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Introduction 
 
The toolbox LibrarY of Complex ICA Algorithms (LYCIA) includes many of the 
complex ICA and source separation algorithms that are publicly available, and allows 
the user to compare their performances using a number of metrics and visualization 
tools. In this walk-through, we explain the basic functionality of LYCIA and its use.  
 
A - Installing LYCIA 
 
Unzip the file ‘LYCIA1.0.zip’ and copy the folder ‘LYCIA’ onto your local machine. 
Add LYCIA directories to the MATLAB search path and type ‘LYCIA’ in MATLAB 
command window or double click ‘LYCIA.fig’ file to open LYCIA, as shown below. 

 

Figure 1. The main interface of LYCIA toolbox 

 

B - Steps involved in LYCIA 
 
A complete execution of LYCIA toolbox consists of three dependent steps that are 1) 
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source generation, 2) source mixing, and 3) source separation with complex ICA 
algorithms. An independent step is available for visualizing the result of each of the 
three steps. This option is treated as a fourth step in this document. After running any 
of these steps in the pre-cited order, users can save the output data, as discussed in 
Appendix A. 

 

B.1 – Generating complex sources 
 

Several models of complex sources are available in LYCIA. These are complex 
generalized Gaussian distribution (GGD), QAM/BPSK, complex Gaussian mixture 
(MoG) and general complex model. Before clicking the Generate Sources button in 
figure 1, users should set subsequent parameters as follows: 

a) Choose a model of source in the type of source menu, 

b) Set the number of sources, the number of runs, and the number of samples. 
This step is common for all models of source; however, it might be different 
from one model to another. For example, if users choose General complex 
Model in step a), the number of sources will automatically depend on specific 
parameters of this model, 

c) Set model specific parameters. 

The differences mentioned in b) have been included in the details of model specific 
parameter setting.  

 

>>>> Specific parameters for GGD sources 

 

 

 

 

 

 

 

Figure 2. Complex GGD parameter panel 
 

There are two parameters for GGD sources, the distribution shape parameter c and its 
circularity coefficient p. These parameters can be entered either as range of values in 
the field Range, or as fixed values in the field Specified. If a range is specified, the 
shape parameter (and/or circularity parameter) will be generated randomly. If the 
second option is selected, users should enter a set of values with a total number of 
values equal to the number of sources. Figure 2 shows GGD parameters setting for 3 
sources with specified values for c and a range for |p|. 
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>>>> Specific parameters for QAM/BPSK sources 
 
 
 
 
 
 

Figure 3. QAM/BPSK parameter panel 
 
In addition to general parameters such as the number of sources, QAM/BPSK source 
generation required two more parameters. These parameters are the constellation type 
of the sources, and its signal to noise ratio (SNR). If users generate N sources, N 
integer values from the set {2, 4, 16, 32} are required for the constellation type. 
 
>>>> Specific parameters for General Complex Model sources 
 

Figure 4. General complex Model parameter setting window 

 
When users select General complex model, a new window pops up for specific source 
parameter setting. The setting of these parameters is similar to the one explained for 
GGD sources – correlation and variance are entered either as a range of values, or as 
specified values. The correlation value between the real part and the imaginary part is 
in the interval [-1,1]. Users should also select a distribution for both real part and 
imaginary part.  If more than one parameter among correlation, variance of real 
part and variance of imaginary part is set by specifying fixed values, then these 
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parameter must have the same number of values. In this case the number of sources 
will be automatically set equal to the number of specified values. An example is 
shown in figure 4 where a) the correlation will be generated randomly in the interval 
[-0.5,0.5], b) the distribution of the real part is set to General Gaussian, c) the 
variances for the real part of three sources are set to three fixed values. In this case the 
number of source is automatically set to 3. 
 
>>>> Complex Gaussian Mixture 
 
Besides those general parameters, generating Complex Gaussian Mixture sources 
does not require any specific parameter.  
 
>>>> Load file 
 
Files loaded by users do not require specific parameters. However, the source data 
should be saved in a Matlab ‘.mat’ file and the data must be in a variable named 
Sources. This variable should also be a 1×N cell array; each element of the array 
represents a data matrix from different runs. In addition all the matrices must have the 
same dimension. Figure 5 shows an example containing three sources for each of five 
runs. 

 

Figure 5. Example of user data file – Sources variable (left panel) and two elements (right panel) 
 
B.2 – Mixing sources 
 
After generating successfully the desired complex sources, the second step is to form 
the observations. In order to generate mixtures of the independent sources, the user 
should 1) select type of mixing matrix in the list Mixing type, 2) select a noise power 
in the list Add Noise and/or enter the desired noise power in the field plus. When the 
mixing parameter setting is completed, clicking the Generate Observations button 
will create the mixture. Figure 6.1. shows the mixture generation panel that must be 
set before generating observations. 
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Figure 6.1. Panel for generating observations 
 

>>>> Load file 
 
Users can load their own mixing matrix by selecting Load Files in the list Mixing 
Type. The mixing matrix should be saved in a Matlab ‘.mat’ file and must be in a 
variable named A. This variable should be a 1×N cell array where N is the number of 
runs; each element of the array represents a mixing matrix for one run. Figure 6.2. 
shows an example containing a 4×4 mixing matrix for each of two runs. 
 

 

Figure 6.2. Example of user mixing matrix file 
 
 

B.3 – Source separation with complex ICA algorithms 
 
Once the sources are generated and mixed to form the observations, the users can 
perform source separation using a set of algorithms available in LYCIA, or test their 
own algorithms. Source separation involves two steps: a) select ICA algorithms and 
b) run selected algorithms. Figure 7 shows the corresponding panel. 
 
 
 
 
 
 

Figure 7. ICA Algorithm Panel 
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>>>> Selecting ICA Algorithms 
 
When users click the button Select Algorithms, a new window opens with several 
choices of algorithms (Figure 8.1).  Additional choices are available by clicking the 
More Algorithms button to display the second panel as in Figure 8.2. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1. Algorithm selection – main panel 
 
 
 
 

 
Figure 8.1. Algorithm selection – main panel 
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Figure 8.2. Algorithm selection – second panel 
 
 
Users can find detailed information about these complex ICA algorithms in the 
references listed at the end of this document and also in the “Algorithms” link on the 
LYCIA webpage (http://mlsp.umbc.edu/lycia/lycia.html).  
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In addition, users can add and test their own algorithms. 
>>>>> Adding user’s own algorithm 
 
Users can run and evaluate the performance of their own algorithms by clicking the 
Set parameters option button in figure 8.2, and setting the parameters required for this 
algorithm. Figure 9 shows an example of adding user algorithm. Note that only one 
algorithm can be added at a time. In this example, the algorithm jadem2.m located in 
the folder specified in Function Path with the input arguments Number of sources  
(provided by LYCIA) is added and one user’s own argument set to 2.  

 

Figure 9. User’s own algorithm selection parameter window 

 
In general, user ICA algorithm will have the signature, 
            [W, S] = userAlgorithmname (X, N, userArg1, userArg2,…, userArgn) 
where,  

• W and S are the outputs of the algorithm, representing the estimate of the 
pseudo-inverse of the mixing matrix and the estimates of the independent 
components, respectively. 

• X is the mixture matrix to be separated, and N is the number of sources 
 

Then the parameters will be set in the window of figure 9, as follows: 
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Number of sources:  check the box, 
Function Name: userAlgorithmname,  
Your own Argument: userArg1, userArg2, …, userArgn  
 
Note: The mixture X is provided by LYCIA and has been generated in previous steps 
(see B.2 mixing sources). If the order of parameter in the signature above does not 
match your algorithm, please make subsequent change to your algorithm. 
 
>>>> Running selected algorithm 
 
After selecting the algorithm and setting the required parameters, clicking the Run 
selected Algorithms button as shown in figure 9 will initiate the source separation 
process. An information window will show to notify of the progression of the source 
separation.  
 
B.4 – Visualization 
 
As noted previously, the visualization option of LYCIA is available for each of the 
three major steps described in the previous sections; users do not need to complete all 
three steps before visualizing the results. For example, once the sources are generated, 
they can be visualized. 
 
>>>> Visualizing Sources and observations 
 
To plot the sources, or the observations, click the appropriate button – either Plot 
Sources, or Plot Observations to open the viewer. The windows that open in both 
cases are quite similar, containing the same commands and information. The 
difference between them is that the source viewer gives information related to 
sources, while the observation viewer deals with observations. Figure 10-11 show 
these windows. The objects in the viewing windows are explained in Table 1. 
 

Table 1. Objects of the visualization window 

Objects Descriptions 

Type of plot LYCIA offers five different presentations of the data. For 
example, the user can display a scatter plot of the sources. 

Run Indicates the run for which the user wants to plot the data 
Left, Right Index It is possible to display simultaneously two sources or 

observations. Then the right (resp. left) index refers to the index 
of the source that is plotted in the right (resp. left) side axis. (see 
figure 10) 

Load data This button is used to load and visualize previously saved data. 
Statistics Above each plot, the statistics of the corresponding source are 

displayed – mean, standard deviation, kurtosis, noncircularity 
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Figure 10. Source visualizing panel – 2 sources (Right index = 2) 

 
 
 

Figure 11. Observation visualizing window – single observation (Right index = 0) 
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>>>> Different visualization options 
 
Sources and observations can be visualized with five different plotting methods. 
Figures 12-16 show screenshots of these methods. 

Figure 12. Color 3D Histogram  

 

Figure 13. Grayscale 2D Histogram 
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Figure 14. 1D Histogram – Real and Imaginary parts 
 
 

Figure 15. 1D Histogram – Phase and Magnitude 
 
 
 

 

 



 13 

Figure 16. Scatter Plot 
 

>>>> Visualizing the estimates 
 
Visualizing the estimates is almost identical to visualizing sources and observations. 
The estimates can be plotted using the five methods previously mentioned. The only 
difference is that each shown with its corresponding source side by side. Therefore 
users can display only one estimate at a time. Figure 17 shows a display of an 
estimate. There is one more option to choose the algorithm to display in the menu 
Algorithm. 

Figure 17. Scatter plot of a source and its estimate 
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>>>> Visualizing performance indices 
 
An important feature of LYCIA is the evaluation of the ICA algorithms by their 
performance indices. For each algorithm used to separate the independent 
components, LYCIA evaluates the computing time (CT), the inter-symbol interference 
(ISI), and the interference to signal ratio (ISR). The parameter can be visualized by 
clicking the Plot Performance Index button in the main interface of LYCIA. This 
visualization offers two options: 1) average performance index and 2) performance 
index per run. In the first case the average value of each index across all runs is 
displayed, while the second option provides the performance for each run. Figures 18 
and 19 show one plot of each index.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure18. Average computing time 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19: Per run performance 
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Appendix A:  Saving and loading data 
 

>>>> Saving data 
 
Data generated in LYCIA can be saved for further processing and/or visualization. 
Since the visualization of estimates is performed relatively to the original sources, 
they are saved when the original sources are available. It is recommended to save the 
data after a complete operation – source generation, source mixing and source 
separation. In this case users save the data by clicking the Save Outputs button, 
entering the Current Folder and the file Prefix in the dialog box shown in Figure 20. 

Figure 20. Dialog box for saving data 
 
In figure 20, the prefix is set to Walkthru. If sources, observations, and estimates 
correspond to each other, saving the data will produce the following *.mat files. 
 
File contents File names 
Sources Walkthru_LYCIA_Sources 
Observations Walkthru_LYCIA_Observations 
Estimates Walkthru_LYCIA_Estimates 
Performance indices Walkthru_LYCIA_Performances 
 
>>>>> Variables in the MAT files 
 
Figure 21-24 show list of variables in each file followed by a brief description of file 
specific variables. Note that all four types of files have common variable. These are 
typeData , numSources, numRuns and numSamples representing respectively the type 
of data, the number of sources per run, the number of runs and the number of samples. 
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Figure 21. Variables in source file for GGD sources 

 
 

 
 
 
 
 

Figure 22. Variables in source file for QAM/BPSK sources 

 

 
 
 
 
 

Figure 23. Variables in source file for General Complex Model sources 

 

Fields Descriptions 
c User entered circularity coefficients before generation 
p Shape parameters 
type Model of source distribution 
mean Cell array of mean of the sources 
std Cell array of standard deviation 
kurtosis Cell array of Kurtosis of the sources 
nonCir Computed noncircularity after generation of the sources 
Sources Cell array of source data for all runs 
 

 

Fields Descriptions 
snr Signal to noise ration entered by user before generation 
numStars Vector of constellation type for each source 
Note: the other parameters are the same as in figure 21 
 

 

Fields Descriptions 
corrRd Vector of correlation between real and imaginary parts 
varRdR Variance of the real part 
varRdI Variance of the imaginary part 
RealDis Distribution of the real part Variance of the real part 
ImagDis Distribution of the imaginary part 
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Figure 24. Variables in observation file 
 

 
Figure 25. Variables in estimates file 

 
 

 
Figure 26. Variables in performance index file 

 
 
>>>> Loading data 
 
There are two possible ways to load saved data for further visualizations – either in 
the main interface of LYCIA, or in any of the visualizing interface.  In the main 
window of LYCIA, the command button Plot saved data (see figure 1) allows the 
user to select one of the previous files for visualization. Once in the Viewer, the user 
can choose another source of data by clicking the Load data button (figure 10).  

 

Fields Descriptions 
statX Statistics of the observation, please load file in viewer  
mixMatrix Mixing matrix used to mix the sources 
noise Noise – added by user before generating mixture 
Observations Cell array of observations for all runs Variance of the real part 
 

Fields Descriptions 
Shat1,… Estimates data for the first algorithm, … 
W1_SUT Cell array for demixing matrix of the first algorithm (SUT) 

The number indicates index for algorithm and the label in  
the end indicates the name of the algorithm. 
Each element represents the demixing matrix for one run. 

Note: The remaining parameter are options of algorithms used to  
Separate Sources and depend on user’s choices.  

Variance of the real part 
 

 

Fields Descriptions 
perRunPerf Cell array of performance data for individual runs 
failed Failure information – related to the algorithms 
avgTime Average computing time for all runs per algorithm 
avgISI Average ISI for all runs per algorithm Variance of the real part 
avgISR Average ISR for all runs per algorithm  
Note: the remaining data are used by graphing routines  
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