
Communication

LI II O w

dimensional
approach
to parallel matrix
multiplication

by R. C. Agarwal
S. M. Balle
F. G. Gustavson
M. Joshi
P. Palkar

A three-dimensional (3D) matrix multiplication
algorithm for massively parallel processing
systems is presented. The P processors are
configured as a "virtual" processing cube with
dimensions p^, p^, and p^ proportional to the
matrices' dimensions—M, N, and K. Each
processor performs a single local matrix
multiplication of size Mlp^ x Nlp^ x Klp^.
Before the local computation can be carried
out, each subcube must receive a single
submatrix of A and S. After the single matrix
multiplication has completed, Klp^ submatrices
of this product must be sent to their respective
destination processors and then summed
together with the resulting matrix C. The 3D
parallel matrix multiplication approach has a
factor of P *̂ less communication than the 2D
parallel algorithms. This algorithm has been
implemented on IBM POWERparallel™ SP2™
systems (up to 216 nodes) and has yielded
close to the peak performance of the machine.
The algorithm has been combined with
Winograd's variant of Strassen's algorithm to
achieve performance which exceeds the
theoretical peak of the system. (We assume
the MFLOPS rate of matrix multiplication to be
2MNK.)

1. Introduction
A parallel high-performance matrix multiplication
P_GEM1VI* algorithm based on a three-dimensional
approach is presented. For the parallel case, the algorithm
is a natural generalization of the serial _GEMM routine.
_GEMM computes C = ^ -I- tK)p(A)op(B) where a, fi are
scalars. A, B, and C are matrices, and op(X) stands for X,
X'', or X*̂ . (Superior T indicates transpose, and superior C
conjugate transpose.) The algorithm described has been
implemented in both the double-precision and complex
double-precision IEEE format, as well as for all
combinations of matrix products involving matrices in their
normal form, their transposed form, and their conjugates.
For all of these data combinations, performance was the
same.

Most parallel matrix multiplication algorithms used as
building blocks in scientific applications are 2D algorithms.
The primary issue is that the 3D algorithm moves a factor
of P * less data than the known 2D algorithms. From this
standpoint, the 3D algorithms appear to be a better choice
than 2D algorithms. We show, in Section 3, that the 3D
algorithm yields better performance than the 2D
ScaLAPACK PDGEMM algorithm [2].

The literature describing matrix multiplication algorithms
is very extensive. Some descriptions are given by Demmel,

' The _ symbol stands for S, D, C, and Z [1, 2]; i.e., single, douhle, complex stogie,
and complex double (Z) precision.

^̂ Copyright 1995 by InteTnational Business Machines Corporation. Copying In printed fonn for private use is permitted without payment of royalty provided tliat (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Petmission to mpublish any other

portion of this paper must be obtained from the Editor.

0018^46/95/$3.00 O 199S IBM

575

IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 199.') R. C. AGARWAL ET AL.

Heath, and van der Vorst [3], by Choi, Dongarra, and
Walker [4], by Huss-Ledennan, Jacobson, and Tsao [5],
by Agarwal, Gustavson, and Zubair [6], and by van de
Geijn and Watts [7]. Aggarwal, Chandra, and Snir [8] show
that a 3D-type algorithm is optimal for an LPRAM.
Johnsson and Ho [9] and Ho, Johnsson, and Edelman [10]
discuss 3D and other types of algorithms for Boolean
cubes and hypercubes. Gupta and Kumar [11] discuss
the scalability of many parallel matrix multiplication
algorithms, including 2D as well as 3D versions. Like other
authors, they demonstrate that the communication ratio
of 3D over 2D is P''*. For distributed memory message-
passing computers, our algorithm has the least amount of
communication of all the 3D algorithms cited. It reduces
the amount of communication required by the other
3D algorithms by a factor of 5/3 [11]. Lemmerling,
Vanhamme, and Ho^ describe several ID, 2D, and
some new 3D parallel algorithms. To the best of our
knowledge, prior work has not addressed the problem of
minimizing communication for matrices of arbitrary shape.
In this paper, we provide a solution which minimizes
communication for such matrices.

Our 3D algorithm can be combined in a straightforward
manner with the 0(n^'*') matrix multiplication scheme
developed by Strassen, thereby allowing it to take full
advantage of the latter's high efficiency [1]. It is also
possible to use Strassen's algorithm on the global matrices
down to a level where the matrices fit into the local
memory of the node, as described by Agarwal et al.'
Bailey [12], Grayson, Shah, and van de Geijn [13], Balle
[14, Section 2] and Douglas et al. [15] describe 2D
implementations of Strassen's method.

In Section 2, we outline the 3D algorithm and its
Strassen variation. Section 3 also demonstrates that the
3D approach yields very high performance on the IBM
POWERparallel™ SP2™ system. Section 4 presents
concluding remarks.

2. A 3D parallel P_GEMM algorithm
A matrix multiplication of size (M, N, K) requires MNK
multiply-adds. This can be represented by a rectangular
parallelepiped of size (M, N, K) in the computing space.
To achieve computational load balance using/* = p^PjP^,
processors, each processor must compute 1/Pth of this
computational rectangular parallelepiped. Thus, the volume
of the computational space assigned to each processor is
fixed at MNK/P. This guarantees computational load
balance if each such processor performs an identical

computation of size MNK/P. In addition, to minimize
communication, each processor must do this much
computation with a minimum amount of data movement
(communication). Assuming that each prcwessor does a
subcube {of size m = n = k) of the computation, the
three faces of the subcube (corresponding to equal square
submatrices of A, B, and C) represent a data movement of
size 3Pm^, since these submatrices must be brought/sent
to these P subcubes in order to perform the P DGEMM
computations. We note that data movement of m' numbers
is proportional to the area of a square of size m. Hence,
our problem of minimal data communication can be viewed
as the classical problem of muiimizing surface area for a
given volume. The optimal solution of this problem is that
each of the P rectangular parallelepipeds must be a subcube
of identical sides. This fact estabUshes a lower bound on
the amount of communication necessary to perform this
parallel multiplication; namely, 3Pm^. Assuming a three-
dimensional processing grid of size (p^, p^, p^), the
subparallelepiped computed at each processor is of size
(Mlp^, Nlp^, Klp^. To minimize communication, the
following relationship must be true: Mlp^ = m =
Nlp^ = n = K/pj = k. Finally, we note that when this
relationship holds, the algorithm presented in this paper
achieves this lower bound; i.e., the total amount of data
moved for A, B, and C is Pm^.

For simplicity, we consider a 2 x 2 x 2 processing
cube. (This example is consistent with a description of the
general case; i.e., no information that would be given by
such a description is altered or omitted.) The underlying
idea can be described in terms of block matrices for a
single 2 x 2 block partitioning of the matrices A, B, and C.
Let

. _ Moo ^011 „ _ ("m "oi| p _ J w 011

(1)

where A is an M by ^ matrix, B is a X̂ by iV matrix, and
C is an M by A?̂ matrix. If we let /3 = 0.0 and a = 1.0, we
get C = AB; i.e.,

ÔÔOl + AAi
(2)

576

2 P, Lemmeriijig, L- Vanhamm^j and C.-T. Ho, "On Matrix Multiplication
Algorithms Using Message Passing Interface (MPI)," IBM Almaden Research
Laboratory, Sam Jose, CA, 1995, unpublished note.
» R. C. Agarwal, S. M. Balle, F. G. Gustavson, and M. Joshi, "A Three-
Dimenslonal Ajjptoacli to Parallel Matrix Multiplication," Technical Report, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY, 1995; in preparation.

Now the block matrices A^ and B,̂ both have the same
order. Thus, all P = 2' products A.^B^j consist of an
identical computation:

Processor (2,/,/) computes y4jjBĵ ., 0 < i,j,l < 2. (3)

For large K, almost all of the computation cost in
Equation (2) is consumed by the P products in Equation
(3). This is the so-called volume-to-surface effect of matrix
multiplication; for M = iV = _K" we have that matrix
multiplication performs 2iV' FLOPS and matrix addition
performs N^ FLOPS. The computations in Equation (3)

R. C. AGARWAL ET AL. IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995

are perfectly load-balanced. It follows that most of the
computation in Equation (2) is done at 100% efficiency.
The essence of the underlying idea is implicit in Equations
(2) and (3): Form the matrices A., and B^. from the input
data and place them on processor (i, j , I). Computey4.,B,
in parallel, thereby getting 100% efficiency most of the
time the algorithm is computing. Finally, perform the
matrix additions of Equation (2).

The communication part of the algorithm is done by
simultaneously making calls to the MPI collective
communication primitives all-gather and all-to-all [16, 17].
For the performance studies presented in Section 3, we
used the equivalent MPL (Message Passing Library)
primitives mp_concat and mpJudex, respectively [18].
In the following, we define P to be the total number
of processors, andp^, p^, erndp^ to be the number of
processors in the d^, d^, and d^ directions, respectively—
thereby having P = p^p^p^. The indices / , ; , and / are
used to identify the processors in the d^, d^, and d^
directions, respectively: Q < i < p^, Q < j < p^, and
0 < / < p , .

To describe the 3D matrix multiplication algorithm,
we define the following variables: {m,n, k) =
{M/p^, N/p^, Klp^), k^ = klp^, n, = nlp^, and
nj = nlp^. We use the colon notation [19] to describe
submatrices of the global matrices A, B, and C. Thus,
A = A{:, :) = A{<d : M - \, Q : K - \). The indices
{i, j , I) are also used as subscripts to identify submatrices
of A, B, and C. We define

A., = A(im : im -\- m - 1, Ik : Ik -\- k - 1), (4)

Bij = B(lk •.lk-hk-l,jn:jn-^n- 1), (5)

C. = C{im : im + m - l,jn :jn+n- 1), (6)

with 0 < J < P j , 0 < ;' < p^, and 0 < I < p^.
We choose to have the matrix A associated with the

rfj-rfj plane, with d^ being the orthogonal dimension, as
illustrated in Figure 1. The matrix B is similarly laid out in
the rfj-dj plane, having d^ as its orthogonal dimension.
The d^-d^ plane holds the output matrix C, thereby
making d^ its orthogonal dimension. We must define
certain submatrices of the submatrices^.,, B,., and C...
We consider the submatrix^., and partition its k columns
into/»2 sets, each of size k^, of contiguous columns. We
use the notation^.,(/), 0 < j < p^, to denote the
submatrix ofA-i that consists of the;th set of contiguous
columns of^.,. Similarly, we needB,.(j), 0 < i < p^, and
C.j{l), 0 < I < p^. This is a 3D block distribution, where
the (rows, columns) of A are distributed on a {p^, P2P})
grid (Figure 1) and similarly for the other matrices B and
C. In particular, all matrices are equidistributed. These
submatrices of submatrices are easily defined in terms of
the colon notation:

2 6

3 7

^00

^ 0

^ 0 ,

^n

" i t " i t

[,ay()ul ol (he global matrix A on a three-dimensional processor
grid of dimension (p = 2, p = 2, p = 2) after Step 2 of the
algorithm. The boldface numbers 0-7 indicate the processor labels.

3
s

M

-
0

x"
rrt

s-
0

\e

C

=̂
t -

0

s
0

g
a

-̂ -

0

0

^

0

"̂
l «

Group (00) Group (10) Group (01)

v;u;4.va:«^i' %''^im>4^''/.t

Group (11)

^ MymM '" rf!,",« ,*W c

Input matrices A ,̂(/) distnbuted across p^p^ groups G,, each of
size;? . The boldface numbers 0-7 indicate the processor labels.

Bjfi) = B,.(:, OTj : in^ + n^- 1),

and

C.m = Ci:,ln^:ln^ + n^-\).

(7)

(8)

(9)

Let G.j be the group of processors; on which the
matrices^4_.,(;) reside, 0 <j < p^ (Figure 2). G., and G..
are similarly defined for the group of processors associated 577

IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995 R. C. AGARWAL ET AL.

4 6

5 7

^\ ''.i

/

/

- :

<.

<

<.

- :

<.

<

«'n

^-*^

with Bj. and C... The 3D algorithm features a single matrix
multiplication, A.fl^., on every processor (j, 7, /) . We
define an auxiliary m by n matrix D[to denote this
product (Figure 3):

D'.. = A,B,. (10)

Like the/>3 submatrices C..{1) of C , we need to define
Pj submatrices of £)'. (Figure 4), each consisting of a
contiguous block of n^ columns of D'..:

D'jr) = {A.B,)(:, rn
U"lj> : rn^ + n^ 1), (11)

where 0 < r < Pj.
We are now in position to define the algorithm. The

input matrices that reside on processor (i,;, /) are the
matrices^.,(y'), BJi), and CM) given by Equations (7),
(8), and (9), respectively.

Layout of D on a three-dimensional processor grid of dimension
(p = 2, p = 2, p = 2). The boldface numbers 0-7 indicate the
processor labels.

C"(0)

Generic picture of the matrices D ,.(r) associated with the processor
group G.. consisting of the four matrices D..(0:1) and D' . (0;1) . The
all-to-all gather of Step 5 places D..(0) and D..(0) on processor
a ; ,0)andD"(l)andD; , (l) on processor (i, j , 1).

Algorithm 1: 3D parallel PjGEMM algorithm

1. i. DefinePjPj groups of processes G.^ (0 < i < p^
and 0 < / < p^) [16], each of sizep^, to handle
the communication involving the global matrix A
(Figure 2).

ii. Define p^p^ groups of processes G.. (0 < y < p^
and 0 < / < p^), each of size/7j, to handle the
communication involving the global matrix B.

iii. DefinePj/Jj groups of processes G. (0 < i < p^
and 0 < ;• < p^, each of size/jj, to handle the
communication involving the global matrix C.

2. Simultaneously, for every group G,., defined in Step l.i,
using the input matrices y4.,(;), (0 < 7 < p^, perform
an all-gather [16, Section 4.5]. Each process {i,j, I) of
G;, receives the same submatrixy4j, [Equation (4)].

3. Similarly, simultaneously, for every group G^. defined in
Step l.ii, using the input matrices BJi), (0 < / < p^),
perform an all-gather [16, Section 4.5]. Each process
{i,i, I) of G.. receives the same submatrix of B,.
[Equation (5)].

4. Perform a single local matrix-matrix product
D[. = A.fij. on all P processes, as described by
Equation (10).

5. Simultaneously, for every group G.. defined in Step l.iii,
using the input matrices D'..{r) [Equation (11)], perform
an all-to-all [16, Section 4.8]. Each process (;,;, I) of
G. (0 < / < p^) receives/(j submatrices:

D'M) = (AB)(:, K •• In, + n, - 1). (12)

578

On every process, compute

P,-i

C//) = ;8C//) + a 2 D^)-

R. C. AGARWAL ET AL. IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995

Combining Strassen 's algorithm with the 3D PjGEMM
algorithm
A straightforward variation of the 3D algorithm allows the
use of an 0(n^'^^) matrix multiplication algorithm devised by
Strassen [20]. Our approach is to use the Winograd variant of
Strassen's algorithm to perform the local computation instead
of using _GEMM. In Step 4, we replace the single call to
_GEMM with a call to _GEMMS [1].

3. Performance results
Performance results for the parallel 3D matrix
multiplication are presented. These experiments were
carried out on IBM POWERparallel SP2 systems [21, 22].
MPL message-passing subroutines are used as
communication primitives [18].

Figures 5 and 6 show performance for the 3D parallel
matrix multiplication of the matrix C = C + AB for
PDGEMM and PZGEMM on SP2 Thin2 nodes. All timings
were recorded using the wall clock and hence include the
cost of communication and computation. For each
experiment we report either the wall clock time or the
"nominal MFLOP rate" per processor, or both. Figures 5
and 6 illustrate that even for relatively small matrices
and/or a large number of processors, this approach yields
very high performance.

Table 1 shows representative MFLOPS rates per
processor for the cases C = C + AB, C = C + A^B,
C = C + AB^, dinA C = C + A^B'^ ior real matrices.
Similar results were obtained for other matrix sizes and
different numbers of processors.

The MFLOPS rates presented in Table 2 for the
Winograd variant of the Strassen algorithm are "nominal
rates computed by dividing 2n' (the number of operations
that would be executed by the conventional algorithm) by
the actual compute time. This permits us to illustrate the
improvements achieved by using Strassen's algorithm. In
the complex case, there is an additional advantage, since it
is possible to multiply two complex matrices together using
three real matrix multiplications and five real matrix
additions instead of four real matrix multiplications and
two real matrix additions [1].

In Table 3, we compare the 2D ScaLAPACK PDGEMM
algorithm, as implemented in PESSL [2], with the 3D
algorithm for P = 32 processors. The PESSL numbers
are preliminary numbers. Unfortunately we were not
able to obtain a full set of performance numbers for all
configurations for a large number of processors. The 3D
algorithm shows relatively better performance for small
matrices and more uniform performance for different
values of the TRANS (type) parameter.

4. Conclusion
We have shown that our 3D approach to parallel
matrix multiplication yields very high performance on

c = c + AS
300

250

200

150

100 -

50 -

Theoretical peak performance per node

//o *

- V + X *
0 *

X

+

*
X

1 1

*
X

— 8-node SP2 system
— 16-node
0 27-node
+ 64-node
* 128-node
X 216-node

1 1

1000 2000 3000
Matrix dimension n

4000 5000

Performance results for the 3D parallel double-precision PDGEMM
when using DGEMM [1] for the local call. The global input
matrices are square.

250

S. 200

0.
Q 150

100

50

-

-

*

X

_
+

Theoretical peak performance per node

*
X

o

-1-

X

0

+

1

t g
o
+

•V 216-node SP2 system
0 125-node
X 64-node
* 27-node

1 1 1

1000 2000 3000 4000
Matrix dimension n

5000

Performance results for the 3D parallel double-precision complex
PZGEMM when using ZGEMM [I] for the local call The global
input matnces are square

't^#Si;##3 579

mM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995 R. C. AGARWAL ET AL.

Tabl6 1 MFLOPS rate per processor for the four cases for the double-precision IEEE format.

n

1000
1000
5000

Number.
nodes

8
16

128

of C = = C +AB

196
186
244

C = C + A^B

197
186
244

C = C + AB^

193
184
242

C = C + A^B^

194
185
242

Table 2 Performance results for the 3D matrix multiplication algorithm when using DGEMMS [1] for the local call. The
matrices to be multiplied are square of dimension 5000.

Number
ofSP2
nodes

Double precision * Double-precision complex:*

MFLOPS
per node

Total
MFLOPS

MFLOPS
per node

Total
MFLOPS

27
64

125
216

272
271
243
223

7337
17344
30320
48907

304
369
329
361

8198
23616
41094
77976

•IEEE format.

Table 3 Performance results for the 3D matrix raultipHcation algorithm and the PESSL PDGEMM [2] on a 32-Thin2-node
SP2 system.

Size

500
500
500
500

1000
1000
1000
1000
2000
2000
2M0

imo

Conftgurat

PESSL

8,4
8,4
4,8
2,16
8,4
8,4
4,8
2,16
8,4
8,4
4,8
2,16

'ion

3D

4,4,2
4,2,4
4,4,2
4,4,2
4,4,2
4,4,2
4,4,2
4,4,2
4,4.2
4,4,2
4,4,2
4,4,2

Type

(n,n)
(t,n)
(n,t)
(t,t)
(n,n)
{t,n)
(n,t)
(t.t)
(n,n)
(t,n)
(n,t)
(t.t)

Time

PESSL

0.1140
0.1414
0.1361
0.2953
0.6005
0.6816
0.6848
1.0747
3.3710
3.8243
3.6743
5.3623

3D

0.0606
0.0611
0.0626
0.0625
0.3663
0.3637
0.3692
0.3691
2.4427
2.4574
2.4728
2.4716

MFLOPS per node

jrXii3i3jLi

2192 (68)
1768 (55)
1837 (57)
846 (26)

3330 (104)
2934 (92)
2920 (91)
1860 (58)
4746 (148)
4183 (131)
4354 (136)
2983 (93)

3D

4122 (129)
4088 (128)
3994 (125)
3997 (125)
5460 (171)
5499 (172)
5417 (169)
5417 (169)
6550 (205)
6511 (203)
6470 (202)
6473 (202)

PESSL/3D

1.89
2.33
2.19
4.81
1.64
1.87
1.86
2.91
1.39
1.55
1.49
2.17

580

massively parallel processing systems such as the IBM
POWERparaDel SP2 system. Our algorithm is perfectly
load-balanced for both communication and computation.
We have introduced a new scheme for partitioning
matrices across processors on distributed memory
computers that allows multiple use of the MPI collective
communication primitives all-gather and all-to-all.
Additionally, this choice of data distribution reduces the
amount of communication from that required by the other
3D algorithms by a factor of 5/3. Our 3D algorithm not
only results in less communication but also produces better
node performance, as the submatrices multiplied at each
node are larger and have a better aspect ratio. This is
evidenced by the fact that most 2D algorithms perform P^'^

local matrix multiplications of size NIP', while our 3D
algorithm performs only one local matrix multiplication of
size N/P"^. Our performance results for small matrices
also emphasize this result. Another important result is that
the Winograd variant of Strassen's algorithm can be
incorporated in this algorithm in a straightforward manner
to yield extremely high performance.

The amount of commimication required to reshuffle the
data from 2D to 3D is proportional to the sum of the sizes
of the matrices A, B, and C. The 3D algorithm moves a
factor P'"' less data than the 2D algorithms, which move a
total amount of data equal to P"* times the sum of the
sizes of the A and B matrices. This means that even when
the extra communication cost of reshuffling back and forth

R. C. AGARWAL ET AL. IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995

between 2D and 3D is added to the total communication
cost of the 3D algorithm, it still has less total
communication cost than the 2D algorithms. Further
investigations are still needed with respect to the
reshuffling of data between the two data distributions. We
are interested in 2D block and block cyclic layouts as well
as in only rearranging submatrices of the global matrices
A, B, and C.

The new scheme for partitioning matrices across
processors presented in conjunction with the 3D matrix
multiplication algorithm is applicable to most of the level-3
BLAS. Gustavson has shown that 26 of the 30 level-3
BLAS can be expressed in terms of this 3D distribution.
This work is still ongoing research.

Instead of applying Strassen's algorithm at the local
level, it can be used at the global level. This approach is of
interest when the matrices to be multiplied are too big to
fit into local memory. The variant of the 3D algorithm
using the Strassen algorithm at a global level is on our hst
of future work.

Acknowledgments
We thank V. Kumar from the University of Minnesota and
M. Zubair for their initial ideas regarding the analysis of
communication in the 3D algorithm. We thank C.-T. Ho
and M. Snir for discussions about their 3D algorithms and
for information about the MPI and MPL communication
routines. We thank A. Ho for discussions regarding the
implementation of the MPI primitives on the IBM
POWERparallel SP2 systems.

POWERparallel and SP2 are trademarks of International
Business Machines Corporation.

References
1. IBM Engineering and Scientific Subroutine Library,

Guide and Reference, 1994, Order No. SC23-0526-01;
available through IBM branch offices.

2. IBM Parallel Engineering and Scientific Subroutine
Library, Guide and Reference, April 1995, Order No.
GC23-3837; available through IBM branch offices.

3. J. W. Demmel, M. T. Heath, and H. A. van der Vorst,
"Parallel Numerical Linear Algebra," Acta Numerica
1993, Cambridge University Press, 1993, pp. 111-197.

4. J. Choi, J. J. Dongarra, and D. W. Walker, "PUMMA:
Parallel Universal Matrix Multiplication Algorithms
on Distributed Memory Concurrent Computers,"
Concurrency: Pract. & Exper. 6, 543-570 (October 1994).

5. S. Huss-Lederman, E. M. Jacobson, and A. Tsao,
"Comparison of Scalable Parallel Matrix Multiplication
Libraries," Proceedings of the Scalable Parallel Libraries
Conference, IEEE Computer Society Press, 1994, pp.
142-149.

6. R. C. Agarwal, F. G. Gustavson, and M. Zubair, "A
High-Performance Matrix Multiplication Algorithm on a
Distributed-Memory Parallel Computer, Using Overlapped
Communication," IBM J. Res. Develop. 38, 673-681
(1994).

7. R. van de Geijn and J. Watts, "SUMMA: Scalable
Universal Matrix Multiplication Algorithm," Technical

Report TR 95-13, Department of Computer Science,
University of Texas at Austin, 1995; submitted to
Concurrency: Pract. & Exper.

8. A. Aggarwal, A. K. Chandra, and M. Snir,
"Communication Complexity of PRAMs," Theor.
Comput. Sci. 1, 3-71 (1990).

9. S. L. Johnsson and C.-T. Ho, "Algorithms for Multiplying
Matrices of Arbitrary Shapes Using Shared Memory
Primitives on Boolean Cubes," Technical Report TR-569,
Yale University, New Haven, CT, 1987.

10. C.-T. Ho, S. L. Johnsson, and A. Edelman, "Matrix
Multiplication on Hypercubes Using Full Band Bandwidth
and Constant Storage," Proceedings of the Sixth
Distributed Memory Computing Conference, IEEE
Computer Society Press, 1991, pp. 447-451.

11. A. Gupta and V. Kumar, "Scalability of Parallel
Algorithms for Matrix Multiplication," Technical Report,
Department of Computer Science, University of
Minnesota, 1991; revised April 1994.

12. D. H. Bailey, "Extra High Speed Matrix Multiplication on
the Cray-2," SLAM J. Sci. Stat. Comput. 9, 603-607
(1988).

13. B. Grayson, A. P. Shah, and R. van de Geijn, "A High
Performance Parallel Strassen Implementation," Technical
Report TR 95-24, Department of Computer Science,
University of Texas at Austin, 1995; submitted to Parallel
Proc. Lett.

14. S. M. Balle, "Distributed-Memory Matrix Computations,"
Technical Report UNIC-95-02 (Ph.D. thesis), Danish
Computing Center for Research and Education, Technical
University of Denmark, Copenhagen, February 1995.

15. C. C. Douglas, M. Heroux, G. Slishman, and R. M.
Smith, "GEMMW: A Portable Level 3 BLAS Winograd
Variant of Strassen's Matrix-Matrix Multiply Algorithm,"
/ . Comput. Phys. 110, 1-10 (1994).

16. Message-Passing Interface Forum, MPI: A Message-
Passing Interface Standard, University of Tennessee at
Knoxville, May 2, 1995.

17. W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
Portable Parallel Programming with the Message Passing
Interface, MIT Press, Cambridge, MA, 1994.

18. IBMAIX Parallel Environment: Parallel Programming
Subroutine Reference, 1994, Order No. SH26-7228-02;
available through IBM branch offices.

19. G. H. Golub and C. F. Van Loan, Matrix Computations,
2nd ed., Johns Hopkins University Press, Baltimore, MD,
1989.

20. V. Strassen, "Gaussian Elimination Is Not Optimal,"
Numer. Math. 13, 354-356 (1969).

21. "Scalable Parallel Computing," IBM Syst. J. 34, No. 2
(1995).

22. H. Franke, C. E. Wu, M. Riviere, P. Pattnaik, and M.
Snir, "MPI Programming Environment for IBM SP1/SP2,"
Technical Report RC-19991, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, March 1995.

Received September 13, 1995; accepted for publication
September 27, 1995

581

IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995 R. C. AGARWAL ET AL.

Ramesh C. Agarwal IBM Research Division, Thomas
J. Watson Research Center, P. O. Box 218, Yorktown
Heights, New York 10598 (AGARWAL at YKTVMV,
agarwal@watson.ibm.com). Dr. Agarwal received a B.Tech.
(Hons.) degree from the Indian Institute of Technology (IIT),
Bombay. He was the recipient of The President of India Gold
Medal while there. He received M.S. and Ph.D. degrees from
Rice University and was awarded the Sigma Xi Award for best
Ph.D. thesis in electrical engineering. He has been a member
of the Mathematical Sciences Department at the IBM Thomas
J. Watson Research Center since 1983. Dr. Agarwal has
done research in many areas of engineering, science, and
mathematics and has published over 60 papers in various
journals. Currently, his primary research interest is in the area
of algorithms and architecture for high-performance computing
on workstations and scalable parallel machines. In 1974, Dr.
Agarwal received the Senior Award for best papers from the
IEEE Acoustics, Speech, and Signal Processing (ASSP) group.
He has received several Outstanding Achievement Awards and
a Corporate Award from IBM. Dr. Agarwal is a Fellow of the
IEEE and a member of the IBM Academy of Technology.

Susanne M. Balle IBM Research Division, Thomas
J. Watson Research Center, P. O. Box 218, Yorktown Heights,
New York 10598 {susanne@watson.ibm.com}. Dr. Balle
received her Ph.D. degree in 1995 in computational
mathematics from the Danish Computing Center for Research
and Education and the Technical University of Denmark. She
received an M.S. in mechanical engineering and computational
fluid dynamics from the Technical University of Denmark and
a B.S. in mechanical engineering from Odense Teknikum,
Denmark. From 1992 to 1995 she consulted for the Connection
Machine Scientific Software Library (CMSSL) group at
Thinking Machines Corporation. During fall 1993 and spring
1994, she was a visiting scholar at the Department of
Mathematics at the University of California, Berkeley.
Dr. Balle is currently on a one-year postdoctoral assignment
in the Mathematical Sciences Department. Her primary
research interests are numerical linear algebra, numerical
analysis, and paraUel distributed-memory computation.

Mahesh Joshi IBM Research Division, Thomas J. Watson
Research Center, P. O. Box 218, Yorktown Heights, New York
10598 (clmajo@watson.ibm.com). Mr. Joshi received his
M. Tech. (Integ.) degree in electrical engineering from the
Indian Institute of Technology, Bombay, in 1993. His research
areas for master's work were inteUigent control, fuzzy logic,
and numerical algorithms. He visited the IBM Thomas J.
Watson Research Center from December 1993 to December
1995, on assignment from Tata Information Systems Ltd.
During this visit he worked in the areas of performance
optimization on POWERx architectures, parallel algorithm
design and implementation on IBM's SPx machines, and
technical support for software development. Mr. Joshi is
one of the developers of the IBM Parallel Engineering and
Scientific Subroutines Library (PESSL). He will commence
working toward a Ph.D. degree in computer science at the
University of Minnesota in December 1995. His research areas
during the course of Ph.D. work will be broadly related to
high-performance parallel computing.

Prasad Palkar Visa international, San Mateo, California
94402. Mr. Palkar graduated from the College of Engineering,
Pune, India, in 1987 with a bachelor's degree in electronics
and communications. He received his master of technology
degree in computer science and engineering from the Indian
Institute of Technology, Bombay, in 1990. Mr. Palkar visited
the IBM Thomas J. Watson Research Center in 1993 and in
1994-1995 while he was an employee of Tata Information
Systems Limited. He worked on the ESSL/6000 development
team to develop the initial parallel matrix multiply code. His
interests include performance optimization techniques,
parallelizing compilers, and operating systems. Mr. Palkar
currently works at Visa International, San Mateo, California.

P0WER2 is a trademark of International Business Machines Corporation.

582

Fred G. Gustavson IBM Research Division, Thomas
J. Watson Research Center, P. O. Box 218, Yorktown
Heights, New York 10598 (GUSTAVat YKTVMV,
gustav@watson.ibm.com). Dr. Gustavson is manager of
Algorithms and Architectures in the Mathematical Sciences
Department at the IBM Thomas J. Watson Research Center.
He received his B.S. in physics, and his M.S. and Ph.D.
degrees in applied mathematics, aU from Rensselaer
Polytechnic Institute. He joined IBM Research in 1963. One
of his primary interests has been in developing theory and
programming techniques for exploiting the sparseness inherent
in large systems of linear equations. Dr. Gustavson has
worked in the areas of nonlinear differential equations, linear
algebra, symbolic computation, computer-aided design of
networks, design and analysis of algorithms, and programming
applications. He and his group are currently engaged in
activities that are aimed at exploiting the novel features of the
IBM family of RISC processors. These include hardware
design for divide and square root, new algorithms for
POWER2 for the Engineering and Scientific Subroutine
Library (ESSL) and for other math kernels, and parallel
algorithms for distributed memory processors. Dr. Gustavson
has received an IBM Outstanding Contribution Award, an
IBM Outstanding Innovation Award, an IBM Outstanding
Invention Award, two IBM Outstanding Technical
Achievement Awards, two IBM Corporate Technical
Recognition Awards, and a Research Division Technical
Group Award.

R. C. AGARWAL ET AL. IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995

