Libera's split-shortwave irradiance inversion: concept and initial analysis

Jake Gristey

Cooperative Institute for Research in Environmental Sciences NOAA Chemical Sciences Laboratory

Thanks to: Sebastian Schmidt, Maria Hakuba, Bruce Kindel, Dan Feldman, Xianglei Huang + extended Libera science team

CERES/Libera Joint Science Team Meeting

Outline

- Background
 - Shortwave Angular Distribution Model (ADM) basics
 - The challenge of split-shortwave ADMs for Libera
- Concept
 - Proposed approach
 - Utilizing the Libera camera
- Initial analysis
 - Wavelength-to-split-shortwave relationships
 - Scene property dependence
- Machine learning for imager-independent split-shortwave fluxes

11 May 2021

CERES/Libera Joint Science Team Meeting

Outline

- Background
 - Shortwave Angular Distribution Model (ADM) basics
 - > The challenge of split-shortwave ADMs for Libera
- Concept
 - Proposed approach
 - Utilizing the Libera camera
- Initial analysis
 - Wavelength-to-split-shortwave relationships
 - Scene property dependence
- Machine learning for imager-independent split-shortwave fluxes

Work-in-progress

11 May 2021

Shortwave radiance-to-flux conversion: the basics

Solar-viewing geometry

- Solar zenith angle (Θ_s)
- Viewing zenith angle (Θ_{v})
- Relative azimuth angle (ϕ)

Jake.J.Gristey@noaa.gov

Shortwave radiance-to-flux conversion: the basics

Solar-viewing geometry

- Solar zenith angle (Θ_s)
- Viewing zenith angle (Θ_{v})
- Relative azimuth angle (ϕ)

$$\mathsf{F}(\boldsymbol{\theta}_{\mathsf{S}}) = \int_{0}^{2\pi} \int_{0}^{\pi/2} \mathsf{I}(\boldsymbol{\theta}_{\mathsf{S}}, \boldsymbol{\theta}_{\mathsf{V}}, \boldsymbol{\phi}) \cos \boldsymbol{\theta}_{\mathsf{V}} \sin \boldsymbol{\theta}_{\mathsf{V}} d\boldsymbol{\theta}_{\mathsf{V}} d\boldsymbol{\phi}$$

Jake.J.Gristey@noaa.gov

Shortwave radiance-to-flux conversion: the basics

Solar-viewing geometry

- Solar zenith angle (Θ_s)
- Viewing zenith angle (Θ_{v})
- Relative azimuth angle (ϕ)

Example: θ_s 30-40°, ocean, clear-sky, wind speed <3.5 m s⁻¹

From CERES TRMM ADMs: *Loeb et al., JAM, 2003a,b*

11 May 2021

CERES/Libera Joint Science Team Meeting

Jake.J.Gristey@noaa.gov

Example: θ_s 30-40°, ocean, clear-sky, wind speed <3.5 m s⁻¹

From CERES TRMM ADMs: *Loeb et al., JAM, 2003a,b*

11 May 2021

CERES/Libera Joint Science Team Meeting

Jake.J.Gristey@noaa.gov

From CERES TRMM ADMs: Loeb et al., JAM, 2003a, b

11 May 2021

CERES/Libera Joint Science Team Meeting

Jake.J.Gristey@noaa.gov

From CERES TRMM ADMs: Loeb et al., JAM, 2003a,b

11 May 2021

CERES/Libera Joint Science Team Meeting

- Directly observed split-shortwave ADMs do not currently exist.
- How will Libera split-shortwave radiance be converted to flux?

• Directly observed split-shortwave ADMs do not currently exist.

- How will Libera split-shortwave radiance be converted to flux?
 - Repeat RAPS mode with new split-shortwave radiometer?

X Takes a long time. e.g. ADMs from Terra/Aqua use 6 years and 8 months of RAPS data *Su et al, AMT, 2015a,b*

Challenge for Libera split-shortwave ADMs

X Continuity best served by cross-track sampling.

13

OG1: Provide seamless continuity of the Clouds and the Earth's Radiant Energy System (CERES) ERB Climate data record (CDR).

OG2: Advance the development of a selfcontained, innovative & affordable observing system.

• Directly observed split-shortwave ADMs do not currently exist.

- How will Libera split-shortwave radiance be converted to flux?
 - Repeat RAPS mode with new split-shortwave radiometer?

X Takes a long time. e.g. ADMs from Terra/Aqua use 6 years and 8 months of RAPS data *Su et al, AMT, 2015a,b*

Challenge for Libera split-shortwave ADMs

X Continuity best served by cross-track sampling.

Spectrally adjust existing total SW ADMs?

X Concerns relying on RTM. e.g., 3D cloud radiative effects Ham et al., 2014 and their spectral structure Song et al, ACP, 2016

X Need detailed scene information to apply latest ADMs.

Cross-Track Scan Normal Operational Mo 14

Rotating Azimuth Plane (RAP) Scan

OG1: Provide seamless continuity of the Clouds and the Earth's Radiant Energy System (CERES) ERB Climate data record (CDR).

OG2: Advance the development of a selfcontained, innovative & affordable observing system.

Challenge for Libera split-shortwave ADMs

- Directly observed split-shortwave ADMs do not currently exist.
- How will Libera split-shortwave radiance be converted to flux?
 - Repeat RAPS mode with new split-shortwave radiometer?

X Takes a long time. e.g. ADMs from Terra/Aqua use 6 years and 8 months of RAPS data *Su et al, AMT, 2015a,b*

X Continuity best served by cross-track sampling.

Spectrally adjust existing total SW ADMs?

X Concerns relying on RTM. e.g., 3D cloud radiative effects Ham et al., 2014 and their spectral structure Song et al, ACP, 2016

X Need detailed scene information to apply latest ADMs.

Wide field-of-view camera for new split-shortwave ADM development with simpler scene ID.

✓ addresses above issues. To be demonstrated in practice..

Cross-Track Scan Normal Operational Mo 15

Rotating Azimuth Plane (RAP) Scan

OG2: Advance the development of a selfcontained, innovative & affordable observing system.

11 May 2021

CERES/Libera Joint Science Team Meeting

Libera's split-shortwave ADM approach

- OSSE "prior" split-shortwave ADMs [Daniel Feldman] 1.
- Wide-field-of-view camera will provide dense 2. angular sampling for observational basis
- Ultimately, constrain with azimuthal scans whenever 3. available e.g. calibration maneuvers [Bruce Kindel]

Instantaneous angular sampling

11 May 2021

CERES/Libera Joint Science Team Meeting

Jake.J.Gristey@noaa.gov

Libera's split-shortwave ADM approach

- 1. OSSE "prior" split-shortwave ADMs [Daniel Feldman]
- 2. Wide-field-of-view camera will provide dense angular sampling for observational basis
- 3. Ultimately, constrain with azimuthal scans whenever available e.g. calibration maneuvers [Bruce Kindel]

Instantaneous angular sampling

17

Convolve with Libera Point Spread Function

Compromise: focus on ERBE-like ADMs (initially)

۲

	Cloud fraction	Surface type	
1	Clear-sky (0-5%)	Ocean	
2		Land	
3		Snow	
4		Desert	
5	Ļ	Land-ocean mix	
6	Partly cloudy (5-50%)	Ocean	
7		Land or desert	
8	Ļ	Land-ocean mix	
9	Mostly cloudy (50-95%)	Ocean	
10		Land or desert	
11	Ļ	Land-ocean mix	
12	Overcast	All	

Suttles et al., NASA Tech Rep, 1988

- A key motivation for camera is to "develop self-contained system"
 - > 12 scene types: appropriate for scene ID from a single wavelength
 - Based on imaging at CERES/Libera scales; not ERBE approach
 - Could be extended in future "ERBE+" e.g., cloud optical depth retrieval Nataraja et al., in prep. 2021

Compromise: focus on ERBE-like ADMs (initially)

۲

۲

	Cloud fraction	Surface type	
1	Clear-sky (0-5%)	Ocean	
2		Land	
3		Snow	
4		Desert	
5	Ļ	Land-ocean mix	
6	Partly cloudy (5-50%)	Ocean	
7		Land or desert	
8	Ļ	Land-ocean mix	
9	Mostly cloudy (50-95%)	Ocean	
10		Land or desert	
11	Ļ	Land-ocean mix	
12	Overcast	All	

Suttles et al., NASA Tech Rep, 1988

- A key motivation for camera is to "develop self-contained system"
 - 12 scene types: appropriate for scene ID from a single wavelength
 - Based on imaging at CERES/Libera scales; not ERBE approach
 - Could be extended in future "ERBE+" e.g., cloud optical depth retrieval Nataraja et al., in prep. 2021

11 May 2021

CERES/Libera Joint Science Team Meeting

Jake.J.Gristey@noaa.gov

Optimizing the Libera camera for ADMs: OSSE data

Cloud fraction (CSIRO)

Climate model output

- Monthly mean
- Jan 2040
- 96 lat × 192 lon = 18,432 columns

20

Credit: Dan Feldman

Feldman at al. , JGR, 2011a&b; J. Clim., 2013; Geosci. Mod. Dev., 2015; JGR, 2021 (in review)

11 May 2021

CERES/Libera Joint Science Team Meeting

Optimizing the Libera camera for ADMs: OSSE data

Cloud fraction (CSIRO)

Credit: Dan Feldman

Feldman at al. , JGR, 2011a&b; J. Clim., 2013; Geosci. Mod. Dev., 2015; JGR, 2021 (in review)

- Climate model output
 - Monthly mean
 - Jan 2040
 - 96 lat × 192 lon = 18,432 columns

- Column and surface properties ingested into offline radiative transfer
 - Output TOA nadir spectral radiance from 300-2500 nm at 5 nm spectral resolution

Optimizing the Libera camera for ADMs: OSSE data

Cloud fraction (CSIRO)

- Climate model output
 - Monthly mean
 - Jan 2040

•

96 lat × 192 lon = 18,432 columns

22

- Column and surface properties ingested into offline radiative transfer
 - Output TOA nadir spectral radiance from 300-2500 nm at 5 nm spectral resolution

11 May 2021

CERES/Libera Joint Science Team Meeting

Camera wavelength: high correlation with sub-band 23

Note: nadir only

- Single wavelength camera acts as a proxy for one of the split channels
 - Need high correlation between single wavelength and NIR or VIS

11 May 2021

CERES/Libera Joint Science Team Meeting

Camera wavelength: high correlation with sub-band 24

- Single wavelength camera acts as a proxy for one of the split channels
 - Need high correlation between single wavelength and NIR or VIS
- MISR 865 nm correlates well with CERES total SW *Corbett and Su, AMT, 2015*

Camera wavelength: high correlation with sub-band ₂₅

- Single wavelength camera acts as a proxy for one of the split channels
 - Need high correlation between single wavelength and NIR or VIS
- MISR 865 nm correlates well with CERES total SW *Corbett and Su, AMT, 2015*

Camera wavelength: high correlation with sub-band 26

- Single wavelength camera acts as a proxy for one of the split channels
 - Need high correlation between single wavelength and NIR or VIS
- MISR 865 nm correlates well with CERES total SW Corbett and Su, AMT, 2015

- Initial OSSE data here suggests 865 nm may not be optimal for NIR
 - Highest correlation is ~555 nm with VIS

11 May 2021

CERES/Libera Joint Science Team Meeting

Correlations by scene type: 865 nm vs. NIR

Note: nadir only

 Sub-band correlations do not hold equally well across all scene types

27

 Conversion between camera wavelength -> sub-band should be a function of scene type and solar geometry

11 May 2021

CERES/Libera Joint Science Team Meeting

Correlations by scene type: 865 nm vs. NIR

11 May 2021

Note: nadir only

 Sub-band correlations do not hold equally well across all scene types

28

- Conversion between camera wavelength -> sub-band should be a function of scene type and solar geometry
- Within scene differences persist at similar SZA

CERES/Libera Joint Science Team Meeting

Correlations by scene type: 865 nm vs. NIR

ice [W m

11 May 2021

Note: nadir only

 Sub-band correlations do not hold equally well across all scene types

29

- Conversion between camera wavelength -> sub-band should be a function of scene type and solar geometry
- Within scene differences persist at similar SZA
 - Above cloud water vapor
 - Cloud height (phase)

CERES/Libera Joint Science Team Meeting

Correlations by scene type: 555 nm vs. VIS

Much tighter relationship between 555 nm and VIS

30

 No "break down" for any scene types

11 May 2021

CERES/Libera Joint Science Team Meeting

Correlations by scene type: 555 nm vs. VIS

- Much tighter relationship between 555 nm and VIS
- No "break down" for any scene types

31

- Issue 1: lack extremes of cloud fraction
 - Monthly-mean, ~1 deg

11 May 2021

CERES/Libera Joint Science Team Meeting

Correlations by scene type: 555 nm vs. VIS

CERES/Libera Joint Science Team Meeting

- Much tighter relationship between 555 nm and VIS
- No "break down" for any scene types

32

- Issue 1: lack extremes of cloud fraction
 - Monthly-mean, ~1 deg
- Issue 2: angular variability

11 May 2021

Independent Libera split-shortwave fluxes

- For a single wavelength camera, a visible wavelength is most appropriate to generate VIS sub-band ADMs with ERBE scene types
 - > Additional scene segregation e.g. CERES is expected to be more important for NIR sub-band
- How to derive a self-contained Libera NIR flux?

Independent Libera split-shortwave fluxes

- For a single wavelength camera, a visible wavelength is most appropriate to generate VIS sub-band ADMs with ERBE scene types
 - Additional scene segregation e.g. CERES is expected to be more important for NIR sub-band
- How to derive a self-contained Libera NIR flux?

34

Jake.J.Gristey@noaa.gov

11 May 2021

CERES/Libera Joint Science Team Meeting

Machine learning CERES-like scene type

		January		July	
	Surface type	Clear	Cloud	Clear	Cloud
Scono	bdesert	5.0	5.1	4.2	5.1
	crops	0.2	0.5	0.2	0.2
_ ID	ddesert	1.4	2.4	1.1	2.4
	dforest	0.3	0.1	1.8	0.2
	eforest	0.1	0.0	0.7	0.0
	grass	1.4	2.9	0.4	1.6
	savannas	0.6	0.4	0.1	0.2
	seaice	0.4	2.5	3.1	1.1
	snow	0.4	7.0	0.2	2.5
	water	0.0	0.0	0.0	0.0

Thampi et al., JAOT, 2017

 Scene type predicted with ~95% accuracy for almost all scenes, many scenes >99% (excludes very thin cloud)

Machine learning CERES-like scene type

- Scene type predicted with ~95% accuracy for almost all scenes, many scenes >99% (excludes very thin cloud)
- Footprint radiances are most important; adding camera radiances (ie. imaging of the footprint) should yield further improvements

36

11 May 2021

Summary and conclusions

New split-shortwave ADMs are required for Libera, which will be generated from the wide-field-of-view camera

A camera wavelength of 555 nm is optimal for VIS ADMs, which are well suited to simpler ERBE-like scene types

One promising approach to determine NIR flux is machine learning of CERES-like scene type

Jake.J.Gristey@noaa.gov

Camera angular sampling

• Preliminary Libera camera sampling pattern at center of CERES-TRMM angular bins

• An example of randomization to sample angular variability within angular bins

11 May 2021

CERES/Libera Joint Science Team Meeting

Appropriateness of a camera for generating ADMs extra

• Is a single wavelength sufficient to capture angular distribution?

CERES/Libera Joint Science Team Meeting

ERBE scene type from OSSEs

Surface type (IGBP)

Table 1. Scene Types for Angular Models

extra

Scene	Cloud coverage, percent		
Clear over ocean	0 to 5		
Clear over land			
Clear over snow			
Clear over desert			
Clear over land-ocean mix	↓ ↓		
Partly cloudy over ocean	5 to 50		
Partly cloudy over land or desert	5 to 50		
Partly cloudy over land-ocean mix	5 to 50		
Mostly cloudy over ocean	50 to 95		
Mostly cloudy over land or desert	50 to 95		
Mostly cloudy over land-ocean mix	50 to 95		
Overcast	95 to 100		

- All surfaces considered "land" except ocean, snow, desert, land-ocean mix
- Only select surface type with >90% in model grid
 - For land-ocean mix only select 30-70% ocean

Cloud height separates "arms" very well

11 May 2021

CERES/Libera Joint Science Team Meeting

Jake.J.Gristey@noaa.gov

extra

ERBE SW ADM examples

42

CERES/Libera Joint Science Team Meeting

CERES-TRMM SW ADM examples

43