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A three-dimensional (3D) matrix multiplication 
algorithm for massively parallel processing 
systems is presented. The P processors are 
configured as a "virtual" processing cube with 
dimensions p^, p^, and p^ proportional to the 
matrices' dimensions—M, N, and K. Each 
processor performs a single local matrix 
multiplication of size Mlp^ x Nlp^ x Klp^. 
Before the local computation can be carried 
out, each subcube must receive a single 
submatrix of A and S. After the single matrix 
multiplication has completed, Klp^ submatrices 
of this product must be sent to their respective 
destination processors and then summed 
together with the resulting matrix C. The 3D 
parallel matrix multiplication approach has a 
factor of P *̂ less communication than the 2D 
parallel algorithms. This algorithm has been 
implemented on IBM POWERparallel™ SP2™ 
systems (up to 216 nodes) and has yielded 
close to the peak performance of the machine. 
The algorithm has been combined with 
Winograd's variant of Strassen's algorithm to 
achieve performance which exceeds the 
theoretical peak of the system. (We assume 
the MFLOPS rate of matrix multiplication to be 
2MNK.) 

1. Introduction 
A parallel high-performance matrix multiplication 
P_GEM1VI* algorithm based on a three-dimensional 
approach is presented. For the parallel case, the algorithm 
is a natural generalization of the serial _GEMM routine. 
_GEMM computes C = ^ -I- tK)p(A)op(B) where a, fi are 
scalars. A, B, and C are matrices, and op(X) stands for X, 
X'', or X*̂ . (Superior T indicates transpose, and superior C 
conjugate transpose.) The algorithm described has been 
implemented in both the double-precision and complex 
double-precision IEEE format, as well as for all 
combinations of matrix products involving matrices in their 
normal form, their transposed form, and their conjugates. 
For all of these data combinations, performance was the 
same. 

Most parallel matrix multiplication algorithms used as 
building blocks in scientific applications are 2D algorithms. 
The primary issue is that the 3D algorithm moves a factor 
of P * less data than the known 2D algorithms. From this 
standpoint, the 3D algorithms appear to be a better choice 
than 2D algorithms. We show, in Section 3, that the 3D 
algorithm yields better performance than the 2D 
ScaLAPACK PDGEMM algorithm [2]. 

The literature describing matrix multiplication algorithms 
is very extensive. Some descriptions are given by Demmel, 

' The _ symbol stands for S, D, C, and Z [1, 2]; i.e., single, douhle, complex stogie, 
and complex double (Z) precision. 
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Heath, and van der Vorst [3], by Choi, Dongarra, and 
Walker [4], by Huss-Ledennan, Jacobson, and Tsao [5], 
by Agarwal, Gustavson, and Zubair [6], and by van de 
Geijn and Watts [7]. Aggarwal, Chandra, and Snir [8] show 
that a 3D-type algorithm is optimal for an LPRAM. 
Johnsson and Ho [9] and Ho, Johnsson, and Edelman [10] 
discuss 3D and other types of algorithms for Boolean 
cubes and hypercubes. Gupta and Kumar [11] discuss 
the scalability of many parallel matrix multiplication 
algorithms, including 2D as well as 3D versions. Like other 
authors, they demonstrate that the communication ratio 
of 3D over 2D is P''*. For distributed memory message-
passing computers, our algorithm has the least amount of 
communication of all the 3D algorithms cited. It reduces 
the amount of communication required by the other 
3D algorithms by a factor of 5/3 [11]. Lemmerling, 
Vanhamme, and Ho^ describe several ID, 2D, and 
some new 3D parallel algorithms. To the best of our 
knowledge, prior work has not addressed the problem of 
minimizing communication for matrices of arbitrary shape. 
In this paper, we provide a solution which minimizes 
communication for such matrices. 

Our 3D algorithm can be combined in a straightforward 
manner with the 0(n^'*') matrix multiplication scheme 
developed by Strassen, thereby allowing it to take full 
advantage of the latter's high efficiency [1]. It is also 
possible to use Strassen's algorithm on the global matrices 
down to a level where the matrices fit into the local 
memory of the node, as described by Agarwal et al.' 
Bailey [12], Grayson, Shah, and van de Geijn [13], Balle 
[14, Section 2] and Douglas et al. [15] describe 2D 
implementations of Strassen's method. 

In Section 2, we outline the 3D algorithm and its 
Strassen variation. Section 3 also demonstrates that the 
3D approach yields very high performance on the IBM 
POWERparallel™ SP2™ system. Section 4 presents 
concluding remarks. 

2. A 3D parallel P_GEMM algorithm 
A matrix multiplication of size (M, N, K) requires MNK 
multiply-adds. This can be represented by a rectangular 
parallelepiped of size (M, N, K) in the computing space. 
To achieve computational load balance using/* = p^PjP^, 
processors, each processor must compute 1/Pth of this 
computational rectangular parallelepiped. Thus, the volume 
of the computational space assigned to each processor is 
fixed at MNK/P. This guarantees computational load 
balance if each such processor performs an identical 

computation of size MNK/P. In addition, to minimize 
communication, each processor must do this much 
computation with a minimum amount of data movement 
(communication). Assuming that each prcwessor does a 
subcube {of size m = n = k) of the computation, the 
three faces of the subcube (corresponding to equal square 
submatrices of A, B, and C) represent a data movement of 
size 3Pm^, since these submatrices must be brought/sent 
to these P subcubes in order to perform the P DGEMM 
computations. We note that data movement of m' numbers 
is proportional to the area of a square of size m. Hence, 
our problem of minimal data communication can be viewed 
as the classical problem of muiimizing surface area for a 
given volume. The optimal solution of this problem is that 
each of the P rectangular parallelepipeds must be a subcube 
of identical sides. This fact estabUshes a lower bound on 
the amount of communication necessary to perform this 
parallel multiplication; namely, 3Pm^. Assuming a three-
dimensional processing grid of size (p^, p^, p^), the 
subparallelepiped computed at each processor is of size 
(Mlp^, Nlp^, Klp^. To minimize communication, the 
following relationship must be true: Mlp^ = m = 
Nlp^ = n = K/pj = k. Finally, we note that when this 
relationship holds, the algorithm presented in this paper 
achieves this lower bound; i.e., the total amount of data 
moved for A, B, and C is Pm^. 

For simplicity, we consider a 2 x 2 x 2 processing 
cube. (This example is consistent with a description of the 
general case; i.e., no information that would be given by 
such a description is altered or omitted.) The underlying 
idea can be described in terms of block matrices for a 
single 2 x 2 block partitioning of the matrices A, B, and C. 
Let 

. _ Moo ^011 „ _ ("m "oi| p _ J w 011 

(1) 

where A is an M by ^ matrix, B is a X̂  by iV matrix, and 
C is an M by A?̂  matrix. If we let /3 = 0.0 and a = 1.0, we 
get C = AB; i.e., 

ÔÔOl + AAi 
(2) 
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Now the block matrices A^ and B,̂  both have the same 
order. Thus, all P = 2' products A.^B^j consist of an 
identical computation: 

Processor (2,/,/) computes y4jjBĵ ., 0 < i,j,l < 2. (3) 

For large K, almost all of the computation cost in 
Equation (2) is consumed by the P products in Equation 
(3). This is the so-called volume-to-surface effect of matrix 
multiplication; for M = iV = _K" we have that matrix 
multiplication performs 2iV' FLOPS and matrix addition 
performs N^ FLOPS. The computations in Equation (3) 
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are perfectly load-balanced. It follows that most of the 
computation in Equation (2) is done at 100% efficiency. 
The essence of the underlying idea is implicit in Equations 
(2) and (3): Form the matrices A., and B^. from the input 
data and place them on processor (i, j , I). Computey4.,B, 
in parallel, thereby getting 100% efficiency most of the 
time the algorithm is computing. Finally, perform the 
matrix additions of Equation (2). 

The communication part of the algorithm is done by 
simultaneously making calls to the MPI collective 
communication primitives all-gather and all-to-all [16, 17]. 
For the performance studies presented in Section 3, we 
used the equivalent MPL (Message Passing Library) 
primitives mp_concat and mpJudex, respectively [18]. 
In the following, we define P to be the total number 
of processors, andp^, p^, erndp^ to be the number of 
processors in the d^, d^, and d^ directions, respectively— 
thereby having P = p^p^p^. The indices / , ; , and / are 
used to identify the processors in the d^, d^, and d^ 
directions, respectively: Q < i < p^, Q < j < p^, and 
0 < / < p , . 

To describe the 3D matrix multiplication algorithm, 
we define the following variables: {m,n, k) = 
{M/p^, N/p^, Klp^), k^ = klp^, n, = nlp^, and 
nj = nlp^. We use the colon notation [19] to describe 
submatrices of the global matrices A, B, and C. Thus, 
A = A{:, :) = A{<d : M - \, Q : K - \). The indices 
{i, j , I) are also used as subscripts to identify submatrices 
of A, B, and C. We define 

A., = A(im : im -\- m - 1, Ik : Ik -\- k - 1), (4) 

Bij = B(lk •.lk-hk-l,jn:jn-^n- 1), (5) 

C. = C{im : im + m - l,jn :jn+n- 1), (6) 

with 0 < J < P j , 0 < ;' < p^, and 0 < I < p^. 
We choose to have the matrix A associated with the 

rfj-rfj plane, with d^ being the orthogonal dimension, as 
illustrated in Figure 1. The matrix B is similarly laid out in 
the rfj-dj plane, having d^ as its orthogonal dimension. 
The d^-d^ plane holds the output matrix C, thereby 
making d^ its orthogonal dimension. We must define 
certain submatrices of the submatrices^.,, B,., and C... 
We consider the submatrix^., and partition its k columns 
into/»2 sets, each of size k^, of contiguous columns. We 
use the notation^.,(/), 0 < j < p^, to denote the 
submatrix ofA-i that consists of the;th set of contiguous 
columns of^.,. Similarly, we needB,.(j), 0 < i < p^, and 
C.j{l), 0 < I < p^. This is a 3D block distribution, where 
the (rows, columns) of A are distributed on a {p^, P2P}) 
grid (Figure 1) and similarly for the other matrices B and 
C. In particular, all matrices are equidistributed. These 
submatrices of submatrices are easily defined in terms of 
the colon notation: 

2 6 
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[,ay()ul ol (he global matrix A on a three-dimensional processor 
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Bjfi) = B,.(:, OTj : in^ + n^- 1), 

and 

C.m = Ci:,ln^:ln^ + n^-\). 

(7) 

(8) 

(9) 

Let G.j be the group of processors; on which the 
matrices^4_.,(;) reside, 0 <j < p^ (Figure 2). G., and G.. 
are similarly defined for the group of processors associated 577 
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with Bj. and C... The 3D algorithm features a single matrix 
multiplication, A.fl^., on every processor (j, 7, / ) . We 
define an auxiliary m by n matrix D[ to denote this 
product (Figure 3): 

D'.. = A,B,. (10) 

Like the/>3 submatrices C..{1) of C , we need to define 
Pj submatrices of £)'. (Figure 4), each consisting of a 
contiguous block of n^ columns of D'..: 

D'jr) = {A.B,)(:, rn 
U"lj> : rn^ + n^ 1), (11) 

where 0 < r < Pj. 
We are now in position to define the algorithm. The 

input matrices that reside on processor (i,;, /) are the 
matrices^.,(y'), BJi), and CM) given by Equations (7), 
(8), and (9), respectively. 

Layout of D on a three-dimensional processor grid of dimension 
(p = 2, p = 2, p = 2). The boldface numbers 0-7 indicate the 
processor labels. 

C"(0) 

Generic picture of the matrices D ,.(r) associated with the processor 
group G.. consisting of the four matrices D..(0:1) and D' . (0;1) . The 
all-to-all gather of Step 5 places D..(0) and D..(0) on processor 
a ; ,0)andD"( l )andD; , ( l ) on processor (i, j , 1). 

Algorithm 1: 3D parallel PjGEMM algorithm 

1. i. DefinePjPj groups of processes G.^ (0 < i < p^ 
and 0 < / < p^) [16], each of sizep^, to handle 
the communication involving the global matrix A 
(Figure 2). 

ii. Define p^p^ groups of processes G.. (0 < y < p^ 
and 0 < / < p^), each of size/7j, to handle the 
communication involving the global matrix B. 

iii. DefinePj/Jj groups of processes G. (0 < i < p^ 
and 0 < ;• < p^, each of size/jj, to handle the 
communication involving the global matrix C. 

2. Simultaneously, for every group G,., defined in Step l.i, 
using the input matrices y4.,(;), (0 < 7 < p^, perform 
an all-gather [16, Section 4.5]. Each process {i,j, I) of 
G;, receives the same submatrixy4j, [Equation (4)]. 

3. Similarly, simultaneously, for every group G^. defined in 
Step l.ii, using the input matrices BJi), (0 < / < p^), 
perform an all-gather [16, Section 4.5]. Each process 
{i,i, I) of G.. receives the same submatrix of B,. 
[Equation (5)]. 

4. Perform a single local matrix-matrix product 
D[. = A.fij. on all P processes, as described by 
Equation (10). 

5. Simultaneously, for every group G.. defined in Step l.iii, 
using the input matrices D'..{r) [Equation (11)], perform 
an all-to-all [16, Section 4.8]. Each process (;,;, I) of 
G. (0 < / < p^) receives/(j submatrices: 

D'M) = (AB )(:, K •• In, + n, - 1). (12) 
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On every process, compute 

P,-i 

C//) = ;8C//) + a 2 D^)-
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Combining Strassen 's algorithm with the 3D PjGEMM 
algorithm 
A straightforward variation of the 3D algorithm allows the 
use of an 0(n^'^^) matrix multiplication algorithm devised by 
Strassen [20]. Our approach is to use the Winograd variant of 
Strassen's algorithm to perform the local computation instead 
of using _GEMM. In Step 4, we replace the single call to 
_GEMM with a call to _GEMMS [1]. 

3. Performance results 
Performance results for the parallel 3D matrix 
multiplication are presented. These experiments were 
carried out on IBM POWERparallel SP2 systems [21, 22]. 
MPL message-passing subroutines are used as 
communication primitives [18]. 

Figures 5 and 6 show performance for the 3D parallel 
matrix multiplication of the matrix C = C + AB for 
PDGEMM and PZGEMM on SP2 Thin2 nodes. All timings 
were recorded using the wall clock and hence include the 
cost of communication and computation. For each 
experiment we report either the wall clock time or the 
"nominal MFLOP rate" per processor, or both. Figures 5 
and 6 illustrate that even for relatively small matrices 
and/or a large number of processors, this approach yields 
very high performance. 

Table 1 shows representative MFLOPS rates per 
processor for the cases C = C + AB, C = C + A^B, 
C = C + AB^, dinA C = C + A^B'^ ior real matrices. 
Similar results were obtained for other matrix sizes and 
different numbers of processors. 

The MFLOPS rates presented in Table 2 for the 
Winograd variant of the Strassen algorithm are "nominal 
rates computed by dividing 2n' (the number of operations 
that would be executed by the conventional algorithm) by 
the actual compute time. This permits us to illustrate the 
improvements achieved by using Strassen's algorithm. In 
the complex case, there is an additional advantage, since it 
is possible to multiply two complex matrices together using 
three real matrix multiplications and five real matrix 
additions instead of four real matrix multiplications and 
two real matrix additions [1]. 

In Table 3, we compare the 2D ScaLAPACK PDGEMM 
algorithm, as implemented in PESSL [2], with the 3D 
algorithm for P = 32 processors. The PESSL numbers 
are preliminary numbers. Unfortunately we were not 
able to obtain a full set of performance numbers for all 
configurations for a large number of processors. The 3D 
algorithm shows relatively better performance for small 
matrices and more uniform performance for different 
values of the TRANS (type) parameter. 

4. Conclusion 
We have shown that our 3D approach to parallel 
matrix multiplication yields very high performance on 
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Tabl6 1 MFLOPS rate per processor for the four cases for the double-precision IEEE format. 

n 

1000 
1000 
5000 

Number. 
nodes 

8 
16 

128 

of C = = C +AB 

196 
186 
244 

C = C + A^B 

197 
186 
244 

C = C + AB^ 

193 
184 
242 

C = C + A^B^ 

194 
185 
242 

Table 2 Performance results for the 3D matrix multiplication algorithm when using DGEMMS [1] for the local call. The 
matrices to be multiplied are square of dimension 5000. 

Number 
ofSP2 
nodes 

Double precision * Double-precision complex:* 

MFLOPS 
per node 

Total 
MFLOPS 

MFLOPS 
per node 

Total 
MFLOPS 

27 
64 

125 
216 

272 
271 
243 
223 

7337 
17344 
30320 
48907 

304 
369 
329 
361 

8198 
23616 
41094 
77976 

•IEEE format. 

Table 3 Performance results for the 3D matrix raultipHcation algorithm and the PESSL PDGEMM [2] on a 32-Thin2-node 
SP2 system. 

Size 

500 
500 
500 
500 

1000 
1000 
1000 
1000 
2000 
2000 
2M0 

imo 

Conftgurat 

PESSL 

8,4 
8,4 
4,8 
2,16 
8,4 
8,4 
4,8 
2,16 
8,4 
8,4 
4,8 
2,16 

'ion 

3D 

4,4,2 
4,2,4 
4,4,2 
4,4,2 
4,4,2 
4,4,2 
4,4,2 
4,4,2 
4,4.2 
4,4,2 
4,4,2 
4,4,2 

Type 

(n,n) 
(t,n) 
(n,t) 
(t,t) 
(n,n) 
{t,n) 
(n,t) 
(t.t) 
(n,n) 
(t,n) 
(n,t) 
(t.t) 

Time 

PESSL 

0.1140 
0.1414 
0.1361 
0.2953 
0.6005 
0.6816 
0.6848 
1.0747 
3.3710 
3.8243 
3.6743 
5.3623 

3D 

0.0606 
0.0611 
0.0626 
0.0625 
0.3663 
0.3637 
0.3692 
0.3691 
2.4427 
2.4574 
2.4728 
2.4716 

MFLOPS per node 

jrXii3i3jLi 

2192 (68) 
1768 (55) 
1837 (57) 
846 (26) 

3330 (104) 
2934 (92) 
2920 (91) 
1860 (58) 
4746 (148) 
4183 (131) 
4354 (136) 
2983 (93) 

3D 

4122 (129) 
4088 (128) 
3994 (125) 
3997 (125) 
5460 (171) 
5499 (172) 
5417 (169) 
5417 (169) 
6550 (205) 
6511 (203) 
6470 (202) 
6473 (202) 

PESSL/3D 

1.89 
2.33 
2.19 
4.81 
1.64 
1.87 
1.86 
2.91 
1.39 
1.55 
1.49 
2.17 

580 

massively parallel processing systems such as the IBM 
POWERparaDel SP2 system. Our algorithm is perfectly 
load-balanced for both communication and computation. 
We have introduced a new scheme for partitioning 
matrices across processors on distributed memory 
computers that allows multiple use of the MPI collective 
communication primitives all-gather and all-to-all. 
Additionally, this choice of data distribution reduces the 
amount of communication from that required by the other 
3D algorithms by a factor of 5/3. Our 3D algorithm not 
only results in less communication but also produces better 
node performance, as the submatrices multiplied at each 
node are larger and have a better aspect ratio. This is 
evidenced by the fact that most 2D algorithms perform P^'^ 

local matrix multiplications of size NIP', while our 3D 
algorithm performs only one local matrix multiplication of 
size N/P"^. Our performance results for small matrices 
also emphasize this result. Another important result is that 
the Winograd variant of Strassen's algorithm can be 
incorporated in this algorithm in a straightforward manner 
to yield extremely high performance. 

The amount of commimication required to reshuffle the 
data from 2D to 3D is proportional to the sum of the sizes 
of the matrices A, B, and C. The 3D algorithm moves a 
factor P'"' less data than the 2D algorithms, which move a 
total amount of data equal to P"* times the sum of the 
sizes of the A and B matrices. This means that even when 
the extra communication cost of reshuffling back and forth 
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between 2D and 3D is added to the total communication 
cost of the 3D algorithm, it still has less total 
communication cost than the 2D algorithms. Further 
investigations are still needed with respect to the 
reshuffling of data between the two data distributions. We 
are interested in 2D block and block cyclic layouts as well 
as in only rearranging submatrices of the global matrices 
A, B, and C. 

The new scheme for partitioning matrices across 
processors presented in conjunction with the 3D matrix 
multiplication algorithm is applicable to most of the level-3 
BLAS. Gustavson has shown that 26 of the 30 level-3 
BLAS can be expressed in terms of this 3D distribution. 
This work is still ongoing research. 

Instead of applying Strassen's algorithm at the local 
level, it can be used at the global level. This approach is of 
interest when the matrices to be multiplied are too big to 
fit into local memory. The variant of the 3D algorithm 
using the Strassen algorithm at a global level is on our hst 
of future work. 
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