

Ilja Tuomas Salmio

Library Management Applications

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Thesis

22.5.2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38124608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Tiivistelmä

Tekijä(t)
Otsikko

Sivumäärä
Aika

Ilja Tuomas Salmio
Library Management Applications

34 sivua + 1 liite + sanasto
22. toukokuuta 2014

Tutkinto insinööri (AMK)

Koulutusohjelma Tietotekniikka

Suuntautumisvaihtoehto Ohjelmistotekniikka

Ohjaaja(t)

Lehtori Vesa Ollikainen
Professori Thomas A. Regelski

Tässä insinöörityössä toteutetaan HomeLibrary -niminen MySQL-tietokantaa käyttäva kir-
jastonhallintaohjelmisto. HomeLibrary on helppokäyttöinen pienten yksityiskirjastojen hal-
lintaohjelma. Insinöörityössä kuvataan ohjelmiston tausta ja tavoitteet sekä arvioidaan
muiden kirjastonhallintaohjelmistojen soveltuvuutta tarkoitukseen.

Tietokannan ja itse ohjelman rakenne näytetään, ja käyttöliittymä selitetään tyhjentävästi.
Vaatimukset, jotka HomeLibrary tarvitsee toimiakseen tietokoneella, kerrotaan ja lopuksi
projektin eteneminen selvitetään.

Avainsanat ohjelmointi, tietokanta, Java, Hibernate, MySQL, kirjasto

 Abstract

Author(s)
Title

Number of Pages
Date

Ilja Tuomas Salmio
Library Management Applications

34 pages + 1 appendix + Glossary
22 May 2014

Degree Bachelor of Engineering

Degree Programme Information and Communications Technology

Specialisation option Software Engineering

Instructor(s)

Vesa Ollikainen, Senior Lecturer
Professor Thomas A. Regelski

In this thesis we implement HomeLibrary library management application that utilizes a
MySQL database. The HomeLibrary is an easy to use library system meant for managing
small private libraries by inexperienced users. The background information and reasons for
production are explained as well as the requirements. Other solutions are discussed and
their applicability to the problem is discussed.

The structure of the database and the program is shown, and the user interface is ex-
plained in detail with examples. Finally everything that the HomeLibrary program needs
from the computer in order to work is discussed, and how the project proceeded is cov-
ered.

Keywords programming, database, Java, Hibernate, MySQL, library

Glossary

1 Introduction 1

2 Goals and Background 2

3 Requirements for HomeLibrary Software 3

4 Freeware Alternatives 3

4.1 VuFind 4

4.2 Koha 5

4.3 Evergreen 6

4.4 Greenstone 7

4.5 OpenBiblio 8

4.6 PMB 9

4.7 Freeware Alternatives vs. Tailor-Made System 9

5 Design and Implementation 10

5.1 Overview 10

5.2 Database 11

5.3 Classes 15

5.4 User Interface 17

5.4.1 Navigation 17

5.4.2 Search View 18

5.4.3 Insert View 19

5.4.4 Edit View 20

5.4.5 New Book Advanced View 21

5.4.6 New Book View 23

5.4.7 New Book Quick View 23

5.4.8 New Person View 24

5.4.9 New Publisher View 26

5.4.10 New City View 27

5.4.11 New Country View 27

5.4.12 New Format View 28

5.4.13 New Language View 29

5.4.14 New Location View 29

5.4.15 New Role View 30

5.4.16 New Series View 30

5.4.17 New Tag View 31

6 System requirements and Performance 31

6.1 User Interfaces 32

6.2 Hardware Interfaces 32

6.3 Software Interfaces 32

6.4 Usage Intensity 32

6.5 Capacity Requirements 33

7 Discussion and Conclusions 33

References 34

Appendices

Appendix 1. The Example Book

Glossary

Book is a physical object in the library.

CamelCase (also spelled camel case or camel-case) or medial capitals is the practice

of writing compound words or phrases in which the elements are joined without spaces,

with each element’s initial letter capitalized within the compound, and the first letter is

either upper or lower case.

CSS (Cascading Style Sheets) shows how a particular document (like a website) looks.

The font, textsize, background information etc. is written in CSS.

Edition is created when a newer version of the LanguageVersion has been printed.

Foreign key is a number that corresponds with the primary key of a row in another

table.

Hibernate makes it possible for a java-program to communicate with a database.

ILS (Integrated Library System) is a professional library management system used to

keep track of such things as what media items are in the library, which of these have

been borrowed etc.

Javascript is a programming language often used in more complex websites.

LanguageVersion is created when the piece of work is translated into a new language

(or first printing is made).

Mapping-files shows the program how the database is structured.

MARC (Machine-Readable Cataloguing) are a number of formats for the cataloguing of

items in libraries.

MARCXML is a normal XML schema that conforms to the MARC21 standards.

OPAC (Online Public Access Catalog) is a library database that is used when the li-

brary’s database has to be accessed from multiple computers. It is located in a server

and is usually accessed via the internet.

OpenSRF (Open Scalable Request Framework) makes it easy for programmers with-

out knowledge of the structure to create programs for Evergreen.

Person Many tables refer to the person-table. At the moment a person can be an au-

thor, translator or owner of the book. The nickname-table is also connected to the per-

son-table. The person table has fields for: FirstName, LastName, DateOfBirth, Sex,

Address, ZIPCode, Email and WWW. It has foreign keys called CountryID and

NotesID.

Piece of Work is a kind of insubstantial idea of a media. It comprises all of the different

forms of media in the world made about this (e.g. all of the books named Lord of the

Rings in different languages, all of the dvd-movies, all of the bluray-movies,all of the

audiobooks in different languages etc.) It has only its primary key, but many foreign

keys from other tables reference it.

POJO has all of the constructors and the getters and setters in them. They help the

program in communicating with the database.

SDI (Selective Dissemination of Information Service) is a tool meant to alert the user on

the newest publications on a predetermined subject.

SIP2 (Standard Interchange Protocol) is a communication protocol which is widely

used for communication between library management systems.

UNIMARC is a MARC (see above) format used in Europe.

XHTML (Extensive HyperText Markup Language) is an XML version of the normal

HTML language that the websites are written in.

Z39.50 client-server protocol is used for searches from online databases.

1

1 Introduction

Most library management software in use can be hard to comprehend without neces-

sary education. They are also mostly meant for big official libraries. HomeLibrary is a

database software meant to give an easy to use platform for the management of differ-

ent private media in one or more households for beginners.

Searching, adding and modifying information has been made easy, so the user doesn’t

have to be an expert in library administration.

In this thesis, Chapter 2 (entitled “Goals and Background”) gives information on why

the HomeLibrary was needed and what the purpose of this B. Sc. thesis is. It also has

a biography on Prof. Thomas A. Regelski, for whom the program was made for.

Chapter 3 (entitled “Requirements for HomeLibrary Software”) shows the requirements

needed for the HomeLibrary. Some of the requirements were made by researching

what a library management program needs in order to work. Other requirements were

given by prof. Regelski (see Chapter 2) to make the program suitable for his own li-

brary.

Chapter 4 (entitled “Freeware Alternatives”) provides short reviews on multiple open

source Library management programs found on the internet. It also shows why they

are not optimal for the purpose of the library in question.

Chapter 5 (entitled “Design and Implementation”) is the biggest chapter in this thesis. It

gives a comprehensive view on how the HomeLibrary program was designed and

made. There are Sections on the database, classes and user interface. The Database

Section shows the structure of the database and the purpose of each table in the data-

base. The Classes subchapter deals with Section tells how the main program is struc-

tured and how the multiple classes communicate with each other. The subchapter on

User Interface may be the easiest read for nonprogrammers. It has screenshots on the

different windows in the program and has small tutorials on how each is used.

2

Chapter 6 (entitled “System Requirements and Performance”) shows what is needed in

terms of both software and hardware for the HomeLibrary to work. It also offers tips on

how to best use the program.

In chapter 7 (entitled “Discussion and Conclusions”) different problems that arose dur-

ing the making of the program are considered together with how the final product com-

pares to the goals and requirements given at the start of the project. Finally there are

different ideas of how the HomeLibrary program can be further developed.

2 Goals and Background

The purpose of this B.Sc. thesis project is to design and implement HomeLibrary soft-

ware and to explore different library management systems freely available. This docu-

ment covers the features and functionality for easy use of the HomeLibrary software.

The software and hardware specifications as well as user interface description are also

included.

The motivation for this project stems from the needs of Prof. Thomas A. Regelski who

has collected a large number of books and important documents from around the world

in which he has made notes in the marginalia. He would like to have a personalized

management system for cataloguing them for his own use and the use of other aca-

demic researchers interested in his lifework.

Prof. Regelski is Distinguished Professor of Music (Emeritus), from State University of

New York at Fredonia NY, where he taught choral conducting, secondary methods,

and foundations courses in philosophy, psychology, and sociology. He has also been

widely published in an array of journals in and outside of music education. He is the co-

founder of the MayDay Group and editor of its e-journal, Action, Criticism, and Theory

for Music Education, from its inception in 2002 until the summer of 2007. Author of

Principles and Problems of Music Education (Prentice-Hall, 1975), Arts Education and

Brain Research (Alliance for Arts Education/MENC, 1978), Teaching General Music:

Action Learning for Middle and Secondary Schools (Schirmer Books, 1981), and

Teaching General Music in Grades 4-8: A Musicianship Approach (Oxford University

Press, 2004), and co-editor (with J.T. Gates) of Music Education for Changing Times

(Springer, 2009), he is presently a Docent at Helsinki University (Finland), teaching

3

courses in research writing to graduate students in the Faculty of Behavioural Scienc-

es, and he lectures occasionally in the music education department at the Sibelius

Academy. [1]

3 Requirements for HomeLibrary Software

The main requirements for HomeLibrary are the ease of use in both the finding of in-

formation and adding new information (new books, duplicates of existing books, per-

sons, etc.) by inexperienced users. This is because Prof. Regelski is not a librarian.

Prof. Regelski asked that there would be a feature that informed him if a book had

marginalia and index written by the owner.

Exporting lists of data to Excel was also a requirement, so the list could be easily in-

serted to other library management systems.

During the cataloguing of the library, time management became an issue. Since prof.

Regelski lives in Helsinki, and the majority of his books are in upstate New York, cata-

loguing of the books can be done only during the summer months when prof. Regelski

is visiting the United States of America. For this reason it would be faster to catalogue

the books into an Excel-file and import the file to the database back in Finland, when

the time allows.

4 Freeware Alternatives

In this chapter many alternative open source library management systems found on the

internet are reviewed and compared to the requirements set for the HomeLibrary. This

is to give the user some options other than HomeLibrary as a platform for library sys-

tems.

4

4.1 VuFind

VuFind (Figure 1) [2] is an open source library management system made “by libraries,

for libraries”. With VuFind the client can find and browse through the assets of the li-

brary by adding additional features to the standard OPAC. These features are: Cata-

logue Records, Digital Media, an Institutional Repository for saving and management of

scientific documents and an Institutional Bibliography for the searching of the same and

catalogues of other libraries.

Figure 1. VuFind main page

Many of the features can be changed to suit the user’s needs and the open sourced

nature of the code means it is constantly being added to and new features can be

made to fit the needs of a particular library. [2]

While VuFind is very helpful while searching for information by library customers, the

fact that it is so modular makes its installation a job for an IT-expert and adding new

information a job for professional librarians. HomeLibrary on the other hand comes

completely assembled, and is easy to manage by regular people without professional

IT skills.

5

4.2 Koha

According to the developers’ website “LibLime Koha (see Figure 2) [3], is an open

source internet-based Integrated Library System (ILS), used world-wide by public,

school and special libraries.” [3]

Figure 2. Koha main page

Koha features a complex client management system including a way to add familial

relationships (e.g. client is a parent of another client) and Clubs and Services feature

(e.g. book clubs). It also offers a user friendly way of keeping tabs on items and a so-

phisticated way to manage reservations including making a reservation for a title or a

specific item and a helpful way for the staff to manage reservation queues. If a book is

old or obsolete, Koha offers a handy way to refresh it to a more modern edition. Koha

has SIP2 communication protocol which is widely used for communicating with other

library management systems. Koha is programmed for internet use with XHTML, CSS

and Javascript. [3]

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Integrated_library_system
http://en.wikipedia.org/wiki/Public_library
http://en.wikipedia.org/wiki/School_library
http://en.wikipedia.org/wiki/Special_library

6

Koha can be intimidating for a beginner to use because of the overload of information

in each window and like VuFind it is made for libraries not for home-use. Adding new

information is also very time-consuming. There are also several costs that make it un-

desirable for home-use.

4.3 Evergreen

Evergreen (see Figure 3) is a widely used open source library management system. It

manages both the functions meant for the public and the library’s inner management

(checkouts, checkins etc.). It also has the ability to share assets between different li-

braries. Evergreen is a web program and is based on OpenSRF framework. [4]

Figure 3. A library using Evergreen

7

Evergreen seems to be a good alternative for new users, but it has lots of publicly un-

known technical terminology. There are also annual support costs and other costs that

prohibit its use in private home libraries.

4.4 Greenstone

The collection of open source applications known as Greenstone (see picture 4) is

meant for managing and searching digital documents in a library. The formats it can

handle include text, PDF, Word, html, jpg, tiff, MP3, video, etc. Most of the text-

formatted documents are archived in XML-like Greenstone Archive Format (GAF). [5]

Figure 4. A screenshot of Greenstone

Since Greenstone is meant for storing only digital documents, it is unsuitable for the

adding metadata of physical books.

8

4.5 OpenBiblio

OpenBiblio (see Figure 5) [6] is a multilanguage open source integrated library system

(ILS) meant for small to medium-sized libraries. It has many easy-to-use features like

check-in/out, client management, managing of the library’s items (including MARC and

MARCXML formats). The Online public access catalog (OPAC) of OpenBiblio is easy

for patrons to use. Some of the more advanced features found in other systems are not

found here. [6]

Figure 5. OpenBiblio main page

While OpenBiblio is the easiest to use by beginners, the installation is quite hard. Since

it is a web-based program it needs a web server like Apache. This can be a problem to

users with no knowledge of server upkeep. Since OpenBiblio is an ongoing project this

may change.

9

4.6 PMB

“PMB (PhpMyBibli) [7] is a fully featured open source integrated library system.” PMB

features many of the normal library management system functions. There is the most

important ability to checkin and –out of items and ability to see which items need to be

updated. The ability to manage the metadata of the library items and the user man-

agement is also included. The user can get different Reports and PMB even has SDI

(Selective Dissemination of Information Service) functionality (see Glossary).

PMB is very easy to use for both the staff and patrons. It uses the European UNIMARC

standard. Z39.50 client-server protocol is used for searches. The database can be

backed up. Adding and extracting of outside library records is also possible. PMB is still

in development.

PMB is written in PHP programming language. [7]

Like OpenBiblio since PMB is a web-application it needs knowledge about the Apache

web-server in order to install and maintain. PMB was also originally made in French

and while it has an English version, their website (http://www.sigb.net) doesn’t seem to

have an English option.

4.7 Freeware alternatives vs. tailor-made system

While the readymade applications are good, in that they are made by professionals.

But they are also made for professionals. This is why they are not suitable for home

use. Uneducated users can have a hard time doing different tasks and the applications

can have too many features, making them too heavy for home computers. Also while

the freeware are (as their name suggests) free, most still require initial investments

(servers etc.) and/or upkeep costs.

10

5 Design and Implementation

In this chapter, we discuss the design and implementation issues of HomeLibrary sys-

tem. There are also pictures of the different windows (called views) in the 5.4 Section

along with explanations/tutorials on who they are used

In this chapter examples are used to show where the bibliographic data is stored and

processed in the software. The example book chosen is “Java 2, Ohjelmoinnin pe-

ruskirja” (ISBN 8951-846-237-2). The pictures of the cover and the information page

are shown in Appendix 1.

5.1 Overview

The database was designed first and the schema went through multiple revisions be-

fore it was programmed using MySQLWorkbench 5.2 CE. This was done because the

database had to be as perfect as possible before coding. Trying to change the data-

base in the middle of the development work would mean that the Java code would

also have to be changed, which would cause unnecessary work. The programming of

the main application was done with Java language using NetBeans IDE 5.3. This was

because NetBeans is very MySQL-friendly, and there are many helpful NetBeans-

tutorials found on the internet. The database was connected to the HomeLibrary pro-

gram’s services.

A Hibernate configuration file (hibernate.cfg.xml) was made into the default package of

the project tree. The configuration file has information on resource mappings, database

connection etc. The hibernate.cfg.xml was modified in two ways. A true-valued Hiber-

nate.show_sql and a ClassicQueryTranslatorFactory-valued hiber-

nate.query.factory_class were added as Hibernate Properties. Next, a HibernateU-

til.java file was created as a helper class (located in the homelibrary.util package).

When the user clicks the Homelibrary.jar to start the program it is the HibernateUtil.java

that loads the hibernate.cfg.xml and accesses Hibernates SessionFactory to obtain a

Session object [3].

In order to reverse-engineer Hibernate Mapping Files and Plain Old Java Objects (PO-

JO) from the database, a hibernate.reveng.xml reverse engineering file was made (lo-

11

cated in <default package>). All of the tables were specified in the hibernate reverse

engineering wizard. As a result of the reverse-engineering process, the Mapping Files

and POJOs are generated.

The basic design of the main program is ModelViewController-based (see Figure 6).

First the MainView.java was created (see Sections 5.4.1- 5.4.4). Next the NewBookAd-

vancedView.java (5.4.5) was created and from that the NewBookView.java (5.4.6) and

NewBookQuickView.java (5.4.7) were later added to make the adding of books easier.

After that the smaller Views (5.4.8- 5.4.17) were added. After this was done the Con-

troller.java and HomeLibraryModel.java were made and both were saved in their re-

spective packages. The model contains all of the functions needed for the program,

and the controller is responsible for passing information between the views and the

model.

Figure 6. Program structure

5.2 Database

MySQL is one of the most used open source relational database management systems

(RDBMS) in the world. It works on many different operating systems, which is why it

was chosen as the RDBMS in this project.

Figure 7 shows the database structure. In the figure, table names are in lower case.

Field names are in camel case (compound word that has the first letter of each word in

capitals e.g. SubTitle, see Glossary) and the first letter is capitalized. The field name for

foreign key is in most cases the same as the primary key of the table it refers to. The

exceptions are: in ‘book’ table the “OwnerID” foreign key refers to ‘person’ table. In

12

‘editions’ table “PubCity” foreign key refers to ‘city’ table. In the ‘languageversion’ table

the “Translator” foreign key refers to ‘person’ table.

In each table, ID is a unique integer (primary key) with auto-incrementation. ID is nec-

essary for each table. ID is usually the same as the table name, except when it is also

a foreign key.

There are many tables in the database, but the main tables are the books’ “own” ta-

bles. The whole database is centred around these tables. They are connected to each

other in a kind of tree-like relationship, where a parent can have many children, but a

child can have only one parent. The table hierarchy goes (in a parent-to-child order)

like this: ‘pieceofwork’->’languageversion’->’edition’->’book’. The “granpa” of these ta-

bles is the ‘pieceofwork’ table (Instances of the ‘pieceofwork’ table are called from now

on as ‘pieceofworks’. Similar notations denoted by apostrophes, are used in instances

of other tables). A ‘pieceofwork’ is an insubstantial idea of a media. It comprises all of

the different forms of media in the world made about this (e.g. all of the books named

Lord of the Rings in different languages, all of the DVD movies, all of the BluRay mov-

ies, all of the audiobooks in different languages etc.) It has only its primary key, but

many foreign keys from other tables reference it. A foreign key is a number that corre-

sponds with the primary key of a row in another table.

A ‘pieceofwork’ can have many ‘languageversions’. A ‘languageversion’ is created

when the piece of work is translated into a new language (or first printing is made). An

instance of ‘person’ table is connected to ‘languageversion’ table by being the “transla-

tor” of the ‘languageversion’ (no one translated the example book). A ‘languageversion’

can have only one “translator”. A ‘languageversion’ has also the “language” it was pri-

marily written in (e.g. Finnish). This is why the ‘languageversion’ has a foreign key that

refers to the ‘language’ table. The rest of the fields in ‘languageversion’ are “Title” (e.g.

Java2),” SubTitle” (e.g. Ohjelmoinnin peruskirja) and “OriginalVersion” (the example

book is the original, so there is no reason to insert anything into this field, but Java2

can be added) in which the original name of the first printing of the book can be added.

If a new edition of the ‘pieceofwork’ is translated by someone else it is a new ‘lan-

guageversion’.

There can be multiple printings of a ‘languageversion’. This is why there is the edition-

table. The ‘edition’ table has a “PubID” foreign key that connects it to the ‘publisher’

13

table (e.g. Docendo Finland Oy). An ‘edition’ can have only one ‘publisher’. If the ‘edi-

tion’ has more than one ‘publisher’, the ‘publisher’ is the publisher this ‘edition’ was

printed by or the biggest named publisher or the first publisher in the list (if this ‘edition’

has many publishers). An ‘edition’ also has “FormatID” as a foreign key that connects it

to the ‘format’ table (e.g. book). The “pubcityID” foreign key connects an ‘edition’ to the

‘city’ table by showing the city where the edition was printed (or made into its releasa-

ble form if the media is in non-printable format) (e.g. Jyväskylä). The Edition table also

has fields for ISBN (or other pieceofwork identifier e.g. library of congress catalogue

number, ISSN etc.) (e.g. 951-846-237-2), EditionNum for the number the edition is of

the languageversion (e.g. 1) and the PubYear for the date the book was printed (e.g. 1

July 2005).

There can be multiple copies of the same edition in the library. The Book table refers to

the physical books (or other media) in the library. The Book table has a foreign key to

Person table called OwnerID. OwnerID shows the person who is the owner of the piece

of the physical media (e.g. Ilja Salmio). PlacementID foreign key refers to the Place-

ment table. Placement shows where in the library the book is located (e.g. office

southwall). The Book table also has NotesID foreign key that refers to notes-table.

Notes are any additional information that should be mentioned about the book (e.g.

“This is the book used as an example.”). The last foreign key in the Book table is the

CountryBoughtID, which refers to the Country table by showing where the copy was

bought (e.g. Finland). The data type of price field is varchar instead of int, so the user

can put the name of the currency or the currency sign ($, €, £ etc.) in with the price

(e.g. 35 FIM). TimeAdded is in timetamp format and is automatically added when a

new book is added to the library (e.g. 09.10.16.21.11.2013).

14

Figure 7. Database schema

An instance of person-table is connected to pieceofwork table by showing the author

relationship between pieceofwork and person (a ‘person’ is an author of a

‘pieceofwork’). A ‘pieceofwork’ may have multiple ‘authors’ (e.g. Pekka Kosonen, Juha

Peltomaki, Simo Silander) and an ‘author’ may have many ‘pieceofworks’. This is why

the author table is necessary for the many-to-many relationship. Because a

‘pieceofwork’ can have many ‘authors’, the author table is connected to the role table to

give more information on what capacity the ‘person’ involved in the making of the

pieceofwork was‘pieceofwork’ (e.g. writer) (At the moment there is no corresponding

functionality in the Java implementation, but such functionality will be added as soon as

possible).

role

PK RoleID INTEGER

 RoleName VARCHAR(45)

series

PK SeriesID INTEGER

 Name VARCHAR(45)

 WWW VARCHAR(100)

nickname

PK NickID INTEGER

 NickName VARCHAR(45)

FK1,I1 PersonID INTEGER

city

PK CityID INTEGER

 CityName VARCHAR(50)

FK1,I1 CountryID INTEGER

serieshaspow

PK,FK2,I2,I1 Series_SeriesID INTEGER

PK,FK1,I3 POW_SeriesID INTEGER

 POWNum INTEGER
notes

PK NotesID INTEGER

 NotesName VARCHAR(140)

 NotesVersion VARCHAR(45)

continent

PK ContinentID INTEGER

 Name VARCHAR(45)

country

PK CountryID INTEGER

 CountryName VARCHAR(45)

FK1,I1 ContinentID INTEGER

tag

PK TagID INTEGER

 Name VARCHAR(45)

person

PK PersonID INTEGER

 FirstName VARCHAR(45)

 LastName VARCHAR(45)

 DateOfBirth DATE

 Sex VARCHAR(45)

 Address VARCHAR(45)

 ZIPCode INTEGER

FK1,I2 CountryID INTEGER

 EMail VARCHAR(100)

 WWW VARCHAR(100)

FK2,I1 NotesID INTEGER

edition

PK EditionID INTEGER

 ISBN INTEGER

FK3,I1 LangVersionID INTEGER

FK4,I2 PubID INTEGER

 EditionNum INTEGER

 PubYear TINYINT

FK2,I3 FormatID INTEGER

FK1,I4 PubCityID INTEGER

taghaspow

PK,FK1,I1 POW_TagID INTEGER

PK,FK2,I2 Tag_TagID INTEGER

author

PK,FK1,I2,I1 Person_PersonID INTEGER

PK,FK2,I3 POW_AuthorID INTEGER

FK3,I4 RoleID INTEGER

format

PK FormatID INTEGER

 Name VARCHAR(45)

placement

PK PlacementID INTEGER

 PlacementName VARCHAR(45)

pieceofwork

PK POWID INTEGER

language

PK LanguageID INTEGER

 Language VARCHAR(45)

book

PK,FK1 CountryID INTEGER

PK BookID INTEGER

FK4,I3 OwnerID INTEGER

FK5,I2 PlacementID INTEGER

 Price VARCHAR(45)

 TimeAdded DATETIME

FK2,I1 EditionID INTEGER

FK3,I4 NotesID INTEGER

 YearBought TINYINT

publisher

PK PubID INTEGER

FK1,I1,I3 CountryID INTEGER

 Name VARCHAR(45)

 WWW VARCHAR(100)

FK2,I2 NotesID INTEGER

languageversion

PK LangVersionID INTEGER

FK3,I2 POWID INTEGER

FK1,I1 LanguageID INTEGER

FK2,I3 TranslatorID INTEGER

 Title VARCHAR(50)

 SubTitle VARCHAR(50)

 OriginalVersion VARCHAR(50)

role

PK RoleID INTEGER

 RoleName VARCHAR(45)

series

PK SeriesID INTEGER

 Name VARCHAR(45)

 WWW VARCHAR(100)

nickname

PK NickID INTEGER

 NickName VARCHAR(45)

FK1,I1 PersonID INTEGER

city

PK CityID INTEGER

 CityName VARCHAR(50)

FK1,I1 CountryID INTEGER

serieshaspow

PK,FK2,I2,I1 Series_SeriesID INTEGER

PK,FK1,I3 POW_SeriesID INTEGER

 POWNum INTEGER
notes

PK NotesID INTEGER

 NotesName VARCHAR(140)

 NotesVersion VARCHAR(45)

continent

PK ContinentID INTEGER

 Name VARCHAR(45)

country

PK CountryID INTEGER

 CountryName VARCHAR(45)

FK1,I1 ContinentID INTEGER

tag

PK TagID INTEGER

 Name VARCHAR(45)

person

PK PersonID INTEGER

 FirstName VARCHAR(45)

 LastName VARCHAR(45)

 DateOfBirth DATE

 Sex VARCHAR(45)

 Address VARCHAR(45)

 ZIPCode INTEGER

FK1,I2 CountryID INTEGER

 EMail VARCHAR(100)

 WWW VARCHAR(100)

FK2,I1 NotesID INTEGER

edition

PK EditionID INTEGER

 ISBN INTEGER

FK3,I1 LangVersionID INTEGER

FK4,I2 PubID INTEGER

 EditionNum INTEGER

 PubYear TINYINT

FK2,I3 FormatID INTEGER

FK1,I4 PubCityID INTEGER

taghaspow

PK,FK1,I1 POW_TagID INTEGER

PK,FK2,I2 Tag_TagID INTEGER

author

PK,FK1,I2,I1 Person_PersonID INTEGER

PK,FK2,I3 POW_AuthorID INTEGER

FK3,I4 RoleID INTEGER

format

PK FormatID INTEGER

 Name VARCHAR(45)

placement

PK PlacementID INTEGER

 PlacementName VARCHAR(45)

pieceofwork

PK POWID INTEGER

language

PK LanguageID INTEGER

 Language VARCHAR(45)

book

PK,FK1 CountryID INTEGER

PK BookID INTEGER

FK4,I3 OwnerID INTEGER

FK5,I2 PlacementID INTEGER

 Price VARCHAR(45)

 TimeAdded DATETIME

FK2,I1 EditionID INTEGER

FK3,I4 NotesID INTEGER

 YearBought TINYINT

publisher

PK PubID INTEGER

FK1,I1,I3 CountryID INTEGER

 Name VARCHAR(45)

 WWW VARCHAR(100)

FK2,I2 NotesID INTEGER

languageversion

PK LangVersionID INTEGER

FK3,I2 POWID INTEGER

FK1,I1 LanguageID INTEGER

FK2,I3 TranslatorID INTEGER

 Title VARCHAR(50)

 SubTitle VARCHAR(50)

 OriginalVersion VARCHAR(50)

15

A ‘pieceofwork’ can be part of a ‘series’ of ‘pieceofworks’ (e.g. peruskirjat kursseille ja

itseopiskeluun, see book cover in Appendix 1). A ‘pieceofwork’ can be a part of many

‘series’ at the same time and a ‘series’ may have many ‘pieceofworks’, which is why

serieshaspow table is needed for the many-to-many relationship. Serieshaspow table

also has a POWNum-field to show which number of the ‘series’ the ‘pieceofwork’ is

(this also is not fully implemented at the moment).

A ‘pieceofwork’ can also have multiple tags aka keywords (e.g. programming, Java,

education) and a ‘tag’ can be in multiple ‘pieceofworks’. This is why serieshaspow table

is used to help with the many-to-many relationship.

Many tables refer to the person table. At the moment a ‘person’ can be an ‘author’,

‘translator’ or ‘owner’ of the ‘book’. The Nickname table is also connected to the Person

table. The Person table has fields for: FirstName (e.g. Ilja), LastName (e.g. Salmio),

DateOfBirth (e.g. 1.3.1984), Sex (e.g. male), Address (e.g. Tiirismaantie 6 C 53), ZIP-

Code (e.g. 00710), Email and WWW. It has foreign keys called CountryID (e.g. Fin-

land) and NotesID (e.g. “The author of this program”).

The Publisher table has fields for Name (e.g. Docendo Finland Oy) and WWW

(http://www.docendo.fi). It also has foreign keys CountryID (e.g. Finland) and NotesID

(e.g “This publisher makes educational books”).

5.3 Classes

In this section many of the most important java-classes are shown (see Figure 8) and

the purposes of them are explained. The Class Diagram (see Figure 8) has all of the

Views (see 5.4.1-5.4.17) as well as the POJOs (Plain Old Java Object) and the Model

and Controller classes.

A POJO has all of the constructors and the getters and setters in them. They help the

program in communicating with the database. The POJOs were created by reverse-

engineering from the database, and each POJO has a corresponding database-table

and an XML-mapping file with the same name. Some of the POJOs have been modi-

fied when needed.

16

The Model, the Views and the Controller were constructed from ground up. The user

uses the View, which sends the data by Controller to the right part of the Model. The

Model performs the necessary function and may return some data back to the Control-

ler, which returns the data to the View.

Figure 8. Class Diagram

17

5.4 User Interface

In this section what the user can see and do are shown and discussed. A View is a

technical term that is a part of the ModelViewController software architecture pattern.

For nonprogrammers a View can be thought of as a window within the program. A View

tells the program how the information is presented to the user. The Views of the pro-

gram are presented one by one in this chapter as well as the information on how to

navigate between them. The program has a MainView, which has subViews in tabbed

format. These subViews are SearchView, EditView and InsertView. All of the other

Views are formed when the user clicks a button.

5.4.1 Navigation

The Navigation Diagram (see Figure 9) shows how the user navigates inside of the

program. When the user (the stickfigure) starts the program, he/she sees the Search-

View (5.4.2) inside the MainView. From here he/she can switch between the Search-

View (5.4.2), the InsertView (5.4.3) and the EditView (5.4.4). From SearchView the

user can open the three views related to a new book (NewBookView, NewBookAd-

vancedView, NewBookQuickView) (5.4.5 5.4.6 5.4.7). From InsertView the user can

open all of the three new book views. From EditView the user can open the one of the

specific edit views. Each of the three new book views has buttons connecting to the

necessary other New___View, so that the user doesn’t have to go to the InsertView to

find a way to add anything new.

18

Figure 9. Navigation

5.4.2 Search View

Search View is the primary view of the program. When the program is started, the first

thing the user sees is the search view, and only from this window can the program be

exited. Shutting the other windows of the program only shuts that window and not the

whole program. Search View is a part of a group of tabbed views that can be seen on

the top of the window.

19

In Search View (see Figure 10) the user can search books by title, author, language,

translator, publisher, owner, tag, country, continent or location in the library. The user

writes the search word into the searchTextField and selects the search parameter from

the searchCombobox. Then he/she clicks the searchButton. The program searches the

database and displays the results in the big searchTable (jTable) below. The order of

the books is by BookID, but the order appearing in the searchTable can be changed by

left clicking the top of the column the user wants to sort the list by (not yet fully imple-

mented) and the order of columns can be changed by holding the left button down on

top of the column and dragging the column to the preferred place in the list.

Figure 10. Search View

5.4.3 Insert View

The Insert View (see Figure 11) is the view where the user can go to any of the “Add

new” views. The user only has to press a button to go to the new view. All of the but-

tons can be found in context on other views. Insert View is a part of a group of tabbed

views that can be seen on the top of the window.

20

Figure 11. Insert View

5.4.4 Edit View

If information in the database is wrong, the user can go to change it from the Edit View

(see Figure 12). At the moment this is still a work-in-progress and not functional. The

user selects the data he/she wants to change and the program opens one of the specif-

ic edit views with the textfields etc. already filled with the data.

21

Figure 12. Edit View

5.4.5 New Book Advanced View

The NewBookAdvancedView (see Figure 13) is used to add new rows to the

pieceofwork, languageversion, edition and book tables. The NewBookAdvancedView is

the most complex View in the program. It is used if a library has multiple instances of

the same book. The user can input a new book to an already existing edition or a new

edition to an existing LanguageVersion.

22

Figure 13. NewBookAdvancedView

The most complex functions in this window are the Add Tag, Add Author and Add Se-

ries functions. They all work in a similar way. The left side combobox in the row shows

all of the Tags/Authors/Series in the database. The right side combobox shows all of

the Tags/Authors/Series that the user has chosen to be added to the piece of work.

First the user chooses which Tag/Author/Series is to be added to the right side com-

bobox from the left side combobox. Then he/she pushes the “to list->” button in the

same row. The program adds the Tag/Author/Series to the right side combobox that

shows the list of Tags/Authors/Series about to be added to the piece of work (these

steps can be done as many times as wanted to add items to the list). Next to the list is

the Delete Tag/Author/Series from the list in which the user can undo any

Tag/Author/Series from the right side combobox before the list is inserted to the data-

base by clicking the “Add LanguageVersion to DB” button.

23

5.4.6 New Book View

The NewBookView (see Figure 14) is used to add new rows to the pieceofwork, lan-

guageversion, edition and book tables. The NewBookView is a more simplified version

of the NewBookAdvancedView. This is used when a completely new book (that doesn’t

have any other versions in the library) is added to the library. Only the “Add Book” is

needed to save the information into the database.

Figure 14. NewBookView

5.4.7 New Book Quick View

The NewBookQuickView (see Figure 15) is used to add new rows to the pieceofwork,

languageversion, edition and book tables. The NewBookQuickView is meant for times

24

when books have to be added in a hurry. Only the bare minimum of information is add-

ed in order to identify the book. If more information is needed it can be found on the

internet.

Figure 15. NewBookQuickView

The user first adds the authors, tags and series from the available choices to their re-

spective lists which will eventually go to the book’s information. Then he/she inserts the

title and subtitle of the book. Then the publisher is chosen from the list and the identifi-

cation code is inserted. Finally the owner, Country Bought and Location are selected

and any additional information is inserted and the Add Book button is pressed.

5.4.8 New Person View

The NewPersonView (see Figure 16) is used to add new rows to the Person table. The

NewPersonView is used if the user can’t find the name of the Author/Translator/Owner

25

from the database. It also has a table (implemented by Java jTable class) of the per-

sons in the database. Whenever there is a list of users in the HomeLibrary program,

there usually is a button next to it that, when pushed, directs the user here.

The user can insert the First name, Last name, NickName, Date of Birth, Address, ZIP

code, Email, WWW-website and Additional Information. He/she can also choose the

sex of the person and the home country. Once all of the known information is made the

user clicks the Add-button to add the information to the database.

Figure 16. NewPersonView

26

5.4.9 New Publisher View

The NewPublisherView (see Figure 17) is used to add new rows to the publisher table.

The NewPublisherView is meant for adding new publishers into the database. In the

Name textfield the user inserts the name of the publisher (e.g. Docendo). The country

dropbox (e.g. Finland) is meant for the country where the main office of the publisher is

located. The WWW-textbox is for the website of the publisher (e.g.

www.docendo.com). Additional Information goes to the Notes table in the database

(e.g. schoolbooks). After all of the necessary information has been inserted, the user

clicks on the “Add publisher” button to add the information to the database. On the bot-

tom there is a list of all of the publishers already in the database along with the Number

of media by the publisher.

Figure 17. NewPublisherView

27

5.4.10 New City View

The NewCityView (see Figure 18) is used to add new rows to the City table. In New-

CityView the user can add new cities to the database. First the country that the city is

located in is selected from the “Country” combobox (e.g. Finland). If the country cannot

be found, a new country can be added by clicking the “new country” button, which

opens the NewCountryView (5.4.11). Then the user adds the name of the city (and

province/state/etc.) to the “City Name” textfield (e.g. New York NY). Finally the “Add

City” button is pressed, which adds the city to the database. The successful input adds

the city’s name to the combobox at the bottom of the window.

Figure 18. NewCityView

5.4.11 New Country View

In NewCountryView (see Figure 19) new countries can be added to the Country table

in the database. Most of the countries have already been added to the database, but

any changes in the geopolitical situation can change the name of a country or there

can be old countries that don’t exist anymore (Soviet Union, Czechoslovakia, etc.).

28

Figure 19. New Country View

First the name of the new country is added to the “Add Country” textfield without any

commas (e.g. Finland). Then the continent is selected from the “Continent” combobox.

More continents can’t be added to the database since all of the continents have been

discovered. Finally the “Add”-button is pushed which inserts the country to the data-

base and to the “Countries” jTable.

5.4.12 New Format View

The NewFormatView (see Figure 20) is meant for inserting new media formats (book,

cd-rom, dvd, pdf, etc.) to the format table in the database. First the format is named by

inputting the name to the “Name of the format” textfield (e.g. Book). Then the “Add for-

mat” button is pressed, which adds the format to the database and to the combobox in

the bottom of the window.

29

Figure 20. NewFormatView

5.4.13 New Language View

In the NewLanguageView (see Figure 21) new languages can be added to the Lan-

guage table in the database. The name of the language is added to the “Name of the

Language” textfield (e.g. English) and the “Add Language” is pressed in order to add

the language to the database.

Figure 21. NewLanguageView

5.4.14 New Location View

The location or placement shows where the book is located in the library. The location

can be a house, a room, a cabinet or a shelf designated by the user. In NewLoca-

tionView (see Figure 22) a new location can be added to the Placement table in the

database. The name of the location is inserted into the “Name of the location”-textfield

(e.g. libraryroom southwall) and the “Add location” button is pressed. This adds the

location to the database and to the combobox in the bottom of the window.

30

Figure 22. NewLocationView

5.4.15 New Role View

In NewRoleView (see Figure 23) a new role for what an author did for the media can be

made to the Role table in the database. In order to add a new role to the database the

user must give a role name to the “Role Name” textfield (e.g. writer) and click the “Add

role” button. The user can see which roles have been added to the database by looking

at the combobox at the bottom of the window.

Figure 23. NewRoleView

5.4.16 New Series View

If a media is a part of a series, then the series has to be on the Country table in the

database. For this reason the NewSeriesView (see Figure 24) was created. The user

needs to add the name of the series to the “Name of the series” textfield (e.g. peruskir-

jat) and click the “Add series” button so the series is added to the database.

31

Figure 24. NewSeriesView

5.4.17 New Tag View

Tags are keywords that help find the media. The media can have multiple tags. Tags

can be for example a genre. A NewTagView (see Figure25) works just like the previous

Views. It is used to add rows to the Tag table in the database. The user just needs to

input the tag name (e.g. programming) and press the “Add Tag” button to set the tag to

the database.

Figure 25. NewTagView

6 System requirements and Performance

In this chapter all of the necessary hardware and software requirements are men-

tioned. It is meant to inform the user of HomeLibrary what programs and hardware are

necessary in order for the HomeLibrary to work.

32

6.1 User interfaces

The HomeLibrary was made on Windows 7 and should work best on Windows Vista,

Windows 7 and Windows 8. Because HomeLibrary was made with Java and MySQL it

should not have any problems with Unix-based or Apple operating systems, as long as

the OS can support Java and MySQL. Mobile devices such as smartphones and tab-

lets can have trouble with HomeLibrary, because the user interface was not designed

with small touchscreens in mind. The performance has not been tested in other operat-

ing systems except Windows Vista and Windows 7.

6.2 Hardware interfaces

In addition to the computer and display, the program needs a normal computer key-

board and mouse for controlling it.

6.3 Software interfaces

The program connects to a MySQL database where all the data (such as book infor-

mation) are stored. This database will not be visible to the user in any way other than

through the program. MySQL has to be installed, as well as Java. After the MySQL has

been installed, a dump file has to be run which creates the database.

6.4 Usage intensity

Since the HomeLibrary is meant to be installed to home computers, its usage intensity

is one user at a time. Bigger intensities have not been tested.

The program can be used daily around the clock. The user is expected to make at most

10 queries per minute, on average 3. The usage intervals can be anything from 3

minutes (finding a book in the library) to 6 hours (cataloguing a library).

33

6.5 Capacity requirements

The software doesn’t require heavy hardware to function. A simple modern laptop

computer should be enough to handle the program and the database. The computer

should have enough disk space for expanding the database.

7 Discussion and Conclusions

The purpose of this project was to find the best solution for managing media in a home

environment. For this purpose many open source alternatives were reviewed and dis-

carded in favor of a tailor-made system. The designing and construction of the program

was then successfully implemented based on the requirements. The goal is to catalog

all of Prof. Regelski’s books into the HomeLibrary in the near future.

The basic features that could be included in the program during the timeframe were

searching of books, adding of books and adding of other information. The editing of

information was not included in this version, but is currently under construction and will

be added as soon as possible. The giving roles to authors is almost completed as is

the adding of bulk data from an Excel-file to the database.

There were other features that were imagined during the project, such as automatic

insertion of book information from the internet by ISBN, but time did not allow these to

be implemented. There were plans for the program to make an Excel-file and export

data to it, but this feature is unnecessary because the user can just copy-paste the

needed information from a Java table component (jTable) to a new Excel-file. A wizard

for creating the database and installing the program should be created.

34

References

1 Amateuring in Music and its Rivals. About the Author. Thomas A. Regelski Ph.D.
Made 2007. act.maydaygroup.org/articles/Regelski6_3.pdf (20.11.2013)

2 About VuFind. vufind.org/about.php (20.11.2013)

3 About LibLime Koha. http://www.koha.org/about (20.11.2013)

4 About Us. http://evergreen-ils.org/about-us/ (20.11.2013)

5 Greenstone (software). Wikipedia article. Last modified on 12 October 2013

en.wikipedia.org/wiki/Greenstone-(software) (20.11.2013)

6 OpenBiblio. Wikipedia article. Last modified on 31 October 2013.

http://en.wikipedia.org/wiki/OpenBiblio (20.11.2013)

7 PhpMyBibli. Wikipedia article. Last modified on 16 March 2013.

http://en.wikipedia.org/wiki/PhpMyBibli (20.11.2013)

8 Using Hibernate in a Java Swing Application. A Netbeans Hibernate tutorial.

 https://netbeans.org/kb/docs/java/hibernate-java-se.html (20.11.2013)

9 “SPECIFICATIONS DUIF DUINPAN” 05.03.2010 by Andualem Gurmu, Ilja Salmio,

Elina Harjuhahto, Lauri Hynninen, Anni Lementtinen, Juha Hakala, Panu Leppaniemi,

et al.

http://www.koha.org/about
http://evergreen-ils.org/about-us/
http://en.wikipedia.org/wiki/OpenBiblio
http://en.wikipedia.org/wiki/PhpMyBibli
https://netbeans.org/kb/docs/java/hibernate-java-se.html

Appendix 1

 1 (2)

The Example Book

Picture 1. Example Book Cover

Appendix 1

 2 (2)

Picture 2. Example Book Information Page

