algebra* **218** (2014), 456-471.

* X. Gao, L. Guo and S. Zheng, Construction of free commutative integro-differential algebras by the method of Gröbner-Shirshov bases, *Jour Algebra and Its Applications* **13** (2014), 1350160.

* X. Gao and L. Guo, Constructions of free commutative integro-Differential algebras, *Lecture Notes in Computer Science* **8372** (2014), 1-22.

References:

* L. Guo and W. Keigher, Baxter algebras and shuffle products, *Adv. Math* **150** (2000), 117-149.

* L. Guo and W. Keigher, On differential Rota-Baxter algebras, *J. Pure Appl. Algebra* **212** (2008), 522-540.

* M. Rosenkranz and G. Regensburger, Solving and factoring boundary problems for linear ordinary differential equations in differential algebra, *J. Symbolic Comput.* **43** (2008), 515-544.

* L. Guo, G. Regensburger and M. Rosenkranz, On integro-differential algebras, *J. Pure Appl. Algebra* **218** (2014), 456-471.

* X. Gao, L. Guo and S. Zheng, Construction of free commutative integro-differential algebras by the method of Gröbner-Shirshov bases, *Jour Algebra and Its Applications* **13** (2014), 1350160.

* X. Gao and L. Guo, Constructions of free commutative integro-Differential algebras, *Lecture Notes in Computer Science* **8372** (2014), 1-22.

Thank You! 53