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Free differential algebras
I Differential algebra

d(xy) = d(x)y + xd(y) + λd(x)d(y).

d(uv) 7→φ d(u)v + ud(v) + λd(u)d(v),∀u, v ∈ R.

This leads to normal forms w with no products in d .

I Thus free commutative differential algebra (of weight λ) on a set X is
of the form

k{X} := k[∆X ], ∆X := {x (n) | x ∈ X ,n ≥ 0}

with concatenation product. Define dX : k{X} → k{X} as follows. Let
w = u1 · · · uk ,ui ∈ ∆(X ), 1 ≤ i ≤ k , be a commutative word from the
alphabet set ∆(X ). If k = 1, so that w = x (n) ∈ ∆(X ), define
dX (w) = x (n+1). If k > 1, recursively define

dX (w) = dX (u1)u2 · · · uk + u1dX (u2 · · · uk ) + λdX (u1)dX (u2 · · · uk ).

Further define dX (1) = 0. Then (k{X},dX ) is the free commutative
differential algebra of weight λ on the set X .
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Integral algebra

I What about integral algebra?

I What is an integral algebra? It is a special case of Rota-Baxter
algebra.

I Let k be a commutative ring. Let λ ∈ k be fixed. A Rota-Baxter
operator of weight λ on a k-algebra R is a linear map P : R → R
such that

P(x)P(y) = P(xP(y)) + P(P(x)y) + λP(xy), ∀ x , y ∈ R.

I References:
1. L. Guo, WHAT IS a Rota-Baxter Algebra, Notice of Amer. Math.
Soc. 56 (2009), 1436-1437.
2. L. Guo, An Introduction to Rota-Baxter Algebra, International
Press, 2012.
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The integration operator I
I For continuous functions f (x) and g(x), define

F (x) := I[f ](x) :=

∫ x

0
f (s)ds,G(x) := I[g](x) :=

∫ x

0
g(s)ds. (1)

Then F ′(x) = f (x),G′(x) = g(x).

I The integration by parts formula∫ x

0
F ′(t)G(t)dt = F (t)G(t)

∣∣x
0 −

∫ x

0
F (t)G′(t) dt

can be “rewritten” as∫ x

0
f (t)G(t) dt = F (x)G(x)−

∫ x

0
F (t)g(t) dt .

I Using Eq. (1), get I[f I[g]](x) = I[f ]I[g](x)− I[I[f ] g](x).

I[f I[g]] = I[f ]I[g]− I[I[f ] g], I[f ]I[g] = I[f I[g]] + I[I[f ] g].

I An integral algebra is an algebra R together with a linear operator
I : R → R that satisfies

I[f ]I[g] = I[f I[g]] + I[g I[f ]], ∀f ,g ∈ R.
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Free commutative Rota-Baxter algebras

I Rota-Baxter algebra

P(x)P(y) = P(P(x)y) + P(xP(y)) + λP(xy).

P(x)P(y) 7→P P(P(x)y) + P(xP(y)) + λP(xy).

This leads to normal forms w with no subwords of the form P(x)P(y).

I In a commutative Rota-Baxter algebra, this means

a = a0P(a1P(a2P(· · ·P(an) · · · ))),ai ∈ A.

a = a0 ⊗ a1 ⊗ · · · ⊗ an ∈ A⊗(n+1).

The product is given by

ab = (a0b0)⊗
(
(a1 ⊗ · · ·an)Xλ(b1 ⊗ · · · ⊗ bm)

)
.

Xλ is a shuffle like product, called mixable shuffle product.

12



Free commutative Rota-Baxter algebras

I Rota-Baxter algebra

P(x)P(y) = P(P(x)y) + P(xP(y)) + λP(xy).

P(x)P(y) 7→P P(P(x)y) + P(xP(y)) + λP(xy).

This leads to normal forms w with no subwords of the form P(x)P(y).
I In a commutative Rota-Baxter algebra, this means

a = a0P(a1P(a2P(· · ·P(an) · · · ))),ai ∈ A.

a = a0 ⊗ a1 ⊗ · · · ⊗ an ∈ A⊗(n+1).

The product is given by

ab = (a0b0)⊗
(
(a1 ⊗ · · ·an)Xλ(b1 ⊗ · · · ⊗ bm)

)
.

Xλ is a shuffle like product, called mixable shuffle product.

13



Mixable shuffle product

I Let A be a commutative k-algebra. Let X+(A) =
⊕

n≥0 A⊗n(= T (A)).
Consider the following products on X+(A).

I A shuffle of a = a1 ⊗ . . .⊗ am and b = b1 ⊗ . . .⊗ bn is a tensor list of
ai and bj without change the order of the ais and bjs.

I A mixable shuffle is a shuffle in which some pairs ai ⊗ bj are merged
into aibj .
Define (a1 ⊗ . . .⊗ am)Xλ(b1 ⊗ . . .⊗ bn) to be the sum of mixable
shuffles of a1 ⊗ . . .⊗ am and b1 ⊗ . . .⊗ bn.

I Example:

a1Xλ(b1 ⊗ b2)

= a1 ⊗ b1 ⊗ b2 + b1 ⊗ a1 ⊗ b2 + b1 ⊗ b2 ⊗ a1 (shuffles)

+ a1b1 ⊗ b2 + b1 ⊗ a1b2 (merged shuffles).
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Quasi-shuffle product

I The mixable shuffle product can also be defined recursively by the
quasi-shuffle product (Hoffman, 2000).

I Let X+(A) =
⊕

n≥0 A⊗n(= T (A)).
I Let 1k ∈ k denote the unit. Let a = a1 ⊗ · · · ⊗ am ∈ A⊗m and

b = b1 ⊗ · · · ⊗ bn ∈ A⊗n. Write a = a1 ⊗ a′, b = b1 ⊗ b′. We have

(a1⊗a′)X(b1⊗b′) = a1⊗(a′X(b1⊗b′)))+b1⊗((a1⊗a′)Xb′)+a1b1⊗(a′Xb′),

with the convention that if a = a1, then a′ multiples as the identity.
I Example.

a1X(b1⊗b2) = a1⊗ (a′X(b1⊗b2)) + b1⊗ (a1Xb2) + (a1b1)⊗ (a′Xb2)
= a1 ⊗ (b1 ⊗ b2) + b1 ⊗ (a1Xb2) + (a1b1)⊗ b2.
= a1 ⊗ b1 ⊗ b2 + b1 ⊗ a1 ⊗ b2 + b1 ⊗ b2 ⊗ a1 + b1 ⊗ a1b2 + a1b1 ⊗ b2.
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Free commutative Rota-Baxter algebras
I A free Rota-Baxter algebra over another algebra A is a

Rota-Baxter algebra X(A) with an algebra homomorphism
jA : A→X(A) such that for any Rota-Baxter algebra R and algebra
homomorphism f : A→ R, there is a unique Rota-Baxter algebra
homomorphism making the diagram commute

A
jA //

f

''

X(A)

f̄
��

R

I When A = k[X ], we have the free Rota-Baxter algebra over X .
I Recall (X+(A),Xλ) is an associative algebra. Then the tensor

product algebra (scalar extension) X(A) := A⊗X+(A) is an
A-algebra.
Theorem (Guo-Keigher) X(A) with the shift operator P(a) := 1⊗ a is
the free commutative RBA over A.
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Examples
I The free commutative Rota-Baxter algebra on k (i.e., on the empty

set) is
X(∅) = ⊕k≥1kak ,

aman =

min(m,n)∑
r=0

(
m+n−r

m

)(
m

r

)
λr 1⊗(m+n−r).

When λ = 0, we obtain the divided powers.

I The free commutative integral algebra (Rota-Baxter algebra of
weight 0) on k[x ] (i.e., on one generator x):
Let I :=

∐
k≥1 Nk

≥0. For I = (i0, · · · , ik ) ∈ I, denote

x⊗I := x i0 ⊗ · · · ⊗ x ik .

Then X(k[x ]) = ⊕I∈Ikx⊗I .

For x⊗I = x i0 ⊗ x I and x⊗J = x j0 ⊗ xJ , we have

x⊗Ix⊗J = x i0+j0 ⊗
(

x I
XxJ

)
,

where X is the shuffle product (partitions and multiple zeta values).
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Differential Rota-Baxter algebra
I A differential Rota-Baxter algebra (DRB) is a triple (R,d ,P) where

(R,d) is a differential algebra (of weight λ), (R,P) is a Rota-Baxter
algebra (of weight λ) such that d ◦ P = idR.

I These give three rewriting rules that imply that a normal form for the
DRB algebra is of the form x := x0 ⊗ x1 ⊗ · · · ⊗ xn, xi ∈ ∆X .

I More generally, let (A,d) be a differential algebra of weight λ. On the
free commutative Rota-Baxter algebra (X(A),PA), define

dA : X(A)→X(A),

dA(x0 ⊗ x1 ⊗ · · · ⊗ xn) = d0(x0)⊗ x1 ⊗ . . .⊗ xn
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Integro-differential algebras

I Note that the “integral by parts” formula in Rota-Baxter algebra

I(f )I(g) = I(fI(g)) + I(I(f )g)

is a “purified” version of the original formula

FG = I(F ′G) + I(FG′)

by taking the differentiation out of the picture. This needs to be put
back in order to understand fully the algebraic structure in differential
equations.
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Definition of Integro-differential Algebras

I An integro-differential k-algebra of weight λ (also called a
λ-integro-differential k-algebra) is a differential k-algebra (R,D) of
weight λ with a linear operator Π: R → R such that

D ◦ Π = idR

and the initialization
J : = Π ◦ D

satisfies

J(x)J(y) = J(x)y + xJ(y)− J(xy) for all x , y ∈ R.
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Equivalent conditions

I Let (R,D) be a differential algebra of weight λ with a linear operator
Π on R such that D ◦ Π = idR. Denote J = Π ◦ D, called the
initialization, and E = idR − J, called the evaluation. Then the
following statements are equivalent:

1. (R,D,Π) is an integro-differential algebra;
2. E(xy) = E(x)E(y) for all x , y ∈ R;
3. ker E = imJ is an ideal;
4. J(xJ(y)) = xJ(y) and J(J(x)y) = J(x)y for all x , y ∈ R;
5. J(xΠ(y)) = xΠ(y) and J(Π(x)y) = Π(x)y for all x , y ∈ R;
6. xΠ(y) = Π(D(x)Π(y)) + Π(xy) + λΠ(D(x)y) and

Π(x)y = Π(Π(x)D(y)) + Π(xy) + λΠ(xD(y)) for all x , y ∈ R;
7. (R,D,Π) is a differential Rota-Baxter algebra and

Π(E(x)y) = E(x)Π(y) and Π(xE(y)) = Π(x)E(y) for all x , y ∈ R;
8. (R,D,Π) is a differential Rota-Baxter algebra and

J(E(x)J(y)) = E(x)J(y) and
J(J(x)E(y)) = J(x)E(y) for all x , y ∈ R.

I We will focus on 6: Π(D(x)Π(y)) = xΠ(y)− Π(xy)− λΠ(D(x)y).
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Integral by parts revisited
I (R,D,Π) is an integro-differential algebra if and only if (R,D) is a

differential algebra, D ◦ Π = idR and

Π(D(x)Π(y))− xΠ(y) + Π(xy) + λΠ(D(x)y) = 0, ∀x , y ∈ R.

I Theorem Let (A,D) be a differential algebra. Let IID be the differential
Rota-Baxter ideal of X(A) generated by elements in the above
equations. Then the quotient differential Rota-Baxter algebra
X(A)/IID is the free integro-differential algebra on (A,D).

I The last equation suggests the rewriting rule

Π(D(x)Π(y)) 7→ID xΠ(y)− Π(xy)− λΠ(D(x)y).

Working in the free differential Rota-Baxter algebra X(A) where
(A,d) is a differential algebra, this means that d(x) should not
appear in Π. More precisely, in a = a0 ⊗ a1 ⊗ · · · ⊗ an,
a1, · · · ,an−1 ∈ A should be “in complement of” d(A), i.e., in AT such
that A = imd ⊕ AT . Such an A is called regular.
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Regular differential algebras
I Let (A,d) be a differential algebra. A linear map Q : A→ A is called

a quasi-antiderivative if d ◦Q ◦ d = d and Q ◦ d ◦Q = Q (and
ker Q ≤ A if λ 6= 0). Then (A,d) is called regular. Take
T := Id− d ◦Q.

I (A,d) is regular if and only if A = AT ⊕ imd = AJ ⊕ ker d .
I Let X be a well ordered set. For x (i1)

1 , x (i2)
2 ∈ ∆X with x1, x2 ∈ X and

i1, i2 ≥ 0, define

x (i1)
1 ≤ x (i2)

2 ⇔ (x1,−i1) ≤ (x2,−i2) lexicographically.

For example x (2) < x (1) < x . Also, x1 < x2 implies x (i1)
1 < x (i2)

2 for all
i1, i2 ≥ 0.

I Let u ∈ C(∆X ) (free commutative monoid) be in the form

u = uj0
0 · · · u

jk
k , where u0, · · · ,uk ∈ ∆X ,u0 > · · · > uk and j0, · · · , jk ≥ 1.

Call u functional if either u ∈ C(X ) or jk > 1. Let A = k[∆X ] and AT
be the linear span of the functional monomials. Then
k[∆X ] = AT ⊕ imd and k{X} is a regular differential algebra.
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Construction of free integro-differential algebras
I Let (A,d) be a regular differential algebra. Thus A = imd ⊕ AT and

AT is a nonunitary subalgebra of A when λ 6= 0.

I Let
XT (A) = ⊕n≥0A⊗ A⊗n

T = A⊕ (A⊗ AT )⊕ · · ·
be the k-submodule of X(A). Since AT is assumed to be a
nonunitary subalgebra if λ 6= 0, XT (A) is a subalgebra of X(A).

I Let Aε := {ε(a) |a ∈ A} be another copy of the algebra A, but with the
zero derivation. Then both A and Aε are K -algebras for K := ker d .

I Define ID(A) := Aε ⊗K XT (A) = Aε ⊗K (A⊗X+(AT )) to be the
tensor product algebra.

I Define dA on ID(A) by the product rule on the tensor product.
I For a = d(Q(a)) + T (a) ∈ A, define

PA(a) = Q(a)− ε(Q(a)) + 1⊗ T (a).
For a := a0 ⊗ · · · ⊗ an ∈ A⊗ (Aψ)⊗n, write a = a0 ⊗ a, a ∈ A⊗n

ψ . Define

PA(a) = Q(a0)⊗ a− PA(Q(a0)a) + 1⊗ T (a0)⊗ a.

I Theorem (Guo-Regensburger-Rosenkranz) The triple (ID(A),du,Pu)
is the free commutative integro-differential algebra on (A,d).
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I Let (A,d) be a regular differential algebra. Thus A = imd ⊕ AT and

AT is a nonunitary subalgebra of A when λ 6= 0.
I Let

XT (A) = ⊕n≥0A⊗ A⊗n
T = A⊕ (A⊗ AT )⊕ · · ·

be the k-submodule of X(A). Since AT is assumed to be a
nonunitary subalgebra if λ 6= 0, XT (A) is a subalgebra of X(A).

I Let Aε := {ε(a) |a ∈ A} be another copy of the algebra A, but with the
zero derivation. Then both A and Aε are K -algebras for K := ker d .

I Define ID(A) := Aε ⊗K XT (A) = Aε ⊗K (A⊗X+(AT )) to be the
tensor product algebra.

I Define dA on ID(A) by the product rule on the tensor product.
I For a = d(Q(a)) + T (a) ∈ A, define

PA(a) = Q(a)− ε(Q(a)) + 1⊗ T (a).
For a := a0 ⊗ · · · ⊗ an ∈ A⊗ (Aψ)⊗n, write a = a0 ⊗ a, a ∈ A⊗n

ψ . Define

PA(a) = Q(a0)⊗ a− PA(Q(a0)a) + 1⊗ T (a0)⊗ a.

I Theorem (Guo-Regensburger-Rosenkranz) The triple (ID(A),du,Pu)
is the free commutative integro-differential algebra on (A,d).48



Normal forms of integro-differential algebras

I Back to the rewriting rule

Π(D(x)Π(y)) 7→ID xΠ(y)− Π(xy)− λΠ(D(x)y).

I Then in the free differential Rota-Baxter algebra X(k{X}). Elements
of the form d(x) should not appear in Π(−Π(v)). So for
a = a0 ⊗ a1 ⊗ · · · ⊗ an to be normal, we should have
ai ∈ AT ,1 ≤ i ≤ n − 1. This is quite hard to verify directly.
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Normal forms of integro-differential algebras

I Back to the rewriting rule

Π(D(x)Π(y)) 7→ID xΠ(y)− Π(xy)− λΠ(D(x)y).

I Then in the free differential Rota-Baxter algebra X(k{X}). Elements
of the form d(x) should not appear in Π(−Π(v)). So for
a = a0 ⊗ a1 ⊗ · · · ⊗ an to be normal, we should have
ai ∈ AT ,1 ≤ i ≤ n − 1. This is quite hard to verify directly.
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Free integro-differential algebras by normal forms
I By the method of Gröbner-Shirshov basis, we obtain.

Theorem(Gao-Guo-Zheng) Let X be a nonempty well-ordered set
and A := k{X}. Let X(k{X}) = X(k[∆X ]), with the derivation d and
Rota-Baxter operator P, be the free commutative differential
Rota-Baxter algebra of weight λ on X . Let IID be the differential
Rota-Baxter ideal of X(k{X}) generated by

S := {P(d(u)P(v))−uP(v) + P(uv) +λP(d(u)v) | u, v ∈X(k{X})}.

Let AT be the submodule of A = k{X} spanned by functional
monomials. Then the composition

X(A)T := A⊕

⊕
k≥0

A⊗ A⊗k
T ⊗ A

 ↪→X(A)→X(A)/IID

of the inclusion and the quotient map is a linear bijection. Thus
X(A)T gives an explicit construction of the free integro-differential
algebra X(A)/IID.
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