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Chapter 1

Introduction

New developments in physics are often based on recent developments in
mathematics. For example, general relativity is an application of non-
Euclidean differential geometry. Quantum mechanics is based on the for-
malism of abstract vector spaces, and analytic mechanics is based on earlier
develpments in the theory of differential equations. The dates are signifi-
cant. It takes about a generation for physicists to assimilate a new body
of mathematics and fit it to an application. There can be no question that
the modern theory of elementary particles rests heavily on the formalism
of Lie groups. I am reminded of this every time someone refers to the
“Standard Model” as SU(3)×SU(2)×U(1). Apparently the two terms are
interchangable! Lie groups were invented by the Swedish mathematician,
Sophus Lie in the late nineteenth century, but most of the theory that we
use was developed by E. Cartan, H. Weyl, and others in the 1920’s. Appar-
ently their work has still not been completely assimilated; books on group
theory written for mathematicians are unreadable for most physicists, and
books written for physicists deal mostly with a few familiar examples, such
as the rotation group and SU(3), and ignore the underlying theory. Those
books that do treat the theory make frequent use of the incantation, “It can
be proved that· · ·,” followed perhaps by a reference to the Proceedings of
the Royal Swedish Academy of Mathematics, circa 1880.

It has been my intention to write a book that would bridge the gap be-
tween the mathematical literature and the examples that can be found in
standard physics texts such as Hammermesh, Georgi, and Joshi. I have tried
to make the book self contained so that the reader can follow an unbroken
trail of logic that begins with the definition of a group and concludes with
important examples from modern physics. In order to do this I have or-

5



6 CHAPTER 1. INTRODUCTION

ganized the book in terms of definitions, lemmas, theorems and corollaries.
I realize that this seems quaint, like an old-fashioned geometry text, but
the trail is a long one, and it is necessary to have sign posts. Incidentally,
the purpose of proofs, to my way of thinking, is not to defend the truth of
a theorem before some court of law, but rather to reveal the inner work-
ings of the formalism. My goal in presenting them is primarily to provide
insight rather than conciseness or mathematical rigor. I have no compunc-
tions about skipping a proof if the proof is obvious, or lavishing pages on a
proof if I myself found it difficult to understand.
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1.1 The Definition of a Group and Some Examples

In this chapter we introduce the formal definition of a group, and, after some
examples, specialize to Lie groups. Rather than giving a formal definition
of Lie groups at this point we present an intuitive survey of the rotation
group as it is usually presented in quantum mechanics texts. This provides
an example of all the basic ingredients of Lie group theory imbedded in a
familiar context. In later chapters we will develop the mathematical formal-
ism required to treat these topics rigorously and illustrate them with other
examples.

Definition 1.1 Group G
A set G of elements a, b, c, . . . is called a group if the following four

axioms are satisfied:
(a) Any two elements, a and b, can be combined to make a third element

c. There are exactly two ways of doing this, which we write

ab = c

ba = c′

in general ab=/ ba.
(b) For any three elements a, b, and c of G

(ab)c = a(bc)

The left side of this equation is interpreted as follows: a and b are first
combined, and the resulting element is then combined with c. On the right
side, b and c are first combined and then subsequently combined with a.

(c) The group G contains an identity element e such that

ae = ea = a

for every element a in G.
(d) For each element a of G there exists an inverse element a−1 which

is also contained in G such that

aa−1 = a−1a = e

This definition is very general and abstract. It does not specify what
kinds of things the elements are or what sort of operation combines them.
This operation is usually called “group multiplication” (or simply “mul-
tiplication”), but ordinary multiplication of two real numbers is only one
instance of group multiplication. A few other instances are provided by the
following examples:
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Figure 1.1: The positions of four numbered balls after two successive rear-
rangements.

Example 1.1 The permutation group Sn.

This group consists of the n! permutations of n distinguishable objects.
To make this more concrete, think of four numbered balls, which could be
rearranged in 4! distinct ways. Two of these permutations are illustrated
in Fig. 1.1. It should be stressed that the group elements are not the
configurations of these balls, but rather the operations of interchanging them
(ie. the arrows in the Fig 1.1). Group multiplication ba means that one
performs the operation a on the balls first, then rearranges them according
to the instructions that constitute element b. The same end result can always
be obtained with a single permutation, which is the group element c = ba
shown in Fig. 1.2.

Each group element can be designated by listing n integers. In the
example of the four balls, element a corresponds to (4,1,3,2); in other words,
the ball currently in the first position is moved to the fourth position, the
second ball is moved to the first position, etc.. In this notation ba = c
becomes

(4, 2, 1, 3)(4, 1, 3, 2) = (3, 4, 1, 2)
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Figure 1.2: A single permutation yielding the same configuration as the two
permutations of Fig. 1.1.

Since there are n! elements and (n!)2 ways of combining them, we could
construct a table using this notation with n! rows and n! columns listing the
outcome of all possible combinations. The first group axiom insures that
such a table, called the group multiplication table, can always be completed
(in principle). Since we will usually be dealing with groups with an infinite
number of elements, it will be necessary to replace the multiplication table
with a mathematical rule or function that computes the outcome of any
arbitrary product of elements.

Example 1.2 The addition group of integers.

Take G to be the set of all integers N (positive, negative, and zero).
Define the combination rule to be ordinary addition. In this case the identity
is 0 (as N + 0 = 0 +N = N), and the inverse of an integer is its negative,
−N (as N + (−N) = (−N) +N = 0).

The group in Example 1.1 had a finite (n!) number of elements. In the
second example the elements were infinite in number but still countable.
Classical group theory deals mainly with such groups (called finite groups
and infinite discrete groups respectively). Lie groups, on the other hand,
have a non-countable infinity of elements. The group of Example 1.2 could
be redefined as a Lie group by taking G to be the set of all real numbers
(rather than integers). The elements can no longer be counted, but we can
represent them with a single real continuous variable α = N . We might say
that there is a functional relationship between α and the group elements,
since each numerical value of α corresponds to an element of the group.
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The “function,” of course, is just the identity in this case; but the fact that
the group elements are specified by one (or more) continuous variable(s)
through some algebraically defined function is the defining characteristic of
a Lie group. The additive group of real numbers is thus the simplest possible
example of a one-parameter Lie group. In general, a Lie group will have
more than one parameter, ie. the elements will depend on several variables
through some complicated functional relationship. Another ingredient in
the definition is that this function is “smooth” and differentiable, so that
the techniques of calculus can be applied to it. Lie group theory is thus the
product of the marriage of group theory with algebra and calculus. A more
formal definition is given in Chapter 2. In the meantime we consider some
less trivial examples.

Example 1.3 The matrix multiplication group.

Take G to be the set of all non-singular n × n matrices. The group
multiplication rule is ordinary matrix multiplication.. The product of two
n×nmatrices is itself of dimension n×n, and the product of two non-singular
matrices is non-singular. Matrix multiplication automatically satisfies the
associative law, axiom (b). The identity element is the n× n unit matrix I.
Finally, every non-singular matrix M has an inverse M−1 with M−1M =
MM−1 = I, so the group axioms are satisfied. This set of matrices is called
the general linear group of dimension n abbreviated Gl(n).

The group Gl(n) can be regarded as a Lie group if the matrix elements
are parameterized appropriately. For example, each matrix element could
be a separate parameter or some function of several parameters. Thus n2

parameters are required to specify the group completely.

Example 1.4 The rotation group.

Consider the set of rotations of a rigid object. Clearly these rotations
constitute a group, but what are the group elements? There are at least
four alternatives of consider.

(a) Let the group elements correspond to the actual rotations of the ob-
ject. As in Example 1.1, the elements are operations. Group multiplication
consists of making one rotation followed by another.

(b) The rotations can be parameterized with a set of three angles. The
conventional choice is the set of Eulerian angles ψ, θ, and φ illustrated in
Figure 1.3. We use two coordinate systems, a x, y, z system fixed in space
and a x′, y′, z′ system attached to the rigid object. Before any rotations have
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been performed the two systems coincide. The first rotation is made around
the z-axis, so that the x′-axis is displaced from the x-axis, and the y′-axis is
displaced from the y-axis by an angle φ. The object is then rotated about
its y′-axis, so that the z and z′-axes are displaced by an angle θ. Finally, the
object is rotated through an angle ψ about its z′-axis. Each set of angles
0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, and 0 ≤ ψ ≤ 2π specifies a rotation. We can thus
associate each triplet of numbers (ψ, θ, φ) satisfying the above inequalities
with a group element. The identity element is (0, 0, 0), and the inverse of
(ψ, θ, φ) is (−φ,−θ,−ψ).

The first axiom, ba = c, is interpreted as follows. Associate the element
a with the triplet (ψ1, θ1, φ1) and the element b with a second rotation
(ψ2, θ2, φ2). The final position of the object after these two operations have
been performed could have been achieved with a single rotation (ψ3, θ3, φ3),
which we associate with the element c. The group closure property (axiom
a) implies the existence of a set of three functions

φ3 = φ3(ψ2, θ2, φ2;ψ1, θ1, φ1)
θ3 = θ3(ψ2, θ2, φ2;ψ1, θ1, φ1) (1.1)
ψ3 = ψ3(ψ2, θ2, φ2;ψ1, θ1, φ1)

from which (ψ3, θ3, φ3) could be calculated given (ψ1, θ1, φ1) and (ψ2, θ2, φ2).
These functions are the analog of the group multiplication table discussed
in Example 1.1.

(c) The group elements can also be represented by matrices. For exam-
ple, imagine a rigid object rotating about a fixed turning point, which is
used as the origin of a coordinate system as shown in Figure 1.3. As a result
of the rotation, any point P in the object will move to a new position P ′.
We define a position vector xP , which can be thought of as an arrow drawn
from the origin to P. We will write

xP =
3∑

i=1

xPi
ei (1.2)

where ei, i = 1, 2, 3 are a set of three mutually orthogonal unit vectors
parallel to the axes of the coordinate system, and the xPi

are the coordinates
of the point P.

A rotation of the object will change the components of the position
vector, and leave the unit vectors unchanged.

xP ′ =
3∑

i=1

xP ′
i
ei (1.3)
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A pure rotation must leave invariant the length of this vector, ie.

| xP |=| xP ′ |

as well as the angle between xP and any other coordinate vector, say xQ.
Both conditions will be met if the scalar product

xP · xQ =
3∑

i,j=1

xPi
xQj

ei · ej =
3∑

i=1

xPi
xQi

(1.4)

is invariant under rotation. Define a set of 3× 3 matrices Mij so that

x′i =
3∑

j=1

Mijxj (1.5)

The invariance of the scalar product requires that

xP ′ · xQ′ =
3∑

i=1

x′Pi
x′Qi

=
3∑

i,j,k=1

MijMikxPj
xQk

= xP · xQ =
3∑

j,k=1

xPj
xQk

δjk (1.6)

consequently
3∑

i=1

MijMik = δjk (1.7)

or, in matrix notation, MTM = I, where (Mij)T = Mji and I is the 3 × 3
unit matrix. Matrices that satisfy this condition are said to be orthogonal
matrices. We are thus tempted to associate the group elements with the
set of all 3 × 3 orthogonal matrices. There is still a subtlety to consider,
however. Taking the determinant of Equation (1.7) we get

det(MTM) = (detM)2 = detI = 1

Thus Equation (1.7) is sufficient to ensure that M is non-singular, but not
sufficient to eliminate those M’s with determinant = −1. Such transforma-
tions can only be achieved by inverting one (or all three) of the coordinate
axes, ie. by replacing the object by its mirror image. If we restrict the group
to proper rotations, ie. no reflections, then the elements correspond to the
set of all 3 × 3 orthogonal unimodular matrices. This is the matrix group
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SO(3); the S stands for “special” indicating the the determinant is equal
to +1. Without this restriction, the group is O(3), the orthogonal group of
3× 3 matrices.

The product of two rotation matrices corresponds to two successive ro-
tations. Thus if Ri stands for the triplet of Euler angles (ψi, θi, φi), and
M(Ri) is the matrix that rotates an object through these angles, then

M(R2)M(R1) = M(R3), (1.8)

where R3 is the set of angles (ψ3, θ3, φ3) given by (1.1). Later in this section
we will return to the problem of constructing matrices with this property.

(d) We could also use the group elements to represent operators. Let ψ(x)
denote a scalar field, some scalar-valued function of the position vector x.
This field associates a number with each point in space, and so, in a sense,
is independent of any coordinate system. In order to write it as an explicit
function, however, some coordinate system is required. Once the choice
is made ψ becomes a function of the components of x. For example, if ψ
represents the electrostatic potential associated with a uniform electric field
E, we could write

ψ(x) = −Ex (1.9)

We have obviously chosen a coordinate system whose x-axis is parallel to E,
and the definition of ψ is now locked into this frame of reference.

Suppose we were to evaluate ψ in a different coordinate system. Such
a transformation would leave the numerical value of ψ invariant at each
point in space, but it would change its functional form. This change can be
thought of as the effect of an operator, conventionally called the coordinate
transformation operator. In this example we limit ourselved to pure rota-
tions, but the extension to more general coordinate transformations is quite
straightforward.

The functional form of ψ is originally defined in terms of a coordinate
system given by three orthogonal unit vectors. The position vector x is
given by

x =
3∑

i=1

xiei (1.10)

and ψ is an explicit function of the components xi. The coordinate system
is now rotated through a set of Eulerian angles designated by R = (ψ, θ, φ).
The new unit vectors are

e′j =
3∑

i=1

M(R)jiei. (1.11)
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The coordinate vector x remains invariant (since it points to a fixed point
in space),

x =
3∑

i=1

xiei =
3∑

j=1

x′je
′
j =

3∑
i,j=1

x′jM(R)jiei,

so

xi =
3∑

i=1

x′jM(R)ji =
3∑

j=1

[M−1(R)]ijx′j (1.12)

or

x′j =
3∑

i=1

M(R)jixi. (1.13)

Let us regard ψ as a function of the components of x and emphasize
this with the notation ψ(xi). We seek a new function ψ′ of the transformed
coordinates such that

ψ′(x′i) = ψ(xi).

This means that the numerical value of the new function ψ′ evaluated with
the new coordinates x′i is equal to the value of the original function evaluated
with the original coordinates. So

ψ′(x′i) = ψ(
3∑

j=1

[M−1(R)]ijx′j).

It is customary to drop the primes on the components with the warning that
the resulting equation refers only to the new (rotated) coordinate system.
Then

ψ′(xi) = ψ(
3∑

j=1

[M−1(R)]ijxj). (1.14)

This can be illustrated with the example of the uniform electric field,
(1.9). If the coordinate axes are rotated through an angle θ around the
z-axis, the components of x are transformed by

M(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .
Then

ψ′(x′i) = −E(x′1 cos θ − x′2 sin θ),
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or, if we agree to abandon the original coordinate system

ψ′(xi) = −E(x1 cos θ − x2 sin θ).

Now define the coordinate transformation operator P (R).

P (R)ψ(xi) = ψ′(xi) = ψ(
3∑

j=1

[M−1(R)]ijxj)

This equation establishes a one-to-one relationship between the rotation
matrices M(R) and the operator P (R). Since the matrices form a group,
the operators must themselves form a group. The product of two operators
is

P (R2)P (R1)ψ(x) = P (R2)ψ(M−1(R1)x)

= ψ[M−1(R1)(M−1(R2)x)] = ψ(M−1(R3)x).

The last step uses (1.8) to introduce the matrix M(R3). The product of two
operators can thus be written

P (R2)P (R1) = P (R3). (1.15)

A digression on conventions and notation is appropriate at this point.
In Example 1.3c the vector xP is rotated to form a new vector xP ′ . The
vector components change, but the unit vectors remain fixed. In Example
1.3d the coordinate system is rotated so that the unit vectors (1.11) and vec-
tor components (1.13) transform leaving the vector x invariant. These two
transformations are called active and passive transformations respectively.
Both conventions are used in the literature, often without clearly identify-
ing which is intended.1 In most cases we will use the passive viewpoint.
Exceptions will be clearly noted.

There is another convention that tends to confuse the matter further.
Many textbooks use the symbol x to indicate the components of the vector,
ie. x = (x1, x2, x3). With this notation the “vector,” x, changes x=/ x′,
even in the case of a passive rotation.

In this text, the boldface symbol x applied to a position vector will
always imply a linear combination of unit vectors as in (1.10). (We will
use the boldface notation with Greek letters to indicate parameter arrays
in subsequent chapters. These arrays are not position vectors.) Vector

1There is actually a third convention in which the vectors and unit vectors transform
in opposite directions leaving the components invariant. [Messiah, 1962, Vol. II] This
might be called a “hyperactive” transformation.
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components will usually be written with a subscript or superscript, eg. xi

or xµ. Occasionally we will eliminate the sub- and superscripts when no
confusion is likely, eg. x′ = Mx is shorthand for (1.13).

It remains to show how the rotation matrices defined in (1.5) are related
to the Euler angles, R = (ψ, θ, φ). These angles are defined in terms of
a sequence of three rotations. In the passive view, each rotation can be
represented by a matrix operating on the unit vectors as in (1.11).

M(R) = Mz′′(ψ)My′(θ)Mz(φ) (1.16)

The matrix on the right rotates the coordinate system by an angle φ around
the z-axis yielding a new set of unit vectors, e′i i = 1, 2, 3. The second
matrix rotates this coordinate system around the e′2 axis, and the resulting
unit vectors are e′′i. The final rotation is taken around e′′3. Thus M(R) is
the product of three simple matrices.

Mz(φ) =

∣∣∣∣∣∣∣
cosφ sinφ 0
− sinφ cosφ 0

0 0 1

∣∣∣∣∣∣∣ My′(θ) =

∣∣∣∣∣∣∣
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

∣∣∣∣∣∣∣
Mz′′(ψ) =

∣∣∣∣∣∣∣
cosψ sinψ 0
− sinψ cosψ 0

0 0 1

∣∣∣∣∣∣∣
Multiplying these three matrices in the order of (1.16) yields

M11 = cosψ cos θ cosφ− sinψ sinφ
M12 = cosψ cos θ sinφ+ sinψ cosφ
M13 = − cosψ sin θ
M21 = − sinψ cos θ cosφ− cosψ sinφ
M22 = − sinψ cos θ sinφ+ cosψ cosφ (1.17)
M23 = sinψ sin θ
M31 = sin θ cosφ
M32 = sin θ sinφ
M33 = cos θ

The angles are positive when drawn counterclockwise around the axes of a
right-handed coordinate system. Passive rotation is assumed. To convert
(1.17) to active rotations, simply change the sign of all angles.
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It will be useful later on to decomposeM(R) into three separate rotations
referred to the same coordinate axes. To this end we can write

My′(θ) = Mz(φ)My(θ)M−1
z (φ) (1.18)

The matrix on the right restores the coordinate axes e′i to their original
position. The next matrix rotates the coordinate system about the original
y-axis. The coordinate system is then rotated back around the original
z-axis. Using the same argument with the other rotations gives

Mz′′(ψ) = My′(θ)Mz′(ψ)M−1
y′ (θ) (1.19)

and
Mz′(ψ) = Mz(φ)Mz(ψ)M−1

z (φ) (1.20)

Substituting equations (1.18), (1.19), and (1.20) into (1.16) yields

M(R) = Mz(φ)My(θ)Mz(ψ) (1.21)

Each rotation is referred to the same coordinate axes, but the rotations are
performed in opposite order from (1.16).

Many alternative definitions of the Euler angles appear in the literature;
some authors use the x-axis for the second rotation, some apparently use
a left-handed coordinate system, and there is no agreement regarding the
names of the angles. Quantum mechanics texts universally use the z-axis
for the first and third rotations, however. The reason is that the z-axis is
always chosen as the axis of quantization, so that the first and third rotations
only change the wave function by a phase factor, and the resulting rotation
matrices are greatly simplified. This definition has a pathology, however,
that must be avoided in some applications. We will return to this point in
Section 1.3.



18 CHAPTER 1. INTRODUCTION

1.2 Isomorphism and Homomorphism

In Example 1.4 we considered four rather different classes of objects as
group elements: physical rotations, sets of Eulerian angles, matrices, and
coordinate transformation operators. Each set constituted a group, and in
some sense, it was always the same group. The phrase “in some sense” can
be made more precise with the notion of isomorphism and homomorphism,
which we now define.

Definition 1.2 Mapping
Let G and G′ be two groups. A mapping φ of G onto G′ is a rule that

associates each element a of G with some element a′ of G′. Symbolically

a′ = φ(a).

The element a′ is called the image of a. If every a ∈ G has an image a′ ∈ G′,
we say that φ maps G into G′. If every a′ ∈ G′ is the image of some a ∈ G,
we say that φ maps G onto G′. In general a mapping from G onto or into
G′ does not imply a mapping from G′ to G. However if the mapping is one-
to-one, the inverse exists and is unique, a = φ−1(a′). Such a mapping is
said to be faithful.

Definition 1.3 Homomorphic mapping of a group G onto a group G′.
Let a and b be any two elements of G. If φ is a mapping as defined above

and if φ(b)φ(a) = φ(ba), then φ is said to be a homomorphic mapping.
In other words, a homomorphic mapping preserves the group multiplicaton
table.

Definition 1.4 Isomorphic mapping of a group G onto a group G′.
If φ is a one-to-one mapping and φ(b)φ(a) = φ(ba), it is said to be an

isomorphic mapping.

Clearly the four groups presented in Example 1.4 are related to one an-
other through homomorphic mapping. To each physical rotation element
there corresponds at least one set of Eulerian angles (θ, ψ, φ), at least one
rotation matrix M(R), and at least one coordinate transformation operator
P (R). Equations (1.1), (1.8), and (1.15) guarantee that the various map-
pings preserve the group multiplicaton table. The groups O(3) and SO(3)
provide a simple example of a homomorphic mapping, since O(3) contains
every element of SO(3) as well as every element that can be obtained by
multiplying an element of SO(3) by −I. Each element of SO(3) is thus an



1.2. ISOMORPHISM AND HOMOMORPHISM 19

image of exactly two elements of O(3); the mapping is homomorphic from
O(3) onto and into SO(3).

Group theory provides a universal formalism for exploiting the properties
of a group without regard to the explicit mathematical form of its elements.
This is part of the power and usefulness of the theory; but there is a deeper
aspect, which was discovered by Lie in the late nineteenth century. The
continuous groups (subject to a few general restrictions) are manifestations
of a much simpler mathematical structure called the Lie algebra. In its
most general form the Lie algebra consists of a set of commutation relations
among elements of an abstract algebra. In quantum mechanics the Lie alge-
bra appears as a set of commutation relations among Hermitian operators
defined on a Hilbert space. These operators are the familiar observables like
momentum and angular momentum; but their existence indicates the pres-
ence of an underlying group, which in the case of non-relativistic quantum
mechanics is the group of translations and rotations in three-dimensional
Euclidian space. In any case, these simple commutation relations contain
all the information required to completely reconstruct the group from which
they were derived, as well as a host of other groups related to this group
by homomorphic and isomorphic mapping. In this sense the Lie algebra is
not unlike a strand of the DNA molecule, which contains, in principle, the
information neccessary to reconstruct the entire organism from which it was
taken.

In the remainder of this chapter we will explore these ideas in the context
of the rotation group. In subsequent chapters we will develop the general
formalism for any Lie group.
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1.3 The Lie Algebra of the Rotation Group

The analysis of a Lie group in terms of its Lie algebra requires a careful
study of the properties of the group in the neighborhood of the identity.
For this purpose the parameterization of the rotation group in terms of the
usual Euler angles as discussed in the previous section is unsatisfactory. The
reason is that when ψ = 0, the z- and z′′- axes coincide, so that φ and θ
are no longer independent rotations. For example, M(R) = I for all R of
the form R = [φ, 0,−φ], where φ is any arbitrary angle. Consequently the
mapping from the group of rotation matrices to the group of Euler angles is
infinitely multiple valued in the neighborhood of the identity.

Any parameterization of the rotation matrices will suffer from this pathol-
ogy at some point. For our purposes it is sufficient to insure that these points
are safely removed from the identity. The trick is obviously to choose the
rotations around three distinct axes. We therefore define the angle α1 to be
a rotation about the x (or e1) axis. The angle α2 is then defined around the
new y′, axis; and α3 corresponds to a rotation about the z′′ axis. This moves
the singular point to α2 = ±π/2, whereupon the x- and z′′-axes coincide.
This choice leads to the following functions for the matrix elements:

M(R)11 = cosα2 cosα3

M(R)12 = sinα1 sinα2 cosα3 + cosα1 sinα3

M(R)13 = − cosα1 sinα2 cosα3 + sinα1 sinα3

M(R)21 = − cosα2 sinα3 (1.22)
M(R)22 = cosα1 cosα3 − sinα1 sinα2 sinα3

M(R)23 = cosα1 sinα2 sinα3 + sinα1 cosα3

M(R)31 = sinα2

M(R)32 = − sinα1 cosα2

M(R)33 = cosα1 cosα2

We have assumed a right-handed coordinate system. The angles are positive
when measured in the direction a right-handed screw would turn if it were
moving along the rotation axis in the positive direction.

For notational convenience we regard the three angles, α1, α2, α3, as
forming the three components of a vector α.

M(R) = M(α1, α2, α3) = M(α)

The functions listed in (1.22) have three properties that are essential for
what we are about to do.
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(1) M(0) = I, the identity element.
(2) The elements of M are continuous, infinitely differentiable functions

of the components of α.
(3) M(α) is an isomorphic mapping (at least in the neighborhood of the

identity) of the group of the α’s onto the group of the M’s.
These three conditions guarantee that M(α) can be expanded in a power

series in the neighborhood of the identity.2

M(α) = I +
3∑

i=1

αiXi +
1
2

3∑
i,j=1

αiαjXiXj +O(α3) (1.23)

The X’s are a set of three constant matrices defined by

Xi =
(
∂M

∂αi

)
α=0

(1.24)

If α is an infinitesimal quantity, M will have an inverse given by

M−1(α) = I −
3∑

i=1

αiXi +
1
2

3∑
i,j=1

αiαjXiXj +O(α3)

Now let α and β represent two sets of Euler angles, both infinitesimally
close to zero. The following sequence of transformations, (1) β−1, (2) α−1,
(3) β, (4) α, is called the commutator of the two group elements α and β.
In terms of matrices

M(α)M(β)M−1(α)M−1(β) = I+
3∑

i,j=1

αiβj(XiXj−XjXi)+O(α3) (1.25)

Thus the group theoretical commutator, when applied to infinitesimal trans-
formations, leads naturally to the usual quantum mechanics definition of the
commutator of two linear operators

[Xi, Xj ] = XiXj −XjXi (1.26)

The commutator of α and β must itself be a group element, which we call
γ.

M(α)M(β)M−1(α)M−1(β) = M(γ) (1.27)

2See Section 1.5 for a derivation of this formula.
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It seems natural to assume that γ is also infinitesimally close to the origin,
so that M(γ) has an expansion like equation (1.23). Comparing leading
terms in equations (1.23) and (1.25) yields

[Xi, Xj ] =
3∑

k=1

Ck
ijXk. (1.28)

The factors labeled Ck
ij are a set of n3 numbers called the structure constants.

It will be proved in Section 3.4 that the Xi’s are linearly independent. An-
ticipating this result we substitute (1.28) into (1.25) and obtain an equation
for Ck

ij ,

γk =
3∑

i,j=1

Ck
ijαiβj . (1.29)

The Xi are called the infinitesimal group generators. They can be cal-
culated once and for all from the parameterization of the matrices. For
example, the generators of the rotation group can be found by differentiat-
ing (1.22) and setting α = 0.

X1 =

 0 0 0
0 0 1
0 −1 0

 X2 =

 0 0 −1
0 0 0
1 0 0

 X3 =

 0 1 0
−1 0 0

0 0 0

 (1.30)

These matrices satisfy the commutation relationship

[Xi, Xj ] = −
3∑

k=1

εijkXk (1.31)

so that Ck
ij = εijk. it is no accident that Ck

ij is a constant independent of α,
β, and γ. We will prove in Chapter 3 a fundamental theorem that the com-
mutator of any two group generators can be written as a linear combination
of generators with constant coefficients. The structure constants Ck

ij are
determined ultimately by the parameterization and the multiplication table
of the group. Thus −εijk contains for the rotation group all the information
of (1.22) in a (very) compact form.

The angular momentum commutation relations of quantum mechanics

[Ji, Jj ] = ih̄
3∑

k=1

εijkJk (1.32)
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are obtained from (1.32) with the trivial replacement Xi = ıJi/h̄. The ı is
included to make the operators Hermitian, and h̄ provides the appropriate
dimensionality and scale.

This is the point at which disaster would have overtaken if we had used
the usual Euler angles with a singular point at α = 0. The Taylor series
expansion (1.23) would be invalid, and the resulting commutation relations
would be meaningless.

There are, of course, many other satisfactory ways of parameterizing the
rotation matrices; and each parameterization will produce a different set of
Xi’s. These sets differ from one another in a trivial way, however. It can be
shown that each parameterization yields a set of three linearly independent
matrices, and each reparameterization produces Xi’s that are linear com-
binations of the original matrices. The Xi’s can be regarded as the basis
vectors of a linear vector space whose dimension equals the number of inde-
pendent parameters in the group. Reparameterizing the group corresponds
to choosing a new basis in the same vector space.

1.4 Formal Definitions

Starting with a definition of rotations in terms of a multiplication table (1.1),
we are led finally to an abstract vector space governed by the commutation
relations, equation (1.28). This vector space is the inner sanctum of the
theory, the Lie algebra. We first give a formal definition.

Definition 1.5 Real Lie Algebra L
A real Lie algebra of dimension n is a real vector space of dimension n

on which is defined a commutator [X,Y ] for every X and Y ∈ L such that
(a) [X,Y ] ∈ L for all X,Y ∈ L
(b) [c1X + c2Y, Z] = c1[X,Y ] + c2[Y, Z] for all X,Y ∈ L and all real

numbers c1 and c2.
(c) [X,Y ] = −[Y,X] for all X,Y ∈ L.
(d) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ L. (The

Jacobi identity.)

The definition does not specify what sort of object X,Y, and Z are except
that they satisfy the usual postulates of a real vector space. Any pair of
these objects can be combined in a special way called the “commutator,”
which is also not specified except that it must satisfy postulates (b) through
(d). If the original group is a matrix group, then the elements of the Lie
algebra are matrices defined by (1.24), the commutator is defined by (1.26),
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and postulates (b) through (d) are satisfied automatically. There is an
advantage, however, in regarding X,Y, and Z as members of an abstract Lie
algebra for which the commutator is left undefined. The point is that any
interesting group, such as the rotation group, is in fact a family of groups
related by homomorphisms. Thus the rotation group can be considered as a
group of abstract elements, a group of matrices (with various dimensions),
or a group of operators on some vector space (there are many possibilities).
In each case it is possible to define the elements X,Y,Z, and the commutator,
so that all these groups that are homomorphic to one another have the same
abstract Lie algebra.3 Thus the abstract Lie algebra is a manifestation of
the basic group structure and independent of the specific form in which the
group elements are clothed.

Example 1.5 The Angular Momentum Operators.

These ideas can be illustrated by considering the Lie algebra of the ro-
tation group of operators given in Example 1.4(d). As usual we take an in-
finitesimal transformation in the neighborhood of the identity. If the angles
αi in (1.22) are replaced by infinitesimal angles δαi, then the components
x′i given by (1.5) become

x′i = xi + δxi

where

δxi = −
3∑

j,k=1

εijkδαjxk

Using (1.14)
P (δα)ψ(x) = ψ(x− δx),

but

ψ(x− δx) = ψ(x)−
3∑

i=1

δxi
∂

∂xi
ψ(x)

= [1 +
3∑

i,j,k=1

εijkδαjxk
∂

∂xi
]ψ(x) = [1 +

3∑
i=1

δαiLi]ψ(x),

where

Li =
3∑

j,k=1

εijkxj
∂

∂xk
. (1.33)

3Strictly speaking we should say that their algebras are related by Lie algebra isomor-
phisms. This concept is introduced in Section 3.3.
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These operators are called the generators of infinitesimal rotations. If
the coordinate system is rotated through an infinitesimal angle δαi, then ψ
is changed by an amount

δψ(x) = [P (δαi)− 1]ψ(x) = δαiLiψ(x)

The commutation relations can easily be computed from (1.33).

[Li, Lj ] = −
3∑

k=1

εijkLk (1.34)

They are identical with (1.31) in spite of the fact that the Xi’s are constant
matrices and the Li’s are differential operators. Thus the group of rotation
matrices, Example 1.4(c), and the group of coordinate rotation operators,
Example 1.4(d), have the same abstract algebra, (1.31) and (1.34).

The quantum mechanical version of (1.33) is obtained by introducing
the momentum operator

pk =
h̄

ı

∂

∂xk
.

Then
L =

ı

h̄
x× p.

The term x× p has the same commutation relations as J in (1.32).

1.5 Reconstructing the Group

We have clained (so far without proof) that every group has associated with
it a unique Lie algebra and that all groups related to it by an isomorphism
have the same Lie algebra. The converse is not quite true. It is possible for
different (ie. not related by an isomorphism) groups to have the same Lie
algebra, but in this case the groups are identical in the vicinity of the identity.
Every Lie algebra thus defines a unique group. If a matrix representation
of the Lie algebra is available, then it is possible to compute all the group
elements using the following simple procedure.

Suppose we wish to calculate the rotation matrix M(α) corresponding
to a fixed vector α. Using the dimensionless variable t, −∞ < t < +∞,
define M(t) = M(αt), so that M(0) = I and M(1) = M(α). It is possible
to find a matrix function of t with the simple property that

M(s)M(t) = M(s+ t) (1.35)
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where s is another scalar variable like t. Differentiating this expression with
respect to s and setting s = 0, we obtain the matrix equation

dM(t)
dt

= M(t)X (1.36)

where

X =
d

dt
M(t)

∣∣∣∣
t=0

=
3∑

i=1

αiXi (1.37)

This equation can be satisfied with the usual power series expansion

M(t) = I +
∞∑

m=1

(tX)m/m! (1.38)

So long as the series converges it can be used to define a matrix function
called the exponential of a matrix,

M(α) = exp(X) = I +
∞∑

m=1

(
3∑

i=1

αiXi)m/m! (1.39)

where we have set t = 1 to obtain the final form of the matrix.
This equation justifies the power series expansion 1.22 used in section

1.3. The formula for the inverse of M is also a trivial consequence of 1.37.
Since I = M(0) = M(t)M(t)−1 = M(t − t) = M(t)M(−t), it follows that
M(α)−1 = M(−α).

A set of group elements like M(t) that have the property 1.34 clearly
satisfies the requirements of a group. Such a set of elements is called a one-
parameter subgroup. For a certain class of groups (the compact groups),
every group element is a member of a one-parameter subgroup, which can
be obtained by exponentiating an element of the Lie algebra as in 1.37.

Example 1.6 Rotations about a single axis.

In the case of the rotation group it is easy to compute Xn
i , and equation

1.37 can be summed to give the matrices for rotation about a single axis in
terms of a power series expansion. For example, to obtain a rotation about
the x-axis note that

X2
1 =

 0 0 0
0 −1 0
0 0 −1


X3

1 = −X1
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so that

M22 = M33 =
∞∑

m even

αm
1 (−1)m/2 = cosα1

M23 = −M32 =
∞∑

m odd

αm
1 (−1)(m+1)/2 = − sinα1

and finally

M(α1) =

 1 0 0
0 cosα1 − sinα1

0 sinα1 cosα1

 .
Unfortunately, (1.38) will not reproduce the rotation matrix (1.22) for

an arbitrary α. The problem is that (1.22) was derived by assuming a
sequence of three rotations about different axes. Equation (1.38), on the
other hand, assumes that all three rotations are made simultaneously as t
increases from 0 to 1. Since rotations about different axes do not commute,
these two procedures give different rotation matrices. Whenever a formula
like (1.38) is used to parameterize a group by exponentiating a member of
the Lie algebra, the resulting formula is called a canonical parameterization.
There are often good physical reasons for choosing a non-canonical parame-
terization, however. See for example, the comments regarding (1.16) at the
end of Section1.1.
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Chapter 2

Representations

We have seen in the previous chapter how a group of operations gives rise to
a family of isomorphic or homomorphic groups consisting of different kinds
of mathematical objects but sharing a common multiplication table. Within
this family there is an especially important sub-family, the matrix groups.
These groups occupy a prominent place in group theory, in part because
they are familiar and tractable objects, and in part because of a set of deep
relationships among Lie groups, Lie algebras and matrices.

Consider an abstract group G of elements a, b, c, ... satisfying the axioms
in Definition 1.1. If to each element a can be assigned a non-singular n× n
matrix M(a) such that

M(ab) = M(a)M(b) (2.1)

for every pair of elements a and b ∈ G, then this set of matrices is said to
provide a n-dimension representation M of G. In (2.1) a and b are combined
using the group multiplication law. M(a) and M(b) are combined with
ordinary matrix multiplication.

This definition can be made more precise using the definition of mapping.

Definition 2.1 Representation of a Group G
If there exists a homomorphic mapping of a group G onto a group of

non-singular n × n matrices M(a), then this group of matrices forms a n-
dimensional representation M of G.

If there is a one-to-one mapping between group elements and matrices,
ie. if the mapping is isomorphic, then the representation is said to be faithful.

Example 2.1 The rotation matrices.

29
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The set of 3 × 3 unimodular orthogonal matrices constitute a represen-
taiton of the rotation group since

M(R1R2) = M(R1)M(R2)

Within the appropriate range of angles the mapping is one-to-one, so the
representation is faithful.

It is easy to see why the matrix groups have their privileged position.
It is, for example, much easier to multiply two rotation matrices together
than it is to compute the results of two successive rotations directly using
the multiplication table, equation (1.1). Moreover, the rotation operators,
Example 4(d), Chapter 1, require the rotation matrices as part of their
definition. There is an important theorem due to Ado that every (finite
dimensional) Lie algebra has a faithful matrix representation. We have
already seen how the corresponding group can be obtained by the process
of matrix exponentiation. Consequently we can concentrate on matrices
without restricting any of the possibilities inherent in the abstract definition
of the group.

In the next section we discuss the classification scheme that defines the
classical matrix groups. In the following section we derive the basic theorems
of matrix exponentiation. Following this we return to the theme of matrices
as group representations.

2.1 The Classical Matrix Groups

The set of non-singular n× n matrices constitutes a group. If there are no
other restrictions placed on the matrices the group is call the general linear
group, abbreviated Gl(n,R) or Gl(n,C) depending on whether the matrix
elements are real or complex numbers. In the case of Gl(n,R) there are n2

numbers that must be specified to completely determine the matrix. Gl(n,C)
requires 2n2 real numbers to complete the specification.

Physical applications often place some restrictions on the matrix param-
eters. In order to formulate these constraints it is necessary to generalize
the idea of coordinate transformations given in Section 1.1. Consider a
n-dimensional coordinate system with n linearly independent basis vectors
[e1, e2, ...en]. An arbitrary vector can be expressed as a linear combination
of these basis vectors.

v =
n∑

i=1

viei (2.2)
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(Note the placement of the indices.) The n numbers, vi, are called the
coordinates of v with respect to the coordinate system of the e’s. If we
choose a different coordinate system with basis vectors related to the original
basis by

e′j =
n∑

i=1

M i
j ei (2.3)

Then in this new coordinate system

v =
n∑

j=1

v′je′j =
n∑

i,j=1

v′jM i
j ei =

n∑
i=1

viei

Since the ei’s are independent

n∑
j=1

v′jM i
j = vi (2.4)

In matrix notation

e′ = Me (2.5)
vT = v′TM (2.6)

v′T = vTM−1 (2.7)

We often need to combine two vectors to make a single number called
the scalar product of the vectors. Symbolically

(u,v) = f (2.8)

where f is a real or complex number depending on the definition of the vector
space. The properties of the scalar product must be added as an additional
axiom. It is common to require that

(u, αv1 + βv2) = α(u,v1) + β(u,v2) (2.9)

and
(αu1 + βu2,v) = α(u1,v) + β(u2,v) (2.10)

or
(αu1 + βu2,v) = α∗(u1,v) + β∗(u2,v) (2.11)

The first choice, (2.10), is said to be bilinear, the second choice, (2.11),
sesquilinear. Of course, if the vector space is defined on the real number
field, there is no distinction.
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The scalar product of the basis vectors

(ei, ej) = gij (2.12)

is called the metric tensor. It is a n×n matrix whose properties depend on
the coordinate system. Once it is known, an arbitrary scalar product can
be computed in terms of the components of the vectors.

(u,v) =
n∑

i,j=1

(uiei, v
jej) =

n∑
i,j=1

ui(∗)gijv
j (2.13)

The last summation is often called a bilinear form (without the asterisk) or
a sesquilinear form (with the asterisk) depending on the definition of the
original scalar product.

The transformation of gij under a change of basis is

g′ij = (e′i, e′j) =
∑
k,l

(M k
i ek,M

l
j el) =

∑
k,l

M
(∗) k
i gklM

l
j (2.14)

The vectors v and u are not changed by this transformation, so the scalar
product is also invariant. If in addition

gij = g′ij (2.15)

the matrix M is said to induce a metric preserving transformation. It is
easy to prove that the set of all n × n non-singular matrices that preserve
a specific metric tensor forms a group. Such groups are called metric pre-
serving groups; and there is a rich “taxonomy” of these groups based on the
metrics they preserve.

Most of the scalar products encountered in physics have some specific
symmetry with respect to the interchange of the two vectors. The natural
symmetry for a bilinear scalar product is

(u,v) = ±(v,u) gij = ±gji (2.16)

and for a sesquilinear scalar product the corresponding symmetry is

(u,v) = ±(v,u)∗ gij = ±g∗ji (2.17)

Metrics that have one of these four symmetry properties can often be put
in cannonical form in which the corresponding bilinear form has a simple
structure. This is accomplished by a second transformation like (2.14).

g̃ij =
∑
k,l

S
(∗) k
i gklS

l
j (2.18)
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Suppose the S leaves g̃ in canonical form. Then we may define a new set of
matrices M̃

M̃ j
i =

∑
k,l

S k
i M l

k (S−1) j
l (2.19)

So that

g̃′ij =
∑
k,l

M̃
(∗) k
i g̃klM̃

l
j

=
∑

klmnpqrt

[S(∗) m
i M (∗) n

m (S−1)(∗) k
n ] [S(∗) p

k gpqS
q

l ] [S r
j M t

r (S−1) l
t ]

=
∑

mrnt

S
(∗) m
i (M (∗) n

m gntM
t

r ) S r
j (2.20)

This shows that if M belongs to the group of matrices that preserve the
metric, so that gij = g′ij as defined by (2.14), then M̃ preserves the metric g̃,
ie., g̃′ij = g̃ij . Furthermore, if the M ’s are members of a metric-preserving
group, then the M̃ ’s form a metric-preserving group with the same mul-
tiplication table. (See the discussion of equivalent representations Section
2.4).

M(a)M(b) = M(ab)

M̃(a)M̃(b) = M̃(ab)

Thus a great simplification is achieved and nothing is lost by putting gij in
canonical form. Notice that no special assumptions have been made about
the matrix S that accomplishes this transformation except that it is non-
singular. Whether or not a canonical form exists depends on the symmetry
of g. We will consider the four symmetry classes individually.

(1) gij = g∗ji (gij could be either real or complex.)
This is by far the most common case. The metric tensor gij is a real

symmetric or Hermitian matrix. It is well known that such a matrix can
be diagonalized and that its eigenvalues are all real. It is always possible to
find a transformation

e′j =
∑

i

S i
j ei

that brings gij into diagonal form.

g̃ij =
∑
k,l

S
(∗) k
i gklS

l
j =

∑
i

λiδij

Since the λi’s are real it is possible to renormalize the basis vectors

e′′i =
e′i√
|λi|



34 CHAPTER 2. REPRESENTATIONS

so that
g′′ij = (e′′i, e′′j)

is a diagonal matrix whose elements are +1,−1, or 0. If the metric is non-
singular (the usual case) zero is not allowed. This brings us to the canonical
form of a Hermitian metric.

gij =


0 if i=/ j
+1 if 1 ≤ i ≤ N+

−1 if N+ < i ≤ N+ +N−

(2.21)

where N+ and N− are the number of +1’s and −1’s along the diagonal.
Since no similarity transformation can change N+ and N−, there are n+ 1
“inequivalent” n×n Hermitian metrics and n+1 inequivalent matrix groups
that preserve them.

Metrics of the form (2.21) are often used to “raise and lower indices.”
For example, the quantity

vi =
∑
j

gijv
j (2.22)

transforms like the ei in (2.3).

v′i =
∑
j

gijv
′j =

∑
jklm

M
(∗) k
i gklM

l
j v

m(M−1) j
m

=
∑
km

M k
i (gkmv

m)

The component arrays like vi with lower indices are said to transform co-
variantly. Those like vi with upper indices transform contravariantly. One
advantage of the notation is that the scalar product can be writtem entirely
in terms of the components of the vectors

(u,v) =
∑

i

uiv
i =

∑
j

ujvj (2.23)

without any reference to the metric. Another advantage is that the deriva-
tive with respect to a covariant quantity transforms contravariantly (and
vice versa) so that derivatives of the form

∂

∂xµ
= ∂µ

∂
∂xν

= ∂ν

act like ordinary arrays of vector components so far as their transformation
properties are concerned.
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Example 2.2 Space-time coordinates in special relativity.

Define a contravariant space-time vector xµ with µ = 0, 1, 2, 3 as follows:

x0 = t x1 = x x2 = y x3 = z (2.24)

(The velocity of light, c = 1.) The metric tensor is

gµν =


+ 1 for µ = ν = 0
−1 for µ = ν = 1, 2, 3
0 for µ=/ ν

(2.25)

The scalar product of two such vectors is

(x,y) =
3∑

µ,ν=0

xµgµνy
ν =

3∑
µ

xµyµ

= x0y0 − x1y1 − x2y2 − x3y3

Lorentz transformations leave this bilinear form invariant. This is equivalent
to the statement that Lorentz transformations are the group of 4×4 matrices
that preserve the metric given by (2.25).

For groups that preserve diagonal metrics, (2.14) is a generalization of
the familiar unitarity condition MT = M−1. To see this connection we
define gij = gij , so that

∑
j g

ijgjk = δi
k, the unit matrix. Then

δm
i =

∑
j

gijg
jm =

∑
k,l,j

(M (∗) k
i gklM

l
j )gjm

∑
k

Mm
kM

(∗) k
i = δm

i∑
k

Mm
k(M

†)k
i = δm

i (2.26)

For this reason, the group of complex n×n matrices that preserve the metric
of (2.25) is called the unitary group, U(N+, N−;C). If the matrices are real,
the group could be called U(N+, N−;R), or more commonly, O(N+, N−),
the orthogonal group in n dimensions.

Example 2.3 Cartesian coordinate systems.

The usual Cartesian coordinate system is defined in terms of a set of
orthogonal unit vectors, ei · ej = δij . The metric tensor is just the unit
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matrix, and the corresponding groups of metric preserving matrices are U(n)
and O(n). In these spaces there is no difference between a tensor with upper
and lower indices, so this distinction is usually dropped.

(2) gik = −gki

Taking the determinant of g,

det(g) = det(gt) = det(−g) = (−1)n det(g)

If n is odd, det(g) = 0, and the metric is singular. A scalar product with
this symmetry property can thus only be defined for even-dimensional spaces
(n = 2ν, ν integral).

The simplest anti-symmetric metric is

IA =

(
0 1

−1 0

)

Every non-singular anti-symmetric metric can be transformed into canonical
form with IA’s along the diagonal and zeros elsewhere.

g′ =


IA

IA
. . .

IA

 (2.27)

The group of n× n matrices that preserve anti-symmetric metrics is called
the symplectic group in n dimensions. The notation is Sp(n;C) and Sp(n;R)
for complex and real matrices respectively.

The coordinate system in which gij has the form of (2.27) is defined by
the new symplectic coordinate basis

e1, . . . , eν

e′1, . . . , e′ν (2.28)
(ei, ej) = (e′i, e′j) = 0 (2.29)

(ei, e′j) = −(e′i, ej) = δij

In these definitions ν = n/2. The scalar product is

(u,v) = (u1v
′
1 − u′1v1) + . . .+ (unv

′
n − u′nvn) (2.30)

Example 2.4 Sp(2, r) and the Area of a Parallelogram.
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Consider two vectors A and B defined on a two-dimensional Cartesian co-
ordinate system. The “cross” product AxBy − AyBx gives the area of the
parallelogram shown in Figure (). This area can be thought of as a scalar
product with an antisymmetric metric.

(A,B) =
[
Ax Ay

] [ 0 1
−1 0

] [
Bx

By

]
= AT IAB

The set of real, non-singular, 2× 2 matrices that preserve IA will leave the
area of the parallelogram invariant. These matrices constitute the group
Sp(2, R). The metric preserving condition, (2.14) and (2.15), in matrix
notation is

IA = MT IAM

This contains only one independent constraint,

M11M22 −M12M21 = 1

so that Sp(2, R) is a three-parameter group.
There are many ways to choose the parameters, of course; but the fol-

lowing choice has a simple geometrical interpretation: Define

R(θ) =

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]

S(λ) =

[
eλ/2 0
0 e−λ/2

]

T (η) =

[
cosh(η/2) sinh(η/2)
sinh(η/2) cosh(η/2)

]
The matrices R, S, and T are linearly independent and symplectic. (The
significance of the ubiquitous 1/2 will become apparent when we discuss
the Lie algebra of Sp(2, R).) Clearly R(θ) is a rotation, S(λ) is an ex-
pansion/contraction of scale along the x and y axes, and T (η) represents
an expansion/contraction along a set of axes rotated 45o with respect to x
and y. Any member of Sp(2, r) can be written as a product of these three
matrices.

The symplectic transformation can be applied to the coordinates of a
point in the x-y plane. (

x′

y′

)
= M

(
x
y

)
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This can be thought of as a function the maps the point (x, y) into the point
(x′, y′). The Jacobian of this transformation is

∂(x′, y′)
∂(x, y)

= det(M) = 1

Consequently, the area enclosed by any closed curve drawn on a flat plane
is preserved by this transformation, since∮

dx dy =
∮
dx′ dy′

by the usual rules for changing variables within an integration.
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2.2 The Exponential of a Matrix

The usual way of deriving a matrix group from a matrix representation of
a Lie algebra involves exponentiation of a matrix. This technique was used
to calculate the O(3) rotation matrices in Section (1.5), and the method is
quite general. In this section we first examine the question of convergence
and then derive some useful theorems for analyzing matrix exponentials.

Definition 2.2 The Exponential of a Matrix
The exponential eM of a n× n matrix M is defined by the sum

eM =
∞∑

m=0

Mm

m!
(2.31)

where M0 = I, the n× n identity matrix.

Each term in this sum is a n× n matrix, as is the partial sum

Sk =
k∑

m=0

Mm

m!
(2.32)

Consider the element of Sk corresponding to the ith row and the jth column.
We denote the element Sk,ij . The natural definition of convergence of (2.31)
is that the sequence of partial sums converges separately for each pair of i
and j. That is,

limit
k→∞ Sk,ij = Sij = [eM ]ij for all i, j = 1, . . . , n (2.33)

Theorem 2.1 If n is finite and the elements of M are bounded, then the
matrix exponential series converges uniformly.

Proof: Let N(M) denote the largest value of |Mij | for i, j = 1, . . . , n. We
assert that N(Mm) ≤ [nN(M)]m. This is certainly true for M = 1. If it
holds for m, then it must hold for m+ 1:

N(Mm+1) ≤ nN(M)N(Mm) ≤ [nN(M)]m+1

Since nN(M) = c is finite,
∑∞

m=0 c
m/m! = ec certainly converges. Therefore

∞∑
m=0

N(Mm)
m!

≤
∞∑

m=0

cm

m!
= ec
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So the norm of each term of the series is less than the corresponding term of
a convergent comparison series. Consequently the series in (2.31) converges
uniformly by the Weierstrass test.

The following three theorems are trivial to prove using the definition of
the matrix exponential:

Theorem 2.2 If A and B are commuting matrices, then eA+B = eAeB.

Theorem 2.3 If B is non-singular, then BeAB−1 = eBAB−1
.

Theorem 2.4

eA
∗

= (eA)∗ eA
T

= (eA)T

eA
†

= (eA)† e−A = (eA)−1

Suppose the n × n matrix A has a set of n eigenvalues λ1, . . . , λn, each
eigenvalue repeated a number of times equal to its multiplicity. The λj are
solutions of the characteristic equation

det(A− λI) = 0

It is easy to see that the similarity transformation, A′ = BAB−1, does not
change the eigenvalues.

det(A′ − λI) = det[B(A− λI)B−1]

= (detB) det(A− λI)(detB−1) = det(A− λI) = 0

This allows us to prove the following theorem.

Theorem 2.5 det(eA) = etr A

Proof: First assume that A is diagonalizable. Let B be the matrix that
diagonalizes A. Then

det(eA) = det(BeAB−1) = det(eBAB−1
) = det(eA

′
)

where A′ is a diagonal matrix with the eigenvalues λ1, . . . , λn along the
diagonal. Since

A′m =


λm

1

λm
2

·
·

λm
n

 (2.34)
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eA
′
=


eλ1

eλ2

·
·

eλn

 (2.35)

and

det(eA) = det(eA
′
) = exp(

n∑
i=1

λi) = etr A′
= etr A

The last equality follows because the trace of a matrix is always equal to
the sum of its eigenvalues.

Of course not all matrices are diagonalizable; but all matrices can be
transformed to upper triangular form (Miller, 1972), with the eigenvalues
along the main diagonal and zeros below the diagonal. An elementary cal-
culation shows that if A′ is in upper diagonal form, A′m is also in upper
diagonal form with the eigenvalues raised to the mth power as in (2.34).
The rest of the proof goes through as before.

A by-product of the proof is the following corollary.

Corollary 2.6 If A is a n× n matrix with eigenvalues λ1, . . . , λn, then the
eigenvalues of eA are eλ1 , . . . , eλn.

This is clear from (2.35) and the fact that the similarity transformation does
not alter the eigenvalues.

If A and B are non-commuting matrices it is no longer true that eAeB =
eA+B. It is still possible to write eAeB = eC , however, where C is another
n× n matrix. There is a closed-form expression for C called the Campbell-
Baker-Hausdorff formula, which we will state without proof along with an
important lemma used in its derivation. The reader is referred to (Miller,
1972) for the complete proof.

Definition 2.3 The linear transformation Ad A is defined by

Ad A(B) = [A,B] (2.36)

This is a linear operator that transforms B into another n × n matrix. By
(Ad A)m we mean the operator

(Ad A)m(B) = [A, [A, · · · [A,B] · · ·]

The expression on the right contains m nested commutators.
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Lemma 2.7

eABe−A = (exp(Ad A))B =
∞∑

j=0

(Ad A)j(B)/j! (2.37)

Theorem 2.8 For A, B in a sufficiently small neighborhood of the identity,
eC = eAeB, and

C = B +
∫ 1

0
g[exp(t Ad A) exp(Ad B)](A)dt, (2.38)

where

g(z) =
ln z
z − 1

=
∞∑

j=0

(1− z)j

j + 1

The lowest order terms are

C = A+B +
1
2
[A,B] +

1
12

[A, [A,B]]− 1
12

[B, [B,A]] + · · · , (2.39)

and the matrix elements of C are analytic functions of the matrix elements
of A and B.

The phrase “sufficiently small neighborhood of the identity,” implies
some definition of the distance between two matrices (cf. section 3.1). One
possibility is the Euclidean distance function,

d(A,B) =

 n∑
i,j=1

(Aij −Bij)2
1/2

. (2.40)

The theorem can be restated in terms of this function as follows: there exists
an ε > 0 such that for all matrices A,B with d(A, I) < ε and d(B, I) < ε the
series implied by 2.38 converges to C and defines an analytic matrix valued
function of A and C.

Equation (2.38) is truly a formidable formula: an integral over an infinite
series, each term of which is an infinite series of nested commutators. It is not
of much use in practical calculations except in special cases where the series
(2.39) terminates after a few terms. The Campbell-Baker-Hausdorff theorem
is of great theoretical significance, however, for at least two reasons. First,
the Lie algebra is determined by the structure of the group in the immediate
vicinity of the identity, and in this region the series expansion 2.39 converges
rapidly. Second, the theorem shows that analyticity, which is part of the
definition of Lie groups, survives exponentiation and multiplication.
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2.3 Representations in Quantum Mechanics

The matrices in Section (2.1) were defined in terms of their action on the
components of a vector. The vector v in (2.2) acts like a position vector in n-
dimensional space. The matrix M has dimension n×n; and (2.3) represents
a homogeneous coordinate transformation. A group of matrices defined in
this way constitute the defining representation of the group. For example,
the set of all real, orthogonal, 3 × 3 matrices is the defining representation
of the group O(3). The defining representation is a special case, however.
The definition of a representation leaves open the possibility that a group
might have many different representations in terms of matrices of different
dimensionality. This may seem artificial, but such representations arise nat-
urally in quantum mechanics, Consider an operator O(a) corresponding to
a group element a operating on a state vector |A >.

O(a)|A > = |A′ > (2.41)

In order to evaluate this expression it is customary to expand the state in
terms of a complete set of basis functions |ψi >.

|A > =
n∑

i=1

ai|ψi > (2.42)

By hypothesis the transformed state can also be so expanded,

|A′ > =
n∑

i=1

a′i|ψi > (2.43)

so that the effect of the operator on the basis states is that of a matrix

O(a)|ψi > =
n∑

j=1

|ψj >M(a)ji (2.44)

with the implicit definition that

O(a)
n∑

i=1

ai|ψi > =
n∑

i=1

aiO(a)|ψi > (2.45)

In other words, O is a linear operator. If O satisfies the group postulate,
O(ba) = O(b)O(a), then

O(b)O(a)|ψi > = O(b)
∑
j

|ψj >M(a)ji
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=
∑
jk

|ψk >M(b)kjM(a)ji =
∑
k

|ψk >M(ba)ki

So that M also obeys the group law,

M(ba) = M(b)M(a), (2.46)

and M is a n-dimensional representation of the group containing a and
b. The odd arrangement of rows and columns in the definition (2.44) is
required to make the matrices come out in the right order in (2.46). Unlike
the rotation matrices in Section (1.1) which operate on the components of
a position vector, these matrices operate on the elements of a vector space
spanned by the basis vectors |ψi >. We call this space the representation
space or carrier space. Its dimensionality, ie. the number of independent
vectors required to span the space, is equal to the size of the matrices M .

Usually the basis states are chosen to be orthonormal so that

M(a)ji = < ψj |O(a)|ψi >. (2.47)

Often the states are eigenstates of some other Hermitian operator, say P,
corresponding to a physical observable.

P|ψi > = pi|ψi >, (2.48)

where pi is the eigenvalue of the operator P corresponding to the ith eigen-
vector. In the simplest case P and O commute, [P,O] = 0, so that

PO(a)|ψi > =
n∑

j=1

pj |ψj >M(a)ji

= OP|ψi > = pi

n∑
j=1

|ψj >M(a)ji (2.49)

This can be satisfied if pi = pj . In this case the basis vectors used to define
the representation all have the same eigenvalue of P, which can be used
to label the representation. (Equation (2.49) can also be satisfied if some
of the elements of Mij are permanently zero. This makes M a reducible
representation. See Section (2.5)). The physical significance of (2.49) is
that the observable quantity P is invariant under the operation of O; so
that O does not mix states corresponding to different values of p; p is a
“good quantum number.”
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In the usual theory of angular momentum, the operator L2 = L2
x+L2

y+L
2
z

commutes with Lx, Ly, Lz and hence with the rotation operator. Thus L2

plays the role of the operator P in (2.48). Its eigenvalues are defined by

L2|ψl > = l(l + 1)|ψl >

with l = 0, 1, 2, . . .. There are 2l + 1 linearly independent eigenvectors for
each allowed value of l. These eigenvectors can then be used as basis vectors
for a (2l + 1)-dimensional representation of the rotation operator. There
are an infinite number of these representations, each one labeled with the
integer l. If a physical state is an eigenstate of L2 corresponding to angular
momentum l, then it can be expanded in terms of the appropriate 2l + 1
eigenfunctions. The effect of a rotation can then be computed using (2.44).
Of course it is possible for the original state to be a mixture of states of
different l. This situation is discussed in Section (2.5).

This example is far from trivial. It was necessary to know the appro-
priate commuting operator (or operators) to play the role of P, and it was
necessary to construct the set of states |ψl > corresponding to a given eigen-
value. We know how to do these things for the rotation group, because thay
are done in every quantum mechanics textbook. Group theory provides a
general algorithm for carrying out this program for a large set of physically
interesting groups (the compact, semi-simple Lie groups). This algorithn de-
pends on a careful study of the Lie algebra, which is the subject of Chapters
() and ().
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2.4 Equivalent Representations

The representation M defined in (2.44) depends on the choice of the ba-
sis functions |ψi >. There are many equivalent ways of choosing this set,
however. An alternative choice is given by

|ψ′i > =
n∑

j=1

Sji|ψj > (2.50)

where S represents any n × n non-singular matrix. The new set of basis
vectors |ψ′i > spans the same vector space as the original set. The new
representation M ′ is found as follows:

O(a)|ψ′i > =
n∑

m=1

M ′(a)mi|ψ′m > =
n∑

k=1

SkiO(a)|ψk >

=
n∑

k,l=1

SkiM(a)lk|ψl > =
n∑

k,l,m=1

SkiM(a)lk(S−1)ml|ψ′m >.

In matrix notation
M ′(a) = S−1M(a)S (2.51)

These new matrices follow the same multiplication rules as the original ma-
trices,

M ′(b)M ′(a) = S−1M(b)SS−1M(a)S = S−1M(ba)S = M ′(ba) (2.52)

so the M ′’s are also a representation. The transformed matrices are said to
form an equivalent representation, and the transformation in (2.51) is called
a similarity transformation.

There is an important class of operators that preserve the scalar product.
Using the notation of (2.41)

< A′|A′ >= < A|A >

or
O(a)† = O(a)−1.

Such operators are said to be unitary. Representations of unitary opera-
tors are not necessarily unitary themselves because of the general nature of
the similarity transform matrix S; however, under some circumstances it is
possible to find a representation of a group such that

M(a)† = M−1(a)



2.4. EQUIVALENT REPRESENTATIONS 47

for all elements in the group. Such a representation is termed a unitary
representation.

The question of whether a group posseses unitary representations can be
answered on the basis of some general group properties that will be discussed
in Chapter (). It is easy to show, however, that if the |ψi >’s in (2.24) are
a finite set of orthonormal basis vectors, then the representation defined in
(2.44) is unitary if and only if the operator O(a) is unitary.

< ψj |O(a)†O(a)|ψi > = < ψj |ψi >= δji

=
n∑

l,k=1

< ψl|M∗
ljMki|ψk > =

n∑
k=1

M∗
kjMki

So that in matrix notation, M(a)†M(a) = I.
Even if the basis vectors |ψj > were not orthonormal they could still

be used to construct an orthonormal set using the Gram-Schmidt orthog-
onalization procedure. The matrix that transforms the original basis to
the orthonormal basis is exactly the S in (2.50) that induces the similarity
transform to a unitary representation.

These arguments assume that the action of the group can be represented
in terms of a finite set of basis vectors. This is not always possible as will
be seen in Chapter ().
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2.5 Reducible and Irreducible Representation

Suppose that the n-dimensional representation M of a group can be parti-
tioned so that the lower left corner is a zero matrix for all elements of the
group.

M(a) =

[
M(a)11 M(a)12
0 M(a)22

]
(2.53)

This property replicates itself in matrix multiplication.

M(b)M(a) =

[
M(b)11M(a)11 M(b)11M(a)12 +M(b)12M(a)22

0 M(b)22M(a)22

]
(2.54)

So that
M(ba)11 = M(b)11M(a)11

M(ba)22 = M(b)22M(a)22

This means that M11 and M22 are both representations of the same group.
The partitioning has decomposed the n-dimensional representation into two
representations of smaller dimensionality. This partitioning is not preserved
by the similarity transformations, but it is pointless to make a fundamental
distinction between equivalent representations. This leads to the following
definition.

Definition 2.4 Reducible Representation
A representation is reducible if it is equivalent to a representation that

can be partitioned in the form of (2.53). A representation that is not re-
ducible is said to be irreducible.

The representations M11 and M22 might also be reducible. In this case M
can be similarity transformed to a representation in which M11 and/or M22

have the form of (2.53). This sequence of operations can be continued until
the transformed representation has the form

M ′ = S−1MS =


M ′

11 M ′
12 M ′

13 . . . M ′
1n

0 M ′
22 M ′

23 . . . M ′
2n

0 0 M ′
33 . . . M ′

3n

. . . . . . . . . . . . . . .
0 0 0 . . . M ′

nn

 (2.55)

where all the sub-matrices along the diagonal are irreducible.
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In many cases a representation that is reducible to the form of (2.55)
can be further transformed so that all the submatrices above the diagonal
are also zero. Then M is equivalent to a representation of the form

M ′′ =


M ′′

11 0 0 . . . 0
0 M ′′

22 0 . . . 0
0 0 M ′′

33 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . M ′′

rr

 (2.56)

where the M ′′
ii are irreducible. A representation that can be brought into

this form by a similarity transformation is said to be completely reducible.
It can be shown in most cases that a reducible representation is also

completely reducible. (See Cornwell for a discussion of this point.) This is
true, for example, of all unitary representations. In fact, representations for
which this is not true tend to be mathematical curiosities. For this reason
there is a tendency in physics to use the term “reducible” where we would
use the term “completely reducible.” Nonetheless, there are situations where
the distinction is important, and we will adhere to it.

The phenomenon of reducibility is easy to understand in terms of the
basis vectors introduced in Section (2.3). Let |ψi >, i = 1 . . . n, be a set of n
linearly independent basis states in terms of which the operators O(a) can
be represented by M(a)

O(a)|ψi > =
n∑

j=1

M(a)ji|ψj > (2.57)

If M(a) has the form of (2.53), then for i = 1 . . . s1,

O(a)|ψi > =
s1∑

j=1

M11(a)ji|ψj > (2.58)

for all a in the group. Thus the first s1 basis vectors constitute an invariant
subspace in the sense that any operator acting on this space creates another
vector in the same space. So long as M12(a) is non-zero, however, the
remaining basis states, |ψi >, i = s1 + 1, . . . , n, are not invariant. When
the representation is transformed to its completely reduced form, (2.56),
the representation space breaks up into a sum of invariant subspaces, each
subspace corresponding to one of the submatrices on the diagonal. We
say that the representation space has been decomposed into a direct sum of
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invariant subspaces. If the space spanned by the n basis vectors is denoted
by V , then the decomposition is represented as follows

V = V1 ⊕ V2 ⊕ . . .⊕ Vr (2.59)

where V1 is the space spanned by the first s1 basis vectors, s1 being the
dimension of M ′′

11 in (2.56). V2 is the subspace on which M ′′
22 operates, etc.

The direct sum symbol ⊕ can also be used to denote the decomposition of
the representation. For example, the equation

M ′′ = M ′′
11 ⊕M ′′

22 ⊕ . . .⊕M ′′
rr (2.60)

is short for (2.56).
The irreducible representations are the basic building blocks of group

theory; they also play an important role in physics. For example, the state
vectors that describe single-particle states in quantum mechanics usually
span invariant subspaces Vi corresponding to simple irreducible representa-
tion of various symmetry groups.

Example 2.5 Particles as irreducible representations of the rotation group.

It is universally assumed that the laws of physics are invariant under
ordinary rotations. The rotation group is thus a symmetry group. In the
language of quantum mechanics, the rotation generators Jx, Jy, Jz commute
with the Hamiltonian, [H, Ji] = 0. Each single-particle state is an eigen-
state of the total angular momentum, J2 with eigenvalue j(j + 1). To each
allowed value of j there corresponds a (2j + 1)-dimensional irreducible rep-
resentation of the rotation group. Each particle with spin j can be described
by a (2j + 1)-component wave function |ψm >, where m ranges from −j to
+j corresponding to the eigenstates of Jz. The space spanned by |ψm >
corresponding to a single value of j is the invariant subspace Vj on which
the (2j + 1)-dimensional irreducible representation on the rotation group
operates.

It is useful to have some criterion for determining whether or not a
representaion is irreducible. One test is provided by the following famous
theorem, usually called “Schur’s Lemma.”

Theorem 2.9 If M(a) is a n-dimensional irreducible represenation of a
group and A is a matrix that commutes with M(a) for all elements a in the
group, then A is a multiple of the unit matrix.

Proof: Let V be the carrier space of M . This means that any M oper-
ating on any element of V produces another element of V . In an obvious
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shorthand notation, MV = V . We will say that A operating on V produces
an element in the subspace V ′, AV = V ′. If [M,A] = 0, then

(MA)V = (AM)V

so
MV ′ = AV = V ′.

Thus M operating on V ′ produces another vector in V ′, ie. V ′ is an in-
variant subspace of V , which is inconsistent with the assumption that M is
irreducible. This contradiction would be avoided if A = 0 or if det(A) =/ 0,
because then V would be identical to V ′. In this case we could still write
A = B + λI, where det(B) = 0 and det(A) = λ. Then [M,A] = 0 implies
[M,B] = 0; and the only remaining way to avoid the contradiction is to
admit that B = 0, and consequently A is a multiple of the unit matrix.
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Chapter 3

Formal Properties of Lie
Groups

In Chapter 1 we presented a casual definition of a Lie group as a set of
group elements depending on a finite number of parameters through some
smooth, differentiable functions. The most precise definition is rather subtle
and requires some understanding of topology. In fact, in the realm of pure
mathematics, it is often the topological aspects of Lie groups that are of
primary interest. We will avoid some of these complications, however, by
defining Lie groups in terms of coordinate system “patches.” This carries
a small disadvantage: it is possible to define Lie groups with a weaker set
of assumptions than the one we will use. So far as physical applications are
concerned, we give up nothing by making this simplification.

3.1 The Composition Function

In Example 1.4b, we introduced the notion of a set of functions that were
analogous to the group multiplication table for finite groups. In the case
of the rotation group these functions were the θ3, ψ3, and φ3 defined by
equation (1.1). In general we consider a group G to be an infinite set of
elements depending on n parameters. We can regard these parameters as
forming a vector α = (α1, . . . , αn) defined on the n-dimensional vector space
Rn consisting of all real n-tuples. We will call α1, . . . , αn the components of
α. The terminology is useful because the same element a can be parame-
terized in different ways leading to different components. This is analogous
to an ordinary vector, which can have different components when referred
to different coordinate systems.

53
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It is tempting to require an isomorphic mapping from G into Rn, ie. to
demand that for each element in G there is a unique vector in Rn. In this way
we could replace all the abstract group operations with the more familiar
and concrete formalism of vector spaces.1 Unfortunately, this pushes the
connection too far; but it is instructive to proceed in this direction and see
where the idea breaks down.

Let us assume then that for each element in G there is a well defined
vector in Rn. This set of vectors is itself a group, which we call Gn. Because
of the group multiplication rule ba = c, there must exist a set of n functions
f = (f1, . . . , fn) of the corresponding parameter vectors such that f(β,α) =
γ. Here α stands for that set of n parameters that specifies the element a,
β specifies b, and γ specifies c. Thus the group operation ba = c has its
“image” onGn in the form of a purely algebraic operation involving functions
of 2n variables. Again referring to the rotation group, f(β,α) = γ is a
condensed form of equation (1.1) with

(θ1, ψ1, φ1) → α

(θ2, ψ2, φ2) → β

(θ3, ψ3, φ3) → γ = f(β,α)

f(β,α) is called the composition function.
The group postulates impose a set of general requirements on f .

Definition 3.1 The Composition Function
(1) The composition function f is an n-tuple defined on Rn. If a,b,c are

elements in G with ba = c then the corresponding vectors α, β, γ in Rn

must satisfy f(β,α) = γ.
(2) If α,β,δ are elements in Rn corresponding to elements in G, then

f(f(α,β), δ) = f(α,f(β, δ)).
(3) There exists an identity element e in Rn such that f(α, e) = f(e,α) =

α
(4) For every a ∈ G there is a corresponding α ∈ Gn with an inverse ω

such that f(α,ω) = f(ω,α) = e. Moreover, ω is the homomorphic image
of a−1.

These requirements are easily satisfied in the following example.

Example 3.1 The group Gl(2, R)

1A mapping into an analytic structure like Rn that can be written down concretely
and described analytically is called a realization.
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The group Gl(2, R) consists of all 2 × 2 non-singular matrices with real
matrix elements. Use the parameterization

M(α) =

[
α1 α2

α3 α4

]

The groupGn (in this caseG4) is the set of all 4-tuples such that α1α4 =/ α2α3.
Since

M(β)M(α) =

[
β1 β2

β3 β4

] [
α1 α2

α3 α4

]

=

[
β1α1 + β2α3 β1α2 + β2α4

β3α1 + β4α3 β3α2 + β4α4

]

the components of the composition function f(α,β) are

f1 = β1α1 + β2α3

f2 = β1α2 + β2α4

f3 = β3α1 + β4α3

f4 = β3α2 + β4α4

The identity element e = (1, 0, 0, 1). The remaining postulates are met
automatically because of the rules of matrix multiplication and inversion.

In this example there is an isomorphic mapping of the group G (the
Gl(2, R) matrices) into the space R4 of real 4-tuples. The choice of parame-
ters together with the rules of matrix multiplication produce a composition
function that satisfies the requirements of Definition 3.1 for all the elements
of G4. (G4 is the space R4 excluding those points for which α1α4 = α2α3.)
This is what we had hoped for in posing this definition. Unfortunately, this
example illustrates the exception rather than the rule. The next example
illustrates some common difficulties.

Example 3.2 The Group SU(2)

SU(2) is the group of 2× 2 unitary matrices u with det(u) = 1. If p and q
are complex numbers with |p|2 + |q|2 = 1, then u must have the form

u =

[
p q
−q∗ p∗

]
(3.1)
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The identity element is p = 1, q = 0. It requires three real parameters to
specify two complex numbers satisfying the constraint. A natural parame-
terization is given by

Im q = α1/2
Re q = α2/2
Im p = α3/2

Re p = +
√

1− (α2
1 + α2

2 + α2
3)/4

but this is restricted to Re p ≥ 0. This spoils the homomorphism and also
violates the fourth axiom, because a matrix with Re p ≥ 0 could easily have
an inverse with Re p < 0.

Here is another choice.

p = cos(α1/2) exp[i(α2 + α3)/2]

q = sin(α1/2) exp[i(α2 − α3)/2]

All allowed values of p and q are generated with this parameterization, but
a more subtle problem has appeared. When α1 = 0 all α’s with α2 +α3 = c
(where c is an arbitrary constant) yield the same p and q. Thus the mapping
from the corresponding group elements to R3 is infinitely multiple-valued.
Furthermore, an element of the form α = (0, α2, α3) does not have a unique
inverse, since any ω = (0, ω2, ω3) with ω2 + ω3 + α2 + α3 = 0 will satisfy
f(α,ω) = e. Such elements are called singular points because the Jacobian
of the transformation that connects the parameters with the group elements
vanishes at these special values of the parameters.

This example illustrates the general rule that most groups cannot be
parameterized in such a way that their composition functions satisfy Defi-
nition 3.1 for all elements of the group. (We have already encountered this
problem in connection with the rotation group in Section 1.3.) Nevertheless
the parameterizations in Example 3.2 do yield composition functions that
are valid within limited regions of G3; and by using several alternate pa-
rameterizations we can cover the entire group. This leads to the concept of
local subgroups, which are limited regions within a group that can be covered
with a single parameterization.

The phrase “limited region” in turn implies some concept of distance.
We will use the usual Euclidean distance function

d(α,β) =

√√√√ n∑
i=1

|αi − βi|2 (3.2)
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Where α and β are any two elements of Rn. The function d(α,β) posseses
all the properties normally associated with distance:

(1) d(α,β) ≥ 0 and d(α,β) = 0 if and only if α = β.
(2) d(α,β) = d(β,α)
(3) d(α,β) + d(β,γ) ≥ d(α,γ)
The statement “α is in a region or neighborhood U of β” means that

there is a positive number ε such that d(α,β) < ε.
Now suppose we are able to find a parameterization that satisfies the

axioms of Definition 3.1 for some subset of G that includes the identity. The
corresponding parameters are said to form a local subgroup according to the
following definition.

Definition 3.2 Local Subgroup
Let U and L be two subsets of Rn such that e ∈ U ⊆ L. L is choosen

small enough that there is an isomorphic mapping of L into G, i.e. every
element in L is an image of one and only one element of G. U is choosen
so that f(β,α) ∈ L for all α,β ∈ U and so that the inverse of each element
of U is contained in L. Within this limited region the composition func-
tion satisfies the requirements of Definition 3.1. Then L is called a local
subgroup of G, and U is called the germ of the local subgroup.

We will also use the terms “germ” and “local subgroup” to refer to the
corresponding subsets of the abstract group G; thus U ⊂ G is the isomorphic
image of U , and L ⊂ G is the image of L. This mapping between U and
G is very useful, because it allows us to apply the concept of distance to at
least some elements of G. For example, if a and b are two elements of G
with counterparts α and β in U , we will say that the “distance” between a
and b is d(α,β). In this way we can apply quantatative ideas such as limit,
continuity, differentiation, etc. to the abstract group where they would
otherwise not be applicable. At this stage this definition of distance only
works in that limited region of G that can be mapped isomorphically to
Rn. We will eventually overcome this limitation (at least partially) by using
“coordinate system patches.” In the meantime we can define continuity and
analyticity of the local subgroup.

Definition 3.3 Continuity of the Composition Function
The composition function γ = f(β,α) where α, β, and γ are elements of

Rn is continuous at the identity if for every neighborhood V of e there exists
a neighborhood U of e such that if α ∈ U and β ∈ U then γ = f(β,α) ∈ V .

Definition 3.4 Analyticity of the Composition Function
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The composition function is analytic in U if the following two require-
ments are satisfied:

(1) The function as well as all its partial derivatives to all orders with
respect to all 2n of its arguments are continuous in U . In the language of
the calculus of several variables it is a C∞ function.

(2) For each β0,α0 ∈ U the function f(β,α) has a Taylor’s series
expansion that converges absolutely to f(β,α) for all α,β in a neighborhood
V ⊂ U centered at (β0,α0).

It is possible to construct functions that are C∞ but which fail to con-
verge to the right value everywhere in V as required by (2). These are
mostly mathematical curiosities, however.

It is worth noting that an analytic composition function guarantees the
existence of the inverse satisfying (4) of Definition 3.2. This can be proved
by reference to the implicit function theorem from the calculus of several
variables (Fleming, 1977).

Theorem 3.1 If f(β,α) is analytic at e then there exists a neighborhood U
of e such that f(α,ω) = f(ω,α) = e has a unique solution for all α ∈ U .
Furthermore ω is also contained in a neighborhood U−1 of e.

Proof: Let H(β,α) = f(β,α)−e. Then H(e, e) = 0. The Jacobian at
this point is non-zero since

∂Hj(e,ω)
∂ωi

∣∣∣∣
ω=e

=
∂ωj

∂ωi
= δij

The implicit function theorem guarantees that the equation H(α,ω) = 0
has a solution with the properties stated above. This establishes the right
inverse. The existence of the left inverse follows from

∂Hj(ω, e)
∂ωi

∣∣∣∣
ω=e

=
∂ωj

∂ωi
= δij

Now let ωr be the solution of the equation f(α,ωr) = e and ωl be the
solution to f(ωl,α) = e. Then

ωl = f(ωl, e) = f(ωl,f(α,ωr) = f(f(ωl,α),ωr) = f(e,ωr) = ωr

so the left and right inverses are identical.

Definition 3.5 Local Lie Subgroup
A local subgroup is also a local Lie subgroup in the neighborhood U of the

identity if its composition function is analytic there.
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The neighborhoods U and L in Definition 3.2 are not necessarily identi-
cal, so the local Lie subgroup is not a group in the usual sense of the word.
(The author is not responsible for this terminology.) Starting with the germ
U , however, we can build up a group G0 consisting of finite products an · · · a1

of elements ai ∈ U . The elements in G0 are said to be connected to the iden-
tity, and G0 is called the connected component of the group G. Clearly the
connected component is itself a group. In the usual terminology, the germ
U generates G0.

A formal definition of connectedness is given in the next section. Intu-
itively, however, a group or set is connected to the identity if every element
can be reached by a series of small steps starting at the identity, each step
lying within the set. The groups SO(3) and O(3) discussed in Example 1.4c
illustrate this concept. The group SO(3) consisting of pure rotations can
be built up starting with the identity from a finite product of arbitrarily
small rotations. Each small rotation by itself is a member of a local Lie
group. All the elements of SO(3), therefore, are connected to the identity.
The group O(3) contains all these elements plus another component that
can only be reached by multiplying the elements of SO(3) by a matrix with
determinant= −1. These elements cannot be reached by a succession of
small steps, and thus are not connected to the identity.

Now let di and di+1 be elements in G0 such that

di = aiai−1 · · · a1e

and
di+1 = ai+1ai · · · a1e

Take another element c that lies “between” di and di+1 in the sense that

c = bdi

and
c = b′di+1

where b, b′ ∈ U with corresponding parameter vectors β, β′ ∈ U . These
parameters depend not only on c but also on the i or i+1 elements comprising
di or di+1. It is useful to think of di as defining the origin of a local coordinate
system with respect to which the coordinates of c are β. Then di+1 defines
the origin of a new coordinate system in which the coordinates of c are β′.
This is illustrated in Figure 3.1. The region labeled U i contains all those
elements that can be obtained by multiplying ai · · · a1e by an element of U .
The region labeled U i+1 is similarly obtained from ai+1ai · · · a1e. Any point
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c in the overlap region has two sets of parameters, β and β′; consequently
there is a mapping or function that expresses β in terms of β′ and vice versa.

A set of elements like U i that can all be specified with a single system
of parameters (ie. without reparameterizing) is called a coordinate system
patch. By chosing different elements to play the role of c and different chains
of ai’s we can cover the entire group G0 with interlocking coordinate patches.
This would be useless unless the different coordinate systems fitted together
in a consistent way. This is guaranteed by the next assumption:

Definition 3.6 Global Connected Lie Group
A global connected Lie group is a group that can be covered with local

Lie groups using the procedure described above. When two or more local
groups overlap their parameter sets can be related to one another by analytic
functions.

As we have seen, each coordinate system patch obtains its coordinates
from an element in the germ of the local subgroup. It is customary to choose
these parameters so that the identity element e = 0 = (0, . . . , 0). It is clear
that this is always possible, since if the coordinates of the identity were α0,
we could define a new set of parameters α′ = α−α0. This linear translation
is itself an analytic function, so none of the analytic properties implied by
Definition 3.6 would be affected. A parameter set obtained in this way and
applied to a local group is called a local parameterization. These parameters
are formally equivalent to an n-dimensional Euclidean coordinate system.
For example, the distance of any element from the identity is d(α,0) =√∑n

i=1 |αi|2, which is just the Pythagorean theorem. In effect, we have
covered the abstract group G0 with a patchwork of Euclidean coordinate
systems.

This process of building up the global Lie group using a patchwork of
local subgroups is closely analogous to the process of analytic continuation
in complex function theory. We start with the neighborhood U of the iden-
tity. The neighborhood can be made arbitrarily large so long as the local
Lie subgroup postulates hold; but in general its size will be limited by α’s
and β’s for which f is not continuous and/or the inverse is not unique. Now
choose an element a1 corresponding to a parameter vector α1 ∈ U and repa-
rameterize so that a1 becomes the origin of a new local Lie subgroup called
U1. We then choose an element a2a1 ∈ U1 and use it as the origin of the
next local subgroup. Proceeding in this way we can eventually parameterize
any element of G0.

In the analogous process of analytic continuation, we expand a function
in a power series centered at the origin. This series converges in a neighbor-
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hood limited in size by the nearest singularity. We then choose a new point
within the neighborhood and use it as the origin of a new power series ex-
pansion. The coefficients of the new series are determined by the coefficients
of the original series and the point (analogous to α1) is used as the new ori-
gin. In this way most singularities can be “outflanked,” and the function is
determined everywhere in the complex plane in terms of its derivatives at
the origin.

It is useful to think of Lie groups as the group-theoretical analog of
analytic functions. The definition of a Lie group, however it may be stated,
has as its motivation the requirement that the group is globally determined
from its properties in a neighborhood of the origin. The properties of this
local group are in turn determined by the Lie algebra, which is a statement
about the group at the identity.
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3.2 Global Structure

We have seen how the germ of a local group generates a global connected
Lie group. There is an even larger structure to consider, however. A Lie
group can have several “pieces,” each piece consisting of elements that are
connected to one another but not to elements in other pieces. These sep-
arate pieces are usually called components of the group, and the compo-
nent containing the identity is called the connected component. Within each
component there can be further structure arising from the phenomenon of
multiple connectedness.

Definition 3.7 Connected Spaces
A space M is connected if for every p, q ∈M there exists a continuous

curve f(t) that maps the interval [a, b] of the real axis into M so that p =
f(a) and q = f(b).

In other words, any two points can be connected by a smooth curve lying
entirely within the set.

Definition 3.8 Simply Connected Spaces
The space M is simply connected if every curve connecting any two

points can be continuously deformed into every other such curve. If this is
not possible the space is said to be multiply connected.

The usual example of a multiply connected space is the surface or interior
of a torus. Two points on the surface, for example, can be connected by
paths running through the “donut hole” and by paths running along the
outside of the torus, and these paths cannot be deformed into one another.

Example 3.3 SU(2) as a simply connected group.

The group SU(2) was discussed in Example 3.2. Refering to Equation
3.1 we set p = α1 + iα2 and q = α3 + iα4. The condition |p|2 + |q|2 = 1
becomes

α2
1 + α2

2 + α2
3 + α2

4 = 1

This equation describes the surface of a sphere in four-dimensional Euclidean
space. It is intuitively clear in three dimensions that any curve lying on the
surface of a sphere and connecting two points can be continuously deformed
into any other curve connecting the same points. The same thing is true in
four dimensions: SU(2) is simply connected.
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Example 3.4 SO(2) as a multiply connnected group.

The set of all 2×2 special orthogonal matrices is a one-parameter group
that can be parameterized as follows.

M(α1) =

(
cosα1 sinα1

− sinα1 cosα1

)

The curve generated by α1 = 2πt with 0 ≤ t ≤ 1 starts at M(0) = I and
ends at the same point. In this case the ends points are identical, and the
curve is a loop. Another path between I and I is generated by α1 = 0t.
These paths cannot be continuously deformed into one another, since only
α1 = 2πn with n equal to an integer can produce M(α1) = I. Therefore,
SO(2) is not simply connected. It is plausible (and true) that all the SO(N)
groups with N ≤ 2 are multiply connected because of the cyclic property of
sines and cosines.

Definition 3.9 Locally Connected Spaces
A space is locally connected if every point is contained in an open

neighborhood that is itself a connected space.

For example, a space consisting of two disjoint open intervals on the real
axis is locally connected but not connected.

It is a standard result for topological spaces, of which Lie groups are a
special case, (eg. Singer and Thorpe, 1967), that the definition given above
for a connected space is equivalent to any of the following conditions:

(1) M is not the union of two nonempty disjoint closed subsets.
(2) M is not the union of two nonempty disjoint open subsets.
(3) The only subsets of M that are both open and closed are M and the

empty set.
The terms “open” and “closed” are used in the usual sense. A subset A ⊂

M is said to be open if each element in it is contained within a neighborhood
that itself lies entirely within the subset. The subset is closed if it contains
all its limit points, i.e. there is no element a ∈ M with the property that
a∈/ A and yet every neighborhood of a intersects A.

Theorem 3.2 G0 is open, connected, and closed.

Proof: G0 consists of all finite products of the form an . . . a1 where ai ∈ U ,
a germ of the local subgroup. Let a0 = an . . . a1 ∈ G0. We use the notation
a0U to indicate the set of all elements obtained by left multiplying an element
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of U by a0. Then a0 = a0e ∈ a0U ⊂ G0. Thus a0U is a set containing a0

that is itself completely contained in G0, which proves that G0 is open.
To prove that G0 is connected assume the opposite, that there are two

sets M and N with U ⊂ M such that G0 = M ∪ N and M ∩ N is empty.
This implies that there is an a ∈ M and a b ∈ N such that b = a0a with
a0 ∈ U . If M and N are disjoint, however, Ma−1 and Na−1 are also disjoint.
Then a0 = ba−1 ∈ Na−1, but a0 is an element of the local subgroup defined
in a neighborhood of the identity e = aa−1 ∈ Ma−1, and we arrive at a
contradiction.

To show that G0 is closed, suppose that the element b∈/ G◦ has the prop-
erty that every neighborhood of b intersects G◦. One such neighborhood is
bU . Let a0 be an element in this intersection. Then a0 = bb1 = a1 . . . an,
where b1, a1, . . . , an ∈ U . It follows that b = a1 · · · anb

−1
1 ∈ G0 The contra-

diction proves that G0 is closed.
The second part of the proof shows that all elements in G0 are connected.

The converse is also true; if an element is connected to the identity, then
it is a member of G0. A set like this that contains all elements that can be
smoothly connected to one another is called a maximal connected set.

Theorem 3.3 G0 is a maximal connected set.

Proof: Suppose there were an element a /∈ G0 and a continuous curve
a(t) so that a(0) = e and a(1) = a. Since the curve starts off in G0 and
since G0 is closed, there would have to be some t0 such that a(t0) ∈ G0 and
a(t) /∈ G0 for t0 < t. The element a−1(t0)a(t0 +ε) exhibits the contradiction.
When ε = 0 it is equal to e ∈ G0, but for arbitrarily small positive ε it is no
longer contained in G0. By definition, however, G0 is made up of products of
elements from the neighborhood of the identity. These last two statements
cannot be reconciled, so our hypothesis is wrong, and the theorem is proved.

Definition 3.10 F is a subgroup of a group G if it is a subset and if the
elements of F satisfy the group postulates.

Definition 3.11 Invariant subgroup
F is an invariant or normal subgroup of G if aFa−1 ⊆ F for all a ∈ G.

Definition 3.12 Coset
Let F be a subgroup of a group G. Then for any a ∈ G the set aF is

called the left coset of F with respect to a. Similarly the set Fa is called the
right coset.
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Unfortunately, there seems to be no agreement in the literature whether
aF should be called the left coset, because a is to the left of F , or the right
coset, because F is to the right of a.

The following theorem is stated for right cosets, but it is equally true for
left cosets.

Theorem 3.4
(1) If a ∈ F , then Fa = F .

(2) Two right cosets of F are either identical or they are disjoint.

Proof:
(1) If a ∈ F , then certainly Fa ⊆ F . It is possible to prove the much

stronger statement, however, that Fa contains every element of F once and
only once. Let b be an arbitrary element of F , and define c = ba−1 ∈ F .
Then ca ∈ Fa and ca = b, so Fa contains every element of F at least once.
Now suppose that it contained an element more than once. This would
imply that for some b1, b2 ∈ F b1a = b2a but b1 =/ b2, and these statements
are obviously inconsistent.

This statement is sometimes called the “rearrangement theorem.” It
is equally true if we replace the subgroup F with the entire group G. It
implies that the operation of left (or right) multiplication merely rearranges
the elements in the group.

(2) Suppose that Fa and Fa′ contain a common element, ie. for some
b, b′ ∈ F ba = b′a′. Then b′−1b = a′a−1, and a′a−1 ∈ F . From (1)
F(a′a−1) = F . Now Fa = F(a′a−1)a−1 = Fa′. Consequently, if there
is any common element, the two cosets are identical.

These proofs depend on the assumption that a ∈ F . In general, Fa=/ F =/ aF ,
and the left and right cosets are not necessarily identical. However, if
aF = Fa for all a ∈ G then a−1Fa = F and F is an invariant subgroup. In
this case we can construct a new group G/F known as the factor group. The
“elements” of this group are the distinct right cosets of F ; in other words,
we ignore the internal structure of the cosets. If b ∈ F and a ∈ G, then Fa
and Fba are identical. Multiplication is defined as follows.

Definition 3.13 Product of right cosets.
Let F be an invariant subgroup. The product of the cosets Fa and Fb is

defined by
(Fa)(Fb) = F(ab)

.
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It is necessary to show that this definition is consistent, ie. if a′ ∈ Fa
and b′ ∈ Fb then a′b′ ∈ F(ab).

Proof: There must be some c, c′ ∈ F such that a′ = ca, b′ = c′b, and
a′b′ = cac′b. Since ac′ ∈ aF , and since F is an invariant subgroup, there
must be an element c′′ ∈ F such that ac′ = c′′a. Then a′b′ = (cc′′)(ab) and
cc′′ ∈ F .

It is now trivial to show that the elements Fa, Fb, . . . form a group
called G/F or the factor group of G by F .

Theorem 3.5 Let G be a Lie group and let G0 be the connected component
containing the identity e as in Theorem 3.2. Then G0 is an invariant Lie
subgroup, and the components of G are the cosets of G0.

Proof: G0 easily satisfies the group axioms. It is a Lie subgroup since it
uses the same multiplication table as G.

To show that it is an invariant subgroup, let a ∈ G, and consider the set
aG0a

−1. This set contains the identity e = aea−1, and all its elements are
connected to the identity, so that aG0a

−1 ⊆ G0.
The operation of right (or left) multiplication is clearly a mapping in

the sense of Definition 1.2. Every element in G0a is an image of an element
in G0. Since we are dealing with Lie groups the mapping is analytic, so
that if two elements in G0 can be connected by a smooth curve, then the
images in G0a have the same property. Now suppose that there were an
element b that was not contained in G0a, but which could be connected to
elements in G0a. Then ba−1 would not be contained in G0 but yet would be
connected to elements in G0. This is inconsistent with the fact that G0 is
a maximal connected subset. Just as G0 contains all possible elements that
can be connected to e, so G0a contains all elements that can be connected
to a. If a ∈ G0 these sets are identical, but with a suitable choice of right
multipliers that cosets will comprise the entire group.

The next theorems make use of the concept of homomorphism. This
was introduced in Definition 1.3 for general groups, but an extra refinement
is required for Lie groups. Roughly speaking we require that the mapping
function φ (Definition 1.2) be C∞. In order to differentiate φ, however,
it must be expressed in terms of parameters rather than abstract group
elements. This leads to the following definition.

Definition 3.14 Lie group homomorphism.
A mapping φ of G into G′ is a Lie group homomorphism if, (1) it is

a homomorphism, and (2) the coordinates of a′ are C∞ functions of the
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coordinate a for every φ(a) = a′ ∈ G′ and for every local parameterization
of a and a′.

Several other related mappings are defined in obvious ways. A Lie group
isomorphism is an isomorphism (Definition 1.3) for which (2) is true. A
local Lie group homomorphism (or isomorphism) is one in which (2) holds
in some neighborhood U of e in G. In what follows we will assume that (2)
is true whenever the words homomorphism and isomorphism are used.

Definition 3.15 Kernel of a homomorphic mapping.
Let φ be a homomorphic mapping of a group G into G′. Then the set of

elements a ∈ G such that φ(a) = e′, the identity on G′ is called the kernel,
which we will call K.

Theorem 3.6 Let φ be a homomorphic mapping of G into G′ and let K be
the kernel of this mapping. Then

(1) K is an invariant subgroup of G.
(2) Because of (1) we can define a factor group Ka where a ranges over

all of G. Every element of this group can be mapped one-to-one onto G′ by
the mapping θ defined by

θ(Ka) = φ(a)

Furthermore, θ is an isomorphic mapping of G/K onto G′.

Proof: (1) It is trivial to show that the elements of K satisfy the group
axioms. To prove that it is invariant let a ∈ G and k ∈ K. Then φ(aka−1) =
φ(a)φ(k)φ(a−1) = φ(a)e′φ(a−1) = e′; so aka−1 ∈ K.

(2) Let ka be an arbitrary element of Ka. φ(ka) = e′φ(a) = φ(a); so
every element in Ka maps to the same element in G′. The mapping is one-
to-one, since if θ(Ka1) = θ(Ka2) then Ka1 = Ka2. This is proved as follows:
θ(Ka1) = θ(Ka2) implies φ(a1) = φ(a2). There must be a third element
a3 ∈ G such that a1 = a2a3. Then φ(a3) = e′, a3 ∈ K, and a1 ∈ Ka2. From
part (2) of Theorem 3.4, Ka1 = Ka2.

The mapping is homomorphic since

θ(Ka1)θ(Ka2) = φ(a1)φ(a2) = φ(a1a2) = θ((Ka1)(Ka2)).

It is also one-to-one and thus isomorphic.

Definition 3.16 The center C of a group G.
The center of a group G is the subgroup consisting of all elements of G

that commute with every element of G.
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Since C is obviously invariant it is sometimes called the central invariant
subgroup. A group like C whose elements all commute with one another is
said to be abelian.

The following important theorems are stated without proof. They are
proved in several standard references including Hausner and Schwartz (1968).

Theorem 3.7 If two simply connected groups G and G’ are locally isomor-
phic they are isomorphic in the large.

Thus a simply connected group is completely determined by the germ of
its local group. Two simply connected groups with that same (in the sense
of isomorphic) germ are the same group.

This does not happen with multiply connected groups, but there is a
unique simply connected group that is locally isomorphic to any multiply
connected group. The details are contained in the following remarkable
theorem.

Theorem 3.8 Let G be a connected group. Then there is a unique simply
connected group G̃ that is locally isomorphic to G. The maping φ of G̃ onto
G is homomorphic and locally isomorphic. The kernel K of φ is an invariant
central subgroup of G̃, and it is discrete. Moreover, G is globally isomorphic
to the factor group G̃/K.

The group G̃ is called the universal covering group for G. If G itself is sim-
ply connected, then G and G̃ are isomorphic by the previous theorem. The
following examples illustrate the universal covering group for some multiply
connected groups.

Example 3.5 SO(2) and U(1).

U(1) is the set of all 1 × 1 unitary matrices. A convenient parame-
terization is given by eiα = M(α). The identity e = M(0), and since
M(β)M(α) = M(β + α) the composition function f(β + α) = β + α. All
the group elements are reachable with this parameterization.

The group SO(2) was introduced in Example 3.1. The mapping

φ(eiα) =

(
cosα sinα

− sinα cosα

)

is a Lie group isomorphism. U(1), like SO(2), is multiply connected.
The covering group is the multiplicative group of real positive numbers,

often called R+. Let a, b, c be real positive numbers, and define the group
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multiplication rule to be ordinary multiplication; then the group axioms
are satisfied with a−1 = 1/a. The group is simply connected in a rather
trivial way, since there is only one path between any two points. A good
parameterization is a = eα̃ with −∞ < α̃ < +∞. The composition function
is γ̃ = α̃+ β̃.

The mapping
φ(eα̃) = eiα̃

is a Lie homomorphism because

φ(eβ̃)φ(eα̃) = φ(eβ̃eα̃)

and because the relation α̃ = iα is C∞. In the neighborhood of the identity
α̃ = α = 0 the mapping is one-to-one and thus isomorphic; but all elements
of R+ of the form exp(α̃+2πn) with n an integer map to the same element eiα

of U(1), so the mapping is globally homomorphic. This is easy to visualize
geometrically as shown in Figure 3.2. The kernel of the homomorphism
consists of the elements e2πn, which constitute a discrete, abelian subgroup
of R+ as required by the theorem.

The factor group G̃/K consists of all the distinct elements of the form
Ka = e2πneα̃. According to the definition of a factor group, Keα̃ and
Keα̃+2πm are the same element, since e2πn and e2π(n+m) (m an integer)
are both elements of K. The distinct element of G̃/K can be written Keα̃
with 0 ≤ α̃ < 2π. This is isomorphic with U(1) verifying the last statement
of the theorem.

The statements made about U(1) are equally true for SO(2), so R+ is
the covering for both groups.

Example 3.6 SO(3) and its covering group SU(2).

SO(3) is the group of real orthogonal matrices in three dimensions with
determinant= +1. The rotation matrices, Equation 1.21, belong to this
group. Like SO(2) it is multiply connected. SU(2) is the group of 2 × 2
complex unitary matrices u discussed in Examples 3.2 and 3.3. It is not
obvious that they are even locally isomorphic, but this can be exhibited
with the following indirect argument.

The SO(3) matrices Mij operate on a space of three-component col-
umn matrices x as in equation (1.5). In matrix notation x′ = Mx. We
can construct a new representation space on which the SU(2) matrices act
consisting of 2× 3 traceless, Hermitian matrices

r =

(
x3 x1 − ix2

x1 + ix2 −x3

)
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The operation x′ = Mx has its counterpart on this space in the operation
r′ = uru−1. The scalar product is defined by the operation

x1 · x2 =
1
2
Tr(r1r2)

The SU(2) transformations preserve this scalar product.

x′1·x′2 =
1
2
Tr(r′1r

′
2) =

1
2
Tr[(ur1u−1)(ur2u−1)] =

1
2
Tr[u(r1r2)u−1] =

1
2
Tr(r1r2) = x1·x2

Group multiplication M3 = M2M1 has its counterpart in u3 = u2u1. These
are homomorphic since if

M1x = x′ M2x
′ = x′′

u1ru
−1
1 = r′ u2r

′u−2
1 = r′′

(u2u1)r(u2u1)−1 = r′′

So the mapping φ(u1) = M1 satisfies

φ(u2)φ(u1) = M2M1 = φ(u2u1)

The kernel of this mapping consists of two elements. Let u ∈ K, then
uru−1 = r for all r. By Schur’s lemma u is a multiple of the unit matrix I2.
Since det(u) = 1, only I2 and −I2 are allowed. According to Theorem 3.8
this implies that the mapping is two-to-one. It is interesting to see how this
comes about explicitly. Define

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
, (3.3)

the Pauli spin matrices. Evidentally

r =
3∑

i=1

xiσi

r′ =
3∑

i=1

xiuσiu
−1 =

3∑
j=1

x′jσj .

The σ’s are orthogonal in the sense that

1
2
Tr(σiσj) = δij , i, j = 1, 2, 3
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Consequently

M(u)ij =
1
2
Tr(σjuσku

−1). (3.4)

Obviously u and −u yield the same M . The parameterization

u =

[
cos 1

2θ exp{1
2 i(ψ + φ)} sin 1

2θ exp{1
2 i(ψ − φ)}

− sin 1
2θ exp{−1

2 i(ψ − φ)} cos 1
2θ exp{−1

2 i(ψ + φ)}

]
, (3.5)

where

0 ≤ θ ≤ π 0 ≤ ψ ≤ 4π 0 ≤ φ ≤ 2π

substituted into (3.4) reproduces the rotation matrix given by (1.17). The
factors of 1/2 appearing in (3.5) are a symptom of the two-to-one mapping.
For example, the replacement ψ → ψ + 2π changes u → −u but leaves M
unchanged.
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3.3 Invariant integration and compact groups

There are a few technical developments that require the notion of integra-
tion over a group. Integration over continuous groups is a generalization
of summation over discrete groups, which is much easier to explain. For
example, let G(bi) be a function that associates a number with each group
element bi. The sum over the group is simply∑

G
G(bi). (3.6)

This sum (if finite) defines a number with an interesting invariance property;∑
G
G(cbi) =

∑
G
G(bic) =

∑
G
G(bi), (3.7)

for any element c. This follows from the rearrangement theorem, Theorem
3.4(1). Right- or left-multiplication by c simply rearranges the terms in the
sum.

The generalization of (3.7) to integrals over continuous groups might
look like this ∫

b∈G
G(cb)db =

∫
b∈G

G(bc)db =
∫

b∈G
G(b)db. (3.8)

G(b) is a continuous function of the element b. The question is, what does
the symbol db mean? We might plausibly replace (3.6) with the ordinary
Riemann integral ∫

G(β)dβ, (3.9)

where β is a parameter vector specifying the element b. Unfortunately,
(3.9) as it stands lacks the required invariance property. With a slight
modification, however, it can be made to satisfy (3.8), at least for a special
class of groups. The following argument shows how this is done:

Let α represent an element a ∈ G close to the identity, and let β◦
represent another element b◦. Then

β = f(β◦,α) (3.10)

maps the neighborhood of the identity to some new neighborhood centered
at β◦. Such a mapping is called a left translation by β◦. Conversely, the
mapping

α = f(β−1
◦ ,β) (3.11)
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maps a neighborhood of β◦ back to a neighborhood of the identity. We ob-
tain invariant integration by using (3.11) to transform every volume element
dβ in (3.9) back to the identity. This is done by replacing

dβ → dα = ρL(β)dβ, (3.12)

where

ρL(β◦) = det

∣∣∣∣∣∂αi

∂βj

∣∣∣∣∣
β=β◦

= det

∣∣∣∣∣∂f i(β−1
◦ ,β)

∂βj

∣∣∣∣∣
β=β◦

(3.13)

(Note that in passing from (3.13) to (3.12) β◦ has been replaced by β, ie. the
Jacobian has been evaluated at β.) The invariance of the resulting integral
is shown by the following theorem:

Theorem 3.9 ∫
G
G(β′)ρL(β)dβ =

∫
G
G(β)ρL(β)dβ (3.14)

where β′ = f(γ,β), and γ is any fixed element.

The proof follows from the property of Jacobians,

det

∣∣∣∣∣ ∂αi

∂β′j

∣∣∣∣∣ = det

∣∣∣∣∣∂αi

∂βj

∣∣∣∣∣ det

∣∣∣∣∣∂βk

∂β′l

∣∣∣∣∣
so

ρL(β′)dβ′ = ρL(β)det

∣∣∣∣∣ ∂βi

∂β′j

∣∣∣∣∣ dβ′ = ρL(β)dβ

and ∫
G
G(β′)ρL(β)dβ =

∫
G
G(β′)ρL(β′)dβ′ =

∫
G
G(β)ρL(β)dβ

This proof assumes implicitly that the group can be covered with a single
parameterization. This in itself is not a serious limitation because, as we
shall see, groups that cannot be so covered lead to divergent integrals. If
the integrals exist, we can write (3.14) in more compact notation.∫

G(cb)dLb =
∫
G(b)dLb (3.15)
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There is an analogous set of formulas for right translation, ie. if

ρR(β◦) = det

∣∣∣∣∣∂f i(β,β−1
◦ )

∂βj

∣∣∣∣∣
β=β◦

(3.16)

Then ∫
G
G(β′)ρR(β)dβ =

∫
G
G(β)ρR(β)dβ, (3.17)

where now β′ = f(β,γ) for any fixed γ, and∫
G
G(bc)dRb =

∫
G
G(b)dRb. (3.18)

The combinations dLb → ρL(β)dβ and dRb → ρR(β)dβ are called
the left- and right-invariant measures respectively. The sums over discrete
groups (3.7) lead us to hope that they would be equal as in (3.8). This is
not always true as the next example shows.

Example 3.7 Invariant measures on a two parameter group

Consider the group of 2× 2 matrices

A(α) =

∣∣∣∣∣ eα
1

α2

0 1

∣∣∣∣∣
In the notation of (3.10) the composition function for left translation is

β1 = β1
◦ + α1 β2 = α2eβ

1
◦ + β2

◦ ,

so that
β−1
◦ =

(
−β1

◦ ,−β2
◦e
−β1

◦
)
.

Equation (3.11) becomes

α1 = −β1
◦ + β1 α2 = (β2 − β2

◦)e
−β1

◦ ,

so

ρL(β◦) = det

∣∣∣∣∣ 1 0
0 e−β1

◦

∣∣∣∣∣ = e−β1
◦ .

Finally, ρL(β) = e−β1
.

Repeating the calculation for right translations gives

β1 = α1 + β1
◦ β2 = β2

◦e
α1

+ α2

α1 = β1 − β1
◦ α2 = −β2

◦e
−β1

◦+β1
+ β2

ρR(β◦) = det

∣∣∣∣∣ 1 0
−β2

◦e
−β1

◦+β1
1

∣∣∣∣∣
β=β◦

= 1
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3.3.1 Compact groups

Theorem (3.9) leaves two open questions: (1) When do the integrals con-
verge? (2) When are the left- and right-invariant measures equal? Although
the two questions are somewhat independent, it turns out that for compact
groups, a category that includes most of the groups of interest in physics,
the two measures are equal and the integrals converge.

In the context of real variables, a set is said to be compact if it is closed
and bounded. The following statements are consequences:

1) If the set S is compact, every infinite countable sequence contains a
subsequence that converges to an element in S.

2) If S is compact it can be covered by a finite number of open sets.
(The Heine-Borel theorem.)

These concepts can be applied to groups so long as some norm or distance
function is applicable. For example, if the group is described in terms of
parameter vectors, then we can define

‖α− β‖ = d(α,β), (3.19)

where d is the distance function (3.2). A sequence of vectors {αj} converges
if for any ε > 0 there is an integer N such that ‖αi−αj‖ < ε for all i, j > N .
The group is bounded if there is a constant M such that ‖α‖ = d(α,0) < M
for all α ∈ G. If a matrix M(a) is used to represent a ∈ G, then

‖M‖ = Max|Mij | i, j ≤ n (3.20)

The sequence of matrices {M (k)} converges if each element {M (k)
ij } converges

in the usual sense.
If the group G is compact, then integrals of the form (3.14) and (3.17) will

converge, because the domain of integration is bounded. Under the same
circumstances, the left- and right-invariant measures are equal as shown by
the following theorem:

Theorem 3.10 If G is compact then ρL(β) defined by (3.13) and ρR(β)
defined by (3.16) are equal.

Proof: Consider the transformation α → α′ consisting of a left transla-
tion by β◦ followed by a right translation by β−1

◦ .

α′ = f(β,β−1
◦ ) = f(f(β◦,α),β−1

◦ )

dα = det

∣∣∣∣∣ ∂αi

∂α′j

∣∣∣∣∣ dα′ = det

∣∣∣∣∣∂αi

∂βj

∣∣∣∣∣
β=β◦

det

∣∣∣∣∣∂βk

∂α′l

∣∣∣∣∣
β=β◦

dα′
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det

∣∣∣∣∣∂βk

∂α′l

∣∣∣∣∣
β=β◦

= det

∣∣∣∣∣∂fk(β,β−1
◦ )

∂βl

∣∣∣∣∣
−1

β=β◦

= ρ−1
R (β◦)

Let
η = ρL(β◦)ρ

−1
R (β◦),

then
dα = ηdα′.

The volume of the group is

V (G) =
∫
G
dα =

∫
G
ηdα′. (3.21)

Now perform this “round-trip” translation n times. The resulting volume
integral has the same form as (3.21) but with η replaced by ηn. The equality
must hold, in fact, even in the limit n → ∞, because of property (1) of
compact sets. If η < 1 or η > 1 we get the contradictory result that
V (G) = 0 or V (G) = ∞. We are forced to conclude that η = 1, and thus

ρL(β◦) = ρR(β◦) (3.22)

Example 3.1 fails this test because α is unbounded, and the group is
therefore noncompact. There are many noncompact groups that do have
equal left and right measures, however. The additive group of real numbers
falls into this category as in fact do all noncompact abelian groups.

Our formalism must be modified slightly in the case of compact groups
that consist of several disconnected components. The group integral must
be replaced by a sum of integrals over the various components.∫

G
→
∑

i

∫
Gi

With this modification the integrals are still invariant in the sense of Theo-
rem 3.9.

It can be shown (Price, Dynkin and Oniscik) that if G is a compact
linear Lie group, every element in a connected component Gi can be written
in exponential form with a single parameterization. This provides an a
posteriori justification for the assumption made in proving Theorem 3.9
that the group could be covered by a single parameterization.
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In Section 2.5 we proved the simple result that unitary operators on
finite-dimensional spaces have unitary matrix representations. The invariant
integral provides a tool for proving a much stronger theorem for compact
groups.

Theorem 3.11 Let O be an operator representation of the compact Lie
group G on the finite-dimensional vector space S. Then O is equivalent to
a unitary representation on S.

Proof: A unitary representation is one for which

< OΦ|OΨ > =< Φ|Ψ >

for arbitrary Ψ,Φ ∈ S. Even if this is not true for the natural scalar product
< | >, we can use invariant integrtion to define a new scalar product such
that

(OΦ,OΨ) = (Φ,Ψ).

Let O(a) be an operator representation. Define

(Φ,Ψ) = V −1(G)
∫
G
< O(a)Φ|O(a)Ψ >da, (3.23)

where the group volume

V (G) =
∫
G
da =

∫
G
dα =

∫
G
ρ(β)dβ.

The scalar product inside the integral is a continuous function of a and G is
compact, so the integral is finite and the left- and right-invariant measures
are equal. The new scalar product is positive definite, because the weight
functions are positive definite. The normalization insures that (, ) = 1 if
< | >= 1. Unitarity is now a simple consequence of the invariance theorem.

(O(b)Φ,O(b)Ψ) = V −1(G)
∫
G
< O(ba)Φ|O(ba)Ψ >da

= V −1(G)
∫
G
< O(a)Φ|O(a)Ψ >da = (Φ,Ψ)

This shows that O is unitary with respect to the new scalar product. Now
let {ωi} be an orthonormal basis with respect to the new scalar product,
and let {χi} be an orthonormal basis with respect to the old scalar product.

(ωi, ωj) = δij < χi|χj >= δij
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Φ =
∑

αiωi Ψ =
∑

βiωi

Define the nonsingular operator S such that Sωi = χi.

< SΦ|SΨ >=
∑

αiβ
∗
j < Sωi|Sωj >=

∑
αiβ

∗
j < χi|χj >=

∑
αiβ

∗
i

But
(Φ,Ψ) =

∑
αiβ

∗
j (ωi, ωj) =

∑
αiβ

∗
i ,

so < SΦ|SΨ >= (Φ,Ψ). Now

< SOS−1Φ|SOS−1Ψ >= (OS−1Φ,OS−1Ψ) = (S−1Φ,S−1Ψ) =< Φ|Ψ >

Thus the operator O′ = SOS−1 is unitary on S, and its matrix representa-
tions will also be unitary.

Unitary matrix representations have an important property that was
alluded to in Section 2.5.

Theorem 3.12 Reducible unitary matrix representations are completely re-
ducible.

Proof: Suppose that a similarity transformation brings a matrix repre-
sentation into the form (2.53) for all a ∈ G. The representation space S can
be partitioned into matching subspaces S1 and S2 as follows:

M(a)S =

∣∣∣∣∣ M11 M12

0 M22

∣∣∣∣∣
∣∣∣∣∣ S1

S2

∣∣∣∣∣ =
∣∣∣∣∣ M11S1 +M12S2

M22S2

∣∣∣∣∣
Reducibility means that the subspace S2 is invariant; M maps S2 into S2. If
M is also completely reducible, then S1 is also invariant. One way of saying
this is that the following matrix product vanishes.

∣∣∣ S1 0
∣∣∣ ∣∣∣∣∣ M11 0

0 M22

∣∣∣∣∣
∣∣∣∣∣ 0
S2

∣∣∣∣∣ = 0

Restated in scalar product notation this says that < Φ|O(a)Ψ >= 0 for all
a ∈ G, all Ψ ∈ S2, and all Φ ∈ S1. If O is unitary, however,

0 =< Φ|O(a−1)Ψ >=< O(a)Φ|Ψ >

The first scalar product is zero because O(a−1), like O(a), maps S2 into S2.
The fact that the second scalar product is also zero means that O(a) maps
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S1 into S1, which is to say that O as well as its matrix representations are
completely reducible.

It might happen that M11 and/or M22 can be reduced further, ie. the
spaces S1 and/or S2 might have invariant subspaces. If this is the case we
continue with further similarity transformations until M is in the form of
(2.56).
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3.4 The Lie Algebra

The previous section explored the connection between the local group and
the structure of the group as a whole. This section describes the relationship
between the local group and the Lie algebra. We will assume that the group
elements have a well defined local parameterization. In order to conform
with standard notation the components of the parameter vectors will be
written with upper indices, α = (α1, . . . , αn). We will use the Einstein sum-
mation convention in which repeated upper and lower indices are summed
over.

Let α and β be two elements close to the identity. The composition
function can be expanded in powers of the components, αi and βi.

f i(α,β) = αi + βi + cijkα
jβk + · · · (3.24)

This expansion satisfies the group requirements,

f(α,0) = α f(β,0) = β

The constants cijk uniquely specify the expansion through second order. The
associativity condition requires that

f(γ,f(α,β)) = f(f(γ,α),β). (3.25)

(See Definition 3.1(2).) Differentiating with respect to γ gives

∂f i(γ,f(α,β))
∂γk

=
∂f i(f(γ,α),β))

∂f j(γ,α)
∂f j(γ,α)
∂γk

. (3.26)

Set γ = 0 and define

u i
j (α) =

∂f i(γ,α)
∂γj

∣∣∣∣∣
γ=0

u i
j Ψ k

i = δk
j (3.27)

Then (3.26) becomes

∂f i(α,β)
∂αj

= ui
k(f)Ψk

j(α) (3.28)

Partial differential equations of this form have unique solutions if and only
if all mixed derivatives are equal.

∂2f i

∂αl∂αj
=

∂2f i

∂αj∂αl
(3.29)
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Applying this to (3.28) yields

∂

∂αl

{
ui

k(f)Ψk
j (α)

}
=

∂

∂αj

{
ui

k(f)Ψk
l (α)

}
We now carry out the differentiation and use (3.28) to eliminate the derivi-
tives of f . Some straightforward algebra leads to the following form of the
uniqueness condition:[

∂Ψc
j(α)
∂αl

− ∂Ψc
l (α)
∂αj

]
ul

a(α)uj
b(α) = (3.30)

[
∂ui

a(f)
∂fm

um
b (f)− ∂ui

b(f)
∂fm

um
a (f)

]
Ψc

i (f) = f c
ab

Since α and f are independent variables, the right and left sides of (3.30)
can be set equal to the constant f c

ab. This constant can be calculated as
follows: in the vicinity of the identity

ui
j(α) ≈ δi

j + cijlα
l

Ψi
j(α) ≈ δi

j − cijlα
l,

where cijl is the coefficient of the quadratic term in (3.24). Inserting Ψ into
the left side of (3.30) and setting α = 0 gives

f c
ab = ccab − ccba (3.31)

We now define
Xa = −uk

a(β)
∂

∂βk
. (3.32)

Setting β = 0 in the right side of (3.30) and rearranging terms gives

[Xa, Xb] = f c
abXc. (3.33)

The Ia, called infinitesimal group generators, form a Lie algebra according
to Definition ???

3.4.1 Local Transformation Groups

In Chapter 1 we showed that infinitesimal coordinate system rotations can
be described in terms of three differential operators called the infinitesimal
generators. These operators acting on functions of position coordinates in-
duce the corresponding changes in the functions. The generators form a Lie
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algebra whose commutation relations are determined by the structure of the
group. In this section we show that this result is quite general and that it
provides an alternate route to the Lie algebra.

Consider a general transformation of coordinate systems. Let xi i =
1, . . . , N be the cordinates of a point expressed in terms of the coordinate
system S, and let x′i be the coordinates of the same point in the transformed
coordinate system S′. The transformation from S to S′ is a group operation
parameterized by α = (α1, . . . , αn). The effect of this transformation on the
components is given by the function,

x′i = F i(α,x) i = 1, . . . , N. (3.34)

This is a generalization of the matrix transformation (1.5), but it allows
for the possibility that F i might be non-linear and/or inhomogeneous. The
F i’s, called coordinate transformation functions, can form a local Lie group.

Definition 3.17 Local Lie Transformation Group
Let α, β be members of a local Lie group, and let x be a member of

some real vector space V . The coordinate transformation functions, x′i =
F i(α,x), i = 1, . . . , N , form a local Lie group if the following requirements
are met:

(a) F i is a real analytic function of its n+N arguments.
(b) F i(0,x) = xi for all x = (x1, . . . , xN ) ∈ V .
(c) F i(β,F (α,x)) = F i(f(β,α),x) for all x ∈ V .

We can now generalize the derivation of equations (1.14) and (1.33) so
that they can be used for general coordinate transfromations. Let x refer
to a point in space that has coordinates xi in S and x′i in S′. The function
ψ(x) must have the same numerical value in both coordinate systems, so

ψ′(x′i) = ψ(xi). (3.35)

Since α is a member of a local Lie group it must have an inverse,

xi = F i(α−1,x′),

and
ψ′(x′i) = ψ(F i(α−1,x′)). (3.36)

Close to the identity the group element δα has an inverse (δα)−1 = −δα.
Expanding F i to first order in this parameter gives

xi = F i(−δα,x′)
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= F i(0,x′) +
∂F i(β,x′)

∂βj

∣∣∣∣∣
β=0

(−δαj) + · · ·

≈ x′i − δαj ∂F
i(β,x′)
∂βj

∣∣∣∣∣
β=0

.

Substituting this into (3.36) and again expanding in δα we find

ψ′(x′) = ψ

(
x′ − δαj ∂F (β,x′)

∂βj

∣∣∣∣
β=0

)

≈ ψ(x′)− δαj ∂F
i(β,x′)
∂βj

∣∣∣∣∣
β=0

∂

∂x′i
ψ(x′)

To lowest order, then, the change in ψ is

ψ′(x)− ψ(x) = δαjXj(x)ψ(x), (3.37)

which uses the definitions,

vi
j(x) =

∂F i(β,x)
∂βj

∣∣∣∣∣
β=0

(3.38)

and

Xj(x) = −vi
j(x)

∂

∂xi
(3.39)

The Xj are called the generators of infinitesimal displacements. They are
the analogs for general coordinate transformations of the angular momentum
operators in (1.33). These operators, together with the definition of their
commutator

[Xi, Xj ] = XiXj −XjXi, (3.40)

form a Lie algebra according to Definition 1.5. This is guaranteed by the
following two theorems usually called Lie’s first and second theorems.

Theorem 3.13 If Fi is a coordinate transformation function of a local Lie
transformation group, then

∂x′i

∂αj
= Ψk

j (α)vi
k(x

′). (3.41)
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Proof: The proof is based on the associativity condition (c) in Definition
3.17. Suppose β in (c) is replaced with an infinitesimal transformation δα,
so that α corresponds to the transformation from S to S′, and δα to the
transformation from S′ to S′′. The difference

dx′i = x′′i − x′i

can be computed in two different ways. First,

x′′i = x′i + dx′i = F i(δα,x′),

dx′i = δαk ∂F
i(β,x′)
∂βk

∣∣∣∣∣
β=0

= δαkvi
k(x

′).

We could also transform from S → S′′ in a single step using the parameter
vector

α + dα = f(δα,α),

where

dαl = δαj ∂f
l(β,α)
∂βj

∣∣∣∣∣
β=0

= δαjuj
l (α).

The inverse of the last equation is

δαk = dαjΨk
j (α).

Finally
dx′i = dαjΨk

j (α)vi
k(x

′)

∂x′i

∂αj
= Ψk

j (α)vi
k(x

′). (3.42)

Theorem 3.14 The Xj(x) defined by (3.39) together with the commutator
defined by (3.40) constitute a Lie algebra, i.e.

[Xa, Xb] = f c
abXc

with f c
ab constant.

Proof: Equation (3.42) is a set of coupled first-order partial differential
equations, which if integrated with initial conditions xi = F i(0,x) would
give the coordinate transformation functions (3.34). A necessary and suffi-
cient condition that an equation of the form (3.42) has a unique solution is
that all the mixed derivatives are equal:

∂2x′i

∂αj∂αl
=

∂2x′i

∂αl∂αj
.



3.4. THE LIE ALGEBRA 85

By steps that are analogous to the derivation of (3.30) we arrive at

vi
k(x

′)

[
∂Ψk

j (α)
∂αl

− ∂Ψk
l (x

′)
∂αj

]
ul

a(α)uj
b(α) (3.43)

=

[
∂vi

a(x
′)

∂x′m
vm
b (x′)− ∂vi

b(x
′)

∂x′m
vm
a (x′)

]
.

This equation is not exactly analogous to (3.30) because vi
k is not a square

matrix and hence not invertable. We can use the definition of f c
ab from

(3.30), however, to obtain (after setting α=0)

vi
k(x)fk

ab =

[
∂vi

b(x)
∂xm

vm
a (x)− ∂vi

a(x)
∂xm

vm
b (x)

]
. (3.44)

Substituting (3.39) into (3.44) gives us another version of the Lie algebra

[Xa, Xb] = f c
abXc. (3.45)

3.4.2 Local Linear Lie Groups

The formulation of Lie groups and algebras in terms of parameter vectors has
the advantage of generality; it provides a conceptual framework for studying
groups without specifying the actual form of the group elements. It has the
drawback, however, of being awkward computationally. For example, it is
often impossible to find an explicit, closed-form expression for the compo-
sition functions. For this reason, most applications of Lie groups in physics
make use of matrix groups or groups of transformation operators. Transfor-
mation groups lead to Lie algebras whose elements are partial derivatives
as seen in the preceeding section. In this section we discuss local linear Lie
groups, which are matrix groups defined in a neighborhood of the identity.
There is a deep result known as Ado’s theorem (Jacobson, 1962) that every
finite-dimensional Lie algebra is isomorphic to a matrix Lie algebra. Thus
every Lie group (with a finite number of parameters) is at least locally iso-
morphic to one of these matrix groups. Local linear groups therefore bridge
the gap between matrix representations (Chapter 2) and the Lie algebra.

Definition 3.18 Local Linear Lie Group
Let α, β, and γ be members of a set of n-tuples with a composition

function that satisfies the requirements of Definition 3.2 through 3.4 for
a local Lie group in a neighborhood U of the identity. A local linear Lie
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group is a set of m×m non-singular matrices M(α) satisfying the following
requirements:

(1) M(e) = Im (the unit matrix)
(2) The matrix elements of M(α) are analytic functions of the param-

eters α1, . . . , αn. For all α ∈ U the mapping from α to M(α) is one to
one.

(3) If f(α,β) = γ and f satisfies the requirements of a local Lie group,
then M(α)M(β) = M(γ), where the operation on the left is matrix multi-
plication.

Local linear Lie groups have their own Lie algebra, which is obtained
through the following definition:

Definition 3.19 Infinitesimal matrix generators
Let M(α) be a set of matrices that satisfy the postulates of a local linear

Lie group. The infinitesimal matrix generators are given by

Xi =
∂M(α)
∂αi

∣∣∣∣
α=0

(3.46)

Theorem 3.15 The Xi form a Lie algebra

Proof: Associativity requires that

M(γ)M(f(α,β)) = M(f(γ,α))M(β)

Differentiate with respect to γi, and then set γ = 0.

XkM(f(α,β)) =
∂M(α)
∂αj

uj
k(α)M(β)

∂M(α)
∂αj

M(β) = Ψk
j (α)XkM(f(α,β)) (3.47)

As usual we require that mixed derivitaves be equal

∂2M(α)
∂αl∂αj

M(β) =
∂2M(α)
∂αj∂αl

M(β)

The now-familiar steps lead to an equation analogous to (3.30),[
∂Ψk

j (α)
∂αl

− ∂Ψk
l (α)
∂αj

]
uj

b(α)ul
a(α)Xk = (3.48)
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[
Xa

∂M(f)
∂fm

um
b (f)−Xb

∂M(f)
∂fm

um
a (f)

]
M−1(f)

Substituting (3.30) and (3.39) and setting f = 0 yields

[Xa, Xb] = f c
abXc. (3.49)

The constants come from (3.24) and (3.31).
One might object that we have used the symbol Xi in three different

ways: infinitesimal group generators (3.32), generators of infinitesimal trans-
formations (3.39), and finally infinitesimal matrix generators (3.46). In fact,
these objects all form Lie algebras with the same structure constants, thus
from the point of view of abstract algebras, Definition ???, they are iden-
tical. Many theorems apply equally to all three kinds of operators. The
following theorem is specific to the matrix generators, however.

Theorem 3.16 Let M(α) be denote the members of a local linear Lie group
according to Definition 3.18. Then the matrices Xi i = 1, . . . , n defined by
(3.46)

(Xi)jk =
∂Mjk

∂αi

∣∣∣∣
α=0

form the basis of a n dimensional real vector space.

Proof: We assume that M(α) is a m×m complex matrix and decompose
it into two real matrices, Mjk = Bjk +ıCjk. The B’s and C’s together form a
set of 2m2 real functions of n real variables, α1, . . . , αn. Since the mapping
between α and M is one to one it follows that we can pick out a set of
n independent functions from this set of 2m2 functions and express the
remaining 2m2 − n B’s and C’s as functions of this select set. Call the n
independent functions D1, . . . , Dn. Independence implies that the Jacobian

det

[
∂Di

∂αj

]
α=0

=/ 0

This in turn implies that the system of n homogeneous linear equations

λj ∂Di

∂αj

∣∣∣∣∣
α=0

= 0 i = 1, . . . , n

has only the trivial solution λ1 = λ2 = · · · = λn = 0.
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If the matrices X1, X2, . . . Xn were not all independent, then there would
be a non-trivial solution to the system of 2m2 homogeneous linear equations

λpXp = λp
∂Mij

∂αp

∣∣∣∣
α=0

= 0 i, j = 1, . . . ,m

However, n equations out of this set, those for which the real or imaginary
part of Mij is one of the D’s, have already been shown to have no non-trivial
solutions, Consequently there is no non-trivial solution to the complete set
of equations for λ real, and the Xp’s form an n-dimensional basis of a real
vector space.

This argument does not prove that theXi’s themselves are real, only that
they span a n dimensional vector space with real coefficients. Any matrix
group with complex elements will have complex generators, and there are
many cases in which the Xi’s are independent over the real number field yet
not independent over the complex numbers.

3.4.3 Parameter transformations

A group can be parameterized in many different ways. It is important to
distinguish, therefore, between those aspects of the Lie algebra that are
“inconsequential” in the sense that they depend on the particular param-
eterization and those that are “crucial” in that they are invariant under
reparameterization of the group. Consider a general parameter transforma-
tion function

α′i = φi(α). (3.50)

This can be thought of as an automorphism in which each abstract group
element is mapped into itself, a → a, b → b, etc. but the corresponding
parameters and composition functions are mapped isomorphically, α → α′,
f(β,α) → f ′(α′,β′). The composition function must retain the general
form of (3.24), however, which restricts the possible transformations to two
types:

(a) Linear transformations

α′i = M i
jα

j , (3.51)

where M is a square, non-singular matrix.
(b) Non-linear transformations

α′i = αi +O(a2) (3.52)
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If (3.51) is to preserve the multiplication table the transformed param-
eters must obey the rule

γ ′ = f ′(β′,α′) (3.53)

or
M i

jγ
j = M i

jβ
j +M i

jα
j + c′iklM

k
mβ

mM l
nα

n + · · · (3.54)

We have used (3.24) with c → c′ to express the transformed composition
function. Evidentally

cdab = (M−1)d
i c
′i
klM

k
aM

l
b (3.55)

ie. the cijl as well as the structure constants and all the other coefficients in
(3.24) transform like tensors. In terms of the Lie algebra this can be thought
of as a change of basis; for if a new basis is defined by

X ′
i = Xj(M−1)j

i

the commutation relations become

[X ′
i, X

′
j ] = f ′kijX

′
k

where f ′ is obtained from (3.31) and (3.55). We have thus shown that all
sets of structure constants related by the transformation (3.55) f → f ′,
describe the same group (at least near the origin). We can use this freedom
to choose a basis in which the commutation relations have the maximum
possible simplicity and clarity. Chapter 4 is devoted to strategies for doing
this.

Transformations of the form (3.52) leave the structure constants invari-
ant because f is calculated at the origin. It will change the higher order
coefficients in (3.24) and hence the form of the composition function. This
freedom can be exploited to cast the composition function in a particularly
convenient form as follows: let α and β refer to specfic group elements
that are close enough to the origin to have a valid local parameterization.
Construct the exponential operators

A = expαaXa B = expβbXb (3.56)

where expX is defined by the usual power series
∑
Xn/n!. The product,

C = BA, can also be written as an exponential

C = exp γcXc, (3.57)

and γ can be calculated using the BCH formula (2.39)

γp = fp(β,α) = αp +βp + fp
ijβ

iαj +
1
6
fp

iqf
q
jk(β

iβjαk +αiαjβk)+ · · · (3.58)
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The following comments are in order regarding (3.58):
(a) Equations (3.56) through (3.58) are valid for all three definitions of

Xi, (3.32), (3.39), and (3.46), since they all have the same commutation
relations and the BCH formula is valid for any associative operators.

(b) Equation (3.58) uniquely determines the composition function in
terms of the structure constants, which in turn are determined by the struc-
ture of the group at the origin. Parameters determined in this way are said
to be normal or sometimes canonical.

(c) We can define a family of group elements,

M(t) = exp tαaXa, (3.59)

where t is a real variable. We can think of M(t) as a trajectory passing
through the identity at t = 0 and through the point expαaXa at t = 1.
Clearly [M(t),M(s)] = 0, so (3.58) gives M(t)M(s) = M(t + s). Such a
family of elements is called a one-parameter subgroup, and all one-parameter
subgroups are abelian.

Example 3.8 The Euclidean group on a plane.

The group of all translations and rotations in ordinary flat space is called
the Euclidean group. In two dimensions it can be parameterized as follows:∣∣∣∣∣ x′y′

∣∣∣∣∣ =
∣∣∣∣∣ cosα1 sinα1

− sinα1 cosα1

∣∣∣∣∣
∣∣∣∣∣ xy

∣∣∣∣∣+
∣∣∣∣∣ α2

α3

∣∣∣∣∣
Two successive transformations γ = f(β,α) are described by the composi-
tion function

f1 = β1 + α1

f2 = α2 cosβ1 + α3 sinβ1 + β2

f3 = −α2 sinβ1 + α3 cosβ1 + β3

This can also be treated as a homogeneous matrix group by regarding x and
y as elements of a three-component vector.∣∣∣∣∣∣∣

x′

y′

1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

cosα1 sinα1 α2

− sinα1 cosα1 α3

0 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x
y
1

∣∣∣∣∣∣∣ (3.60)

This parameterization is simple and straightforward, but not “normal.”
To find the normal parameterization, construct the Lie algebra of matrix
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generators using (3.46),

X1 =

∣∣∣∣∣∣∣
0 1 0

−1 0 0
0 0 0

∣∣∣∣∣∣∣ X2 =

∣∣∣∣∣∣∣
0 0 1
0 0 0
0 0 0

∣∣∣∣∣∣∣ X3 =

∣∣∣∣∣∣∣
0 0 0
0 0 1
0 0 0

∣∣∣∣∣∣∣ ,
with commutation relations

[X1, X2] = −X3 [X1, X3] = X2 [X2, X3] = 0

The exponential operator (3.56) is

M(α) = expαaXa =

∣∣∣∣∣∣∣
cosα1 sinα1 M13

− sinα1 cosα1 M23

0 0 1

∣∣∣∣∣∣∣ (3.61)

where
M13 = (α2 sinα1 − α3 cosα1 + α3)/α1

M23 = (α3 sinα1 + α2 cosα1 − α2)/α1.

This is the same as (3.60) except that α2 → M13 and α3 → M23, and the
composition function is correspondingly more complicated. The two param-
eterizations are identical at the origin, however, because they are based on
the same commutation relations.

An interesting question arises arises at this point: how general is this
procedure? Can every group element be written as the exponential of a Lie
algebra? This must be so for local linear Lie groups as can be seen by the
following argument: if M(α) is a member of a local linear Lie group, then
it must be possible to reach this element through a continuous variation
of the parameters starting at the identity. One such path is the straight
line αt. The corresponding matrix exponential, (3.59), defines the matrix
M(α) when t = 1. On the other hand, a disconnected component of a
group cannot, by definition, be reached through a continuous variation of
parameters starting at the identity; and so they cannot be written in the
form (3.59). But even for connected linear Lie groups, there can be elements
that are not expressible as a single exponential as shown in the next example.

Example 3.9 The group SL(2, R).

The group SL(2, R) consists of all real 2 × 2 matrices with unit deter-
minant. One such matrix is

M =

∣∣∣∣∣ r 0
0 r−1

∣∣∣∣∣
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The eigenvalues of M are r and r−1. If there were a matrix A such that
eA = M , then according to Theorem 2.5 and its corollary, the eigenvalues
of A, say λ1 and λ2, must satisfy eλ1 = r and eλ2 = r−1. Moreover, since
det(M) = 1, tr(A) = 0 and λ1 = −λ2. The eigenvalues of a real, traceless
matrix, however, must be pure real or pure imaginary. These conditions
cannot all be satisfied simultaneously when r < −1, so that M cannot be
obtained in this range by exponentiation.

What has gone wrong here? The matrix M can be connected to the
identity by the following indirect path: The parameterization

N(t) =

∣∣∣∣∣ cosπt sinπt
− sinπt cosπt

∣∣∣∣∣
connects the identity N(t = 0) = I2 with N(t = 1) = −I2. Then

O(s) = −
∣∣∣∣∣ es 0

0 e−s

∣∣∣∣∣
connects O(s = 0) = −I2 with O(s = ln |r|) = M . This suggests that M
cannot be connected to the identity without reparameterizing, and for this
reason it has no normal parameterization.

Incidentally, this example illustrates the fact that every element in the
connected component of a matrix Lie group can be written as the product of
a finite number of exponentials [Cornwell, 1984], since both N(t) and O(s)
can be obtained by exponentiation. The group is not compact, however, so
it cannot be covered with a single exponential.



Chapter 4

The catalog of algebras

We have seen how a Lie group with its non-countably infinite number of el-
ements can be analyzed in terms of a finite structure called the Lie algebra.
The Lie algebra in turn is characterized by a set of numbers, the structure
constants. This is a step in the right direction, but the structure constants
by themselves are difficult to interpret, partly because there are so many
of them. If the algebra has dimension d there must be d3 constants. Of
these d2 must be zero (since Ck

ii = 0), and half of the remaining d3 − d2 are
redundant, (since Ck

ij = −Ck
ji); but this still leaves 1

2d
2(d − 1) potentially

non-trivial constants. The group SU(3), for example, has an 8-dimensional
algebra and 224 structure constants; SU(4) is 15-dimensional, and the num-
ber of structure constants is 1575. It is hard to get much insight from staring
at a table of numbers of this size. Moreover, the structure constants are not
of much use in practical calculations; usually one needs a matrix representa-
tion of the algebra. Both problems were studied by E. Cartan, H. Weyl, and
others around the beginning of this century. They discovered that most1

algebras can be characterized by a much smaller set of constants called the
simple roots. The simple roots are l-dimensional vectors, where l is a small
number, l ≤ d, called the rank of the algebra; and each algebra has l simple
roots. With these roots one can put the commutation relations into a par-
ticularly simple form and construct canonical matrix representations. The
extent of the simplification can be seen by comparing the rank of SU(3) and
SU(4), two and three respectively, with the number of structure constants
given above. It is also possible to catalog all possible (semisimple) algebras.
There are only four basic types plus a handfull of exceptional cases. The

1By “most” I mean the semisimple algebras, which include virtually all the algebras of
interest in physics.

93
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important properties of these algebras can be found tabulated in standard
reference works.

Unfortunately, the argument leading up to the root vector decomposi-
tion is rather long and technical. We start with some new definitions and
terminology.

Definition 4.1 Subalgebra
The subset A of elements of the Lie algebra L constitutes a subalgebra

if [X,Y ] ∈ A for all X,Y ∈ A. In more compact notation, [A,A] ⊆ A.

Every Lie algebra has two “trivial” subalgebras, the algebra itself and
the zero element. A subalgebra that is not trivial in this sense is called a
proper subalgebra.

Definition 4.2 Invariant subalgebra
A subalgebra A is invariant if [X,Y ] ∈ A for all X ∈ A and all Y ∈ L,

i.e. [A,L] ⊆ A.

An invariant subalgebra is sometimes called an ideal.

Lemma 4.1 Let A and B be invariant subalgebras. Then [A,B] is an in-
variant subalgebra contained in A and B.

Proof. Clearly [A,B] ⊆ A ∩ B. Using the Jacobi identity we have
[[X,Y ], Z] = −[[Y, Z], X] − [[Z,X], Y ] for each X ∈ A, Y ∈ B, and Z ∈ L.
Thus [[A,B],L] ⊆ [A,B], proving that [A,B] is an invariant subalgebra.

Definition 4.3 Abelian algebras
A Lie algebra (or subalgebra) L is said to be abelian if [L,L] = 0. In

any Lie algebra the set of all elements that commute with all the elements
of L forms an abelian subalgebra called the center of the algebra.

Definition 4.4 Simple and semisimple algebras
An algebra with no proper invariant subalgebras is simple. An algebra

with no proper invariant abelian subalgebras is semisimple.

The presence of an invariant subalgebras can always be used to simplify
the representation of the algebra. For this reason we are interested in ex-
tracting as many invariant subalgebras as possible. It is clear from the last
lemma that

[L,L] ≡ L(1) (4.1)
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is an invariant subalgebra of L. By iterating this procedure we can construct
an entire sequence of invariant subalgebras.

L ≡ L(0) ⊇ L(1) ⊇ L(2) · · · L(n−1) ⊇ L(n) · · · (4.2)

[L(i),L(i)] ≡ L(i+1) (4.3)

Since the Lie algebra has a finite dimension, this sequence will either termi-
nate on a L(n) that consists of only the zero element, or it will arrive at a
L(n) that is identical with the preceding L(n−1).

Definition 4.5 The sequence (4.2) is called the derived series. If the de-
rived series terminates with the element 0, the algebra is said to be solvable.

It is easy to show that every subalgebra of a solvable algebra is solv-
able and that the direct sum (see the following definitions) of two invariant
solvable subalgebras is solvable.

Another sequence of invariant subalgebras is constructed as follows:

[L,L] ≡ L2 (4.4)

L ≡ L1 ⊇ L2 · · · Ln−1 ⊇ Ln · · · (4.5)

[Li,L] ≡ Li+1 (4.6)

Definition 4.6 If Ln = 0 for n sufficiently large, the algebra is said to be
nilpotent. We occasionally use this term to refer to a single element: A
is nilpotent if An = 0 for some integer n.

Lemma 4.2 [Li,Lj ] ⊆ Li+j.

Proof. This statement follows from the definition above when j = 1. We
assume that it is true for any i and some j and prove that it is also true for
j + 1.

[Li,Lj+1] ≡ [Li, [Lj ,L]] ≡ [[Li,L],Lj ] + [[Li,Lj ],L]
≡ [Li+1,Lj ] + [Li+j ,L] ⊆ Li+j+1

Lemma 4.3 L(n) ⊆ Ln

Proof. It follows from the definitions that L(0) ≡ L1 and L(1) ≡ L2. Now
assume that L(n) ⊆ Ln and prove that this is also true for n + 1. If this
were not true there would be an element A ∈ L(n) such that A ∈ L(n+1),
but A∈/ Ln+1. This in turn means that there must be two more elements
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B,C ∈ L(n) such that A = [B,C]. From Lemma 1.1, however, L(n) is
contained in both Ln and L, so A is also in Ln+1, and thus we arrive at a
contradiction.

One immediate consequence of this lemma is that all nilpotent algebras
are solvable, although the converse is not always true. An algebra consisting
of square matrices with zeros below the main diagonal is solvable, because
the commutator of any two such matrices will have an additional diagonal
line of zeros either on or above the main diagonal. It is also true (though
far from obvious) that any solvable algebra can be transformed into this
form. This is the content of Lie’s theorem, which will be proved later on.
A matrix with zeros on and below the main diagonal is itself nilpotent, i.e.
An = 0. Such a matrix is called nil-triangular. An algebra consisting of
nil-triangular matrices is nilpotent. The first derived algebra of a solvable
algebra is nilpotent.

We will often write L = M + K, meaning simply that every element of
the Lie algebra L can be written as a linear combination of elements in M
and K. There are two special sums, however, that carry definite implications
about the commutation relations of M and K.

Definition 4.7 Direct sum
A Lie algebra L = M⊕K is the direct sum of two Lie algebras (or

subalgebras) M and K if every element in L is a linear combination of ele-
ments in M and K and if all the elements of M commute with all elements
of K, i.e. [M,K] = 0.2

Definition 4.8 Semidirect sum
A Lie algebra L = M∧K is the semidirect sum of two subalgebras M

and K if every element in L is a linear combination of elements in M and K
and if one of the subalgebras K is an invariant subalgebra, i.e. [K,K] = K,
[M,M] = M, and [M,K] = K.

Note that the complement of an invariant subalgebra like K is not neces-
sarily a subalgebra. L is equal to the semidirect sum ofK and its complement
if and only if the complement forms a subalgebra. There is another way of
decomposing L into K plus “something else,” however, that guarantees that
the “something else” is an algebra. Any finite dimensional Lie algebra can
be written as a linear combination of basis elements. We choose bases σj

with Roman indices to span K, so that any element X ∈ K can be written
2This definition is not universally accepted. Sometimes the term “direct sum” implies

that M∩K = 0 without any assumptions about the commutation relations of M and K.
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X =
∑
xjσj . The remaining bases σµ ∈/ K have Greek indices. (We will

often use this convention.) Any element Y ∈ L is then

Y =
∑

yµσµ +
∑

yjσj .

The vector space spanned by the σµ is called variously L mod K, L-K, or
L/K. Two elements are identical in L mod K if their yµ’s are identical
(regardless of their yj ’s); alternatively, two elements are identical in L mod
K if their difference lies entirely in K. We will call

∑
yµσµ the “projection”

of Y onto L mod K and denote it with a bar.

Y =
∑

yµσµ

We define a new algebra on this space with the following rules:

aX = aX

(X + Y ) = X + Y

[X,Y ] = Z where [X,Y ] = Z.

If the elements of L mod K constitute a subalgebra, then the algebra defined
by these rules is just this algebra. If not, the barred commutator “discards”
the component of [X,Y ] contained in K. (Note that this definition requires
that K be an ideal.)

Definition 4.9 Factor algebra
Let K be an invariant subalgebra of L. The algebra of the barred elements

given by the above rules is called the factor algebra L/K. Any algebra
isomorphic to this is also called L/K.

The nomenclature surrounding factor algebras is potentially confusing.
It is important to distinguish between the vector space L/K and the algebra
L/K, which may or may not be the same as the algebra of L restricted to
the space L/K. We will use L-K or L mod K as shorthand notation for
the complement of K in L without implying that L-K is a subalgebra. We
reserve the term L/K for the algebra defined on this space.

There is a close connection between factor algebras and factor groups,
Definition (??). In fact, we could adopt a slightly different definition of the
factor algebra by considering X + K as a single element regardless of the
contents of K. In this way the definition of an element of L/K is analagous
to Definition (??) of a coset. In this notation the factor algebra is defined
as follows:

a(X +K) = aX +K
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(X +K) + (Y +K) = (X + Y ) +K

[(X +K), (Y +K)] = [X,Y ] +K

The algebra defined in this way is isomorphic with the algebra of Definition
4.9

Definition 4.10 The largest possible invariant solvable subalgebra of L is
called the radical of L or G.

It is necessary to show that this definition makes sense. First suppose
there is some invariant solvable subalgebra K. If we can identify an element
X ∈/ K such that [X,L] ∈ K, we can enlarge K by including X. The new
subalgebra K′ will also be solvable and invariant. We proceed in this way
until all the elements of L meeting these requirements are used up. If the
remaining elements contain a separate invariant solvable subalgebra it can
be combined with K. It is immaterial which invariant solvable subalgebra we
start with, so the procedure yields a unique result. The remaining elements,
L-G, contain no invariant solvable subalgebras and a fortiori, no invariant
abelian subalgebras. Is L-G a subalgebra? It seems as if it has to be, yet the
proof of this statement (Jacobson, Hausner and Schwartz) is quite difficult.
The final result is called the “radical splitting theorem” or sometimes the
“Levi decomposition theorem.”

Theorem 4.4 Let G be the radical of L. Then L/G is a semisimple subal-
gebra. Any algebra can be decomposed as a semidirect sum,

L = G ∧ L/G. (4.7)

This is the basic decomposition theorem. Any algebra can be divided
up into a solvable and a semisimple part. These two subalgebras are then
analyzed using rather different strategies.

4.1 Representations

In Section 2.3 we discussed the notion of matrix representations of groups.
The same ideas can be applied to the Lie algebra. We start with a definition
of matrix representations.

Let X ∈ L be an arbitrary element of an abstract Lie algebra, and
suppose that Γ(X) is its matrix representation.
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Definition 4.11 Lie algebra representations
The matrices Γ constitute a representation of the Lie algebra L if
(1) There is a matrix Γ(X) for each X ∈ L.
(2) [Γ(X),Γ(Y )] = Γ([X,Y ]) for each X,Y ∈ L.
If there is a one-to-one correspondence between the elements of L and

their representation, the representation is said to be faithful.

4.1.1 The Adjoint Representation

Our ultimate goal is to catalog all possible matrix representations of any
Lie algebra. There is one special representation, however, that must be
discussed at the outset. It is called the adjoint representation or regular
representation, and it is an essential tool for many technical proofs.

A Lie algebra is a linear vector space (Definition 1.5) with dimension
n equal to the number of parameters in the corresponding group. (e.g.
Theorem 3.12) Therefore we are able to choose a set of n linearly independent
elements σa ∈ L, a = 1, . . . , n to serve as a basis for L. In the following
definitions and proofs we will use the convention of summing over repeated
upper and lower indices, so, for example, an arbitrary element of L is written

X =
∑
a

xaσa = xaσa.

Definition 4.12 The Adjoint Representation
Let σa, a = 1, . . . , n be a basis and X = xaσa be an element of L. The

adjoint representation R(X) is defined by

[X,σa] = σbR(X)b
a (4.8)

In terms of the structure constants,

[X,σb] = xa[σa, σb] = xaf c
abσc = σcR(X)c

b,

so
R(X)c

b = xaf c
ab,

or
R(σa)c

b = f c
ab. (4.9)

Now starting with the basic commutation relation [X,Y ] = Y ′, we have

[X,Y ] = [X,σb]yb = σcR(X)c
by

b = σcy
′c

or
R(X)c

by
b = y′c. (4.10)

R(X) is thus a n× n matrix that acts on the space of the coefficients yb.
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Theorem 4.5 The adjoint representation is in fact a representation, ie
[R(X),R(Y )] = R([X,Y ]) for all X,Y ∈ L.

Proof:

[R(X),R(Y )]ag = xbye(fa
bdf

d
eg − fa

edf
d
bg) =

fa
gdf

d
ebx

bye = −fa
gdR(X)d

ey
e = y′dfa

dg = R(Y ′)a
g

We have made repeated use of (4.9) and (4.10). The second equality follows
from the Jacobi identity.

The adjoint representation is not necessarily faithful. All elements in
the center of the algebra, for example, are represented by the zero matrix.
We will prove later that the adjoint representation of semisimple algebras is
faithful.

We will also use the adjoint operators.

Definition 4.13 The adjoint operator R̂(X) is defined by

R̂(X)Y = [X,Y ]. (4.11)

Obviously
R̂(X)σa = [X,σa] = σbR(X)b

a. (4.12)

This result and the previous theorem give

R̂([X,Y ]) = [R̂(X), R̂(Y )].

Clearly the space on which the operators R̂(X) act is the Lie algebra L.
The definition is identical, however, with the linear transformation Ad(A)
defined on group representations, Definition 2.3; so that Lemma 2.7 and
Theorem 2.8 hold for algebras as well as groups.

We will often switch back and forth between adjoint operators and the
matrices of the adjoint representation. For example, the expression R̂p de-
notes p nested commutators

R̂p(X)Y = [X, [X, · · · [X,Y ] · · ·]] = Y ′,

whereas Rp simply denotes a matrix raised to the p-th power,

(Rp(X))b
ay

a = y′b.

Nonetheless, the two statements are completely equivalent.
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The operator analog of the eigenvalue equation,

(R(X)− αI)y = 0,

is
(R̂(X)− αÎ)Y = [X,Y ]− αY = 0.

The identity operator Î is just a notational gimmick. It does not correspond
to an actual element in the algebra.

The adjoint representation is useful because it enables us to visualize the
commutation relations in terms of the simple linear transformation (4.10).
The subalgebra structure can then be made apparent by partitioning R(X).
Suppose, for example, the Lie algebra L has a subalgebra A. The subalgebra
is spanned by the basis σj labeled with Roman indices. The remaining basis
elements σα are labeled with Greek indices. With these conventions (4.10)
becomes

R(σi)y →
[
fk

ij fk
iβ

0 fγ
iβ

] [
yj

yβ

]
=

[
fk

ijy
j + fk

iβy
β

fγ
iβy

β

]
(4.13)

R(σα)y →
[
fk

αj fk
αβ

fγ
αj fγ

αβ

] [
yj

yβ

]
=

[
fk

αjy
j + fk

αβy
β

fγ
αjy

j + fγ
αβy

β

]
(4.14)

The zero in the lower left corner of R(σi) insures the the σi’s form a
subalgebra, i.e. that [A,A] ⊆ A. We could also say that the yj ’s form a
subspace that is invariant under R(σi) or that R(σi) is reducible. If A is
an invariant subalgebra, there are additional zeros: fγ

αj = fγ
iβ = 0 so that

[A,L] ⊆ A

R(σi)y →
[
fk

ij fk
iβ

0 0

] [
yj

yβ

]
=

[
fk

ijy
j + fk

iβy
β

0

]
(4.15)

R(σα)y →
[
fk

αj fk
αβ

0 fγ
αβ

] [
yj

yβ

]
=

[
fk

αjy
j + fk

αβy
β

fγ
αβy

β

]
(4.16)

In addition we could require that the complement of A form a subalgebra,
so that fk

αβ = 0.

R(σα)y →
[
fk

αj 0
0 fγ

αβ

] [
yj

yβ

]
=

[
fk

αjy
j

fγ
αβy

β

]
(4.17)
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Finally, to make both A and its complement into invariant subalgebras we
need

R(σi)y →
[
fk

ij 0
0 0

] [
yj

yβ

]
=

[
fk

ijy
j

0

]
(4.18)

R(σα)y →
[

0 0
0 fγ

αβ

] [
yj

yβ

]
=

[
0
fγ

αβy
β

]
(4.19)

There is a final point to be made about (4.13). With a slight change of
notation we can write

R(σi) =

[
R11(σi) R12(σi)

0 R22(σi)

]
.

Direct calculation yields

R([σi, σj ]) = R(σi)R(σj)−R(σj)R(σi) =

[
R11([σi, σj ]) ∗

0 R22([σi, σj ])

]

The * in the upper right corner indicates that the entry is not zero but also
not relevant to the following observation. Both R11 and R22 are represen-
tations of the subalgebra A. R11 maps the space of the yj ’s into itself

R11([σi, σj ])k
jy

j = y′k,

or in terms of the adjoint operators

R̂11([σi, σj ])A ⊆ A,

which is just what we expected. The surprising thing is that R22 is also a
representation of A, even though it acts on the complementary space, the
space of the yβ’s. In terms of the operators

R̂22([σi, σj ])(L −A) ⊆ (L −A)

Since several key theorems depend on this peculiar fact, we state it as a
theorem.

Theorem 4.6 If A is a subalgebra of L and R is the regular representation
of L, then R restricted to A forms a representation of A acting on the space
L-A.
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4.1.2 The Jordan canonical form

The carrier space V for the representation Γ(X) of the Lie algebra L is a
linear vector space consisting of vectors v such that Γ(X)v = v′ ∈ V for
all v ∈ V and all X ∈ L. For example, if the representation consists of
n× n matrices, then the carrier space is composed of n× 1 column vectors
on which the matrices operate. The elements of the representation can be
thought of as linear transformations on this space. We will say that V
carries the representation.

The definitions of reducible, completely reducible, and irreducible group
representations given in Section 2.5 apply equally to representations of Lie
algebras. This is a good place to call attention to the fact that a reducible
representation always leaves invariant a subspace of the carrier space. The
statement that Γ(X) is irreducible is equivalent to saying that there are no
invariant subspaces in V .

The clearest way of displaying the subspace structure associated with a
single matrix is to choose a carrier space so that the matrix assumes Jordan
canonical form. This procedure is discussed in several standard texts. I
have found the treatment in Friedman espcially helpful. I will state the
general theorem of the Jordan canonical form and then sketch an outline of
the proof. The reader is invited to fill in the missing details.

Theorem 4.7 Any square matrix L can be brought into the following form
with a unitary transformation:

L =


A1 0 0 0 · · ·
0 A2 0 0 · · ·
0 0 A3 0 · · ·
· · · · · · · · · · · · · · ·
· · · · · · 0 0 Ak

 (4.20)

where

Aj =



αj 1 0 0 · · · · · ·
0 αj 1 0 · · · · · ·
0 0 αj 1 · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 0 αj 1
· · · · · · 0 0 0 αj


(4.21)

and αj is an eigenvalue of L.

In this form the action of L on the carrier space is evident at a glance.
The following features should be noted:
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1) L has been completely reduced. The Aj ’s are irreducible submatrices
with eigenvalues on the main diagonal.

2) The matrix (Aj−αjI) is a “lowering operator,” ie. if the basis element
ξk consists of a column matrix with 1 in the k-th place and 0 elsewhere, then

(Aj − αjI)ξk = ξk−1.

It would be very convenient if we could analyze the Lie algebra in terms
of this structure. Unfortunately this theorem only refers to a single matrix.
There is no guarantee that an arbitrary set of matrices can be simultaneously
transformed to Jordan canonical form. The following material explores the
extent to which this is possible and should be regarded as an extension of the
theory underlying the Jordan canonical form. We first review this theory as
it pertains to a single matrix.

Let L be an arbitrary n× n matrix. The eigenvalue equation

(L− αI)v = 0 (4.22)

will have n (possibly degenerate) eigenvalue solutions. If the eigenvalues
are all distinct, the corresponding eigenvectors will be linearly independent
and span a n-dimension vector space V . These eigenvectors can be used
to construct an unitary matrix U with which L can be put in diagonal
form with the eigenvalues along the main diagonal. If the eigenvalues are
not all distinct, however, the eigenvectors will in general not be linearly
independent and will not span V . In this case we can enlarge the space by
defining generalized eigenvectors.

Definition 4.14 A vector vk for which

(L− αI)k−1vk =/ 0

but for which
(L− αI)kvk = 0

is called a generalized eigenvector of rank k (k is an integer) corre-
sponding to the eigenvalue α.

It is easy to show that for any integer j < k,

(L− αI)jvk = vk−j , (4.23)

and that eigenvectors of different rank are linearly independent. We group
these eigenvectors into null spaces.
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Definition 4.15 The null space Nk is the space of all vectors v such that

(L− αI)kv = 0.

Equation (4.23) can be rewritten in this notation as

(L− αI)jNk ⊆ Nk−j . (4.24)

Evidently
N1 ⊆ N2 ⊆ N3 ⊆ · · · ,

but in a finite dimensional space this sequence must eventually reach some
Nk such that Nn ≡ Nk for all n ≥ k. Then k is called the index of the
eigenvalue α. Consider a null space Nj where j ≤ k. Then Nj−1 ⊆ Nj , and
we can decompose Nj into Nj−1 and “everything left over,”

Nj = Nj−1 + Pj−1. (4.25)

In the usual terminology Pj−1 is called a “progenitor space.”

Definition 4.16 The range of (L−αI)j−1 is the set of all non-zero vectors
of the form (L − αI)j−1vi where vi ∈ Nj. The progenitorspace Pj−1 is
spanned by the smallest possible set of vi’s such that the (L−αI)j−1vi’s span
the range.

With this definition the decomposition (4.25) is unique.
Now suppose that the eigenvalue α has a multiplicity d and an index

k ≤ d. We decompose Nk as follows:

Nk = Nk−1 + Pk−1

Nk−1 = Nk−2 + Pk−2

Nk−2 = Nk−3 + Pk−3

· · · · · · · · ·
N1 = N0 + P0

This procedure terminates at the space N0, which contains nothing. Then

Nk = Pk−1 + Pk−2 + · · ·+ P0. (4.26)

If p ∈ Pi then (L − αI)p ∈ Pi−1; consequently, every vector pk−1 ∈ Pk−1

gives rise to a chain of vectors:

(L− αI)pk−1 = pk−2 ∈ Pk−2

(L− αI)pk−2 = pk−3 ∈ Pk−3

· · · · · ·
(L− αI)p1 = p0 ∈ P0

(L− αI)p0 = 0
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The space Pk−1 cannot be empty (otherwise k would not be the index), so
none of the other Pi’s are empty. The carrier space for a matrix in Jordan
canonical form is composed of these progenitor vectors. We start by finding
a vector in Pk−1 and then computing the other members of its chain. We
then construct an unitary transformation U such that

Up0 = ξ1, Up1 = ξ2, Up2 = ξ3, · · · (4.27)

Where as usual, ξk is a column matrix with 1 in the k-th place and zero
elsewhere. The order is important. In order to obtain the Jordan canonical
form in the conventional format, it is necessary to start at the “bottom”
of the chain, p0, and work up to pk−1. Equation (4.27) also gives a recipe
for calculating U ; the columns of U−1 are the progenitor vectors p0, p1, · · ·
arranged in the canonical order. In this new basis

U(L− αI)U−1 =


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
· · · · · · · · ·


U(L− αI)U−1ξj = ξj−1

U(L− αI)U−1ξ1 = 0

The k transformed progenitor vectors, ξ1, ξ2, · · · , ξk, constitute an invariant
subspace. The operation of L on this subspace is represented by the matrix
A1 given in (4.21). The eigenvalue α1 = α is just the first eigenvalue that
we happened to consider.

If there is another vector in Pk−1, it will spawn another chain of vectors
and a separate, linearly independent, invariant subspace. In the new basis
this subspace is spanned by ξk+1, ξk+2, · · · , ξ2k. We proceed in this way until
all the vectors in Pk−1 have been used up. If there are additional vectors
in Pk−2, they will have their own chains and associated k − 1 dimensional
subspaces. By the time we have used up the contents of P0 we will have a
set of dα eigenvectors where dα is the multiplicity of α.

If (4.22) has other eigenvalues we calculate their index and repeat the
above procedure. The final result is a matrix in the form (4.20). Each Ai

operates on an invariant subspace consisting of a single chain of progenitor
vectors.

The following example illustrates these ideas.

Example 4.1 Jordan Canonical Form
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Consider the following matrix:

L =



2 0 1 1 0 −1
0 2 0 0 1 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 −1 0 2 1
0 0 0 0 0 2


.

The secular equation

det ‖ L− αI ‖= (2− α)6 = 0,

so the multiplicity of the root α = 2 is six. The eigenvector equation

(L− 2I)v = 0

yields the constraints v3 = v6 and v2 = v5 = 0. (Note that the subscripts
here indicate the components of the vector v, not the index.) Thus only three
of the six eigenvectors are independent. Further calculation shows that

(L− 2I)2v = 0

gives one constraint, v3 = v6, and

(L− 2I)3

is identically zero. Consequently the index of α = 2 is three. There are
three ordinary eigenvectors in N 1, five generalized eigenvectors in N 2, and
six in N 3.

The space N 3 consists of all six-component vectors. The range R2 is
found from

(L− 2I)2v =



0 0 0 0 0 0
0 0 −1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





v1
v2
v3
v4
v5
v6


=



0
−v3 + v6

0
0
0
0


The range is one-dimensional, and thus the progenitor space is spanned by
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a single vector, which we will take to be

p2 =



0
0
1
0
0
0


.

This vector stands at the head of a chain with two more vectors in it.

(L− 2I)p2 = p1 =



1
0
0
0
−1
0


(L− 2I)p1 = p0 =



0
−1
0
0
0
0


We now compute the range and progenitor spaces R1 and P1 starting with
the null space N 2, i.e. those vectors with v3 = v6.

(L− 2I)v =



0 0 1 1 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 1
0 0 0 0 0 0





v1
v2
v3
v4
v5
v3


=



v4
v5
0
0
0
0


R2 is two-dimensional; the progenitor vectors are

p′1 =



0
0
0
1
0
0


p′′1 =



0
0
0
0
1
0


.

Finally

(L− 2I)p′1 = p′0 =



1
0
0
0
0
0


(L− 2I)p′′1 = p′′0 =



0
1
0
0
0
0
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Since p0 = −p′′0 and p1 = p′0 − p′′1, only five of the seven progenitor vectors
found so far are independent. The missing vector must be in P0. We argue
that the range R0 must be identical with N 1, since (L− 2I)0 = I. Thus we
may use any of the ordinary eigenvectors to complete the set. We choose

p′′′0 =



0
0
1
0
0
1


.

The six generalized eigenvectors are arranged as follows: v(1) = p0, v(2) =
p1, v(3) = p2, v(4) = p′0, v(5) = p′1, v(6) = p′′′0 . The subscript in parentheses
anticipates notation we will use later to indicate the canonical ordering of
the eigenvectors. The transformation matrices are

U−1 =



0 1 0 1 0 0
−1 0 0 0 0 0

0 0 1 0 0 1
0 0 0 0 1 0
0 −1 0 0 0 0
0 0 0 0 0 1


U =



0 −1 0 0 0 0
0 0 0 0 −1 0
0 0 1 0 0 −1
1 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1


Finally

ULU−1 =



2 1 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 2 1 0
0 0 0 0 2 0
0 0 0 0 0 2


The matrix ULU−1 can obviously be partitioned into three submatrices. In
the notation of (4.20) and (4.21)

A1 =

 2 1 0
0 2 1
0 0 2

 A2 =

[
2 1
0 2

]
A3 = [2] .

The A1 submatrix operates on the space spanned by the three unprimed
progenitors, p◦, p1, and p2. A2 corresponds to p′◦ and p′1, and A3 to p′′′◦ . All
share the same eigenvalue α = 2.
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4.1.3 Simultaneous eigenvectors and Lie’s theorem

This procedure cannot be generalized to a set of matrices such as a Lie
algebra unless we can find vectors that are simultaneous eigenvectors of the
entire set. The next few theorems explore situations in which this is possible.
We start with the eigenvalue equation,

Γ(X)v = α(X)v, (4.28)

where Γ(X) is a matrix representation of an arbitrary element X of a Lie
algebra. Since α depends on X (unlike v) we often write it as a linear
functional α(X).

Theorem 4.8 If Γ(X) is a representation of an abelian Lie algebra, then
it has a simultaneous eigenvector v, that is, a solution to (4.28) v=/ 0 for
all X ∈ L. If Γ(X) is irreducible then the carrier space is one-dimensional,
and Γ(X) is just multiplication by a scalar.

Proof: Every square matrix has at least one eigenvector and eigenvalue.
Let S be the set of all v ∈ V such that

Γ(X)v = α(X)v,

for at least one X ∈ L. But then

Γ(X)Γ(Y )v = Γ(Y )Γ(X)v = α(X)Γ(Y )v,

so that Γ(Y )v ∈ S. Thus S is invariant. If Γ is irreducible, then S must
be the entire space V . We would come to the same conclusion no matter
what element X ∈ L we started with. Consequently, V is spanned by the
simultaneous eigenvectors.

It remains to prove that V is one-dimensional. If not, we could find two
vectors v1 and v2 such that

Γ(X)v1 = α1(X)v1
Γ(X)v2 = α2(X)v2.

Repeating the above argument we conclude that the space S1 spanned by v1
and the space S2 spanned by v2 are both invariant. This is only consistent
with irreducibility if S1, S2, and V are identical.

We can summarize by saying that the effect of Γ(X) on any element of V
is simply to multiply it by a scalar α(X). The carrier space is spanned by a
single v, which is simultaneously an eigenvector for the entire representation.



4.1. REPRESENTATIONS 111

Irreducibility plays a key role in this theorem, but the results are trivial
and uninteresting: the only matrices satisfying the conditions of the theo-
rem are in fact not matrices at all but just numbers. Let us see what can
be proved without assuming irreducibility. We first choose a basis for the
algebra, σ1, σ2, · · · , σn, and solve the eigenvalue equation for the first basis
element,

Γ(σ1)v1 = α1v1.

In general the multiplicity of the root α1 may be larger than one, so that
there may be more than one linearly independent eigenvector. The space
spanned by these eigenvectors will be called V1. Since

Γ(σ1)Γ(σ2)v1 = α1Γ(σ2)v1,

V1 is invariant under the action of Γ(σ2).

Γ(σ2)V1 ⊆ V1

Consequently, the equation

Γ(σ2)v12 = α2v12,

has at least one solution, v12 ∈ V1. Call the space of all such solutions V12

and repeat this procedure with the remaining σi’s. Finally we are left with
an invariant subspace V12...n of vectors v12...n having the property

Γ(σi)v12...n = αiv12...n.

By choosing an appropriate basis for the carrier space we can simultaneously
partition all the Γ(σi)’s as follows:

Γ(σi)v12...n →
[
αiI Γ12(σi)
0 Γ22(σi)

] [
V12...n

V − V12...n

]

Since
[Γ(σi),Γ(σj)] = Γ([σi, σj ]) = 0,

it must be true that (Theorem 4.6)

[Γ22(σi),Γ22(σj)] = Γ22([σi, σj ]) = 0.

So the Γ22(σi)’s also make up an abelian algebra, and the entire procedure
can be repeated with them. Consequently, Γ(X) can be transformed to
upper triangular form with eigenvalues along the main diagonal.
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These results are more or less obvious. Much less obvious is the fact that
the same conclusions hold for any solvable Lie algebra. This subtle theorem
was first proved by Lie; we prove it here using an argument that is modeled
after the derivation of the Jordan canonical form.

Lemma 4.9 Suppose that Γ(X) is irreducible and that L contains an in-
variant subalgebra A. If A possesses a simultaneous eigenvector, then all
the Γ(A) for A ∈ A consist of scalar multiplication.

Proof: Define N p as the set of all v that are solutions of

(Γ(A)− α(A))pv = 0 (4.29)

for all A ∈ A. Our assumptions guarantee that there is at least one vector
in N 1, so we can construct the nested sets, N1 ⊆ N2 ⊆ N3 ⊆ · · ·, as we did
in the proof of Theorem (4.7). Now let X be an arbitrary element in L. We
would like to prove that

Γ(X)N p ⊆ N p+1. (4.30)

The proof works by induction; we assume that

Γ(X)N p−1 ⊆ N p

and show that (4.30) follows immediately. If v ∈ N p, X ∈ L, and A ∈ A,
then

(Γ(A)− α(A))Γ(X)v = Γ(X)(Γ(A)− α(A))v + [Γ(A),Γ(X)]v. (4.31)

In terms of the null spaces,

(Γ(A)− α(A))Γ(X)Np

≡ Γ(X)(Γ(A)− α(A))Np + [Γ(A),Γ(X)]Np (4.32)
⊆ Γ(X)Np−1 + [Γ(A),Γ(X)]Np (4.33)

⊆ Np + [Γ(A),Γ(X)]Np (4.34)
⊆ Np (4.35)

Equation (4.24) was used to obtain (4.33), and the induction hypothesis was
used in (4.34). Equation (4.35) makes use of the following argument: since
[A,X] ∈ A,

{[Γ(A),Γ(X)]− α([Γ(A),Γ(X)])}Np ⊆ N p−1.
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But αNp ≡ Np, so [Γ(A),Γ(X)]Np ⊆ Np. The conclusion (4.30) follows
from (4.35) and (4.24).

Now N p cannot be larger than V , so there must be some index k such
that

Γ(X)N p = N p.

for p ≥ k. Moreover N p cannot be a subset of V , because of the hypothesis
of irreducibility. Therefore, N p = V for all p ≥ k. We will now show that
in fact k = 1.

First note that all the eigenvalues of Γ(A) are equal. This can be seen
as follows: suppose there were an α′(A) =/ α(A) and a corresponding eigen-
vector v′. Then

(Γ(A)− α)pv′ = (α′ − α)pv′=/ 0.

This contradicts the conclusion of the previous paragraph that every v ∈ V is
a solution of (4.29) with p ≥ k. Now consider the commutator [Γ(A),Γ(X)].
Its trace is zero, because it is a commutator. Therefore, the sum of its
eigenvalues, all of which are equal, is zero.

[Γ(A),Γ(X)]v = α([Γ(A),Γ(X)])v = 0,

even for v ∈ N 1. Then (4.31) shows that if v ∈ N 1, then Γ(X)v ∈ N 1, so
N 1 is invariant, and N 1 = V . To summarize,

Γ(A)v = α(A)v (4.36)

for all v ∈ V and all A ∈ A.
If Γ is not irreducible we are not allowed to claim that Np is the entire

space. It is an invariant subspace, however, and we can still argue that all
the eigenvalues of Γ(A) acting on Np are equal. Consequently, (4.36) is true
for all v ∈ Np and all A ∈ A.

In order to prove this lemma we had to assume thatA had a simultaneous
eigenvector. We will now show that this is always true if L is solvable.

Theorem 4.10 Every solvable algebra has a simultaneous eigenvector.

First notice that under the assumptions of Lemma (4.9) Γ(X)N1 ⊆ N1,
so that Γ(X) has an eigenvector in N1.

Γ(X)v = α(X)v

Since v ∈ N1, it is also an simultaneous eigenvector of A. Since A is a
solvable ideal, the algebra we get by adding X to A is also solvable. Conse-
quently, every solvable ideal of dimension l with a simultaneous eigenvector
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can be enlarged to an algebra of dimension l+ 1 with a simultaneous eigen-
vector.

Let L be a solvable algebra whose first derived algebra is L(1). We can
decompose L by picking out a basis element σ1 ∈/ L(1) and writing

L ≡ a1σ1 +M.

M is an ideal because the commutator of any two elements from L is con-
tained in L(1) ⊆M, andM is solvable because every subalgebra of a solvable
algebra is solvable. M itself can be decomposed in the same way so long as
there is a σ2 ∈/ L(1). This procedure is repeated until we use all the bases
that are not in L(1).

L ≡ a1σ1 + a2σ2 + · · ·+ L(1).

L(1) is decomposed by picking out, one by one, all those σi’s such that
σi ∈ L(1) but σi∈/ L(2). We continue in this way until we arrive at the
penultimate derived algebra L(p), which is abelian.

L ≡ a1σ1 + a2σ2 + · · ·+ anσn + L(p).

The proof now proceeds by induction. L(p) is abelian, so by theorem (4.8)
it has a simultaneous eigenvector. The algebra composed of

anσn + L(p)

has a simultaneous eigenvector and is also a solvable ideal. We now “re-
assemble” L by adding σn−1, σn−2, · · · one at a time. At each step we are
adding an element to a solvable ideal with a simultaneous eigenvector, and
thus the theorem is proved.

Several useful conclusions follow immediately from this result.

Lemma 4.11 If Γ(X) is irreducible and trace Γ(X) = 0 for all X ∈ L,
then L is semisimple.

If L were not semisimple it would have an invariant abelian subalgebra,
which, by Theorem 1.3, would have a simultaneous eigenvector. Then by
Lemma 1.4 the matrices of this subalgebra would be scalar multipliers with
zero trace.

Now suppose L is solvable and Γ(X) is irreducible. If Γ(X) were traceless
we would have a contradiction, because an algebra cannot be both solvable
and semisimple. We can construct a traceless algebra L′, however, by sub-
tracting (diminsion of V )−1 tr Γ(X) from each Γ(X). The first derived
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algebras of L and L′ are identical, so L′ is solvable, and we are back to the
same contradiction. There is only one way out: L′ contains only the zero
element, and Γ(X) consists of multiples of the unit matrix. The unit matrix
is reducible, however, unless it is one-dimensional. This brings us to Lie’s
theorem.

Theorem 4.12 If L is solvable and Γ(X) is irreducible, then the the carrier
space is one-dimensional, and Γ(X) consists of scalar multipliers for each
X ∈ L.

Corollary 4.13 Let Γ be a reducible representation of L. Then L is solvable
if and only if Γ can be put in upper triangular form.

Proof: By definition a reducible representation can be similarity trans-
formed so that it looks like (2.55) with irreducible submatrices along the
diagonal. But by Lie’s theorem the submatrices are all one-dimensional.
This is called the canonical representation of a solvable algebra. To prove
the converse, assume that Γ(X) is upper triangular for all X ∈ L. The
commutator of any two upper triangular matrices must have zeros along
the diagonal, so the representation of the first derived algebra will have this
form. The representation of the second derived algebra will have an addi-
tional line of zeros just above the diagonal. Succeeding derived algebras are
more and more “upper triangular.” If the representation is n × n then the
matrices of the (n− 1)-th derived algebra can have at most a single element
in the upper right corner. The n-th derived algebra must be zero.

There is not much more to say about solvable algebras in general. The
reader is reminded of Theorem (4.4); any algebra can be decomposed into an
invariant solvable subalgebra and a semisimple algebra. Semisimple algebras
have a rich structure, a vast body of mathamatical lore pertaining to them,
and many physical applications. Solvable algebras are mostly a curiosity,
although we will use Lie’s theorem in the next section to analyze the non-
invariant solvable algebras that appear within semisimple algebras.

We conclude this section with a somewhat contrived example to illustrate
Lie’s theorem and the analysis of solvable algebras.

Example 4.2 A 3× 3 solvable algebra

X1 =
1
2

 3 −1 0
1 1 0
1 −1 −1

 X2 = 1
2

 1 −1 2
3 −3 2
0 0 2

 X3 =

 0 0 1
0 0 1
0 0 0
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X4 =
1
2

 1 −1 0
1 −1 0
0 0 0

 X5 = 1
2

 0 0 0
0 0 0
1 −1 0


The commutation relations are as follows:

[X1, X2] = 2X3 − 2X4 − 2X5 [X1, X3] = 2X3 −X4 [X1, X4] = 0
[X1, X5] = −2X5 [X2, X3] = −X3 [X2, X4] = X4

[X2, X5] = X4 + 2X5 [X3, X4] = 0 [X3, X5] = X4

[X4, X5] = 0

This is solvable since L(1) = X3, X4, X5, L(2) = X4, and L(3) = 0. There is
one simultaneous eigenvector, v1 = (1, 1, 0). Choose a matrix U so that

(UXiU
−1)(Uv1) = αi(Uv1) = X ′

iξ1 = αiξ1.

A convenient choice is

U−1 =

 1 0 0
1 1 0
0 0 1

 .
The transformed matrices are

X ′
1 =

1
2

 2 −1 0
0 2 0
0 −1 −2

 X ′
2 = 1

2

 0 −1 2
0 −2 0
0 0 2

 X ′
3 =

 0 0 1
0 0 0
0 0 0


X ′

4 =
1
2

 0 −1 0
0 0 0
0 0 0

 X ′
5 = 1

2

 0 0 0
0 0 0
0 −1 0


The 2×2 submatrices in the lower right are also solvable with a simultaneous
eigenvector (0, 1). Repeating the above procedure with

U ′−1 =

 1 0 0
0 0 1
0 1 0

 .
yields

X ′′
1 =

1
2

 2 0 −1
0 −2 −1
0 0 2

 X ′′
2 = 1

2

 0 2 −1
0 2 0
0 0 −2

 X ′′
3 =

 0 1 0
0 0 0
0 0 0


X ′′

4 =
1
2

 0 0 −1
0 0 0
0 0 0

 X ′′
5 = 1

2

 0 0 0
0 0 −1
0 0 0
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4.2 The Secular Equation

The results of the previous section are based on the existence of simultaneous
eigenvectors, i.e. eigenvectors of the entire algebra. These do not exist in
general for non-solvable algebras, and we must introduce some new ideas.

Let L be a n-dimensional Lie algebra with basis σi, i = 1 · · ·n, so that
an arbitrary element can be written X = xiσi. The regular representation
of X is a n× n matrix R(X). This matrix has n eigenvalues, which can be
found by solving the secular equation

det ‖R(X)− αI‖ = 0. (4.37)

This is a polynomial in α of order n with real coefficients φj .

det ‖R(X)− αI‖ =
n∑

j=0

(−α)n−jφj = 0 (4.38)

The φj ’s are function of the xi and contain all the information about the
structure of the algebra. Since the secular equation is invariant under a
similarity transformation

det ‖UR(X)U−1 − αI‖ = det ‖U‖det ‖R(X)− αI‖det ‖U−1‖,

this information is encoded in the φj ’s in a way that is independent of the
choice of basis.

Two of the φj ’s are trivial

φ0 = 1
φn = det ‖R(X)‖ = 0 (4.39)

The fact that R(X) is singular can be seen from (4.10). If we replace Y
with X, then

R(X)c
bx

b = 0

and the determinant of R must vanish.

Example 4.3 Nilpotent algebras

An algebra in upper triangular form with zeros on and below the main
diagonal is nilpotent. Then

det ‖R− αI‖ = (−α)n = 0.
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Example 4.4 Invariant subalgebras

We have seen (4.13) how the presence of an invariant subalgebra allows us
to partition the regular representation in upper triangular form[

R11(X) R12(X)
0 R22(X)

]

In this case the secular equation factors.

det ‖R11(X)− αI‖ = 0

det ‖R22(X)− αI‖ = 0,

and the two matrices R11(X) and R22(X) are analyzed separately.
At this point we encounter a famous technical problem. We started with

a real Lie algebra, i.e. the xi are real coefficients. The roots of the secular
equation (4.38), however, are in general complex. Thus we are forced to
extend our algebra over the complex number field. We do this by writing
an arbitrary element X = ciσi with complex ci and replacing xi → ci in all
our formulas. This process, called “complexification,” leads to a theory of
complex Lie algebras. The difficulty is that the bases σi, i = 1, · · ·n might
be linearly independent over the field of real numbers and yet fail to be
independent over the field of complex numbers. In this chapter we assume
that the n bases are independent and in this way develop a theory of complex
Lie algebras. The corresponding real forms are discussed in Chapter (??).

The secular equation can now be factored as follows:

n∑
j=0

(−α)n−jφj(ci) = αd◦(α− α1)d1(α− α2)d2 · · · (4.40)

The roots, α1, α2, · · · are complicated functions of the ci. The integers
d0, d1, d2, · · · are the multiplicities of the roots. The multiplicity of the root
0 turns out to be particularly important in the theory that follows. Because
φn = 0, α = 0 is always a root, consequently d◦ ≥ 1. In most cases, however,
d◦ > 1 for all X ∈ L. Nilpotent algebras, Example 4.3, are an extreme case,
since d◦ = n. Now let p be the largest value of j in (4.38) such that φj =/ 0.
Then d◦ = n− p. To some extent p will depend on the choice of X, however
each algebra will have some maximum value of p.

Definition 4.17 The rank of an algebra is l = n−p, where p is the largest
integer such that φj in (4.38) is zero for all j > p and all X.
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It can be shown that φp =/ 0 for “almost all” of the elements in the
algebra. (See Jacobson for a discussion of this point.) Occasionally φp = 0
because of some specific set of ci for which a fortuitous cancellation takes
place. An element for which this does not happen is said to be regular. We
will give a slightly different but equivalent definition presently.

We now choose a particular element X ∈ L, solve the secular equation
for R(X), and transform R(X) into Jordan canonical form:

U(c)R(ciσi)U−1(c) =


M0 0 0 0 · · ·
0 Mα1 0 0 · · ·
0 0 Mα2 0 · · ·
· · · · · · · · · · · · · · ·
· · · · · · 0 0 Mαk

 (4.41)

where

Mαj =



A
(1)
αj 0 0 0 · · ·

0 A
(2)
αj 0 0 · · ·

0 0 A
(3)
αj 0 · · ·

· · · · · · · · · · · · · · ·
· · · · · · 0 0 A

(k)
αj


(4.42)

and

A(i)
αj

=



αj 1 0 · · · · · ·
0 αj 1 · · · · · ·
0 0 αj · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · 0 αj 1
· · · · · · 0 0 αj


Each A(i)

αj operates on an invariant subspace consisting of a single chain
of progenitor vectors as in (4.21). Each Mαj consists of all those Aαj derived
from the same eigenvalue αj . The notation is cumbersome because there are
usually several independent subspaces (indexed by i) corresponding to the
same αj .

The matrix U that transforms R(X) into Jordan canonical form also
establishes a new set of basis elements. For example, suppose that v is
a generalized eigenvector of R(X) corresponding to the eigenvalue α. As
explained in Section 4.1 there are n vectors in all, and they are arranged
in a definite order. Let us say that v(k) is the k-th generalized eigenvector.
Then

U(R− αI)dαv(k) = U(R− αI)dαU−1Uv(k) = (URU−1 − αI)dαUv(k) = 0
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Clearly Uv(k) is a generalized eigenvector of the transformed R. This means
that Uv(k) = ξk, where ξk is a column vector with one in the k-th place
and zeros elsewhere. The columns of U−1 are the n generalized eigenvectors
arranged in the appropriate order.

The transformed carrier space, the space of the ξk’s, breaks up into a
sum of invariant subspaces. There is one subspace with dimension dαj for
each Mαj in (4.41).

V = V◦ ⊕ Vα1 ⊕ Vα2 · · · (4.43)

In the Lie algebra there are n linearly independent elements correspond-
ing to the generalized eigenvectors.

vi
(k)σi = σ′k (4.44)

The transformed algebra, the space of the σ′k, also breaks up into subspaces.

L = V◦ + Vα1 + Vα2 · · · , (4.45)

where Vαi consists of all elements of the form ckσ′k where the implied sum
ranges over all k such that ξk spans Vαi . These are invariant subspaces in
the sense that

R̂(X)Vαi = [X,Vαi ] ⊆ Vαi .

The forgoing decomposition was based on a single, arbitrarily chosen
element X. Of course we cannot simultaneously transform all elements to
Jordan canonical form, but it will turn out that one is enough if it is wisely
chosen. The point is that the new basis elements have some remarkable
properties that will emerge from the following theorem. In order to make
best use of this theorem it is important to choose X so that the number of
distinct roots is as large as possible. This is equivalent to saying that d◦ is
as small as possible or that X is regular.

Definition 4.18 An element X is said to be regular if there is no element
in L for which the number of distinct roots of the secular equation is larger.

In the remainder of this development it will be assumed that some regular
element X has been chosen, the roots and eigenvectors of R(X) have been
calculated, and that σi refers to the new, transformed basis elements.

Theorem 4.14 Let α and β be roots of the secular equation. If α + β is
also a root, then

[Vα,Vβ ] ⊆ Vα+β (4.46)

If α+ β is not a root, then

[Vα,Vβ] = 0 (4.47)



4.2. THE SECULAR EQUATION 121

Proof: Clearly
(Mα − Iα)dα = 0.

Restating this in terms of the adjoint operators gives

(R̂(X)− Îα)dαVα = 0.

Consequently, if α and β are roots of R(X) and Vα and Vβ are the corre-
sponding subspaces in the Lie algebra, there will always be integers i and j
such that

(R̂(X)− Îα)iVα = (R̂(X)− Îβ)jVβ = 0

Now
(R̂(X)− (α+ β)Î)[Vα,Vβ] =

[(R̂(X)− α)Vα,Vβ] + [Vα, (R̂(X)− β)Vβ]. (4.48)

This equation makes use of (4.11) and the Jacobi identity. Now multiply
repeatedly on the left by the factor (R̂(X) − (α + β)Î) and use (4.48) to
simplify the right side of the equation. After repeating this process k − 1
times we have

(R̂(X)− (α+ β)Î)k[Vα,Vβ ]

on the left, and on the right is a sum of terms of the form

[(R̂(X)− Îα)pVα, (R̂(X)− Îβ)qVβ ]

where p + q = k. We can always find a k large enough so that either p ≥ i
or q ≥ j for every term in the sum. Then

(R̂(X)− (α+ β)Î)k[Vα,Vβ ] = 0.

There are two ways this equation might be true: either [Vα,Vβ] ⊆ Vα+β or
[Vα,Vβ] = 0. The latter is guaranteed if α+ β is not a root of R(X).

The subspace V◦ is especially important.

Definition 4.19 If X is regular then V◦ is called a Cartan subalgebra.

From now on we will use Hi, i = 1, . . . , l for the basis elements that
span V◦, and (whenever possible) H to represent an arbitrary element in
V◦.

According to Theorem 4.14, [V◦,V◦] ⊆ V◦, so the Cartan subalgebra
is an algebra as advertised. Furthermore, [V◦,Vα] ⊆ Vα, so each Vα is
invariant under V◦. These two facts require that the regular representation
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of all the elements of V◦ have the same block diagonal structure as (4.41).
Once the new basis has been constructed according to (4.44), R(H) has the
following form for all H ∈ V◦.

R(H) =


M0(H) 0 0 0 · · ·
0 Mα1(H) 0 0 · · ·
0 0 Mα2(H) 0 · · ·
· · · · · · · · · · · · · · ·
· · · · · · 0 0 Mαk

(H)

 (4.49)

For the time being we will use αi to label the root subspaces even though
αi is not in general a root of R(H). Nonetheless, R(H) acting on V◦ has
only zero eigenvalues for all H ∈ V◦. This is a consequence of the following
theorem.

Theorem 4.15 Let H◦ be a regular element of L and let V◦ be the set of
all H ∈ L such that

R̂l(H◦)H = 0,

then
R̂l(H)V◦ = 0,

where H is any element in V◦. V◦ is a solvable algebra of rank l.

Proof: Consider the eigenvalues of the matrix R(H◦+ zH), where z is a
complex variable. The eigenvalues are clearly functions of z, and there is a
body of mathematical lore about the analytic structure of these functions.
The crucial theorem (Hausner and Schwartz) states that in the limit of
|z| → 0, each root of R(H◦ + zH) is continuously transformed into one of
the roots of R(H◦). Furthermore, R(H◦ + zH) has no fewer distinct roots
than R(H◦), so that by making |z| small enough, we can bring at least one
root of R(H◦ + zH) arbitrarily close to each root of R(H◦).

This theorem is true for any square matrices, but since R̂(H◦+zH)(H◦+
zH) = 0, R(H◦+zH) has an eigenvalue that is zero for all z. SinceH◦ is reg-
ular, R(H◦+zH) cannot have any more distinct roots than R(H◦). A corol-
lary of the theorem quoted above states that when R(H◦) and R(H◦+ zH)
have the same number of distinct roots so that there is a one-to-one corre-
spondence between the two sets of roots for small |z|, then the dimensions
of the corresponding generalized eigenspaces are the same. Consequently

[R̂(H◦ + zH)]lV◦ = 0
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for all z. This can only be true if

R̂l(H)V◦ = 0.

Thus all the submatrices of R(H) acting on V◦ can be simultaneousy trans-
formed to Jordan canonical form with zeros on the main diagonal. Such
matrices are nilpotent, and the corresponding subalgebra is solvable. This
completes the proof.

Since the Cartan subalgebra is solvable, all its representations will have
simultaneous eigenvectors. Thus if α is one of the roots of (4.40), we can
find at least one vector c(α) such that

Mα(Hi)c(α) = αic(α)

for all Hi ∈ V◦, or equivalently, we can define

Eα =
∑

σj∈Vα

cj(α)σj

such that
[Hi, Eα] = αiEα. (4.50)

The notation here is confusing. In (4.40)-(4.42) αi is the i-th eigenvalue of
a specific element R(X). It then becomes the label for the subspace Vαi on
which Eα is defined. Finally, in (4.50) αi is the eigenvalue of Hi ∈ V◦ acting
on the space Vα.3 We can partially avoid this confusion by constructing the
vector

α = (α1, α2, . . . , αl), (4.51)

and using it to label the eigenvectors Eα
4. So, for example, (4.50) becomes

[Hi, Eα] = αiEα. (4.52)

The root vectors α are defined on a l-dimensional Euclidian space. Each
eigenvector Eα can be thought of as a single point in this space. This
geometrical depiction of the algebra is a great aid to the intuition, and we
will use it extensively in analyzing the semisimple algebras. The notation
Vα and Vαis also useful since theorems such as 4.14 hold for any choice of
X ∈ V◦. Thus [Vα,Vβ] ⊆ Vα+β if α + β is also a root, and otherwise
[Vα,Vβ ] = 0. The following example illustrates these themes with a two-
dimensional Cartan subalgebra.

3Don’t blame me. This is standard notation.
4For reasons of typography we do not use boldface subscripts.
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Example 4.5 SU(3)

The group SU(3) consists of all 3×3 unitary, unimodular matrices. There are
8 independent generators, which are conventionally chosen to be σi = λi/2
where the λi are the traceless Hermitian matrices originally introduced by
Gell-Mann.

λ1 =

 0 1 0
1 0 0
0 0 0

 λ2 =

 0 −i 0
i 0 0
0 0 0

 λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 λ5 =

 0 0 −i
0 0 0
i 0 0

 λ6 =

 0 0 0
0 0 1
0 1 0


λ7 =

 0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3

 1 0 0
0 1 0
0 0 −2


The commutation relations are

[σi, σj ] = ifijkσk. (4.53)

The fijk are completely antisymmetric under the exchange of indices. The
non-vanishing elements are defined by

f123 = 1
f147 = f246 = f257 = f345 = 1

2
f156 = f367 = −1

2

f458 = f678 =
√

3
2

(4.54)

This is a good point to review the various factors of i that enter into
the calculation. The above definitions make the group generators Hermi-
tian. Physicists always do this because the formalism of quantum mechan-
ics requires Hermitian operators. In the case of SU(3) (and other compact
groups) this results in imaginary structure constants and real eigenvalues.
Mathematicians, on the other hand, prefer to make the generators anti-
Hermitian so that the structure constants are real. The eigenvalues then
are pure imaginary. In either case the eigenvectors can be normalized so the
the new Lie algebra has all real structure constants as in Table 4.4. Unfor-
tunately, the new basis elements are linear combinations of Hermitian and
anti-Hermitian operators. These problems are revisited in Chapter 5 where
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we discuss the larger issue of abstracting real Lie algebras from complex
ones.

The regular representation is a set of 8× 8 matrices.

R(σi)k
j = ifijk

The eigenvalues are listed in Table 4.1. All of the elements are regular with
the exception of σ8; however, it is customary to do the Jordan decomposition
with σ3. Thus σ3 becomes the first element of the Cartan subalgebra, and we
identify H1 = σ3. The eigenvectors of R(σ3) are given in Table 4.2. Despite
the degeneracy of the eigenvalues they are all independent, so R(σ3) can be
diagonalized as follows:

UR(σ3)U−1 =



0
0

+1
2
−1

2
+1

2
−1

2
+1

−1


The root space consists of eight one-dimensional subspaces, i.e. all the Aαj

in (4.42) are one-dimensional. We will show eventually that this is a general
feature of semisimple algebras.

There is one more element of V◦, H2 = σ8, which is also diagonal.

UR(σ8)U−1 =



0
0

+
√

3
2

−
√

3
2

−
√

3
2

+
√

3
2

0
0


The root vectors α = (α1, α2) are two-dimensional. They can be used to
label the remaining six elements as listed in Table 4.3 and plotted in Figure
4.1.

We will eventually adopt a different notation for the Eα that looks less
cluttered and shows the physical significance of each element. For the time
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R(σi) Eigenvalues

i = 1, · · · , 7 0, 0,±1/2,±1/2,±1

i = 8 0, 0, 0, 0,±
√

3/2,±
√

3/2

Table 4.1: Eigenvalues of the basis elements in the regular representation.

Eigenvalues Eigenvectors

0 (0, 0, 1, 0, 0, 0, 0, 0)

0 (0, 0, 0, 0, 0, 0, 0, 1)
1
2 (0, 0, 0, 0, 0, 1,−i, 0)
1
2 (0, 0, 0, 1, i, 0, 0, 0)

−1
2 (0, 0, 0, 1,−i, 0, 0, 0)

−1
2 (0, 0, 0, 0, 0, 1, i, 0)

1 (1, i, 0, 0, 0, 0, 0, 0)

-1 (1,−i, 0, 0, 0, 0, 0, 0)

Table 4.2: Eigenvalues and eigenvectors of R(σ3).

µ α1 α2 New Elements

1 0 0 H1 = σ3

2 0 0 H2 = σ8

3 1
2

√
3

2 E
( 1
2
,
√

3
2

)
= σ4 + iσ5

4 −1
2

−
√

3
2 E

(− 1
2
,−

√
3

2
)
= σ4 − iσ5

5 1
2 −

√
3

2 E
( 1
2
,−

√
3

2
)
= σ6 − iσ7

6 −1
2

√
3

2 E
(− 1

2
,
√

3
2

)
= σ6 + iσ7

7 1 0 E(1,0) = σ1 + iσ2

8 -1 0 E(−1,0) = σ1 − iσ2

Table 4.3: Eigenvalues of H1 and H2 together with the new basis elements.
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Figure 4.1: Rootspace diagram of the elements of SU(3).
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[H1, E(± 1
2
,±

√
3

2
)
] = ±1

2E(± 1
2
,±

√
3

2
)

[H2, E(± 1
2
,±

√
3

2
)
] = ±

√
3

2 E(± 1
2
,±

√
3

2
)

[H1, E(± 1
2
,∓

√
3

2
)
] = ±1

2E(± 1
2
,∓

√
3

2
)

[H2, E(± 1
2
,∓

√
3

2
)
] = ∓

√
3

2 E(± 1
2
,∓

√
3

2
)

[H1, E(±1,0)] = ±E(±1,0) [H2, E(±1,0)] = 0

[H1,H2] = 0

[E
( 1
2
,
√

3
2

)
, E

(− 1
2
,−

√
3

2
)
] = H1 +

√
3H2

[E
( 1
2
,−

√
3

2
)
, E

(− 1
2
,
√

3
2

)
] = H1 −

√
3H2

[E(1,0), E(−1,0)] = 2H1

[E
( 1
2
,
√

3
2

)
, E

(− 1
2
,
√

3
2

)
] = 0 [E

( 1
2
,
√

3
2

)
, E(1,0)] = 0

[E
(− 1

2
,−

√
3

2
)
, E

( 1
2
,−

√
3

2
)
] = 0 [E

(− 1
2
,−

√
3

2
)
, E(−1,0)] = 0

[E
( 1
2
,−

√
3

2
)
, E(1,0)] = 0 [E

(− 1
2
,
√

3
2

)
, E(−1,0)] = 0

[E
( 1
2
,
√

3
2

)
, E

( 1
2
,−

√
3

2
)
] = E(1,0) [E

( 1
2
,
√

3
2

)
, E(−1,0)] = −E

(− 1
2
,
√

3
2

)

[E
(− 1

2
,−

√
3

2
)
, E

(− 1
2
,
√

3
2

)
] = −E(−1,0) [E

(− 1
2
,−

√
3

2
)
, E(1,0)] = E

( 1
2
,−

√
3

2
)

[E
( 1
2
,−

√
3

2
)
, E(−1,0)] = E

(− 1
2
,−

√
3

2
)

[E
(− 1

2
,
√

3
2

)
, E(1,0)] = −E

( 1
2
,
√

3
2

)

Table 4.4: Commutator relations for the new basis elements.



4.2. THE SECULAR EQUATION 129

being we keep the root vectors in all their detail in order to illustrate The-
orem 4.14. Note that the commutators (Table 4.4) fall into four general
categories:
(1) [V◦,Vα] ⊆ Vα Commutators of this form are given by (4.52).
(2) [V◦,V◦] = 0 All members of the Cartan subalgebra commute.
(3) [Vα,V−α] ⊆ V◦ These define special elements in V◦.
(4) [Vα,Vβ] ⊆ Vα+β

The last two categories will be reexamined in Section 4.4.



130 CHAPTER 4. THE CATALOG OF ALGEBRAS

4.3 The Cartan Metric and the Killing Form

It would be useful to have a scalar product defined for any two elements of
a Lie algebra. This is not quite possible for reasons that will appear shortly;
but we can define a symmetric bilinear form, which is the next best thing.
The bilinear form, called the “Killing form,” requires a metric tensor defined
as follows:

Definition 4.20 The Cartan Metric
Let L be a Lie algebra with a basis σa, a = 1, . . . , n. The Cartan metric

gab is defined by the contraction

gab = fd
acf

c
bd (4.55)

where the f ’s are the structure constants of the basis,

[σa, σb] = f c
abσc.

This metric can be used to lower indices; for example,

fabc = gadf
d
bc

is useful because it is totally antisymmetric in all three indices as can easily
be verified from the Jacobi relation. There is no guarantee that gab has an
inverse, and in fact, gab is identically zero for an abelian algebra. However,
when det g=/ 0 one can define an inverse gab by

gabgbc = δa
c

(δa
c is the unit matrix as usual) and use it to raise indices.

Definition 4.21 The Killing form
The product of two basis elements is defined as

(σa, σb) = gab. (4.56)

The product of two arbitrary elements X = xaσa and Y = ybσb is then

(X,Y ) = (xaσa, y
bσb) = gabx

ayb (4.57)

The product (X,Y ) is called the Killing form5. It is not positive definite and
hence not a scalar product in the usual sense, but it is a symmetric bilinear

5The notation B(X, Y ) is often used.
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form in that (X,Y ) = (Y,X) and (X,αY + βZ) = α(X,Y ) + β(X,Z). If in
addition det g=/ 0, it is said to be non-degenerate.

In common with ordinary scalar products, (X,Y ) is invariant under a
change of basis. To see this let S b

a σb = σ′a be a new basis. Then X =
(xS−1)a(Sσ)a = x′aσ′a, and g′ab = (σ′a, σ

′
b). Finally

g′abx
′ay′b = (xS−1)a(yS−1)bS c

a S
d

b gcd = xaybgab

Another useful property is

(X, [Y, Z]) = (Y, [Z,X]) = (Z, [X,Y ]) = fabcx
aybzc. (4.58)

The Killing form can also be written in terms of the adjoint representa-
tion as follows:

(X,Y ) = gabx
ayb = fd

acf
c
bdx

ayb = R(X)d
cR(Y )c

d.

Thus
(X,Y ) = Trace{R(X)R(Y )} (4.59)

or
gab = Trace[R(σa)R(σb)] (4.60)

Suppose A is a subalgebra of L and X and Y are elements of A. It is
a peculiar property of the Killing form that (X,Y ) has two different values
depending on whether we think of A as a subalgebra of L or an algebra unto
itself. This can easily be seen from (4.13). If σi and σj are bases in A then

(σi, σj) = trace




fk

il fk
iβ

0 fγ
iβ




f l

jm f l
jσ

0 fβ
jσ





= trace


fk

ilf
l
jm fk

ilf
l
jσ + fk

iβf
β
jσ

0 fγ
iβf

β
jσ


= fk

ilf
l
jk + fγ

iβf
β
jγ (4.61)

The second term involves sums over Greek letters, which index the com-
plement of A. If A is an algebra (rather than a proper subalgebra) the
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complement is empty, and this term is zero. The notation (X,Y )A will re-
fer to the first term in (4.61), i.e. the scalar product of X and Y restricted to
A. This refinement is not necessary if A is an invariant subalgebra, because
the lower right partition of R(X) is zero, and (X,Y ) = (X,Y )A.

Now let Y be an arbitrary element in L, X ∈ A, and A invariant. Then
Y = σiy

i + σαy
α, and X = σix

i. Using (4.15) and (4.16) we can calculate

(X,Y ) = xifk
il(y

jf l
jk + yαf l

αk) (4.62)

The implied sums involve only Roman indices, so (X,Y ) = (X,Y )A.
The Killing form can be used to test for solvable subalgebras and “disect”

them out. The following result is usually called “Cartan’s criterion.”

Theorem 4.16 An algebra is solvable if and only if the Cartan metric is
zero on the first derived algebra.

Proof: If L is solvable it can be put in upper triangular form (Corollary
4.14). L(1) has zeros along the diagonal, and the trace in (4.60) vanishes.

To prove the converse suppose that the Cartan metric is zero on L(1) but
that L is not solvable. Then the derived series terminates on some L(n) so
that

[L(n),L(n)] ≡ L(n+1) ≡ L(n).

Regard L(n) as a Lie algebra in its own right. Let V(n)
◦ be the Cartan

subalgebra of L(n) and X◦ an arbitrary element in V(n)
◦ . By assumption

0 = (X◦, X◦)L(1) = (X◦, X◦)L(n)

= Trace{R(X◦)R(X◦)}L(n) =
∑

β∈L(n)

dββ
2.

The second equality follows because L(n) is an invariant subalgebra of L(1);
β stands for the roots of R(X◦), and dβ is their multiplicity. Consequently
all the roots of R(X◦) restricted to L(n) are zero, and all the elements of
L(n) are in the Cartan subalgebra, which is solvable. This contradiction
establishes the theorem.

We can prove a stronger result by noting that if det g = 0, the equation
gabx

b = 0 has solutions. This means that there are elements X such that
(X,Y ) = 0 for all Y ∈ L. It is easy to prove that these X constitute
an ideal L◦: if Z ∈ L then (4.58) gives ([Z,X], Y ) = ([Y, Z], X) = 0,
i.e. [L◦,L] ⊆ L◦. If L◦ is solvable, then L is not semisimple, because the
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penultimate derived algebra of L(◦) would be abelian. If we assume L◦ is
not solvable, then we can repeat the proof of Theorem (4.16) with L◦ rather
than L and arrive at a contradiction. This proves that if L is semisimple,
then g is nonsingular. The converse is also true. If L is not semisimple it
has an invariant abelian subalgebra. Then the term fk

ij in (4.15) is zero, and
consequently the trace of both R(σi)R(σj) and R(σi)R(σα) vanishes. Then
g as given by (4.60) has some rows and columns of zeros, and so det g = 0.
We have just proved

Corollary 4.17 L is semisimple if and only if the Cartan metric is non-
singular.

If L is semisimple but not simple it can be decomposed into a direct sum
of simple subalgebras. To see this let A be an invariant subalgebra of L. As
usual we use the basis σj to span A and σα to span the complement of A.
Since det g=/ 0 it is possible to choose a new basis σ′α for the complementary
space so that (σi, σ

′
α) = 0.

σ′α = σα −
∑
i,j

σig
ij(σj , σα)

where gij = (σi, σj), and gij is its inverse. As a result of this “Gram-
Schmidt orthogonalization” the space L-A is orthogonal to A in the sense
that if X ∈ A and Y ∈L-A, then (X,Y ) = 0. Moreover, L-A is an ideal,
i.e. if Y ′ is an additional element in L-A, and X ′ ∈ A, then

(X, [Y ′, Y ]) = (Y ′, [Y,X]) = 0,

so L-A is a subalgebra, and

(X ′, [Y,X]) = (Y, [X,X ′]) = 0,

so it is invariant. Evidentally the element [X,Y ] is orthogonal to everything
in A and L-A. Since the scalar product is non-degenerate the commutator
must be zero. If either A or L-A contains an ideal this procedure can
be repeated with it. Continue in this way until there are no proper ideals
remaining. The subalgebras are then all simple, and their elements commute
with those of all other subalgebras.

Corollary 4.18 Any semisimple algebra can be decomposed into a direct
sum of simple algebras.

L = S1 ⊕ S2 ⊕ S3 · · ·
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The adjoint representation of these subalgebras will have the form of
(4.18) and (4.19), so the adjoint representation of L is completely reducible,
and the adjoint representation of each Si is irreducible.

Theorem 4.19 The regular representation of a semisimple algebra is faith-
ful.

Proof: Suppose R(X) = R(Y ). Then R(X)−R(Y ) = R(X − Y ) = 0,
and every element in the algebra is orthogonal to (X−Y ). Since the metric
is non-singular, this is not possible unless X = Y .
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4.4 Properties of the Roots

In the previous two sections we developed the root space decomposition and
Killing form independently. The full power of these ideas appears when they
are combined. In this section we will assume that the rootspace decomposi-
tion has been performed so that the elements can be labeled with the root
vectors α. Furthermore, we will only deal with semisimple algebras so that
the Killing form is non-degenerate. We first examine the structure of the
Cartan metric on the root subspaces.

Theorem 4.20 If Xa ∈ Vα and Xb ∈ Vβ, (Xa, Xb) = 0 unless α + β = 0.

Proof: This is a simple consequence of Theorem (4.14). Suppose the
index d in (4.55) refers to elements in Vδ and c refers to elements in Vγ .
Then fd

ac = 0 unless α+γ = δ; f c
bd = 0 unless β+δ = γ; and gab = 0 unless

α = −β.

Theorem 4.21 The Cartan subalgebra is abelian.

Proof: Let H and H ′ be elements in V◦ and Xα ∈ Vα, α=/ 0. Then

([H,H ′], Xα) = 0.

Now let H ′′ be any element in V◦.

([H,H ′],H ′′) = trace{R([H,H ′])R(H ′′)} =

trace{R(H)R(H ′)R(H ′′)−R(H ′)R(H)R(H ′′)}

The Cartan subalgebra is solvable (Theorem 4.15), so by Lie’s theorem it can
be put in upper triangular form. The trace of a product of upper triangular
matrices is independent of their order, so the difference vanishes. We have
shown that [H,H ′] is orthogonal to all elements and hence zero.

Theorem 4.22 The space V−α is the adjoint (with respect to the Killing
form) of Vα.

Proof: We are assuming that the Killing form is non-degenerate. Thus
for every element X ∈ L there is at least one other X ′ ∈ L for which
(X ′, X) =/ 0. Theorem 4.20, however, requires that if X ∈ V◦, then X ′ ∈ V◦;
and if X ∈ Vα, then X ′ ∈ V−α. It follows that V−α is the adjoint of Vα and
that V◦ is its own adjoint space. This argument also shows that the Kiilling
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form is non-degenerate even when it is restricted to V◦ or to any pair of
subspaces Vα and V−α.

The argument leading up to (4.50) shows that for each root subspace Vα

there is “at least one” simultaneous eigenvector Eα such that

[Hi, Eα] = αiEα

for all Hi ∈ V◦. It will turn out that there is in fact only one. We are not
entitled to assume this, however; so we will be coy and say that for each
(putative) Eα ∈ Vα, there is some corresponding X−α ∈ V−α such that
(Eα, X−α) =/ 0.

(Eα, X−α) ≡ λα

The value of λα must be decided by some convention. We will return to this
point later.

What about the commutator of Eα and X−α? It must be an element of
V◦, so

[Eα, X−α] ≡ λαα
iHi ≡ λαhα. (4.63)

Here Hi denotes the usual set of basis elements for V◦. Equation (4.63)
defines a set of contravariant root components αi and a specific hα ∈ V◦.
The following relationships follow from (4.63), (4.58), and (4.52).

(Hi, [Eα, X−α]) = ([Hi, Eα], X−α) =

λα(Hi, α
jHj) = λαα

j(Hi,Hj) = (αiEα, X−α) = λααi

Since the “metric,”
hij = (Hi,Hj),

is non-degenerate, it has an inverse and can be used to raise and lower in-
dices. For example, if α,β =/ 0 are roots, and [Eα, X−α] = λαhα, [Eβ, X−β] =
λβhβ , then

(hα, hβ) = αiβjhij = αiβi ≡ (α,β). (4.64)

We will use the notation (α,β) to describe the bilinear form in the l-
dimensional space of the root components. In this notation,

[hβ, Eα] = α(hβ)Eα = βi[Hi, Eα] = βiαiEα = (α,β)Eα, (4.65)

[hα, Eβ ] = β(hα)Eβ = (β,α)Eβ ,

and
β(hα) = α(hβ) = (α,β).
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The regular representation of hα and hβ will be in Jordan canonical form
with the roots γ(hα) and γ(hβ) along the main diagonal. The product of hα

and hβ is then

(hα, hβ) =
∑
γ

dγγ(hα)γ(hβ) =
∑
γ

dγ(α,γ)(β,γ) = (α,β), (4.66)

where we have used (4.64) and (4.65).

Theorem 4.23 For all non-zero roots α and β, the quantity (α,β) is real
and rational, and (α,α) is real, rational, and positive.

Proof: Let F be the direct sum of all subspaces of the form Vβ+nα where
n is an integer. Then

[V±α,F ] ⊆ F ,

and
[V◦,F ] ⊆ F .

Thus F is an invariant subalgebra. We can regard it as an algebra in its own
right and calculate the adjoint representation of hα. This will be a matrix
in Jordan canonical form with roots (α,β + nα) along the main diagonal.
The trace of this matrix must be zero , however, because hα can be written
as a commutator. Thus

trace{R(hα)} =
∑
n

{(β,α) + n(α,α)}dβ+nα = 0 (4.67)

From (4.66)
(α,α) =

∑
β⊂F

(α,β)2. (4.68)

Obviously (α,α) can’t be negative. It can’t be zero either for this would
imply (α,β) = (hα, hβ) = 0 for all β. Combining (4.67) and (4.68) gives

(α,α) =
∑
β

[∑
ndβ+nα∑
dβ+nα

]2

(α,α)2,

or

(α,α)−1 =
∑
β

[∑
ndβ+nα∑
dβ+nα

]2

.

Since
∑
ndβ+nα and

∑
dβ+nα are necessarily positive integers, (α,α) is real,

rational, and positive, and (β,α) is real and rational.
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Incidentally, since
(α,α) = αiαjhij > 0,

the metric hij is positive definite, and we can legitimately speak of a “scalar
product” of two root vectors.

Theorem 4.24 If α is a non-zero root then the spaces Vα and V−α are
one-dimensional, and the spaces Vnα are empty unless n = ±1 or 0.

Proof: Let F be the space spanned by X−α, hα, and all subspaces of the
form V−nα where n is a positive integer. Then

[X−α,F ] ⊆ F ,

[hα,F ] ⊆ F ,

and
[Eα,F ] ⊆ F .

We repeat the argument from the previous theorem. The adjoint represen-
tation of hα is a matrix in Jordan canonical form with eigenvalues along the
main diagonal.

trace{R(hα)} = −α(hα)+0+
∑
n

d−nαnα(hα) = (α,α){−1+
∑
n=1

nd−nα} = 0

There is only one way to satisfy this equation, d−α = 1 and d−nα = 0 for
n ≥ 2.

We can repeat this argument with an F consisting of X−α, hα, and
all subspaces of the form Vnα. This leads to the conclusion that dα = 1
and dnα = 0 for n ≥ 2. To put it bluntly, all the Aαj in (4.42) are one-
dimensional, and all the elements of V◦ are diagonal in the adjoint represen-
tation.

It is possible to bypass the difficulties in this chapter with the following
argument (Cornwell, Georgi): one defines the Cartan subalgebra as the
largest set of commuting elements in the algebra. The claim is then made
that since the matrices commute, they can be simultaneously diagonalized.
This avoids all the tedious business about root space decomposition, but it
leaves several important questions unanswered. For one thing, the Cartan
subalgebra of non-semisimple algebras is not in general diagonal. The claim
that commuting matrices can be simultaneously diagonalized is not true in
general for non-Hermitian matrices, so Hermiticity has to be taken as an
additional assumption. The root space decomposition also gives us a recipe
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for finding the largest possible set of commuting matrices (How else would
you know that you had found them all?), and a body of insight regarding
why the semisimple algebras have such simple structures.

Since the Vα subspaces are all one-dimensional, we can identify X−α

with E−α and arrive at our canonical commutation relations.

[Eα, E−α] = λαhα (4.69)
[hα, Eβ ] = (α,β)Eβ (4.70)

[hα, hβ] = 0 (4.71)

There is an extremely important simple subalgebra burried in these re-
lations. Replacing β → α gives

[Eα, E−α] = λαhα (4.72)
[hα, Eα] = (α,α)Eα, (4.73)

which is just the algebra of O(3) or SU(2), i.e. the algebra of angular
momentum. Thus any semisimple algebra can be decomposed into a sum
of angular momentum-like subalgebras. This is not the whole story, how-
ever, because they are not invariant subalgebras. We still need to study
commutators of the form,

[Eα, Eβ] = Nα,βEα+β, (4.74)

for those cases where α, β, and α + β are all non-zero roots. The structure
constants Nα,β like λα depend on the normalization of the Eα and hα. We
will assume the following:

(a) Since the metric hij = (Hi,Hj) is positive definite, we are entitled
to perform Grahm-Schmidt orthogonalization on the Hi so that hij = δij .

(b) λα = (Eα, E−α) = 1 for all pairs α and −α.
(c) All the Nα,β are real, and N−α,−β = −Nα,β.
We will assume these conventions in all subsequent calculations. Un-

fortunately, there are at least three other conventions in general use. (See
Cornwell for a review of the different possibilities.)

The following example shows how the angular momentum commutation
relations are restated with these conventions.

Example 4.6 Angular Momentum

The commutation relations,

[Ji, Jj ] = ıh̄εijkJk,
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define the structure constants from which the adjoint representation is cal-
culated.

R(J1) = ıh̄



0 0 0

0 0 −1

0 1 0


R(J2) = ıh̄



0 0 1

0 0 0

−1 0 0



R(J3) = ıh̄



0 −1 0

1 0 0

0 0 0


It is customary to use the z component for the Cartan subalgebra.

H1 =
1√
2h̄

R(J3)

The eigenvalues of H1 are 0,±
√

1/2. The eigenvectors corresponding to
±
√

1/2 are proportional to the familiar raising and lowering operators. We
choose

E± =
1
2h̄

R(J1 ± ıJ2).

The following relations follow simply from the previous definitions.

(H1,H1) = 1 (E+, E−) = λ = 1

[E+, E−] = α1H1 =
1√
2
H1 = h

Evidentally, α1 = 1/
√

2 and h (i.e. hα)= H1/
√

2.

[H1, E+] = α1E+ =
1√
2
E+

[h,E+] = (α,α)E+ =
1
2
E+
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The scalar product (α,α) plays the role of a dimensionless structure con-
stant. It is positive, real, and rational as promised; furthermore, h̄ and ı
have completely disappeared from the commutation relations.

We now proceed to derive the properties of the Nα,β.

Theorem 4.25 If α, β, and α+β are all non-zero roots, then γ = −α−β
is also a root, and

Nα,β = Nβ,γ = Nγ,α.

Proof:

[Eα, [Eβ , Eγ ]] + [Eβ, [Eγ , Eα]] + [Eγ , [Eα, Eβ]] = 0

[Eα, E−α]Nβ,γ + [Eβ, E−β]Nγ,α + [Eγ , E−γ ]Nα,β = 0

HαNβ,γ +HβNγ,α +HγNα,β = 0

However, α + β + γ = 0 implies that Hα +Hβ +Hγ = 0

(Nβ,γ −Nα,β)Hα + (Nγ,α −Nα,β)Hβ = 0

Finally, Hα and Hβ are independent, so the theorem is proved.
It is possible to calculate the Nα,β structure constants using an extension

of the proof of Theorem 4.23. As usual let F be the direct sum of all
subspaces of the form Vβ+kα. The integer k ranges from −m to n where
m is the largest positive integer such that β −mα is a root, and n is the
largest positive integer such that β + nα is a root. Now apply the Jacobi
identity to the elements Eα, Eβ+kα, and Eα.

[Eα, [Eβ+kα, Eα]] + [Eβ+kα, [Eα, Eα]] + [Eα, [Eα, Eβ+kα]] = 0

[Eα, Eβ+(k−1)α]Nβ+kα,−α − [Eβ+kα,Hα] + [Eα, Eβ+(k+1)α]Nα,β+kα = 0

Nα,β+(k−1)αNβ+kα,−α +N−α,β+(k+1)αNα,β+kα = −αi(βi + kαi)

Using the results of Theorem 4.25 and the normalization conventionN−α,−β =
−Nα,β, this becomes

N2
α,β+(k−1)α = N2

α,β+kα + αi(βi + kαi)

We solve this recursion relation “from the top down.” Our definition of n
guarantees that

Nα,β+nα = 0,
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so that
N2

α,β+(n−1)α = αi(βi + nαi).

A simple iterative calculation leads to

N2
α,β+(k−1)α = (n− k + 1)

{
(α,β) +

1
2
(n+ k)(α,α)

}
. (4.75)

This sequence must terminate at some negative value of k. First note that

[E−α, Eβ−mα] = N−α,β−mαEβ−(m+1)α = 0,

because β − (m+ 1)α is not a root. Consequently

N−α,β−mα = −Nα,−β+mα = 0.

Use the results of Theorem 4.25 with −γ = α−β+mα or γ = β−(m+1)α
yields

Nα,β−(m+1)α = 0.

Consequently the sequence terminates when k = −m. The recursion relation
yields

(n+m+ 1)
{

(α,β) +
1
2
(n−m)(α,α)

}
= 0 (4.76)

Since n and m are both positive integers,

n ≥ −2(α,β)
(α,α)

= n−m ≥ −m. (4.77)

The ratio −2(α,β)/(α,α) is an integer that, like k, ranges from −m to n.
Consequently, if α and β are both roots, then

β′ = β − 2(α,β)
(α,α)

α (4.78)

is also a root. Substituting (4.78) back into (4.75) and setting k = 1 yields

Nα,β =
√
n(m+ 1)

√
(α,α)/2 (4.79)

These theorems enable us to express the commutation rules for any
semisimple algebra in terms of a discrete Euclidian space, the space of the
root vectors. The dimension of this space is equal to the dimension of the
Cartan subalgebra. The basis elements appear as points in a simple lattice
structure controlled by the two integers, m and n. The lattice has some
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simple symmetry properties: it is invariant under the exchange α → −α,
and the relative positions of the points on the lattice are given by (4.77) and
(4.78). It is not suprising, in view of this, that it is possible to give a precise
catalog of all semisimple algebras. This is the task to which we turn in the
next section.

Example 4.7 SU(3) Revisited

The new basis elements in Table 4.3 need a new set of structure constants,
which can be calculated from (4.54) by a simple linear mapping. A tedious
but straightforward calculation using (4.55) then gives the Cartan metric
tensor.

gµ,ν =



3 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 0 6 0 0 0 0

0 0 6 0 0 0 0 0

0 0 0 0 0 6 0 0

0 0 0 0 6 0 0 0

0 0 0 0 0 0 0 6

0 0 0 0 0 0 6 0


The elements µ, ν = 1, 2 refer to the Cartan subalgebra. Evidentally the
metric

hi,j = (Hi,Hj) =


3 0

0 3
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The remaining 6 elements are grouped in pairs of α and −α. One sees the
structure predicted by Theorem 4.20. The normalization is such that

(Eα, E−α) = λα = 6

The scalar products of the root vectors can be found from (4.64) or (4.65).

(h3, h3) = (h5, h5) = (h7, h7) = 1/3

(h3, h7) = (h5, h7) = −(h3, h5) = −1/6

Theorem 4.25 predicts that −2(α,β)/(α,α) is an integer, in this case ±1.
In order to adhere to our normalization conventions and make λ = 1 we

should redefine Eα → Eα/
√

(6), but this would not change the root vectors.
Finally, we could redefine Hi → Hi/

√
(3). In this way all the elements of

the Cartan tensor would be either 0 or 1. This last change would rescale
the root vectors but leave the scalar products of root vectors unchanged.
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θ 2(α,β)
(α,α) = n 2(α,β)

(β,β)
= n′ (α,α)

(β,β)

30◦ 3 1 1/3

1 3 3

45◦ 2 1 1/2

1 2 2

60◦ 1 1 1

90◦ 0 0 0/0

Table 4.5: The allowed angles between two roots α and β.

4.5 Classification of semisimple algebras

We have seen how semisimple algebras can be described in terms of a de-
screte, Euclidian root space endowed with a positive definite scalar product.
The root vectors α and β obey very restrictive conditions given by (4.77)
and (4.78). To display the content of (4.77) we calculate the angle θ between
any two root vectors.

0 ≤ cos2 θ =
(α,β)(α,β)
(α,α)(β,β)

=
n

2
· n

′

2
≤ 1 (4.80)

The n and n′ are integers, since 2(α,β)/(α,α) must be an integer, but they
are restricted to the range 0 ≤ nn′ ≤ 4. The only possibilities for n and n′

are the so-called Cartan integers, 0,±1,±2,±3, and ±4. The allowed angles
are 0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦, and 180◦. The angles larger than
90◦ are redundant, however, because of the symmetry between positive and
negative roots, and 0◦ is trivial. This leaves four interesting possibilities
listed in Table 4.5.

The additional restriction imposed by (4.78) can be interpreted geomet-
rically as follows: define

β = β‖ + β⊥ =
[
β − α(α,β)

(α,α)

]
+

(α,β)α
(α,α)

. (4.81)

The ‖ and ⊥ signs refer to a plane passing through the origin and perpen-
dicular to α called the α-hyperplane. The vectors β‖ and β⊥ are the
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Figure 4.2: The root space diagram for all l = 1 algebras.

components of β parallel and perpendicular (respectively) to this plane. In
this notation

β′ = β‖ − β⊥, (4.82)

i.e. β′ is the image of β reflected in the α hyperplane. If α and β are roots
then β′ must also be a root. Thus every root defines a hyperplane, and
the remaining roots must be symmetric with respect to a reflection in this
plane. These are called Weyl reflections, and the set of all such reflections
and their products makes up a discrete group called the Weyl group. We
can restate (4.78) as follows: all root diagrams must be invariant under the
Weyl group.

So how many ways are there to arrange a finite number of points in space
so that these two conditions are satisfied? The answer to this question ob-
viously depends on the dimensionality of the space. We can easily construct
all possible root vector diagrams for l = 1, 2 using the rules presented above.
This procedure was generalized to arbitrary dimension by Van der Waerden
using a constructive argument that we will present eventually. Later Dynkin
devised an elegant diagramatical proof that all spaces had been found. We
will work through the Weyl-Cartan-Van der Waerden construction here.
Dynkin diagrams will be discussed in the following section.

The case l = 1 case is particularly simple. All the roots must lie on a
single line, so α and β are redundant, and the only allowed Cartan angle
is θ = 0◦. We know from Example 4.6 that the length of the root vectors√

(α,α) = 1/
√

2. The root space diagram is shown in Fig. 4.2. It is perhaps
stretching the point to talk about a “hyperplane” in a one-dimensional space,
but α = ±1/

√
2 are mirror images of one another in a plane perpendicular

to the axis and passing through the origin.
The first non-trivial root space diagrams appear for the case l = 2. We

construct them by starting with the l = 1 diagram and adding one additional
vector at one of the “official” Cartan angles. The remaining roots are found
by taking all possible Weyl reflections. (One might expect this procedure to
produce an infinite number of roots. The conditions in Table 4.5 guarantee
that this will not happen.) There are five distinct possibilities, which Cartan
labeled G2, B2, C2, D2, and A2.
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Figure 4.3: The root space diagram G2.

G2. θ = 30◦

Suppose α is a root vector with components (1, 0). (We will return to
the question of the normalization of the roots later.) There will be another
root vector β at an angle of 30◦ to α. Choosing n = 3 and n′ = 1 fixes
the length of β at

√
3. Of course −α and −β are also roots as are all

possible Weyl reflections with respect to all other roots. This produces the
star figure shown in Fig. 4.3 with the short and long vectors alternating at
30◦ intervals. The alternate choice, n = 1 and n′ = 3, produces the same
star rotated by 30◦. A rotation of the root space diagram corresponds to
a unitary transformation of the elements of the algebra and thus does not
constitute a distinct algebra.

B2 and C2. θ = 45◦

The choice n = 2 and n′ = 1 produces the square shown in Fig. 4.4.
Cartan called this B2. Alternatively n = 1, n′ = 2 yields the rotated
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Figure 4.4: The root space diagram for B2.

square C2, Fig. 4.5. These two figures are also related by a similarity
transformation, but this is not true in higher dimension, thus the separate
names.

A2. θ = 60◦

The root space diagram is a regular hexagon. This is the algebra of the
group SU(3) (see Figures 4.1 and 4.6.) called A2.

D2. θ = 90◦

When the second root vector is added at an angle of 90◦, its length
is indeterminate, and there are no commutation relations connecting the
two vectors. Thus D2 can be decomposed into a direct sum of two one-
dimensional algebras. This only happens when l = 2, however.

Van der Waerden’s procedure for generalizing these diagrams uses the
following device: We introduce a set of unit vectors e1 = (1, 0) and e2 =
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Figure 4.5: The root space diagram for C2.
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Figure 4.6: The root space diagram for A2.
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Figure 4.7: The root space diagram for D2.
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(0, 1) with obvious generalization to higher dimension. Evidentally the roots
of D2, B2, and C2 can be written as linear combinations of e1 and e2 with
coefficients ±1. These can be immediately generalized to higher dimension
as follows:

Dl: (±ei ± ej);±0ei 1 ≤ i=/ j ≤ l
Bl: (±ei ± ej);±1ei

Cl: (±ei ± ej);±2ei

(4.83)

These three root systems satisfy the two principal conditions and are invari-
ant under the Weyl reflection group.

The remaining two algebras, A2 and G2, don’t seem to fit this pattern,
but they can be made to fit by embedding them in a three-dimensional space.
For example, the vectors of the form (ei−ej); 1 ≤ i=/ j ≤ 3 all lie in a plane
perpendicular to the vector R = e1 + e2 + e3, and in this plane they point
to the vertices of a regular hexagon. Thus we can construct Al by taking all
vectors of the form (ei − ej); 1 ≤ i=/ j ≤ l + 1 and projecting them on the
plane perpendicular to R =

∑
ei. The algebra G2 is obtained by taking all

vectors of the form (ei− ej) and ±(ei + ej − 2ek) for 1 ≤ i=/ j=/ k ≤ 3 and
projecting them on the plane perpendicular to R.

This procedure for constructing G2 cannot be generalized to higher di-
mension. Thus G2 is one of the “exceptional algebras” that cannot exist in
all dimensions. There are four others called F4, E6, E7, and E8. They are
constructed as follows:

F4. Starting with B4 add the 16 root vectors

1
2
(±e1 ± e2 ± e3 ± e4)

E6. Starting with A5 add the root vectors ±
√

2e7 and some vectors of
the form

1
2
(±e1 ± e2 ± e3 ± e4 ± e5 ± e6)± e7/

√
2.

In this case the ± signs are not all arbitrary. The first term must contain
three positive and three negative signs.

E7. Starting with A7 add roots of the form

1
2
(±e1 ± e2 ± e3 ± e4 ± e5 ± e6 ± e7 ± e8)

In this case four signs must be positive and four must be negative.
E8. Add to the root vectors of D8 the vectors

1
2
(±e1 ± e2 ± e3 ± e4 ± e5 ± e6 ± e7 ± e8),
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this time with an even number of positive signs.
In summary, there are four infinite chains of simple complex Lie algebras,

Al, Bl,Cl, and Dl, and five exceptional algebras G2, F4, E6, E7, and E8. All
semi-simple complex algebras can be decomposed into a direct sum of these
simple algebras.

It is difficult to go much further with this constructive procedure. One
can verify “by hand” that the various root systems described in this sec-
tion satisfy (4.77) and (4.78) and are invariant under the Weyl group (see
Gilman), but it is hard to prove convincingly that there are no other possi-
bilities. It is also not clear how to construct matrix representations of these
algebras. We will deal with these issues in the next two sections. We first
introduce the simple roots, which constitute the absolute minimum infor-
mation necessary to completely specify a simple complex Lie algebra. The
simple roots also yield a procedure for constructing a set of canonical matrix
representations. We then present the elegant diagramatic proof of Dynkin
that all possible simple complex algebras have been found. Dynkin’s for-
malism also provides a procedure for decomposing an arbitrary semisimple
algebra into a sum of simple algebras.

4.5.1 Simple roots

In the previous section we introduced a set of orthogonal unit vectors ei

in the l-dimensional root space. Every root α can be expressed as a linear
combination of these basis vectors.

α =
l∑

i=1

βiei

Definition 4.22 Positive roots
A non-zero root α is said to be positive if the first non-vanishing coef-

ficient βi is positive.

The notation α > 0 will mean that α is positive in the above sense.

Definition 4.23 Lexicographic ordering of roots.
If α and β are non-zero roots and (α−β) > 0, then we will write α > β.

This is called “lexicographic” because it is similar to the way that words
are arranged in a dictionary. A sequence of roots α1 < α2 < α3 < · · · is
arranged in order of increasing first component; if the first components are
equal, then in order of increasing second component, etc. It should be clear
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that this ordering depends on the basis chosen. In the rest of this section
we will assume that the basis ei has been chosen and adhered to.

Definition 4.24 Simple roots
A non-zero root α is said to be simple if it is positive but cannot be

expressed in the form α = β + γ where β and γ are both positive roots.

The simple roots can be used as a new set of basis vectors. This is a
consequence of the following theorem.

Theorem 4.26 A semisimple algebra of rank l has exactly l simple roots
α1,α2, · · · ,αl. Moreover, if α is any positive root

α =
l∑

i=1

κiαi (4.84)

where κ1, κ2, . . . , κl are non-negative integers.

The proof of this theorem makes use of the following lemmas:

Lemma 4.27 If α and β are two simple roots, and α=/ β, then α − β is
not a root, and (α,β) ≤ 0.

Proof: If α − β were a positive root, we could write α = (α − β) + β,
and α would not be simple. On the other hand, if β − α were a positive
root, we could write α = (β − α) + α, and again α would not be simple.
Thus α− β cannot be a root.

The second assertion is a by-product of Theorem 4.25. In the proof of
that theorem we constructed the chain Vβ+kα. The integer k ranges from
−m to n where m is the largest integer such that β −mα is a root, and n
is the largest integer such that β + nα is also a root. If α and β are simple
roots, however, m = 0, and (4.77) becomes 2(α,β) = −n(α,α) ≤ 0.

Lemma 4.28 The simple roots are linearly independent.

Proof: Suppose there were q simple roots, α1,α2, . . . ,αq, not all inde-
pendent. Then we could find a set of q positive coefficients c1, c2, . . . , cq such
that

γ = c1α1 + c2α2 + · · ·+ cpαp = cp+1αp+1 + cp+2αp+2 + · · ·+ cqαq
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The scalar product (γ,γ) is positive definite; however, it can be written
as a sum of terms of the form cicj(αi,αj) where i ≤ p and j > p. All the
scalar products (αi,αj) combine pairs of different simple roots and hence are
negative by the previous lemma. This contradiction establishes the proof.

Equation (4.84) can now be proved by induction. Let β1,β2, . . . be the
set of all positive roots ordered so that βj < βj+1. Then β1 is the smallest
positive root, so it cannot possibly be written as a sum of positive roots. It
is therefore simple, and (4.84) is trivially true. Now suppose the theorem
has been proved for the first p positive roots. If βp+1 is simple, (4.84) is
again true. If it is not simple, it can be written as a sum of two smaller
positive roots both of which satisfy (4.84). This proves that all positive roots
can be written as a sum of simple roots with positive integer coefficients.
Since the root space is l-dimensional and since the simple roots are linearly
independent, there must be l simple roots to span the space.

The significance of this result depends on the commutation relation,
(assuming α + β is a root)

[Eα, Eβ] = Nα,βEα+β.

Once we know the simple roots and the corresponding elements in the al-
gebra, all other positive roots are obtained by adding simple roots, and the
corresponding elements are found by taking the commutators. The nega-
tive roots and their elements come from the replacements α → −α and
Eα → E−α = E†α. The previous theorem guarantees that all non-zero roots
and their elements can be found in this way. Another way of looking at this
is that the set of all elements with positive roots constitutes an algebra that
is solvable and nilpotent. We call this algebra P = P1, and construct the
usual sequence:

[P1,P1] ≡ P2

· · ·
[P1,Pj ] ≡ Pj+1

The elements that “disappear” in going from Pj → Pj+1 are contained in
the factor algebra Pj mod Pj+1. The corresponding roots are said to lie in
the j-th level. The first level contains the simple roots. The second level
contains roots that can be written as a sum of two simple roots. The j-th
level contains those roots for which the sum of the κi in (4.84) is j. The
roots in the (j + 1)-th level are larger (in the lexicographic sense) than the
roots in the j-th level.

Example 4.8 The algebra G2
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√
3e1 2α1 + 3α2

√
3/2e1 + 3

2e2 α1 + 3α2
√

3/2e1 + 1
2e2 α1 + 2α2

√
3/2e1 − 1

2e2 α1 + α2
√

3/2e1 − 3
2e2 α1

e2 α2

Table 4.6: The first column contains the positive roots of G2 in lexicographic
order. The second column expresses them in terms of the simple roots, α1

and α2.

The most complicated of the rank-2 algebras is G2. The positive roots
are listed in Table 4.6 in lexicographic order. There are two roots that cannot
be expressed as a sum of two other roots. These are the simple roots, which
we call α1 and α2. The other roots are simple linear combinations of α1

and α2 as promised.

Example 4.9 The algebra Al

The positive roots of Al have the form ei − ej , 1 ≤ i < j ≤ l + 1. The
only such roots that cannot be expressed as the sum of two positive roots
are the ei − ei+1, 1 ≤ i ≤ l. It is easy to construct an l × l representation
with these roots.

[Hi]km = δikδim, 1 ≤ i ≤ l (4.85)

Hl+1 = −(H1 +H2 + · · ·+Hl)

Hi =

i

i


...

· · · 1 · · ·
...


[
Eei−ei+1

]
km

= δikδi,m−1, 1 ≤ i ≤ l (4.86)
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Eei−ei+1 =

i+1

i


...

· · · 1 · · ·
...


It is easy to verify that these matrices satisfy the commutation relations

[Hi, Eej−ej+1 ] = εi(j, j + 1)Eej−ej+1

where the root vector, ε(j, k) = ej − ek. One can construct the remaining
elements by taking commutators; for example, the elements corresponding
to second level roots are found as follows:

[Eej−ej+1 , Eej+1−ej+2 ] = Eej−ej+2

In general,
[Hi, Eej−ek

] = εi(j, k)Eej−ek
.

This representation makes the concept of the level of the roots quite concrete.
The matrices corresponding to roots of level p have a 1 in the p-th diagonal
above the main diagonal and zeros elsewhere.

There are different choices of basis elements that are more useful for
exploring the connection between the algebra and the groups that give rise
to it. For example, we can choose a different basis for V◦.

hi = Hi −Hi+1 1 ≤ i ≤ l

where the Hi are defined in (4.85). All elements are now real and traceless.
Exponentiating a real traceless algebra yields a real, special (i.e. unimodu-
lar) group. Thus Al is the algebra of SL(l + 1, r). A different group results
from the choice

hi = ı(Hi −Hi+1) 1 ≤ i ≤ l

eα = Eα − ET
α

e′α = ı(Eα + ET
α )

In this definition α stands for any positive root, and the superscript T is
the usual matrix transpose. The new basis is not only traceless but also
complex and anti-Hermitian, i.e. E† = −E. It exponentiates into SU(l+1).
Evidentally, different groups can share the same algebra (“same” in the sense
of having the same root structure), depending on the choice of basis and the
restrictions placed on the coefficient of the algebra. This theme will be
explored more fully in the next chapter.
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Example 4.10 The algebra Dl

The positive roots of Dl have the form ei±ej , 1 ≤ i < j ≤ l. There are
l − 1 simple roots ei − ei+1, 1 ≤ i ≤ l − 1, and one simple root, el−1 + el.
There is a matrix representations of this algebra consisting of 2l×2l matrices
with a peculiar symmetry: define Ã as the transpose of A with respect to
the minor (i.e. lower left to upper right) diagonal. The required symmetry
is then Ã = −A. The Cartan subalgebra can be constructed using the Hi

(with 1 ≤ i ≤ l) from (4.85).

H i =


Hi 0

0 −H̃i

 (4.87)

The matrices corresponding to the positive roots are partitioned as follows:

Ei =


A B

0 −Ã

 (4.88)

The first l−1 simple roots, ei−ei+1, correspond to matrices with B = 0
and A = Eei−ei+1 from (4.86). The remaining simple root, el−1+el, requires
A = 0 and

B =


0 0

C 0

 , (4.89)

where C is the 2× 2 matrix

C =

[
1 0
0 −1

]
. (4.90)

The 2l×2l dimensionality is required to accomodate the “extra” root, el−1+
el, and the symmetry prevents the appearance of other unwanted roots.
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None of the classical groups discussed in Section 2.1 possess this symmetry
in any obvious way; however, the metric tensor for the group SO(l, l),

g =

[
Il 0
0 −Il

]
, (4.91)

does satisfy g̃ = −g suggesting that Dl might be “burried” in SO(l, l). To
prove that this is so, choose the transformation matrix S in (2.18) so that
the metric becomes

gij = δl+1−i,j = δi,l+1−j , (4.92)

i.e. g has +1’s on the minor diagonal and zeros elsewhere. Let M in (2.14)
be an infinitesimal transformation of the form M = I + X. Then (2.14)
becomes

(I +X)g(I +X)T = g.

Keeping only terms of first order in X gives

Xg + gXT = 0

X k
i gkj + gik(XT )k

j = 0 (4.93)

Xi,l+1−j = −Xj,l+1−i, (4.94)

which is the required symmetry. This symmetry is not preserved by simi-
larity transformations in general; however, the group multiplication table is,
so in this sense Dl is the algebra of SO(l, l) even though (4.92) is not the
usual metric for this group.

Example 4.11 The algebra Bl

The positive roots of Bl have the form ei±ej and ei where 1 ≤ i < j ≤ l.
The simple roots are identical with those of Dl exceps that the l-th simple
roots is el rather than el−1+el. The corresponding matrices have dimension
(2l + 1).

H i =


Hi 0

0 −H̃i


(4.95)
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Eei−ei+1 =


Eei−ei+1 0

0 −Ẽei−ei+1


(4.96)

El =



0 1 0

−1

0 0


(4.97)

This is the algebra of SO(l + 1, l).

Example 4.12 The algebra Cl

The positive roots of Cl have the form ei ± ej and 2ei where 1 ≤ i <
j ≤ l. The simple roots are the same as Bl except 2el replaces el. The
corresponding matrices are 2l×2l. The Cartan subalgebra is given by (4.87),
and the l− 1 simple roots by (4.88) with B = 0. The remaining simple root
2el requires A = 0 in (4.88) and B = 0 except for a 1 in the lower left corner.
The other positive roots preserve the form of (4.88) but with the symmetry
B̃ = +B. This is the symmetry of the symplectic group Sp(2l) as can be
seen as follows: it is possible to choose an S in (2.18) that transforms the
symplectic metric (???) into the form

g =

[
0 Ĩl
−Ĩl 0

]
, (4.98)

where Ĩl is a l×l matrix with +1’s on the minor diagonal and zeros elsewhere.
Substituting this metric into (4.93) yields (4.93) if i and j are both in the
first or third “quadrants,” i.e. if i and j are both ≤ l or ≥ l + 1. If i ≤ l
and j ≥ l + 1 or vice versa then (4.93) becomes

Xi,l+1−j = Xj,l+1−i,

which is the required symmetry.
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Figure 4.8: Dynkin diagrams for the l = 2 algebras.

4.5.2 Dynkin diagrams

Let α1,α2, . . . ,αl be the simple roots of a simple or semisimple algebra. It
will be convenient to write them as unit vectors.

ui =
αi√

(αi,αi)
(4.99)

The cosine of the angle between any two simple roots is given by (4.80) and
Lemma 4.27.

(ui,uj) = −
√
n/4 n = 0, 1, 2, 3 (4.100)

To each root we assign a weight wi as follows: the shortest root in the space
is assigned a weight w = 1. If α is the shortest root, then the weight of any
other root αi is given by

wi =
(αi,αi)
(α,α)

. (4.101)

Normally the weights will be 1, 2, or 3 as shown in Table 4.5. (The case
w = 0/0 will not be a problem as we shall see presently.)

The Dynkin diagrams are drawn as follows:
1. Draw a dot for each simple root. Label the dot with the name of the

root (u1,u2, etc.) and the coresponding weight.
2. Connect each pair of dots with n lines where n is given by (4.100).
Burried in the proof of Theorem ?? are certain restrictions on the topolo-

gies of these diagrams. We desplay these restrictions in the form of a few
simple theorems that will allow us to enumerate all possible “legal” dia-
grams. (The treatment here closely follows that of Gilmore.)

Example 4.13 The l = 2 algebras.

The Dynkin diagrams for all the l = 2 algebras discussed in the previous
section are given in Fig. 4.8. The algebras B2 and C2 differ only by the
exchange w1 ↔ w2, which as we saw, corresponds to a 45◦ rotation of
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the root diagram. The diagram for D2 consists of two disconnected dots
reflecting the fact that D2 is a direct sum of two l = 1 algebras. This is an
example of the following general theorem:

Theorem 4.29 If a diagram consists of several disconnected components,
then each component describes a simple algebra, and the entire algebra is a
direct sum of the component algebras.

Proof: Suppose the Dynkin diagram consists of two disconnected com-
ponents, A and B. Let α be any simple root in A and β be any simple root
in B. Then (α,β) = 0. It is easy to show that α+β cannot be a root. After
all, α + β is a member of the β chain containing α, β + kα, with k = 1.
According to the proof of Theorem ??, −m ≤ k ≤ n, but equation (4.77)
reduces to n = m. Lemma 4.27 assures us that α − β cannot be a root,
consequently n = m = 0. As a consequence, [Eα, Eβ] = 0. Now suppose
that α = α1 + α2 where α1,α2 ∈ A are simple roots. Then

[Eα, Eβ ] ∝ [[Eα1 , Eα2 ], Eβ] ∝ [[Eβ , Eα1 ], Eα2 ] + [[Eα2 , Eβ], Eα1 ] = 0.

Preceeding in this way we can show that [Eα, Eβ ] = 0 for any α (not neces-
sarily simple) in A and any β in B. Since all elements of A commute with
all elements of B, we are entitled to combine them as a direct sum according
to Definition ??.

Incidentally, when diagrams are disconnected the weights must be as-
signed relative to the shortest root in each diagram. The ratio of the lengths
of two roots in disconnected diagrams is always 0/0.

Theorem 4.30 There are no loops; i.e. if the line(s) connecting any pair
of dots is(are) severed, the diagram falls into two pieces.

Proof: Since the scalar product is positive definite, n∑
i=1

ui,
n∑

j=1

uj

 = n+ 2
∑
i>j

(ui,uj) > 0. (4.102)

If ui and uj are connected, then 2(ui,uj) ≤ −1, so the number of connected
pairs must be less than n. This rules out all loops. Equation (4.102) also
limits a single diagram to no more than two double lines or one triple line.

Theorem 4.31 The total number of lines connected to any point is at most
three.
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Proof: Let the roots v1,v2, . . . be connected to the root u. The vi cannot
be connected to one another (that would make loops), so they make up a
set of orthonormal unit vectors. Consequently∑

i=1

(u,vi)2 =
∑
i=1

ni

4
≤ 1 (4.103)

The equality can be ruled out, however; because if
∑

i=1(u,vi)2 = 1, then
the simple roots u,v1,v2, . . . would not be linearly independent, and this
contradicts Lemma 4.28.

Evidentally, there can only be on connected Dynkin diagram with a triple
line: the exceptional algebra G2, (see Fig. 4.8).

Theorem 4.32 Let ui be a set of dots connected by single lines. The di-
agram obtained by shrinking the entire chain to a single dot u is a valid
diagram if and only if the original diagram was.

Proof: Consider the following diagram.

The dashed lines extending from u1 and un represent arbitrary connections
with 0, 1, or 2 lines. Let u =

∑n
i=1 ui. Now:

2(ui,uj) = 0 j > i+ 1 since there are no loops

2(ui,ui+1) = −1 from (4.100)

Consequently (4.102) yields (u,u) = 1, so u is a unit vector like the ui.
Finally

(v1,u) = (v1,u1),

so roots like v1 connect to u in exactly the same way they would connect
to the end of the chain u1.

We can now enumerate the possible diagrams.
1. It is possible to have one pair of roots connected with a triple line.

This is the special algebra G2 shown in Fig. 4.8. We cannot connect it to
any other roots, however, for this would violate the “no more than three
lines” rule.
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Figure 4.9: The most general diagram with one double line.

2. It is possible to have one pair of roots connected with a double line
with additional connections at one or both ends. The general diagram is
shown in Fig. 4.9. There must be no other double lines or “forks,” however,
because the resulting diagram could be shrunk to one in which four lines
met at one point.

The integers p and q are not completely arbitrary as can be seen from
the following argument: Define

u =
p∑

i=1

iui v =
q∑

j=1

jvj .

Then

(u,u) =
p∑

i=1

i2 −
p−1∑
i=1

i(i+ 1) = p(p+ 1)/2,

and likewise,
(v,v) = q(q + 1)/2.

Finally,
(u,v) = pq(up,vq) = −pq/

√
2.

The Schwartz inequality now gives us a condition on p and q.

(u,v)2 < (u,u)(v,v)

2 <
(

1 +
1
p

)(
1 +

1
q

)
(4.104)

We can satisfy this equation by setting q = 1 and p ≥ 1. This gives the
two root spaces Bn and Cn. (Fig. 4.10) The solution p = q = 2 gives two
diagrams for the same algebra F4. (Fig. 4.11)

3. If there are no double or triple lines in a diagram we are entitled to
have one fork. The most general diagram of this sort is shown in Fig. 4.12.
Again the integers p, q, and r are not completely arbitrary. The argument
is similar to the previous case. Let

u =
p−1∑
i=1

iui v =
q−1∑
j=1

jvj w =
r−1∑
k=1

kwk
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Figure 4.10: The root spaces Bn and Cn.

Figure 4.11: The root space diagram for F4.

Figure 4.12: The most general diagram with one fork.
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p q r Algebra

p ≥ 1 2 2 Dn

3 2 2 E6

4 3 2 E7

5 3 2 E8

Table 4.7: The integer solutions to (4.105) and their corresponding algebras.

(u,u) = (p− 1)p/2 (v,v) = (q − 1)q/2 (w,w) = (r − 1)r/2

(u,v) = (u,w) = (v,w) = 0

We assume (x,x) = 1. The sum of the squares of the direction cosines of x
along the three orthogonal axes, u, v, and w, must be less than 1.

(x,u)2

(u,u)
=

(p− 1)2/4
p(p− 1)/2

=
1
2

(
1− 1

p

)
1
2

(
1− 1

p
+ 1− 1

q
+ 1− 1

r

)
< 1

1
p

+
1
q

+
1
r
> 1 (4.105)

If we asume that p ≤ q ≤ r (to avoid double counting) there are four
solutions to (4.105) given by Table 4.7

The resulting diagrams are shown in Fig. 4.13.
4. Finally it is possible to have diagrams without any double or triple

lines and without any forks. This corresponds to the algebra An. The
general diagram is shown in Fig. 4.14.

In summary, we have shown that the four series of Lie algebras An, Bn,
Cn, and Dn, together with the exceptional algebras G2, F4, E6, E7, and
E8, account for all possible simple complex Lie algebras. Futhermore, a
semisimple algebra can be decomposed into simple algebras by drawing its
Dynkin diagram.

This completes our search for the “essence” of a Lie algebra. At least
for semisimple algebras it consists of a pattern of simple root vectors. To
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Figure 4.13: Dynkin diagrams for Dn and the exceptional algebras E6, E7,
and E8.

Figure 4.14: The Dynkin diagram for all algebras of the class An.
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return to the example with which we began this (exceptionally long) chapter,
the properties of the algebra SU(4) with its 1575 structure constants are
completely specified by the diagram for A3!



Chapter 5

Real Algebras and Their
Groups

Groups are usually parameterized with real parameters. This leads to real
Lie algebras, i.e. algebras defined on the field of real numbers with real
structure constants. In order to cary out the analysis in Chapter 4, however,
it was necessary to extend the algebra to the complex number field. The
reverse procedure, reconstructing the real algebra from a complex one, turns
out to be ambiguous. The central problem is this: matrix representations
of Lie algebras, even real algebras, usually entail complex matrices. For this
reason, a complex group element like ezX could be made real by setting
the imaginary part of z to zero, setting the real part to zero and absorbing
the i into X, or by some combination of these two procedures. The Weyl
canonical form, which was the final result of the analysis of Chapter 4, has
real structure constants. One way to pose the question then is, how many
other real algebras can we get from the Weyl form by suitably restricting
the number field and what are the properties of the corresponding groups?
From a practical point of view, it turns out to be more convenient to start
from another real algebra called the “compact real form” and construct the
other real algebras from it. The Weyl form and the compact real form stand
at opposite ends of the spectrum of compactness. We will eventually show
how to construct all the intermediate algebras and develop a quantity called
the “character” to measure where an algebra stands on this scale.

169
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5.1 Compact groups and compact algebras

Compact matrix groups are bounded in two related ways: (1) The individual
matrix elements cannot exceed some maximum value. (2) The volume of
parameter space is finite. This invariably comes about because of some
periodic or recursive relationship between the two as shown in the next
example.

Example 5.1 The unitary matrix groups

The unitary groups U(n) and O(n) preserve the metric gij = δij . In this
case (2.14) becomes

δij =
∑

l

M
(∗)l
i M l

j ,

so
|M l

i |2 ≤ 1.

The matrix elements are all bounded so the groups are compact. Now let
M l

i = δl
i + tX l

i where t is infinitesimal. To first order in t:

δij = (δk
i + tX

(∗) k
i )δkl(δ l

j + tX l
j )

0 = X
(∗) j
i +X i

j

As a consequence, the Lie algebras u(n) and o(n) consist of anti-Hermitian
matrices. Conversely, group elements obtained by exponentiating an anti-
Hermitian algebra are unitary, since if

U(X) = eX

with X anti-Hermitian, then

U †(X) = eX
†

= e−X = U−1(X).

We can construct a convenient basis for these groups in the defining
representation. Let S, A, and D be n× n matrices.

[S(k, l)]ij =
i√
2
(δkiδlj + δkjδli) 1 ≤ k < l ≤ n (5.1)

[A(k, l)]ij =
1√
2
(δkiδlj − δkjδli) 1 ≤ k < l ≤ n (5.2)

[D(m)]ij = iδmiδmj 1 ≤ m ≤ n (5.3)
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These are simple anti-Hermitian matrices. They obviously form a complete
basis for u(n) with (n2− n)/2 A’s, (n2− n)/2 S’s, and n D’s. (The algebra
o(n) is spanned by the real antisymmetric matrices A alone.) The structure
constants are all real, so they constitute a real Lie algebra. We will call
these n2 elements (or (n2 − n)/2 elements in the case of o(n)) collectively
Xi. They have the important property that

−Trace (XiXj) = δij (5.4)

It is instructive to construct one-parameter subgroups with these basis
elements. First note that

A2(k, l) = S2(k, l) = −1
2
I(k, l) D2(m) = iD(m), (5.5)

where I(k, l) is a diagonal matrix with 1’s at the k’th and l’th places on the
diagonal and zeros elsewhere. Consequently

etS(k,l) = I(k, l) cos t/
√

2 +
√

2S(k, l) sin t/
√

2− I(k, l) + I

etA(k,l) = I(k, l) cos t/
√

2 +
√

2A(k, l) sin t/
√

2− I(k, l) + I

etD(m) = iD(m)(1− eit) + I

These functions are all bounded and periodic, thus compact. Note that it
is exactly the anti-Hermitian character of S, A, and D that provides the
necessary sign reversals so that the series converge to sin’s and cos’s rather
than hyperbolic functions.

The unimodular group SU(n) has the additional constraint that det|eX | =
1, so by Theorem 2.5, Trace(X) = 0. The elements A and S are already
traceless, but the diagonal elements are harder to construct. The set

[T (m)]ij =
i√
2
(δmiδmj − δm+1,iδm+1,j) 1 ≤ m ≤ n− 1 (5.6)

is complete and traceless, but it does not satisfy the orthogonality condition
(5.4). We can, however, form a positive definite scalar product,

< Xi, Xj >= −Trace(XiXj), (5.7)

(where theXi are any of the S, T , or A defined above) and use it to construct
an orthonormal set using the Gram-Schmidt procedure. The resulting n− 1
elements can be combined with the A’s and S’s to make a complete set of
n2 − 1 orthonormal basis elements for su(n).

< Xi, Xj >= δij (5.8)
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This condition in turn leads to an important condition on the structure
constants. Let

[Xi , Xj ] =
∑
k

fk
ijXk.

Then
Trace (Xl[Xi, Xj ]) = −f l

ij

The cyclic property of the trace requires that

f l
ij = −f j

il = −f i
lj = f i

jl = f j
li = −f l

ji (5.9)

i.e. the structure constants are antisymmetric with respect to the exchange
of any pair of indices. The Cartan-Killing form is negative definite, i.e.
(Xi, Xi) < 0, for such an algebra because

(Xi, Xi) =
∑
j,k

fk
ijf

j
ik = −

∑
j,k

(fk
ij)

2,

cf. (4.55) and (4.56).
As an exercise one can prove that if the elements Xi of the algebra are

n× n matrices, then

(Xi, Xj) = 2(n− 1)Trace(XiXj)

so that
(Xi, Xj) = −2(n− 1)δij

This simple result can be generalized with the help of the following def-
inition:

Definition 5.1 A compact algebra is a real Lie algebra with a negative
definite Cartan-Killing form.

If the Killing form is negative definite we can always construct a positive
definite scalar product as in (5.7) and use the Gram-Schmidt procedure to
create an orthonormal set of basis elements. If the algebra is real to start
with, the new basis will still have real structure constants. Then (fk

ij)
2 can’t

be negative. If the algebra has no invariant abelian subalgebras then∑
j,k

(fk
ij)

2 > 0

for all i. We have proved
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Theorem 5.1 If L is a real, compact, semi-simple Lie algebra then its ba-
sis can be made orthonormal, and in this basis the structure constants are
antisymmetric under the exchange of any pair of indices.

We can now prove the so-called Peter-Weyl theorem.

Theorem 5.2 A real, connected, semi-simple Lie group G is compact if and
only if its corresponding real Lie algebra is compact.

Proof: First supppose that the real Lie algebra is compact. As shown
above, the structure constants are completely antisymmetric. The regular
representation therefore consists of real antisymmetric matrices, which ex-
ponentiate to a unitary group. The group is thus a subgroup, at least, of
O(n). Subgroups of compact groups are compact, however, so G is compact.

Now assume that G is compact. According to Theorem 4.??, G is equiva-
lent to a unitary group, so its Lie algebra consists of anti-Hermitian matrices.
We have just learned how to choose a basis for such an algebra so that the
structure constants are antisymmetric and the Cartan-Killing form is nega-
tive definite. The C-K form is invariant under a change of basis, however,
so the theorem is proved.

There is a potential source of confusion that arises here, because physi-
cists like to make compact groups by exponentiating Hermitian matrices, i.e.
eiX , whereas mathematicians prefer to exponentiate anti-Hermitian matri-
ces, eX . As we saw in connection with angular momentum, Example 4.6,
the eiX prescription leads to a complex Lie algebra (in fact the structure
constants are pure imaginary) and a positive definite metric. The eX pre-
scription produces a real Lie algebra and a negative definite metric. All the
results in this chapter so far assume the eX prescription.

In a sense the choice of prescription is trivial (for example, in dealing with
angular momentum one can always think of iJi as a set of anti-Hermitian
matrices and use all the previous results verbatim). This is partly because
all the elements are multiplied by the same factor of i. The serious problem
arises when an algebra, even a real algebra, is defined on the field of complex
numbers. Then we have the option of absorbing some of the i’s into some
elements of the algebra changing their character from anti-Hermitian to
Hermitian. A good example of this is the Weyl canonical form from Chapter
4.
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5.2 The Weyl canonical form and the compact real
form

The Weyl form summarized in Table ??? always describes a real algebra.
In the regular representation it consists of real, symmetric matrices as the
next theorem shows.

Theorem 5.3 If Hi, Eα, and E−α are eigenelements in the Weyl canon-
ical basis, and if the normalization is chosen so that (Hi,Hj) = δij and
(Eα, E−α) = 1, then in the regular representation ET

α = E−α and HT
i = Hi.

Proof: First note that (Hi,Hi) and (Eα, E−α) (for each pair of roots, α
and −α) are the only non-zero Killing forms. This follows from Theorem
4.20. If this normalization is adopted then the Cartan metric has the form,

g =



1
1

. . .

1

1
1

1
1

. . .



(5.10)

Now let σa, σb, and σc be any three basis elements in the Weyl canonical
form. Then from (4.58)

(σa, [σb, σc]) = (σb, [σc, σa]) = (σc, [σa, σb])

It is clear from (5.10) that for each σa there is one and only one element,
say σd for which (σa, σd) is non zero. Then

fd
bc(σa, σd) = fe

ca(σb, σe) = fg
ab(σc, σg).

Here σd is the unique element that makes (σa, σd) non-zero, etc. With the
assumed normalization then

fd
bc = fe

ca = fg
ab.
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The statement that ET
α = E−α is equivalent to the statement that f i

cj = f j
bi,

where b refers to Eα, c refers to E−α, and i and j refer to all those elements
for which f is non-zero (see equation 4.9). This follows trivially from the
above equality. Furthermore if i refers to Hi then fa

ib = 0 unless a = b, so
Hi is diagonal.

Example 5.2 Angular Momentum

The basis elements H1, E+, and E− defined in Example 4.6 have the
following non-zero commutation relations:

[H1, E±] = ± 1√
2
E±

[E+, E−] =
1√
2
H1

In terms of this new basis the regular representation is

R(H1) =
1√
2

 0 0 0
0 1 0
0 0 −1

 R(E+) = 1√
2

 0 0 1
−1 0 0

0 0 0

 (5.11)

R(E−) =
1√
2

 0 −1 0
0 0 0
1 0 0


Clearly the Weyl canonical form is always non-compact; in fact, maxi-

mally non-compact as we will show later. It can be made real and compact,
however, by absorbing a few i’s in the right places. Consider the basis given
by

iHi,
i(Eα + E−α)√

2
,

(Eα − E−α)√
2

. (5.12)

In the regular representation Hi and E±α are real and meet the conditions of
Theorem 5.3. Therefore the elements (5.12) are anti-Hermitian. The metric
tensor is diagonal, and its elements are normalized so that gµν = −δµν . It
is easy to show that the structure constants are all real. Since the regular
representation is faithful (at least for semi-simple algebras) (5.12) defines a
real, compact group. This leads to the following definition:

Definition 5.2 A real algebra constructed from the Weyl canonical form
with the basis (5.12) using real coefficients is called the compact real form,
Lc. Its metric is diagonal, and in fact, gµν = −δµν .
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In the Weyl canonical form, the metric tensor is non-negative and sym-
metric. Equation (5.12) can be thought of as a complex linear transforma-
tion that diagonalizes it. Here is another choice:

Hi,
(Eα + E−α)√

2
,

(Eα − E−α)√
2

(5.13)

This is a real linear transformation that also produces a real Lie algebra. In
this basis

g =



1
1

. . .

1

1
−1

1
−1

. . .



(5.14)

In general, a real matrix g can be diagonalized by choosing another basis,
σ′a = S b

a σb, where S is a non-singular real matrix. (See Definition 4.21).
The new metric is

g′ = SgST (5.15)

It is well known (Korn and Korn) that a transformation of this form can diag-
onalize g and bring it into a standard form in which the diagonal elements
are +1,-1, or 0. Furthermore, it is not possible to change the number of
+1’s, -1’s, or 0’s. The metric for semisimple algebras must be non-singular,
so there can be no 0’s in the diagonal form. We can thus define an invariant
quantity called the character χ of a metric by transforming the metric to
standard form and counting the number of +1’s and −1’s:

χ = (number of +1’s)− (number of -1’s) (5.16)

The character of the compact real form Lc, is

χ(Lc) = −(dimension of the algebra). (5.17)

The character of the Weyl canonical form can be inferred from (5.14).

χ(Weyl canonical form) = +(rank). (5.18)
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The real algebras defined by the Lc and the Weyl canonical form repre-
sent opposite ends of the campactness spectrum. The Weyl canonical form
is minimally compact in the sense that it contains no compact subalgebras
except for the angular momentum-type subalgebras consisting of E±α and
hα. Other real forms will have values of χ that are intermediate between
(5.17) and (5.18) and correspondingly larger compact subgroups.

Apart from some special cases, the character function is non-degenerate,
i.e. algebras with the same dimension and character are equivalent. Among
the complex simple Lie algebras there are only fourteen instances in which
the character function does not provide a unique classification of the real
forms. These occur only in the systems A2n−1 andDn and mostly in algebras
of high dimensionality. Gilmore provides a table of these algebras and an
algorithm for deciding when this degeneracy occurs.

It is possible to transform from the diagonal Weyl canonical form (5.14)
to Lc by a complex linear transformation called the Weyl unitary trick, a
pretentious name for multiplying by i!

Hi → iHi

(Eα + E−α)√
2

→ i(Eα + E−α)√
2

(5.19)

(Eα − E−α)√
2

→ (Eα − E−α)√
2

Clearly it can change the character of an algebra and change a compact
algebra into a non-compact one and vice versa. If we were to multiply indis-
criminantly by i’s, however, we would generate complex structure constants.
The problem of finding all possible real algebras concealed in a given com-
plex algebra can be restated as follows: how many ways are there to play
the Weyl unitary trick on the compact real form without getting complex
structure constants?

Some insight into this question can be gained by observing that if the
basis elements (5.13) are grouped into two sets, K and P, with

Hi, (Eα + E−α)/
√

2 ⊆ P

(Eα − E−α)/
√

2 ⊆ K,

then
[K,K] ⊆ K

[K,P] ⊆ P
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[P,P] ⊆ K. (5.20)

This maneuver is called the Cartan decomposition. Now we can do the Weyl
unitary trick on P, P → iP. The i’s cancel in (5.20), and the structure con-
stants remain real. Thus we can transform the Weyl canonical form into
Lc and vice versa. This is the basic paradigm for finding real forms. To
find all the real forms we must first find all possible Cartan decompositions.
(The correspondance is not one-to-one. Different decompositions can pro-
duce equivalent real forms, but every real form is associated with a Cartan
decomposition.)

Example 5.3 Real forms of Angular Momentum

The basis for Lc is given by

σ1 = iH1, σ2 = i
E+ + E−√

2
σ3 =

E+ − E−√
2

then
[σi, σj ] = −1

2
εijkσk. (5.21)

In terms of this new basis the regular representation is

R(σ1) =
1√
2

 0 −1 0
1 0 0
0 0 0

 R(σ2) = 1√
2

 0 0 1
0 0 0

−1 0 0

 (5.22)

R(σ3) =
1√
2

 0 0 0
0 0 −1
0 1 0


The matrices are real and anti-Hermitian. If we now choose σ1 ⊆ K and
σ2, σ3 ⊆ P and perform the Weyl unitary trick, σ1 → σ1, σ2 → iσ2, and
σ3 → iσ3, the regular representation becomes

R(σ1) =
1√
2

 0 1 0
1 0 0
0 0 0

 R(σ2) = 1√
2

 0 0 −1
0 0 0

−1 0 0

 (5.23)

R(E−) =
1√
2

 0 0 0
0 0 −1
0 −1 0
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The matrices are still real. (At first sight it is surprising that we can multiply
a real matrix by i and get another real matrix, but the regular representa-
tion depends on the basis chosen. The representations (5.22) and (5.23)
are based on different bases.) The first element σ1 is unchanged and thus
anti-Hermitian. It represents a trivial compact subgroup. The remaining
elements are now real and symmetric. It is evident from the commutation
relations (5.21) that there is nothing special about σ1. We could have chosen
any one of the three σ’s to represent K and the remaining two to populate
P. There are thus three different Cartan decompositions producing three
isomorphic, non-compact real forms. We will have more to say about iso-
morphism in the next section.

There is a trick for finding all possible decompositions that was proba-
bly inspired by the following observation: Consider a transformation ψ that
simply takes the complex conjugate of an element of the compact real form,
Lc. Then if X ∈ K, ψ(X) = X, and if Y ∈ P, then ψ(Y ) = −Y. This
transformation has three important properties: (1) It maps the Lie algebra
onto itself; ψ(L) = L. (2) ψ(ψ(X)) = X for all X ∈ L. (3) All the basis ele-
ments in the Cartan decomposition are eigenelements of ψ with eigenvalues
±1. Mappings of this sort are called involutive automorphisms. The task of
finding all possible Cartan decompositions is thus equivalent to finding all
the involutive automorphisms.

5.3 Automorphism

Definition 5.3 Lie group automorphism
Let φ be a mapping of the Lie group G onto itself, φ(G) = G, such that

φ(a)φ(b) = φ(ab)

for all a, b ∈ G. Then φ is called a Lie group automorphism. If we think
of this mapping in terms of conjugations

φd(a) = dad−1

then the set of all elements like d that map G → G constitute a group called
Aut(G), the group of Lie group automorphisms.

Definition 5.4 Lie algebra automorphism.
Let ψ be a mapping of the Lie algebra L onto itself, ψ(L) = L, such that

ψ(αX + βY ) = αψ(X) + βψ(Y )
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ψ([X,Y ]) = [ψ(X), ψ(Y )]

for all X,Y ∈ L. (The coefficients α and β might be real or complex.) Then
ψ is called a Lie algebra automorphism. The product of two automor-
phisms ψ and φ is defined by (ψφ)(X) = ψ(φ(X)). The group of Lie algebra
automorphisms can be defined in the same way as the Lie group automor-
phisms, i.e. the set of all elements d such that

ψ(X) = dXd−1

maps L → L. This group is called Aut(L).

Definition 5.5 Inner and outer automorphism.
If the elements represented by d in the two previous definitions are con-

tained in the group G, the automorphisms are said to be “inner.” We will
use the notation Int(G) and Int(L) for group and algebra automorphisms re-
spectively. Those automorphisms that are not inner are said to be “outer.”

The relationship between Aut(G) and Int(G) turns out to be pivotal in
cataloging the possible real forms of Lie algebras. The following statements
are more or less obvious: (1) Int(G) is identical with the group G. (2) Int(G)
is an invariant subgoup of Aut(G). (3) Both groups contain the identity
element. We can invoke the formalism of factor groups from Section 3.2
particularly theorems ?? and ??. The factor group Aut(G)/Int(G) consists
of the distinct cosets of Int(G). The particular coset containing the identity,
call it Aut0(G), is identical to Int(G)=G. In summary

Aut0(G) = Int(G) = G

Similar arguments can be made for the Lie algebra automorphism groups,
Aut(L) and Int(L). For example, if a = eεX is an element of Int(L), and
X and Y are elements of L, then the automorphism ψa(Y ) = aY a−1 is
connected to the identity in the limit ε→ 0. Consequently, Aut0(L)=Int(L).
Furthermore, the factor group Aut(L)/Int(L) has the same coset structure
as Aut(G)/Int(G).

Now let Yi be a set of basis elements for L. Then

ψa(Yi) = aYia
−1 ≈ Yi + ε[X,Yi] = Yi + ε

∑
j

γ j
i (X)Yj .

At least in the case of semi-simple algebras, this represents a mapping of L
onto itself. We are not entitled to claim that Int(L)=L, since Int(L) is a
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group and L is an algebra, but the automorphism group Int(L) induces an
isomorphism, L → L.

We are now in a position to prove an important result that holds for all
Aut(L) and not just the connected component. It turns out that the Killing
form is invariant under algebra automorphisms.

Theorem 5.4 If ψ is any Lie algebra automorphism, then

(ψ(X), ψ(Y )) = (X,Y )

for all X,Y ∈ L. Here (X,Y ) is the Killing form definition (???).

Proof: Let σ1, σ2, . . . , σn form a basis for L. Then ψ(σ1), ψ(σ2), . . . , ψ(σn)
will also be a basis. Thus there exists a non-singular n × n matrix S such
that ψ(σi) =

∑
j Sijσj . Since ψ is an automorphism,

ψ([X,σj ]) = [ψ(X), ψ(σj)] = ψ(
∑
k

σkR(X)k
j) =

∑
k

ψ(σk)R(X)k
j ,

so that ∑
l

Sjl[ψ(X), σl] =
∑
k,p

SkpσpR(X)k
j .

But
[ψ(X), σl] =

∑
q

σqR(ψ(X))q
l.

Combining the last two equations gives∑
l,q

SjlσpR(ψ(X))p
l =

∑
k,p

R(X)jkSkpσp.

It follows that
R(ψ(X)) = S−1R(X)S. (5.24)

Thus in the regular representation an automorphism can always be repre-
sented by a similarity transformation. The rest is simple:

(ψ(X), ψ(Y )) = trace{R(ψ(X)), R(ψ(Y ))} = trace{S−1R(X)SS−1R(Y )S}

= trace{S−1R(X)R(Y )S} = (X,Y )

The last equality follows from the invariance of the trace under a similarity
transformation.

The importance of this result lies in the fact that all the internal struc-
ture of the Dykin diagrams that were developed in the previous chapter was
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computed using the Killing form. Consequently, Lie algebra automorphisms
do not change the internal structure of the Dynkin diagrams. The only
possible automorphisms are those that at most re-label some of the lines
and/or vertices. There are only a few ways of doing this, hence the fac-
tor groups Aut(L)/Int(L) and Aut(G)/Int(G) have a simple coset structure
corresponding to the few allowable changes to the Dynkin diagrams.

Definition 5.6 An automorphism ψ is said to be involutive if ψ2 = I, i.e.
if ψ(ψ(X)) = X for evey element X in the group or algebra.

Theorem 5.5 (Cartan’s theorem) Let L be a semisimple complex Lie alge-
bra and ψ be an involutive automorphism. Then L can be decomposed into
two subspaces, L = K + P such that ψ(K) = +K and ψ(P) = −P. K is a
subalgebra, and P is an orthogonal complementary subspace.

Proof: Let σ1, σ2, . . . , σn be a basis of L. The action of ψ can be repre-
sented by a matrix T .

ψ(σi) =
∑
j

Tijσj

Since ψ is involutive, T 2 = I or (T − I)(T + I) = 0. It is not hard to show
that a matrix that can be factored like this can be diagonalized, and its
eigenvalues are all ±1. We can thus choose a new basis of L so that it is
composed of eigenelements of T . Then let K be the space spanned by the
basis elements with eigenvalue +1, and let P be the space spanned by those
with eigenvalue -1. The two subspaces are orthogonal, since

(K,P) = (TK, TP) = −(K,P) = 0.

The subspace K is closed under commutation, since if K,K ′ ∈ K, then

([K,K ′],P) = (T [K,K ′], TP) = ([TK, TK ′], TP) = −([K,K ′],P) = 0

so
[K,K] ⊆ K

In the same way we can show that

[K,P] ⊆ P

[P,P] ⊆ K

This is just the Cartan decomposition, (??). Thus we have proved the
following corollary:



5.4. THE CATALOG OF AUTOMORPHISMS 183

Corollary 5.6 For every involutive automorphism there is a real Lie alge-
bra obtained by performing the corresponding Cartan decomposition on Lc

and replacing P → iP.

Since Lc was compact to start with, K is still compact, but the entire al-
gebra K + iP is non-compact. K is thus the maximal compact subalgebra.
Furthermore, Lc is a real algebra, and the i’s all cancel in (??), so the new
algebra is also real.

The Cartan decomposition is especially important because in fact all the
real forms of a complex semisimple algebra can be found in this way. We
refer the reader to Cornwell for a list of references and history of the proof
of this remarkable theorem.

5.4 The Catalog of Automorphisms

It turns out to be useful to think of the automorphisms of Lc in the following
form:

ψ = φ−1θφ (5.25)

Here it is assumed that φ is an element of the group and hence an inner
automorphism. Its purpose is to rearrange the basis elements into some
convenient form so that θ, the “chief” automorphism can be represented as
simply as possible. Different ψ’s corresponding to the same θ and different
φ’s are isomorphic, and have the same character, since the trace of a matrix
is invariant under a similarity transformation. We are really interested in
cataloging the various chief automorphisms. Even so, many θ’s are equiva-
lent to one another. The θ′s in turn can be “inner” or “outer” as discussed
previously. We begin with the inner automorphisms.

5.4.1 Inner automorphisms

Assume that Lc is described with the following basis elements: ihαi (i =
1, 2, . . . , l) followed by i(Eα + E−α)/

√
2 and (Eα − E−α)/

√
2 for each α

contained in the set of positive roots. (l is the dimension of the Cartan sub-
algebra.) All chief inner involutive automorphisms θ can then be represented
with the following diagonal matrix.
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θ =



Il

±Iα1

±Iα2

±Iα3

. . .


≡ Ik,p (5.26)

The submatrix Il is a l × l unit matrix that maps ihαi → ihαi . The
remaining 2×2 unit matrices ±Iαi transform i(Eαi +E−αi)/

√
2 → ±i(Eαi +

E−αi)/
√

2 and (Eαi −E−αi)/
√

2 → ±(Eαi −E−αi)/
√

2. The choice of + or
- is arbitrary for each matrix Iαj , where αj is a simple positive root. If αj

is a sum of simple roots, e.g. if αj = αm + αn, then the sign of Iαj must
equal the product of the sign of Iαm and the sign of Iαn . There are thus
2l possible choices, all corresponding to different but possibly isomorphic
algebras. When performing the Cartan decomposition, the k elements with
+ signs are grouped into K and the remaining √ elements with - signs make

up P. We will refer to this as the “Ik,p algorithm.”
It is easy to show that (5.26) defines an inner involutive automorphism.

The fact that all such automorphisms can be obtained from θ by a similarity
transformation was first proved by Gantmacher (1939).

Example 5.4 The real form of su(2)

The basis defined in Example 5.3 is consistent with (5.26). Except for the
identity there is only one automorphism, σ1 → σ1, σ2 → −σ2, and σ3 →
−σ3. The Weyl unitary trick then leads to one of the three equivalent non-
compact real forms mentioned in Example 5.2.

Example 5.5 The real form of su(3)

There are three positive roots, α1, α2, and α1 + α2. The choice of signs
for ±Iα1 and ±Iα2 is arbitrary. Thus there are four automorphisms, one of
which is the identity. The remaining three are + − −, − + −, and − − +.
They all have a character χ = −Tr θ = 0. In this case all three forms yield
the algebra of su(2, 1).

5.4.2 Dynkin diagrams and outer automorphisms

It was claimed (so far without proof) that there was an automorphism as-
sociated with interchanging the simple positive roots in a Dynkin diagram.
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In fact, any interchange between pairs of roots that keeps the “scalar prod-
uct,” (α,β) = (hα, hβ) between each pair of roots α and β unchanged con-
stitutes an involutive automorphism so long as certain sign conventions are
observed. It turns out that all the permutations associated with Weyl reflec-
tions, Section 4.5, generate inner automorphisms (Cornwell, Gantmacher),
which are already contained in the previous algorithm (Section 5.4.1). The
only new automorphisms are associated with permutations of simple roots
in the Dynkin diagrams. The details are given in the following theorem.

Theorem 5.7 Consider a linear transformation τ that maps the roots of a
simple or semi-simple complex Lie algebra onto one another in such a way
that it satisfies the following three conditions:

1. If α is a root, then so is τ(α).

2. If α=/ β, then τ(α) =/ τ(β), i.e. no roots are lost and no new roots are
created in the mapping.

3. The mapping is linear, ı.e.

τ(xα + yβ) = xτ(α) + yτ(β) (5.27)

for any complex numbers x and y.

Further, assume the following sign conventions:

ψτ (hα) = hτ(α) (5.28)

and
ψτ (Eα) = χαEτ(α) (5.29)

Here χα = +1 if α is a simple positive root, χ−α = χα, and finally

χα+β = χαχβNτ(α),τ(β)/Nα,β (5.30)

Then τ generates an involutive automorphism, which we will call ψτ .

Proof: Lie algebra automorphisms must preserve commutation relations
(see Definition 5.4). So, for example, (??) with λα = 1 gives

ψτ (hα) = ψτ ([Eα, E−α]) = hτ(α) ≡ [Eτ(α), Eτ(−α)] =

χαχ−α[ψτ (Eα), ψτ (E−α)] = [ψτ (Eα), ψτ (E−α)]
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Thus if we make the natural definition,

hτ(α) ≡ [Eτ(α), Eτ(−α)], (5.31)

then
ψτ ([Eα, E−α]) = [ψτ (Eα), ψτ (E−α)], (5.32)

as required by the definition of automorphism.
The same argument works for (??).

ψτ (Eα+β) = χα+βEτ(α+β) = χα+βEτ(α)+τ(β) =

χα+β[Eτ(α), Eτ(β)]/Nτ(α),τ(β) = χαχβ [Eτ(α), Eτ(β)]/Nα,β =

[ψτ (Eα), ψτ (Eβ)]/Nα,β = ψτ ([Eα, Eβ])/Nα,β

We can conclude that

ψτ ([Eα, Eβ]) = [ψτ (Eα), ψτ (Eβ)] (5.33)

Finally (??) is transformed as follows:

ψτ ([hα, Eβ]) = ψτ ([[Eα, E−α], Eβ]) =

ψτ ([[Eβ , Eα], E−α]) = Nβ,αψτ ([Eβ+α, E−α]) =

Nβ,α[ψτ (Eβ+α), ψτ (E−α)] = Nβ,αχβ+αχ−α[Eτ(β+α), Eτ(−α)] =

Nβ,αχβ+αχ−α

Nτ(β),τ(α)
[[Eτ(β), Eτ(α)], Eτ(−α)] =

Nβ,αχβ+αχ−α

Nτ(β),τ(α)
[hτ(α), Eτ(β)] = [ψ(hα), ψ(Eβ)]

In the last step we used the fact that

Nβ,αχβ+αχ−αχβ

Nτ(β),τ(α)
= 1

Again we conclude that

ψτ ([hα, Eβ ]) = [ψ(hα), ψ(Eβ)] (5.34)

Since ψτ is an automorphism, we can use Theorem 5.4 to derive the
following result:

Theorem 5.8
(α,β) = (τ(α), τ(β)) (5.35)
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Proof: From (??)

(α,β) = (hα, hβ) = (ψ(hα), ψ(hβ)) =

(hτ(α), hτ(β)) = (τ(α), τ(β))

The possible automorphisms are easy to enumerate with reference to the
diagrams in Figure 4.9-4.14.

An Figure 4.14
All the roots have the same weights, but if we were to exchange one pair

of roots, e.g. u1 and u2, that would bring u1 adjacent to u3. This does not
preserve the scalar product since (u2,u3) =?? whereas (u1,u3) =??. It is
possible to exchange all the roots simultaneously ui ↔ un+1−i. Thus there
is only one chief outer involutary isomorphism. To put it another way, the
factor group, Aut(L)/Int(L) has only two elements, the identity and this
one transformation.

Bn, Cn Figure 4.10
The reflection that worked for An fails here because u1 and un have

different weights. There are no automorphisms for these algebras.
Dn, E6, E7, and E8 Figure 4.13
In general, there is one symmetry corresponding to the interchange

un−1 ↔ un. Because of the exceptional symmerty in the case n = 4, how-
ever, there are three possible exchanges, u1 ↔ u3, u1 ↔ u4, and u3 ↔ u4.
There is a single reflection allowed for E6, ı.e. u1 ↔ u5 together with
u2 ↔ u4. There is no symmetry associated with the exceptional algebras,
E7, and E8, and consequently, no outer automorphisms.

G2 Figure 4.8 and F4 Figure 4.11
No relflections are allowed becuase of the asymmetry of the weights.

Example 5.6 Outer automorphism of su(3)

The algebra su(3) is A2. The exchange α1 ↔ α2 produces the following
automorphism:

ψτ (ihα1) = ihα2 , ψτ (ihα2) = ihα1

ψτ (i(Eα1 + E−α1)) = i(Eα2 + E−α2)

ψτ ((Eα1 − E−α1)) = (Eα2 − E−α2)

ψτ (i(Eα2 + E−α2)) = i(Eα1 + E−α1)

ψτ ((Eα2 − E−α2)) = (Eα1 − E−α1)

ψτ (i(Eα1+α2 + E−(α1+α2
)) = i(E(α1+α2) + E−(α1+α2))
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ψτ ((Eα1+α2 − E−(α1+α2
)) = (E(α1+α2) − E−(α1+α2))

The last two lines made use of the fact that Nτ(α1),τ(α2) = Nα2,α1 = −Nα1,α2 .
The matrix θ is obviously non-diagonal and its character χ = −Tr θ = +2.
This turns out to be the algebra sl(3, R).

5.4.3 Summary of algebras

We have discussed three involutive automorphisms: (1) complex conjuga-
tion, (2) inner automorphisms given by the Ik,p algorithm (5.26), and (3)
outer automorphisms produced by permutations of Dynkin diagrams. It
can be shown that (2) and (3) together account for all possible involutive
automorphisms, so (1) is in a sense redundant. It is simple to use, however,
and it always produces one real algebra, the maximally non-compact Weyl
canonical form. The other two algorithms are only relevant to the extent
that there are additional real algebras. We will now give a summary of how
they work in cases more complicated than the simple examples given so far.
In the following summary it is assumed that the Cartan decomposition has
already been performed and that the basis elements have been rearranged
so that the k elements of the subalgebra K come first followed by the p
elements of P. From now on we work entirely in the regular representation,
which can be partitioned as follows:

K =

[
A 0

0 C

]
P =

[
0 B

−B† 0

]
(5.36)

Since the compact real form is anti-Hermitian, A is a k× k anti-Hermitian
submatrix, and B is p× p and anti-Hermitian.

The inner automorphism (5.26) is a diagonal transformation, i.e. it does
not rearrange the basis elements. After applying the Weyl unitary trick,
P → iP, and redefining the regular representation (cf. Example 5.3), K is
unchanged and P becomes

iP =

[
0 B

+B† 0

]
(5.37)

There are as many different ways of performing this algorithm as there
are ways to choose the signs in equation (5.26). With a few exceptions, all
choices with the same value of k yield isomorphic algebras, however. (Of
course, k + p = n, the number of independent generators of the algebra.)

Outer automorphisms require that a new basis be chosen to diagonalize
the transformation τ of Theorem 5.7. In terms of the new basis the regular
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Root space Lc Real Algebra χ

An−1 su(n) sl(n, r) n− 1

su(2n) su∗(2n) −1n− 1

su(k, p) su(k, p) −(k − p)2 + 1

Bn so(n) so(k, p) [(k + p)− (k − p)2]/2

Cn usp(2n) sp(2n, r) n

usp(2n) usp(2k, 2p) [−2(k + p)− 4(k − p)2]/2

Dn so(n) so(k, p) [(k + p)− (k − p)2]/2

so(2n) so∗(2n) −n

Table 5.1: The complex simple Lie algebras and their real forms.
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representation looks like (5.36) and the transition to the real form is given
by (5.37).

The resulting real forms obtained with these techniques are summarized
in Table 5.1 for the classical complex simple Lie algebras. The exceptional
algebras are summarized in several standard reference works.


